51
|
Malm M, Frejd FY, Ståhl S, Löfblom J. Targeting HER3 using mono- and bispecific antibodies or alternative scaffolds. MAbs 2016; 8:1195-1209. [PMID: 27532938 PMCID: PMC5058629 DOI: 10.1080/19420862.2016.1212147] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The human epidermal growth factor receptor 3 (HER3) has in recent years been recognized as a key node in the complex signaling network of many different cancers. It is implicated in de novo and acquired resistance against therapies targeting other growth factor receptors, e.g., EGFR, HER2, and it is a major activator of the PI3K/Akt signaling pathway. Consequently, HER3 has attracted substantial attention, and is today a key target for drugs in clinical development. Sophisticated protein engineering approaches have enabled the generation of a range of different affinity proteins targeting this receptor, including antibodies and alternative scaffolds that are either mono- or bispecific. Here, we describe HER3 and its role as a key tumor target, and give a comprehensive review of HER3-targeted proteins currently in development, including discussions on the opportunities and challenges of targeting this receptor.
Collapse
Affiliation(s)
- Magdalena Malm
- a Division of Protein Technology, School of Biotechnology, KTH-Royal Institute of Technology, SE , Stockholm
| | - Fredrik Y Frejd
- b Affibody AB, SE, Stockholm , Sweden.,c Department of Immunology , Genetics and Pathology, Uppsala University , Uppsala , Sweden
| | - Stefan Ståhl
- a Division of Protein Technology, School of Biotechnology, KTH-Royal Institute of Technology, SE , Stockholm
| | - John Löfblom
- a Division of Protein Technology, School of Biotechnology, KTH-Royal Institute of Technology, SE , Stockholm
| |
Collapse
|
52
|
Takahashi M, Kizuka Y, Ohtsubo K, Gu J, Taniguchi N. Disease-associated glycans on cell surface proteins. Mol Aspects Med 2016; 51:56-70. [PMID: 27131428 DOI: 10.1016/j.mam.2016.04.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/23/2016] [Indexed: 01/02/2023]
Abstract
Most of membrane molecules including cell surface receptors and secreted proteins including ligands are glycoproteins and glycolipids. Therefore, identifying the functional significance of glycans is crucial for developing an understanding of cell signaling and subsequent physiological and pathological cellular events. In particular, the function of N-glycans associated with cell surface receptors has been extensively studied since they are directly involved in controlling cellular functions. In this review, we focus on the roles of glycosyltransferases that are involved in the modification of N-glycans and their target proteins such as epidermal growth factor receptor (EGFR), ErbB3, transforming growth factor β (TGF-β) receptor, T-cell receptors (TCR), β-site APP cleaving enzyme (BACE1), glucose transporter 2 (GLUT2), E-cadherin, and α5β1 integrin in relation to diseases and epithelial-mesenchymal transition (EMT) process. Above of those proteins are subjected to being modified by several glycosyltransferases such as N-acetylglucosaminyltransferase III (GnT-III), N-acetylglucosaminyltransferase IV (GnT-IV), N-acetylglucosaminyltransferase V (GnT-V), α2,6 sialyltransferase 1 (ST6GAL1), and α1,6 fucosyltransferase (Fut8), which are typical N-glycan branching enzymes and play pivotal roles in regulating the function of cell surface receptors in pathological cell signaling.
Collapse
Affiliation(s)
- Motoko Takahashi
- Department of Biochemistry, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Yasuhiko Kizuka
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Kazuaki Ohtsubo
- Department of Analytical Biochemistry, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsusima, Aobaku, Sendai, Miyagi 981-8558, Japan
| | - Naoyuki Taniguchi
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.
| |
Collapse
|
53
|
Kaumaya PTP. A paradigm shift: Cancer therapy with peptide-based B-cell epitopes and peptide immunotherapeutics targeting multiple solid tumor types: Emerging concepts and validation of combination immunotherapy. Hum Vaccin Immunother 2016; 11:1368-86. [PMID: 25874884 DOI: 10.1080/21645515.2015.1026495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a recognizable and urgent need to speed the development and application of novel, more efficacious anti-cancer vaccine therapies that inhibit tumor progression and prevent acquisition of tumor resistance. We have created and established a portfolio of validated peptide epitopes against multiple receptor tyrosine kinases and we have identified the most biologically effective combinations of EGFR (HER-1), HER-2, HER-3, VEGF and IGF-1R peptide vaccines/mimics to selectively inhibit multiple receptors and signaling pathways. The strategy is based on the use of chimeric conformational B-cell epitope peptides incorporating "promiscuous" T-cell epitopes that afford the possibility of generating an enduring immune response, eliciting protein-reactive high-affinity anti-peptide antibodies as potential vaccines and peptide mimics that act as antagonists to receptor signaling that drive cancer metastasis. In this review we will summarize our ongoing studies based on the development of combinatorial immunotherapeutic strategies that act synergistically to enhance immune-mediated tumor killing aimed at addressing mechanisms of tumor resistance for several tumor types.
Collapse
Affiliation(s)
- Pravin T P Kaumaya
- a Department of Obstetrics and Gynecology; The Ohio State University Wexner Medical Center ; Columbus , OH , USA
| |
Collapse
|
54
|
NRF2 Regulates HER2 and HER3 Signaling Pathway to Modulate Sensitivity to Targeted Immunotherapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:4148791. [PMID: 26770651 PMCID: PMC4685121 DOI: 10.1155/2016/4148791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 12/27/2022]
Abstract
NF-E2 related factor-2 (NRF2) is an essential transcription factor for multiple genes encoding antioxidants and detoxification enzymes. NRF2 is implicated in promoting cancer therapeutic resistance by its detoxification function and crosstalk with proproliferative pathways. However, the exact mechanism of this intricate connectivity between NRF2 and growth factor induced proliferative pathway remains elusive. Here, we have demonstrated that pharmacological activation of NRF2 by tert-butylhydroquinone (tBHQ) upregulates the HER family receptors, HER2 and HER3 expression, elevates pAKT levels, and enhances the proliferation of ovarian cancer cells. Preactivation of NRF2 also attenuates the combined growth inhibitory effects of HER2 targeting monoclonal antibodies, Pertuzumab and Trastuzumab. Further, tBHQ caused transcriptional induction of HER2 and HER3, while SiRNA-mediated knockdown of NRF2 prevented this and further caused transcriptional repression and enhanced cytotoxicity of the HER2 inhibitors. Hence, NRF2 regulates both HER2 and HER3 receptors to influence cellular responses to HER2 targeting monoclonal antibodies. This deciphered crosstalk mechanism reinforces the role of NRF2 in drug resistance and as a relevant anticancer target.
Collapse
|
55
|
Kim J, Lee J, Kim C, Choi J, Kim A. Anti-cancer effect of metformin by suppressing signaling pathway of HER2 and HER3 in tamoxifen-resistant breast cancer cells. Tumour Biol 2015; 37:5811-9. [PMID: 26581908 DOI: 10.1007/s13277-015-4440-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
Development of new therapeutic strategies is becoming increasingly important to overcome tamoxifen resistance. Recently, much interest has been focused on anti-tumor effects of metformin commonly used to treat type II diabetes. Increased protein expression and signaling of epidermal growth factor receptor (EGFR) family is a possible mechanism involved in tamoxifen resistance. Since HER2/HER3 heterodimers are able to induce strong downstream signaling and activate various biological responses such as cellular proliferation and growth, we investigated the anti-cancer effect of metformin by inhibition of signaling pathway via downregulation of HER2 and HER3 using tamoxifen-resistant MCF-7 (TR MCF-7) cells. Compared to MCF-7 cells, TR MCF-7 cells showed increased expression of EGFR, HER2, and HER3, and metformin inhibited the expression of these proteins in a dose- and time-dependent manner. Metformin inhibited activation of HER2 (Tyr1248)/HER3 (Tyr1289)/Akt (Ser473) as well as cell proliferation and colony formation by estrogenic promotion in MCF-7 and TR MCF-7 cells. Known as a HER3 ligand, heregulin (HRG)-β1-induced phosphorylation of HER2, HER3 and Akt, and protein interaction of HER2/HER3 and colony formation were inhibited by metformin in both cells. Consistent with the results in the two cell lines, we identified that metformin inhibited HER2/HER3/Akt signaling axis activated by HRG-β1 using the HER2 and HER3-overexpressing breast cancer cell line SK-BR-3. Lastly, lapatinib-induced HER3 upregulation was significantly inhibited by treatment of metformin in HER3 siRNA-transfected TR MCF-7 cells. These data suggest that metformin might overcome tamoxifen resistance through the inhibition of expression and signaling of receptor tyrosine kinase HER2 and HER3.
Collapse
MESH Headings
- Adenocarcinoma/pathology
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents, Hormonal/pharmacology
- Breast Neoplasms/pathology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Enzyme Induction/drug effects
- ErbB Receptors/biosynthesis
- Estradiol/pharmacology
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, erbB-1
- Genes, erbB-2
- Humans
- Lapatinib
- MCF-7 Cells
- Metformin/pharmacology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neuregulin-1/antagonists & inhibitors
- Neuregulin-1/physiology
- Quinazolines/antagonists & inhibitors
- Quinazolines/pharmacology
- RNA Interference
- RNA, Small Interfering/genetics
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/biosynthesis
- Receptor, ErbB-3/antagonists & inhibitors
- Receptor, ErbB-3/biosynthesis
- Receptor, ErbB-3/genetics
- Signal Transduction/drug effects
- Tamoxifen/pharmacology
- Tumor Stem Cell Assay
Collapse
Affiliation(s)
- Jinkyoung Kim
- Department of Pathology, Korea University Guro Hospital, #148 Gurodong-ro, Guro-gu, Seoul, 152-703, Korea
| | - Jiyun Lee
- Department of Pathology, College of Medicine, Korea University, #73 Inchon-ro, Seongbuk-gu, Seoul, 136-705, Korea
| | - Chungyeul Kim
- Department of Pathology, Korea University Guro Hospital, #148 Gurodong-ro, Guro-gu, Seoul, 152-703, Korea
| | - Jinhyuk Choi
- Department of Pathology, Korea University Guro Hospital, #148 Gurodong-ro, Guro-gu, Seoul, 152-703, Korea
| | - Aeree Kim
- Department of Pathology, Korea University Guro Hospital, #148 Gurodong-ro, Guro-gu, Seoul, 152-703, Korea.
| |
Collapse
|
56
|
McCabe Pryor M, Steinkamp MP, Halasz AM, Chen Y, Yang S, Smith MS, Zahoransky-Kohalmi G, Swift M, Xu XP, Hanein D, Volkmann N, Lidke DS, Edwards JS, Wilson BS. Orchestration of ErbB3 signaling through heterointeractions and homointeractions. Mol Biol Cell 2015; 26:4109-23. [PMID: 26378253 PMCID: PMC4710241 DOI: 10.1091/mbc.e14-06-1114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/09/2015] [Indexed: 12/27/2022] Open
Abstract
Members of the ErbB family of receptor tyrosine kinases are capable of both homointeractions and heterointeractions. Because each receptor has a unique set of binding sites for downstream signaling partners and differential catalytic activity, subtle shifts in their combinatorial interplay may have a large effect on signaling outcomes. The overexpression and mutation of ErbB family members are common in numerous human cancers and shift the balance of activation within the signaling network. Here we report the development of a spatial stochastic model that addresses the dynamics of ErbB3 homodimerization and heterodimerization with ErbB2. The model is based on experimental measures for diffusion, dimer off-rates, kinase activity, and dephosphorylation. We also report computational analysis of ErbB3 mutations, generating the prediction that activating mutations in the intracellular and extracellular domains may be subdivided into classes with distinct underlying mechanisms. We show experimental evidence for an ErbB3 gain-of-function point mutation located in the C-lobe asymmetric dimerization interface, which shows enhanced phosphorylation at low ligand dose associated with increased kinase activity.
Collapse
Affiliation(s)
- Meghan McCabe Pryor
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131 Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Mara P Steinkamp
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131 Cancer Center, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM 87131
| | - Adam M Halasz
- Department of Mathematics, West Virginia University, Morgantown, WV 25606
| | - Ye Chen
- Department of Mathematics, West Virginia University, Morgantown, WV 25606
| | - Shujie Yang
- Department of OB/GYN, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | | | | | - Mark Swift
- Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Xiao-Ping Xu
- Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Dorit Hanein
- Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Niels Volkmann
- Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Diane S Lidke
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131 Cancer Center, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM 87131
| | - Jeremy S Edwards
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131 Cancer Center, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM 87131 Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131
| | - Bridget S Wilson
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131 Cancer Center, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
57
|
Curley MD, Sabnis GJ, Wille L, Adiwijaya BS, Garcia G, Moyo V, Kazi AA, Brodie A, MacBeath G. Seribantumab, an Anti-ERBB3 Antibody, Delays the Onset of Resistance and Restores Sensitivity to Letrozole in an Estrogen Receptor–Positive Breast Cancer Model. Mol Cancer Ther 2015; 14:2642-52. [DOI: 10.1158/1535-7163.mct-15-0169] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/20/2015] [Indexed: 11/16/2022]
|
58
|
Decreased LRIG1 in fulvestrant-treated luminal breast cancer cells permits ErbB3 upregulation and increased growth. Oncogene 2015; 35:1143-52. [PMID: 26148232 PMCID: PMC4703573 DOI: 10.1038/onc.2015.169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 02/18/2015] [Accepted: 02/22/2015] [Indexed: 12/14/2022]
Abstract
ErbB3, a member of the ErbB family of receptor tyrosine kinases, is a potent activator of phosphatidyl inositol-3 kinase (PI3K) and mTOR signaling, driving tumor cell survival and therapeutic resistance in breast cancers. In luminal breast cancers, ErbB3 upregulation following treatment with the anti-estrogen fulvestrant enhances PI3K/mTOR-mediated cell survival. However, the mechanism by which ErbB3 is upregulated in fulvestrant-treated cells is unknown. We found that ErbB3 protein levels and cell surface presentation were increased following fulvestrant treatment, focusing our attention on proteins that regulate ErbB3 at the cell surface, including Nrdp1, NEDD4, and LRIG1. Among these, only LRIG1 correlated positively with ERα, but inversely with ErbB3 in clinical breast cancer datasets. LRIG1, an estrogen-inducible ErbB down-regulator, was decreased in a panel of fulvestrant-treated luminal breast cancer cells. Ectopic LRIG1 expression from an estrogen-independent promoter uncoupled LRIG1 from estrogen regulation, thus sustaining LRIG1 and maintaining low ErbB3 levels in fulvestrant-treated cells. An LRIG1 mutant lacking the ErbB3 interaction motif was insufficient to down-regulate ErbB3. Importantly, LRIG1 overexpression improved fulvestrant-mediated growth inhibition, while cells expressing the LRIG1 mutant were poorly sensitive to fulvestrant, despite effective ERα down-regulation. Consistent with these results, LRIG1 expression correlated positively with increased disease-free survival in anti-estrogen-treated breast cancer patients. These data suggest that ERα-dependent expression of LRIG1 dampens ErbB3 signaling in luminal breast cancer cells, and by blocking ERα activity with fulvestrant, LRIG1 is decreased thus permitting ErbB3 accumulation, enhanced ErbB3 signaling to cell survival pathways, and blunting therapeutic response to fulvestrant.
Collapse
|
59
|
Alaoui-Jamali MA, Morand GB, da Silva SD. ErbB polymorphisms: insights and implications for response to targeted cancer therapeutics. Front Genet 2015; 6:17. [PMID: 25699077 PMCID: PMC4316710 DOI: 10.3389/fgene.2015.00017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/14/2015] [Indexed: 12/14/2022] Open
Abstract
Advances in high-throughput genomic-scanning have expanded the repertory of genetic variations in DNA sequences encoding ErbB tyrosine kinase receptors in humans, including single nucleotide polymorphisms (SNPs), polymorphic repetitive elements, microsatellite variations, small-scale insertions and deletions. The ErbB family members: EGFR, ErbB2, ErbB3, and ErbB4 receptors are established as drivers of many aspects of tumor initiation and progression to metastasis. This knowledge has provided rationales for the development of an arsenal of anti-ErbB therapeutics, ranging from small molecule kinase inhibitors to monoclonal antibodies. Anti-ErbB agents are becoming the cornerstone therapeutics for the management of cancers that overexpress hyperactive variants of ErbB receptors, in particular ErbB2-positive breast cancer and non-small cell lung carcinomas. However, their clinical benefit has been limited to a subset of patients due to a wide heterogeneity in drug response despite the expression of the ErbB targets, attributed to intrinsic (primary) and to acquired (secondary) resistance. Somatic mutations in ErbB tyrosine kinase domains have been extensively investigated in preclinical and clinical setting as determinants for either high sensitivity or resistance to anti-ErbB therapeutics. In contrast, only scant information is available on the impact of SNPs, which are widespread in genes encoding ErbB receptors, on receptor structure and activity, and their predictive values for drug susceptibility. This review aims to briefly update polymorphic variations in genes encoding ErbB receptors based on recent advances in deep sequencing technologies, and to address challenging issues for a better understanding of the functional impact of single versus combined SNPs in ErbB genes to receptor topology, receptor-drug interaction, and drug susceptibility. The potential of exploiting SNPs in the era of stratified targeted therapeutics is discussed.
Collapse
Affiliation(s)
- Moulay A Alaoui-Jamali
- Departments of Medicine and Oncology, Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University Montreal, QC, Canada
| | - Grégoire B Morand
- Departments of Medicine and Oncology, Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University Montreal, QC, Canada ; Department of Otolaryngology-Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, McGill University Montreal, QC, Canada
| | - Sabrina Daniela da Silva
- Departments of Medicine and Oncology, Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University Montreal, QC, Canada ; Department of Otolaryngology-Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, McGill University Montreal, QC, Canada
| |
Collapse
|
60
|
Singh P, Bast F. High-throughput virtual screening, identification and in vitro biological evaluation of novel inhibitors of signal transducer and activator of transcription 3. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1328-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
61
|
Zaleska K. miRNA - Therapeutic tool in breast cancer? Where are we now? Rep Pract Oncol Radiother 2014; 20:79-86. [PMID: 25859396 DOI: 10.1016/j.rpor.2014.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/03/2014] [Accepted: 10/17/2014] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE The aim of this study was to review the current knowledge about involvement of microRNAs in breast cancer, and their potential in the clinic, published in scientific journals searched in Pubmed/Medline database until March 2014. RESULTS MicroRNAs (miRNAs) are a family of 21-25 nucleotide small RNAs molecules. Currently, it is well known that miRNA plays a key role in all cellular processes of the organism including tumour initiation and progression. Many studies have shown that circulating miRNAs are attractive, easily detectable tumour biomarkers. Breast cancer is one of the most common cancers in the world. It is clinically established that different subtypes may respond differently to therapies, give metastases and present drug resistance. MicroRNAs have a potential as diagnostic, prognostic and therapeutic tools in breast cancer. CONCLUSION Molecular knowledge is crucial for choosing the most effective therapy for individual patients. MicroRNAs holds a great potential in anticancer therapy.
Collapse
Affiliation(s)
- Karolina Zaleska
- Radiobiology Laboratory in the Medical Physics Department, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
62
|
Wang S, Huang J, Lyu H, Cai B, Yang X, Li F, Tan J, Edgerton SM, Thor AD, Lee CK, Liu B. Therapeutic targeting of erbB3 with MM-121/SAR256212 enhances antitumor activity of paclitaxel against erbB2-overexpressing breast cancer. Breast Cancer Res 2014; 15:R101. [PMID: 24168763 PMCID: PMC3978722 DOI: 10.1186/bcr3563] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 10/11/2013] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Elevated expression of erbB3 rendered erbB2-overexpressing breast cancer cells resistant to paclitaxel via PI-3 K/Akt-dependent upregulation of Survivin. It is unclear whether an erbB3-targeted therapy may abrogate erbB2-mediated paclitaxel resistance in breast cancer. Here, we study the antitumor activity of an anti-erbB3 antibody MM-121/SAR256212 in combination with paclitaxel against erbB2-overexpressing breast cancer. METHODS Cell growth assays were used to determine cell viability. Cells undergoing apoptosis were quantified by a specific apoptotic ELISA. Western blot analyses were performed to assess the protein expression and activation. Lentiviral vector containing shRNA was used to specifically knockdown Survivin. Tumor xenografts were established by inoculation of BT474-HR20 cells into nude mice. The tumor-bearing mice were treated with paclitaxel and/or MM-121/SAR256212 to determine whether the antibody (Ab) enhances paclitaxel’s antitumor activity. Immunohistochemistry was carried out to study the combinatorial effects on tumor cell proliferation and induction of apoptosis in vivo. RESULTS MM-121 significantly facilitated paclitaxel-mediated anti-proliferative/anti-survival effects on SKBR3 cells transfected with a control vector or erbB3 cDNA. It specifically downregulated Survivin associated with inactivation of erbB2, erbB3, and Akt. MM-121 enhances paclitaxel-induced poly(ADP-ribose) polymerase (PARP) cleavage, activation of caspase-8 and −3, and apoptosis in both paclitaxel-sensitive and -resistant cells. Specific knockdown of Survivin in the trastuzumab-resistant BT474-HR20 cells dramatically enhanced paclitaxel-induced apoptosis, suggesting that increased Survivin caused a cross-resistance to paclitaxel. Furthermore, the studies using a tumor xenograft model-established from BT474-HR20 cells revealed that either MM-121 (10 mg/kg) or low-dose (7.5 mg/kg) paclitaxel had no effect on tumor growth, their combinations significantly inhibited tumor growth in vivo. Immunohistochemical analysis showed that the combinations of MM-121 and paclitaxel significantly reduced the cells with positive staining for Ki-67 and Survivin, and increased the cells with cleaved caspase-3. CONCLUSIONS The combinations of MM-121 and paclitaxel not only inhibit tumor cell proliferation, but also promote erbB2-overexpressing breast cancer cells to undergo apoptosis via downregulation of Survivin in vitro and in vivo, suggesting that inactivation of erbB3 with MM-121 enhances paclitaxel-mediated antitumor activity against erbB2-overexpressing breast cancers. Our data supports further exploration of the combinatorial regimens consisting of MM-121 and paclitaxel in breast cancer patients with erbB2-overexpressing tumors, particularly those resistant to paclitaxel.
Collapse
|
63
|
Ma J, Lyu H, Huang J, Liu B. Targeting of erbB3 receptor to overcome resistance in cancer treatment. Mol Cancer 2014; 13:105. [PMID: 24886126 PMCID: PMC4022415 DOI: 10.1186/1476-4598-13-105] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/02/2014] [Indexed: 01/12/2023] Open
Abstract
The erbB receptors, including the epidermal growth factor receptor (EGFR), erbB2 (also known as HER2/neu), erbB3 (or HER3), and erbB4 (or HER4), are often aberrantly activated in a wide variety of human cancers. They are excellent targets for selective anti-cancer therapies because of their transmembrane location and pro-oncogenic activity. While several therapeutic agents against erbB2 and/or EGFR have been used in the treatment of human cancers with efficacy, there has been relatively less emphasis on erbB3 as a molecular target. Elevated expression of erbB3 is frequently observed in various malignancies, where it promotes tumor progression via interactions with other receptor tyrosine kinases (RTKs) due to its lack of or weak intrinsic kinase activity. Studies on the underlying mechanisms implicate erbB3 as a major cause of treatment failure in cancer therapy, mainly through activation of the PI-3 K/Akt, MEK/MAPK, and Jak/Stat signaling pathways as well as Src kinase. It is believed that inhibition of erbB3 signaling may be required to overcome therapeutic resistance and effectively treat cancers. To date, no erbB3-targeted therapy has been approved for cancer treatment. Targeting of erbB3 receptor with a monoclonal antibody (Ab) is the only strategy currently under preclinical study and clinical evaluation. In this review, we focus on the role of erbB3-initiated signaling in the development of cancer drug resistance and discuss the latest advances in identifying therapeutic strategies inactivating erbB3 to overcome the resistance and enhance efficacy of cancer therapeutics.
Collapse
Affiliation(s)
| | | | | | - Bolin Liu
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
64
|
Lee Y, Ma J, Lyu H, Huang J, Kim A, Liu B. Role of erbB3 receptors in cancer therapeutic resistance. Acta Biochim Biophys Sin (Shanghai) 2014; 46:190-8. [PMID: 24449784 DOI: 10.1093/abbs/gmt150] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
ErbB3 receptors are unique members of the erbB receptor tyrosine kinases (RTKs), which are often aberrantly expressed and/or activated in human cancers. Unlike other members in the family, erbB3 lacks or has impaired kinase activity. To transduce cell signaling, erbB3 has to interact with other RTKs and to be phosphorylated by its interactive partners, of those, erbB2 is the most important one. ErbB3 is frequently co-expressed with other RTKs in cancer cells to activate oncogenic signaling, such as phosphoinositide-3-kinase/protein kinase B (Akt) pathway, mitogen-activated protein kinase kinase (MEK)/mitogen-activated protein kinase (MAPK) pathway, Janus kinase (Jak)/signal transducer and activator of transcription (Stat) pathway, etc. and thereby promote tumorigenesis. Numerous studies have demonstrated that activation of erbB3 signaling plays an important role in the progression of a variety of tumor types, such as erbB2-overexpressing breast cancer, castration-resistant prostate cancer, platinum refractory/resistant ovarian cancer, epidermal growth factor receptor TKI-resistant non-small-cell lung cancer, and others. Basic research on the underlying mechanisms implicated the functions of erbB3 as a major cause of treatment failure in cancer therapy. Thus, concomitant inhibition of erbB3 is thought to be required to overcome the resistance and to effectively treat human cancers. This review focuses on the latest advances in our understanding of erbB3-initiated signaling in the development of resistance to cancer treatments.
Collapse
Affiliation(s)
- Youngseok Lee
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
65
|
Austreid E, Lonning PE, Eikesdal HP. The emergence of targeted drugs in breast cancer to prevent resistance to endocrine treatment and chemotherapy. Expert Opin Pharmacother 2014; 15:681-700. [PMID: 24579888 DOI: 10.1517/14656566.2014.885952] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Deregulated signaling pathways are associated with resistance to chemotherapy and endocrine treatment, providing a rationale for the implementation of novel targeted therapies in breast cancer therapy. Key molecules targeted therapeutically in ongoing clinical breast cancer trials are phosphoinositide 3-kinase-Akt-mammalian target of rapamycin (mTOR), Src, insulin-like growth factor 1 receptor, heat shock protein-90, histone deacetylases, cyclin-dependent kinases (CDKs), Notch and human epidermal growth factor receptors (HERs). AREAS COVERED This review provides an overview of novel targeted agents currently explored in clinical breast cancer trials and registered in ClinicalTrials.gov. The main focus will be on their ability to prevent or reverse endocrine resistance and chemoresistance in breast cancer. EXPERT OPINION HER2 targeted agents have extended survival substantially, both in the adjuvant and metastatic setting, pointing to a crucial dependency on this pathway in HER2-amplified breast cancer, including drug resistance reversal. While data on mTOR inhibitors are encouraging and preliminary results on CDK4/6 and Src inhibitors exciting, so far other targeted agents have been of limited benefit when added in concert with conventional therapies. Future clinical trials should systematically explore biomarkers and defects in functional gene cascades to identify relevant biological mechanisms to be targeted therapeutically in breast cancer.
Collapse
Affiliation(s)
- Eilin Austreid
- University of Bergen, Department of Clinical Science, Section of Oncology , Bergen , Norway
| | | | | |
Collapse
|
66
|
HER-3 expression in HER-2-amplified breast carcinoma. Contemp Oncol (Pozn) 2013; 17:446-9. [PMID: 24596534 PMCID: PMC3934027 DOI: 10.5114/wo.2013.38564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/21/2013] [Accepted: 05/27/2013] [Indexed: 11/30/2022] Open
Abstract
Aim of the study To determine whether the expression of HER-3 influences the survival of HER-2 positive patients with breast cancer (BC). Material and methods In the present work, the expression of HER-3 in a group of 35 HER-2 positive patients with BC was studied by performing immunohistochemistry (IHC) in formalin-fixed paraffin embedded tissues. Results Higher HER-3 status if estimated by IHC correlated significantly with older age of the patients. HER-3 expression did not correlate with estrogen or progesterone receptor status, pT or pN. There was also no significant difference in disease-free or overall survival (DFS and OS) between groups with different HER-3 expression, although some tendencies were seen as HER-3 expression in over 50% of cells was a factor of worse 5- and 10-year survival. Conclusions Further studies should be performed on a larger group of patients to confirm the prognostic role of HER-3 status determined by IHC in BC.
Collapse
|
67
|
Huang J, Wang S, Lyu H, Cai B, Yang X, Wang J, Liu B. The anti-erbB3 antibody MM-121/SAR256212 in combination with trastuzumab exerts potent antitumor activity against trastuzumab-resistant breast cancer cells. Mol Cancer 2013; 12:134. [PMID: 24215614 PMCID: PMC3829386 DOI: 10.1186/1476-4598-12-134] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/07/2013] [Indexed: 11/30/2022] Open
Abstract
Background Elevated expression of erbB3 receptor has been reported to induce resistance to therapeutic agents, including trastuzumab in erbB2-overexpressing breast cancer. Our recent studies indicate that erbB3 interacts with both erbB2 and IGF-1 receptor to form a heterotrimeric complex in trastuzumab-resistant breast cancer cells. Herein, we investigate the antitumor activity of MM-121/SAR256212, a fully human anti-erbB3 antibody (Ab), against two erbB2-overexpressing breast cancer cell lines resistant to trastuzumab. Methods MTS-based proliferation assays were used to determine cell viability upon treatment of trastuzumab and/or MM-121/SAR256212. Cell cycle progression was examined by flow cytometric analysis. Western blot analyses were performed to determine the expression and activation of proteins. Tumor xenografts were established by inoculation of the trastuzumab-resistant BT474-HR20 cells into nude mice. The tumor-bearing mice were treated with trastuzumab and/or MM-121/SAR256212 via i.p injection to determine the Abs’ antitumor activity. Immunohistochemical analyses were carried out to study the Abs’ inhibitory effects on tumor cell proliferation and induction of apoptosis in vivo. Results MM-121 significantly enhanced trastuzumab-induced growth inhibition in two sensitive and two resistant breast cancer cell lines. MM-121 in combination with trastuzumab resulted in a dramatic reduction of phosphorylated erbB3 (P-erbB3) and Akt (P-Akt) in the in vitro studies. MM-121 combined with trastuzumab did not induce apoptosis in the trastuzumab-resistant cell lines under our cell culture condition, rather induced cell cycle G1 arrest mainly associated with the upregulation of p27kip1. Interestingly, in the tumor xenograft model established from the trastuzumab-resistant cells, MM-121 in combination with trastuzumab as compared to either agent alone dramatically inhibited tumor growth correlated with a significant reduction of Ki67 staining and increase of cleaved caspase-3 in the tumor tissues. Conclusions The combination of MM-121 and trastuzumab not only inhibits erbB2-overexpressing breast cancer cell proliferation, but also promotes the otherwise trastuzumab-resistant cells undergoing apoptosis in an in vivo xenografts model. Thus, MM-121 exhibits potent antitumor activity when combined with trastuzumab under the studied conditions. Our data suggest that further studies regarding the suitability of MM-121 for treatment of breast cancer patients whose tumors overexpress erbB2 and become resistant to trastuzumab may be warranted.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianxiang Wang
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, MS-8104, 12801 E, 17th Ave,, Aurora, CO 80045, USA.
| | | |
Collapse
|
68
|
Werner S, Frey S, Riethdorf S, Schulze C, Alawi M, Kling L, Vafaizadeh V, Sauter G, Terracciano L, Schumacher U, Pantel K, Assmann V. Dual roles of the transcription factor grainyhead-like 2 (GRHL2) in breast cancer. J Biol Chem 2013; 288:22993-3008. [PMID: 23814079 DOI: 10.1074/jbc.m113.456293] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Using a retrovirus-mediated cDNA expression cloning approach, we identified the grainyhead-like 2 (GRHL2) transcription factor as novel protooncogene. Overexpression of GRHL2 in NIH3T3 cells induced striking morphological changes, an increase in cell proliferation, anchorage-independent growth, and tumor growth in vivo. By combining a microarray analysis and a phylogenetic footprinting analysis with various biochemical assays, we identified the epidermal growth factor receptor family member Erbb3 as a novel GRHL2 target gene. In breast cancer cell lines, shRNA-mediated knockdown of GRHL2 expression or functional inactivation of GRHL2 using dominant negative GRHL2 proteins induces down-regulation of ERBB3 gene expression, a striking reduction in cell proliferation, and morphological and phenotypical alterations characteristic of an epithelial-to-mesenchymal transition (EMT), thus implying contradictory roles of GRHL2 in breast carcinogenesis. Interestingly, we could further demonstrate that expression of GRHL2 is directly suppressed by the transcription factor zinc finger enhancer-binding protein 1 (ZEB1), which in turn is a direct target for repression by GRHL2, suggesting that the EMT transcription factors GRHL2 and ZEB1 form a double negative regulatory feedback loop in breast cancer cells. Finally, a comprehensive immunohistochemical analysis of GRHL2 expression in primary breast cancers showed loss of GRHL2 expression at the invasive front of primary tumors. A pathophysiological relevance of GRHL2 in breast cancer metastasis is further demonstrated by our finding of a statistically significant association between loss of GRHL2 expression in primary breast cancers and lymph node metastasis. We thus demonstrate a crucial role of GRHL2 in breast carcinogenesis.
Collapse
Affiliation(s)
- Stefan Werner
- Department of Tumor Biology, Leibniz-Institute for Experimental Virology, Virus Genomics, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Malm M, Kronqvist N, Lindberg H, Gudmundsdotter L, Bass T, Frejd FY, Höidén-Guthenberg I, Varasteh Z, Orlova A, Tolmachev V, Ståhl S, Löfblom J. Inhibiting HER3-mediated tumor cell growth with affibody molecules engineered to low picomolar affinity by position-directed error-prone PCR-like diversification. PLoS One 2013; 8:e62791. [PMID: 23675426 PMCID: PMC3651084 DOI: 10.1371/journal.pone.0062791] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/17/2013] [Indexed: 11/18/2022] Open
Abstract
The HER3 receptor is implicated in the progression of various cancers as well as in resistance to several currently used drugs, and is hence a potential target for development of new therapies. We have previously generated Affibody molecules that inhibit heregulin-induced signaling of the HER3 pathways. The aim of this study was to improve the affinity of the binders to hopefully increase receptor inhibition efficacy and enable a high receptor-mediated uptake in tumors. We explored a novel strategy for affinity maturation of Affibody molecules that is based on alanine scanning followed by design of library diversification to mimic the result from an error-prone PCR reaction, but with full control over mutated positions and thus less biases. Using bacterial surface display and flow-cytometric sorting of the maturation library, the affinity for HER3 was improved more than 30-fold down to 21 pM. The affinity is among the higher that has been reported for Affibody molecules and we believe that the maturation strategy should be generally applicable for improvement of affinity proteins. The new binders also demonstrated an improved thermal stability as well as complete refolding after denaturation. Moreover, inhibition of ligand-induced proliferation of HER3-positive breast cancer cells was improved more than two orders of magnitude compared to the previously best-performing clone. Radiolabeled Affibody molecules showed specific targeting of a number of HER3-positive cell lines in vitro as well as targeting of HER3 in in vivo mouse models and represent promising candidates for future development of targeted therapies and diagnostics.
Collapse
Affiliation(s)
- Magdalena Malm
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Nina Kronqvist
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hanna Lindberg
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Tarek Bass
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Y. Frejd
- Affibody AB, Stockholm, Sweden
- Unit of Biomedical Radiations Sciences, Uppsala University, Uppsala, Sweden
| | | | - Zohreh Varasteh
- Department of Medical Chemistry, Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- Department of Medical Chemistry, Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | - Vladimir Tolmachev
- Unit of Biomedical Radiations Sciences, Uppsala University, Uppsala, Sweden
| | - Stefan Ståhl
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
- * E-mail:
| | - John Löfblom
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
70
|
Wang S, Huang J, Lyu H, Lee CK, Tan J, Wang J, Liu B. Functional cooperation of miR-125a, miR-125b, and miR-205 in entinostat-induced downregulation of erbB2/erbB3 and apoptosis in breast cancer cells. Cell Death Dis 2013; 4:e556. [PMID: 23519125 PMCID: PMC3615747 DOI: 10.1038/cddis.2013.79] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We reported that the class I HDAC inhibitor entinostat induced apoptosis in erbB2-overexpressing breast cancer cells via downregulation of erbB2 and erbB3. Here, we study the molecular mechanism by which entinostat dual-targets erbB2/erbB3. Treatment with entinostat had no effect on erbB2/erbB3 mRNA, suggesting a transcription-independent mechanism. Entinostat decreased endogenous but not exogenous erbB2/erbB3, indicating it did not alter their protein stability. We hypothesized that entinostat might inhibit erbB2/erbB3 protein translation via specific miRNAs. Indeed, entinostat significantly upregulated miR-125a, miR-125b, and miR-205, that have been reported to target erbB2 and/or erbB3. Specific inhibitors were then used to determine whether these miRNAs had a causal role in entinostat-induced downregulation of erbB2/erbB3 and apoptosis. Transfection with a single inhibitor dramatically abrogated entinostat induction of miR-125a, miR-125b, or miR-205; however, none of the inhibitors blocked entinostat action on erbB2/erbB3. In contrast, co-transfection with two inhibitors not only reduced their corresponding miRNAs, but also significantly abrogated entinostat-mediated reduction of erbB2/erbB3. Moreover, simultaneous inhibition of two, but not one miRNA significantly attenuated entinostat-induced apoptosis. Interestingly, although the other HDAC inhibitors, such as SAHA and panobinostat, exhibited activity as potent as entinostat to induce growth inhibition and apoptosis in erbB2-overexpressing breast cancer cells, they had no significant effects on the three miRNAs. Instead, both SAHA- and panobinostat-decreased erbB2/erbB3 expression correlated with the reduction of their mRNA levels. Collectively, we demonstrate that entinostat specifically induces expression of miR-125a, miR-125b, and miR-205, which act in concert to downregulate erbB2/erbB3 in breast cancer cells. Our data suggest that epigenetic regulation via miRNA-dependent or -independent mechanisms may represent a novel approach to treat breast cancer patients with erbB2-overexpressing tumors.
Collapse
Affiliation(s)
- S Wang
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Kaumaya PTP, Foy KC. Peptide vaccines and targeting HER and VEGF proteins may offer a potentially new paradigm in cancer immunotherapy. Future Oncol 2012; 8:961-87. [PMID: 22894670 DOI: 10.2217/fon.12.95] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ErbB family (HER-1, HER-2, HER-3 and HER-4) of receptor tyrosine kinases has been the focus of cancer immunotherapeutic strategies while antiangiogenic therapies have focused on VEGF and its receptors VEGFR-1 and VEGFR-2. Agents targeting receptor tyrosine kinases in oncology include therapeutic antibodies to receptor tyrosine kinase ligands or the receptors themselves, and small-molecule inhibitors. Many of the US FDA-approved therapies targeting HER-2 and VEGF exhibit unacceptable toxicities, and show problems of efficacy, development of resistance and unacceptable safety profiles that continue to hamper their clinical progress. The combination of different peptide vaccines and peptidomimetics targeting specific molecular pathways that are dysregulated in tumors may potentiate anticancer immune responses, bypass immune tolerance and circumvent resistance mechanisms. The focus of this review is to discuss efforts in our laboratory spanning two decades of rationally developing peptide vaccines and therapeutics for breast cancer. This review highlights the prospective benefit of a new, untapped category of therapies biologically targeted to EGF receptor (HER-1), HER-2 and VEGF with potential peptide 'blockbusters' that could lay the foundation of a new paradigm in cancer immunotherapy by creating clinical breakthroughs for safe and efficacious cancer cures.
Collapse
Affiliation(s)
- Pravin T P Kaumaya
- Departments of Obstetrics & Gynecology, OSU Wexner Medical Center, James Cancer Hospital & Solove Research Institute & the Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
72
|
Fujiwara S, Ibusuki M, Yamamoto S, Yamamoto Y, Iwase H. Association of ErbB1-4 expression in invasive breast cancer with clinicopathological characteristics and prognosis. Breast Cancer 2012; 21:472-81. [PMID: 23100016 DOI: 10.1007/s12282-012-0415-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/18/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND Human epidermal growth factor receptor type 2 (Her2)/ErbB2 plays a key role in the initiation and progression of invasive breast cancer. However, the prognostic relevance to breast cancer patients of the other ErbB family members has long been a matter of debate. METHODS In a series of 250 primary invasive breast cancer patients, we performed a comprehensive analysis of ErbB1-4 at the levels of mRNA expression and gene copy number using real-time quantitative PCR. The relationship between the status of ErbB1-4 and the clinicopathological characteristics or prognosis was evaluated. RESULTS The mRNA expression of ErbB2, but not the other ErbB genes, was significantly correlated to copy number (P = 0.0005). ErbB3 and ErbB4 mRNA expression were positively correlated to each other (P < 0.0001). The mRNA expression of ErbB1/2 was inversely correlated to estrogen receptor (ER) and progesterone receptor (PgR) positivity, although mRNA expression of ErbB3/4 was positively correlated to ER and PgR positivity. Kaplan-Meier survival analysis showed that ErbB1 mRNA expression was associated with reduced survival. Neither ErbB2 nor ErbB3 mRNA expression had any association with survival, because half of the patients with Her2-positive tumors were treated with trastuzumab. High ErbB4 mRNA expression showed good prognosis with respect to breast cancer-specific survival CONCLUSIONS ErbB3 and ErbB4 mRNA expression, as well as well as that of ErbB1 and ErbB2, could be histopathological factors. ErbB3 mRNA was highly expressed in ER-positive tumors and has controversial prognostic value. ErbB4 mRNA expression was well correlated with ER positivity and good prognosis, indicating that ErbB4 may contribute to ER-dependent growth.
Collapse
Affiliation(s)
- Saori Fujiwara
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | | | | | | | | |
Collapse
|
73
|
Larsen MS, Bjerre K, Lykkesfeldt AE, Giobbie-Hurder A, Laenkholm AV, Henriksen KL, Ejlertsen B, Rasmussen BB. Activated HER-receptors in predicting outcome of ER-positive breast cancer patients treated with adjuvant endocrine therapy. Breast 2012; 21:662-8. [PMID: 22854050 DOI: 10.1016/j.breast.2012.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/28/2012] [Accepted: 07/04/2012] [Indexed: 01/13/2023] Open
Abstract
The four human epidermal growth factor receptors (HER1-4) are involved in growth stimulation and may play a role in endocrine resistance. The receptors form dimers, leading to activation by mutual phosphorylation. Our purpose was to explore the role of the activated receptors (pHER1, pHER2, pHER3) in endocrine treated breast cancer in terms of co-expression and association with disease-free survival (DFS) in 1062 patients with ER-positive tumors. Furthermore, HER2 amplification was evaluated. We found positive associations between the phosphorylated receptors. pHER1 and pHER3 were co-expressed with one or two of the other activated receptors in 85% and 89% of tumors, respectively, whereas pHER2 was co-expressed with the other activated receptors in 54% of tumors. Except for HER2, which was associated with poor prognosis, none of the remaining markers were associated with DFS. However, frequent co-expression indicates a role of the other HER-family members in activation of HER2.
Collapse
Affiliation(s)
- Mathilde S Larsen
- Department of Pathology, Herlev Hospital, Herlev Ringvej 75, 2730 Herlev, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
74
|
O'Neill F, Madden SF, Aherne ST, Clynes M, Crown J, Doolan P, O'Connor R. Gene expression changes as markers of early lapatinib response in a panel of breast cancer cell lines. Mol Cancer 2012; 11:41. [PMID: 22709873 PMCID: PMC3439312 DOI: 10.1186/1476-4598-11-41] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/18/2012] [Indexed: 01/29/2023] Open
Abstract
Background Lapatinib, a tyrosine kinase inhibitor of HER2 and EGFR and is approved, in combination with capecitabine, for the treatment of trastuzumab-refractory metastatic breast cancer. In order to establish a possible gene expression response to lapatinib, a panel of breast cancer cell lines with varying sensitivity to lapatinib were analysed using a combination of microarray and qPCR profiling. Methods Co-inertia analysis (CIA), a data integration technique, was used to identify transcription factors associated with the lapatinib response on a previously published dataset of 96 microarrays. RNA was extracted from BT474, SKBR3, EFM192A, HCC1954, MDAMB453 and MDAMB231 breast cancer cell lines displaying a range of lapatinib sensitivities and HER2 expression treated with 1 μM of lapatinib for 12 hours and quantified using Taqman RT-PCR. A fold change ≥ ± 2 was considered significant. Results A list of 421 differentially-expressed genes and 8 transcription factors (TFs) whose potential regulatory impact was inferred in silico, were identified as associated with lapatinib response. From this group, a panel of 27 genes (including the 8 TFs) were selected for qPCR validation. 5 genes were determined to be significantly differentially expressed following the 12 hr treatment of 1 μM lapatinib across all six cell lines. Furthermore, the expression of 4 of these genes (RB1CC1, FOXO3A, NR3C1 and ERBB3) was directly correlated with the degree of sensitivity of the cell line to lapatinib and their expression was observed to “switch” from up-regulated to down-regulated when the cell lines were arranged in a lapatinib-sensitive to insensitive order. These included the novel lapatinib response-associated genes RB1CC1 and NR3C1. Additionally, Cyclin D1 (CCND1), a common regulator of the other four proteins, was also demonstrated to observe a proportional response to lapatinib exposure. Conclusions A panel of 5 genes were determined to be differentially expressed in response to lapatinib at the 12 hour time point examined. The expression of these 5 genes correlated directly with lapatinib sensitivity. We propose that the gene expression profile may represent both an early measure of the likelihood of sensitivity and the level of response to lapatinib and may therefore have application in early response detection.
Collapse
Affiliation(s)
- Fiona O'Neill
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | | | | | | | | | | | |
Collapse
|
75
|
Steroid receptor coactivators, HER-2 and HER-3 expression is stimulated by tamoxifen treatment in DMBA-induced breast cancer. BMC Cancer 2012; 12:247. [PMID: 22703232 PMCID: PMC3420308 DOI: 10.1186/1471-2407-12-247] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 06/15/2012] [Indexed: 12/16/2022] Open
Abstract
Background Steroid receptor coactivators (SRCs) may modulate estrogen receptor (ER) activity and the response to endocrine treatment in breast cancer, in part through interaction with growth factor receptor signaling pathways. In the present study the effects of tamoxifen treatment on the expression of SRCs and human epidermal growth factor receptors (HERs) were examined in an animal model of ER positive breast cancer. Methods Sprague-Dawley rats with DMBA-induced breast cancer were randomized to 14 days of oral tamoxifen 40 mg/kg bodyweight/day or vehicle only (controls). Tumors were measured throughout the study period. Blood samples and tumor tissue were collected at sacrifice and tamoxifen and its main metabolites were quantified using LC-MS/MS. The gene expression in tumor of SRC-1, SRC-2/transcription intermediary factor-2 (TIF-2), SRC-3/amplified in breast cancer 1 (AIB1), ER, HER-1, -2, -3 and HER-4, as well as the transcription factor Ets-2, was measured by real-time RT-PCR. Protein levels were further assessed by Western blotting. Results Tamoxifen and its main metabolites were detected at high concentrations in serum and accumulated in tumor tissue in up to tenfolds the concentration in serum. Mean tumor volume/rat decreased in the tamoxifen treated group, but continued to increase in controls. The mRNA expression levels of SRC-1 (P = 0.035), SRC-2/TIF-2 (P = 0.002), HER-2 (P = 0.035) and HER-3 (P = 0.006) were significantly higher in tamoxifen treated tumors compared to controls, and the results were confirmed at the protein level using Western blotting. SRC-3/AIB1 protein was also higher in tamoxifen treated tumors. SRC-1 and SRC-2/TIF-2 mRNA levels were positively correlated with each other and with HER-2 (P ≤ 0.001), and the HER-2 mRNA expression correlated with the levels of the other three HER family members (P < 0.05). Furthermore, SRC-3/AIB1 and HER-4 were positively correlated with each other and Ets-2 (P < 0.001). Conclusions The expression of SRCs and HER-2 and -3 is stimulated by tamoxifen treatment in DMBA-induced breast cancer. Stimulation and positive correlation of coactivators and HERs may represent an early response to endocrine treatment. The role of SRCs and HER-2 and -3 should be further studied in order to evaluate their effects on response to long-term tamoxifen treatment.
Collapse
|
76
|
Song W, Wang J, Yang Y, Jing N, Zhang X, Chen L, Wu J. Rewiring drug-activated p53-regulatory network from suppressing to promoting tumorigenesis. J Mol Cell Biol 2012; 4:197-206. [DOI: 10.1093/jmcb/mjs029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
77
|
Zhang H, Photiou A, Grothey A, Stebbing J, Giamas G. The role of pseudokinases in cancer. Cell Signal 2012; 24:1173-84. [PMID: 22330072 DOI: 10.1016/j.cellsig.2012.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/27/2012] [Indexed: 01/12/2023]
Abstract
Kinases play a critical role in regulating many cellular functions including development, differentiation and proliferation. To date, over 518 proteins with kinase activity, comprising ~2-3% of total cellular proteins, have been identified from within the human kinome. Interestingly, approximately 10% of kinases are categorised as pseudokinases since they lack one or more conserved catalytic residues within their kinase domain and were originally thought to have no enzymatic activity. Recently, there has been strong evidence to suggest that some pseudokinsases can not only function as scaffold proteins, but may also possess kinase activity leading to modulation of cell signalling pathways. Altered activity of these pseudokinases can result in impaired cellular function, particularly in malignancies. In this review we are discussing recent evidence that apart from a scaffolding role, pseudokinases also orchestrate cellular processes as active kinases per se in signalling pathways of malignant cells.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Cancer and Surgery, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
| | | | | | | | | |
Collapse
|
78
|
McDonagh CF, Huhalov A, Harms BD, Adams S, Paragas V, Oyama S, Zhang B, Luus L, Overland R, Nguyen S, Gu J, Kohli N, Wallace M, Feldhaus MJ, Kudla AJ, Schoeberl B, Nielsen UB. Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits heregulin-induced activation of ErbB3. Mol Cancer Ther 2012; 11:582-93. [PMID: 22248472 DOI: 10.1158/1535-7163.mct-11-0820] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The prevalence of ErbB2 amplification in breast cancer has resulted in the heavy pursuit of ErbB2 as a therapeutic target. Although both the ErbB2 monoclonal antibody trastuzumab and ErbB1/ErbB2 dual kinase inhibitor lapatinib have met with success in the clinic, many patients fail to benefit. In addition, the majority of patients who initially respond will unfortunately ultimately progress on these therapies. Activation of ErbB3, the preferred dimerization partner of ErbB2, plays a key role in driving ErbB2-amplified tumor growth, but we have found that current ErbB2-directed therapies are poor inhibitors of ligand-induced activation. By simulating ErbB3 inhibition in a computational model of ErbB2/ErbB3 receptor signaling, we predicted that a bispecific antibody that docks onto ErbB2 and subsequently binds to ErbB3 and blocks ligand-induced receptor activation would be highly effective in ErbB2-amplified tumors, with superior activity to a monospecific ErbB3 inhibitor. We have developed a bispecific antibody suitable for both large scale production and systemic therapy by generating a single polypeptide fusion protein of two human scFv antibodies linked to modified human serum albumin. The resulting molecule, MM-111, forms a trimeric complex with ErbB2 and ErbB3, effectively inhibiting ErbB3 signaling and showing antitumor activity in preclinical models that is dependent on ErbB2 overexpression. MM-111 can be rationally combined with trastuzumab or lapatinib for increased antitumor activity and may in the future complement existing ErbB2-directed therapies to treat resistant tumors or deter relapse.
Collapse
|
79
|
Blackburn E, Zona S, Murphy ML, Brown IR, Chan SKW, Gullick WJ. A monoclonal antibody to the human HER3 receptor inhibits Neuregulin 1-beta binding and co-operates with Herceptin in inhibiting the growth of breast cancer derived cell lines. Breast Cancer Res Treat 2011; 134:53-9. [PMID: 22169894 DOI: 10.1007/s10549-011-1908-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
Abstract
The HER3 protein contributes to malignant transformation in breast and other cancer types as a consequence of elevated levels of expression, particularly in the presence of the HER2 protein. We show here that an antibody, called SGP1, to the extracellular domain of the HER3 receptor can inhibit completely Neuregulin stimulated growth of cultured breast cancer cells. Herceptin is a humanised monoclonal antibody to the HER2 protein which has an established role in the treatment of some patients with breast cancer. We demonstrate that Herceptin and SGP1 can bind simultaneously to breast cancer cells expressing both the HER2 and HER3 proteins. In the presence of moderate levels of Herceptin, addition of the SGP1 monoclonal antibody gave a dose-dependent inhibition of the growth of cells expressing both the high levels and moderate levels of HER2. The combination of Herceptin with SGP1 is effective in inhibiting breast cancer cell growth in cases where both HER2 and HER3 are expressed.
Collapse
Affiliation(s)
- Edith Blackburn
- Cancer Biology Laboratory, Microscopy and Imaging Facility, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | | | | | | | | | | |
Collapse
|
80
|
Manavalan TT, Teng Y, Appana SN, Datta S, Kalbfleisch TS, Li Y, Klinge CM. Differential expression of microRNA expression in tamoxifen-sensitive MCF-7 versus tamoxifen-resistant LY2 human breast cancer cells. Cancer Lett 2011; 313:26-43. [PMID: 21955614 DOI: 10.1016/j.canlet.2011.08.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/16/2011] [Accepted: 08/17/2011] [Indexed: 12/17/2022]
Abstract
Microarrays identified miRNAs differentially expressed and 4-hydroxytamoxifen (4-OHT) regulated in MCF-7 endocrine-sensitive versus resistant LY2 human breast cancer cells. 97 miRNAs were differentially expressed in MCF-7 versus LY2 cells. Opposite expression of miRs-10a, 21, 22, 29a, 93, 125b, 181, 200a, 200b, 200c, 205, and 222 was confirmed. Bioinformatic analyses to impute the biological significance of these miRNAs identified 36 predicted gene targets from those regulated by 4-OHT in MCF-7 cells. Agreement in the direction of anticipated regulation was detected for 12 putative targets. These miRNAs with opposite expression between the two cell lines may be involved in endocrine resistance.
Collapse
Affiliation(s)
- Tissa T Manavalan
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Sala G, Traini S, D'Egidio M, Vianale G, Rossi C, Piccolo E, Lattanzio R, Piantelli M, Tinari N, Natali PG, Muraro R, Iacobelli S. An ErbB-3 antibody, MP-RM-1, inhibits tumor growth by blocking ligand-dependent and independent activation of ErbB-3/Akt signaling. Oncogene 2011; 31:1275-86. [PMID: 21822299 DOI: 10.1038/onc.2011.322] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ErbB receptors, such as ErbB-1 and ErbB-2, have been intensely pursued as targets for cancer therapeutics. Although initially efficacious in a subset of patients, drugs targeting these receptors led invariably to resistance, which is often associated with reactivation of the ErbB-3-PI3K-Akt signaling. This may be overcome by an ErbB-3 ligand that abrogates receptor-mediated signaling. Toward this end, we have generated a mouse monoclonal antibody, MP-RM-1, against the extracellular domain (ECD) of ErbB-3 receptor. Assessment of human tumor cell lines, as well as early passage tumor cells revealed that MP-RM-1 effectively inhibited both NRG-1β-dependent and -independent ErbB-3 activation. The antagonizing effect of MP-RM-1 was of non-competitive type, as binding of [(125)I]-labeled NRG-1β to ErbB-3 was not influenced by the antibody. MP-RM-1 treatment led, in most instances, to decreased ErbB-3 expression. In addition, MP-RM-1 was able to inhibit the colony formation ability of tumor cells and tumor growth in two human tumor xenograft nude mouse models. Treatment with the antibody was associated with a decreased ErbB-3 and Akt phosphorylation and ErbB-3 expression in the excised tumor tissue. Collectively, these results indicate that MP-RM-1 has the potential to interfere with signaling by ErbB-3 and reinforce the notion that ErbB-3 could be a key target in cancer-drug design.
Collapse
Affiliation(s)
- G Sala
- MediaPharma s.r.l., Chieti, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Zhao L, Wen ZH, Jia CH, Li M, Luo SQ, Bai XC. Metformin induces G1 cell cycle arrest and inhibits cell proliferation in nasopharyngeal carcinoma cells. Anat Rec (Hoboken) 2011; 294:1337-43. [PMID: 21717584 DOI: 10.1002/ar.21283] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/22/2010] [Accepted: 09/05/2010] [Indexed: 12/25/2022]
Abstract
It has been reported that metformin, a biguanide derivative widely used in type II diabetic patients, has antitumor activities in some cancers by activation of AMP-activated protein kinase (AMPK). But its role in nasopharyngeal carcinoma (NPC) is not known. Here, we reported for the first time that 1-50 mM of metformin in a dose- and time-dependent manner suppressed cell proliferation and colony formation in NPC cell line, C666-1. Further studies revealed that the protein level of cyclin D1 decreased and the percentage of the cells in G0/G1 phase increased by 5 mM metformin treatment. Metformin also induced the phosphorylation of AMPK (T172) in a time-dependent manner. Mammalian target of rapamycin complex 1 (mTORC1), which is negatively regulated by AMPK and plays a central role in cell growth and proliferation, was inhibited by metformin, as manifested by dephosphorylation of its downstream targets 40S ribosomal S6 kinase 1 (S6K1) (T389), the eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) (T37/46) and S6 (S235/236) in C666-1 cells. In a summary, metformin prevents proliferation of C666-1 cells by down-regulating cyclin D1 level and inducing G1 cell cycle arrest. AMPK-mediated inhibition of mTORC1 signaling may be involved in this process.
Collapse
Affiliation(s)
- Li Zhao
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
83
|
Godinho M, Meijer D, Setyono-Han B, Dorssers LCJ, van Agthoven T. Characterization of BCAR4, a novel oncogene causing endocrine resistance in human breast cancer cells. J Cell Physiol 2011; 226:1741-9. [PMID: 21506106 DOI: 10.1002/jcp.22503] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Resistance to the antiestrogen tamoxifen remains a major problem in the management of estrogen receptor-positive breast cancer. Knowledge on the resistance mechanisms is needed to develop more effective therapies. Breast cancer antiestrogen resistance 4 (BCAR4) was identified in a functional screen for genes involved in tamoxifen resistance. BCAR4 is expressed in 27% of primary breast tumors. In patients treated with tamoxifen for metastized disease high BCAR4 mRNA levels are associated with reduced clinical benefit and progression-free survival. Regarding tumor aggressiveness high BCAR4 mRNA levels are associated with a shorter metastasis free survival and overall survival. In the present study, we investigated the role of BCAR4 in endocrine resistance. Forced expression of BCAR4 in human ZR-75-1 and MCF7 breast cancer cells resulted in cell proliferation in the absence of estrogen and in the presence of various antiestrogens. Inhibition of estrogen receptor 1 (ESR1) expression with small interfering RNA (siRNA), implied that the BCAR4-induced mechanism of resistance is independent of ESR1. Highly conserved BCAR4 homologues of rhesus monkey, green monkey, and the less conserved common marmoset gene induced tamoxifen-resistant cell proliferation, in contrast to the distant BCAR4 homologues of bovine and rabbit. Injection of BCAR4-expressing ZR-75-1 cells into nude mice resulted in rapidly growing tumors. In silico analysis showed that BCAR4 mRNA is highly expressed in human placenta and oocyte, and absent in other normal tissues. In conclusion, BCAR4 is a strong transforming gene causing estrogen-independent growth and antiestrogen resistance, and induces tumor formation in vivo. Due to its restricted expression, BCAR4 may be a good target for treating antiestrogen-resistant breast cancer.
Collapse
Affiliation(s)
- Marcia Godinho
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
84
|
Telesco SE, Shih AJ, Jia F, Radhakrishnan R. A multiscale modeling approach to investigate molecular mechanisms of pseudokinase activation and drug resistance in the HER3/ErbB3 receptor tyrosine kinase signaling network. MOLECULAR BIOSYSTEMS 2011; 7:2066-80. [PMID: 21509365 PMCID: PMC3138520 DOI: 10.1039/c0mb00345j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Multiscale modeling provides a powerful and quantitative platform for investigating the complexity inherent in intracellular signaling pathways and rationalizing the effects of molecular perturbations on downstream signaling events and ultimately, on the cell phenotype. Here we describe the application of a multiscale modeling scheme to the HER3/ErbB3 receptor tyrosine kinase (RTK) signaling network, which regulates critical cellular processes including proliferation, migration and differentiation. The HER3 kinase is a topic of current interest and investigation, as it has been implicated in mechanisms of resistance to tyrosine kinase inhibition (TKI) of EGFR and HER2 in the treatment of many human malignancies. Moreover, the commonly regarded status of HER3 as a catalytically inactive 'pseudokinase' has recently been challenged by our previous study, which demonstrated robust residual kinase activity for HER3. Through our multiscale model, we investigate the most significant molecular interactions that contribute to potential mechanisms of HER3 activity and the physiological relevance of this activity to mechanisms of drug resistance in an ErbB-driven tumor cell in silico. The results of our molecular-scale simulations support the characterization of HER3 as a weakly active kinase that, in contrast to its fully-active ErbB family members, depends upon a unique hydrophobic interface to coordinate the alignment of specific catalytic residues required for its activity. Translating our molecular simulation results of the uniquely active behavior of the HER3 kinase into a physiologically relevant environment, our HER3 signaling model demonstrates that even a weak level of HER3 activity may be sufficient to induce AKT signaling and TKI resistance in the context of an ErbB signaling-dependent tumor cell, and therefore therapeutic targeting of HER3 may represent a superior treatment strategy for specific ErbB-driven cancers.
Collapse
Affiliation(s)
- Shannon E. Telesco
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Andrew J. Shih
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Fei Jia
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| |
Collapse
|
85
|
Abstract
Endocrine resistance is a major limitation to the successful treatment of estrogen receptor-positive (ER+) breast cancer, and the EGFR (epidermal growth factor receptor) and ErbB-2 receptor tyrosine kinases are involved in this process. A recent study now implicates the other two ErbB family members, ErbB-3 and -4. Exposure of ER+ breast cancer cells to the pure antiestrogen, fulvestrant, increased levels of ErbB-3 or ErbB-4 and sensitivity to the growth-stimulatory effects of heregulin ݱ, a potent ligand for these receptors. Thus, the initial growth-inhibitory effects of fulvestrant appear compromised by cellular plasticity that allows rapid compensatory growth stimulation via ErbB-3/4. Further evaluation of pan-ErbB receptor inhibitors in endocrine-resistant disease appears warranted.
Collapse
|
86
|
Huang X, Wang S, Lee CK, Yang X, Liu B. HDAC inhibitor SNDX-275 enhances efficacy of trastuzumab in erbB2-overexpressing breast cancer cells and exhibits potential to overcome trastuzumab resistance. Cancer Lett 2011; 307:72-79. [PMID: 21497990 DOI: 10.1016/j.canlet.2011.03.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/17/2011] [Accepted: 03/20/2011] [Indexed: 12/22/2022]
Abstract
Trastuzumab (or Herceptin), as the first erbB2-targeted therapy, has been successfully used to treat breast cancer patients with erbB2-overexpressing tumors. However, resistances to trastuzumab frequently occur, and novel strategies/agents are urgently needed to abrogate the resistant phenotype. Our current study explores the potential of SNDX-275, a class I HDAC inhibitor, to overcome trastuzumab resistance and investigates the combinational effects of SNDX-275 and trastuzumab on both sensitive and resistant breast cancer cells. Cell proliferation assays showed that SNDX-275 significantly enhanced trastuzumab-induced growth inhibition in trastuzumab-sensitive, erbB2-overexpressing breast cancer cells. Importantly, SNDX-275 at its therapeutic range re-sensitized trastuzumab-resistant cells to trastuzumab-mediated growth inhibition. SNDX-275 in combination with trastuzumab resulted in a dramatic reduction of erbB3 and its phosphorylation (P-erbB3), and inhibition of Akt signaling. Apoptotic-ELISA and western blot analyses confirmed that the combinations of SNDX-275 and trastuzumab as compared to SNDX-275 alone significantly enhanced DNA fragmentation and induced more PARP cleavage and caspase-3 activation in both trastuzumab-sensitive and -resistant breast cancer cells. Furthermore, co-immunoprecipitation assays revealed that SNDX-275 mainly attenuated the interactions of erbB2 and erbB3 receptors, but had no significant effect on erbB2/IGF-1R or erbB3/IGF-1R associations in the trastuzumab-resistant breast cancer cells. These data indicated that SNDX-275 enhanced trastuzumab efficacy against erbB2-overexpressing breast cancer cells, and exhibited potential to overcome trastuzumab resistance via disrupting erbB2/erbB3 interactions and inactivating PI-3K/Akt signaling. SNDX-275 may be included in erbB2-targeted regimen as a novel strategy to treat breast cancer patients whose tumors overexpress erbB2.
Collapse
Affiliation(s)
- Xiaoping Huang
- Department of Pathology, University of Colorado Denver School of Medicine, Aurora, CO, United States
| | - Shuiliang Wang
- Department of Pathology, University of Colorado Denver School of Medicine, Aurora, CO, United States
| | - Choon-Kee Lee
- The Myeloma and Amyloidosis Program, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, CO, United States
| | - XiaoHe Yang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Bolin Liu
- Department of Pathology, University of Colorado Denver School of Medicine, Aurora, CO, United States.
| |
Collapse
|
87
|
Estrogen receptor β represses Akt signaling in breast cancer cells via downregulation of HER2/HER3 and upregulation of PTEN: implications for tamoxifen sensitivity. Breast Cancer Res 2011; 13:R43. [PMID: 21492444 PMCID: PMC3219206 DOI: 10.1186/bcr2865] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 03/24/2011] [Accepted: 04/14/2011] [Indexed: 02/08/2023] Open
Abstract
Introduction The inhibition of estrogen receptor (ER) α action with the ER antagonist tamoxifen is an established treatment in the majority of breast cancers. De novo or acquired resistance to this therapy is common. Expression of ERβ in breast tumors has been implicated as an indicator of tamoxifen sensitivity. The mechanisms behind this observation remain largely uncharacterized. In the present study, we investigated whether ERβ can modulate pathways implicated in endocrine resistance development. Methods T47-D and MCF-7 ERα-expressing breast cancer cells with tetracycline-regulated expression of ERβ were used as a model system. Expression levels and activity of known regulators of endocrine resistance were analyzed by performing quantitative polymerase chain reaction assays, Western blot analysis and immunostaining, and sensitivity to tamoxifen was investigated by using a cell proliferation kit. Results Expression of ERβ in ERα-positive T47-D and MCF-7 human breast cancer cells resulted in a decrease in Akt signaling. The active form of an upstream regulator of Akt, proto-oncogene c-ErbB-2/receptor tyrosine kinase erbB-3 (HER2/HER3) receptor dimer, was also downregulated by ERβ. Furthermore, ERβ increased expression of the important inhibitor of Akt, phosphatase and tensin homologue deleted on chromosome 10 (PTEN). Importantly, ERβ expression increased the sensitivity of these breast cancer cells to tamoxifen. Conclusions Our results suggest a link between expression of ERβ and endocrine sensitivity by increasing PTEN levels and decreasing HER2/HER3 signaling, thereby reducing Akt signaling with subsequent effects on proliferation, survival and tamoxifen sensitivity of breast cancer cells. This study supports initiatives to further investigate whether ERβ presence in breast cancer samples is an indicator for endocrine response. Current therapies in ERα-positive breast cancers aim to impair ERα activity with antagonists or by removal of endogenous estrogens with aromatase inhibitors. Data from this study could be taken as indicative for also using ERβ as a target in selected groups of breast cancer.
Collapse
|
88
|
Hutcheson IR, Goddard L, Barrow D, McClelland RA, Francies HE, Knowlden JM, Nicholson RI, Gee JMW. Fulvestrant-induced expression of ErbB3 and ErbB4 receptors sensitizes oestrogen receptor-positive breast cancer cells to heregulin β1. Breast Cancer Res 2011; 13:R29. [PMID: 21396094 PMCID: PMC3219190 DOI: 10.1186/bcr2848] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/10/2011] [Accepted: 03/11/2011] [Indexed: 12/12/2022] Open
Abstract
Introduction We have previously reported that induction of epidermal growth factor receptor and ErbB2 in response to antihormonal agents may provide an early mechanism to allow breast cancer cells to evade the growth-inhibitory action of such therapies and ultimately drive resistant cell growth. More recently, the other two members of the ErbB receptor family, ErbB3 and ErbB4, have been implicated in antihormone resistance in breast cancer. In the present study, we have investigated whether induction of ErbB3 and/or ErbB4 may provide an alternative resistance mechanism to antihormonal action in a panel of four oestrogen receptor (ER)-positive breast cancer cell lines. Methods MCF-7, T47D, BT474 and MDAMB361 cell lines were exposed to fulvestrant (100 nM) for seven days, and effects on ErbB3/4 expression and signalling, as well as on cell growth, were assessed. Effects of heregulin β1 (HRGβ1) were also examined in the absence and presence of fulvestrant to determine the impact of ER blockade on the capacity of this ErbB3/4 ligand to promote signalling and cell proliferation. Results Fulvestrant potently reduced ER expression and transcriptional activity and significantly inhibited growth in MCF-7, T47D, BT474 and MDAMB361 cells. However, alongside this inhibitory activity, fulvestrant also consistently induced protein expression and activity of ErbB3 in MCF-7 and T47D cells and ErbB4 in BT474 and MDAMB361 cell lines. Consequently, fulvestrant treatment sensitised all cell lines to the actions of the ErbB3/4 ligand HRGβ1 with enhanced ErbB3/4-driven signalling activity, reexpression of cyclin D1 and significant increases in cell proliferation being observed when compared to untreated cells. Indeed, in T47D and MDAMB361 HRGβ1 was converted from a ligand having negligible or suppressive growth activity into one that potently promoted cell proliferation. Consequently, fulvestrant-mediated growth inhibition was completely overridden by HRGβ1 in all four cell lines. Conclusions These findings suggest that although antihormones such as fulvestrant may have potent acute growth-inhibitory activity in ER-positive breast cancer cells, their ability to induce and sensitise cells to growth factors may serve to reduce and ultimately limit their inhibitory activity.
Collapse
Affiliation(s)
- Iain R Hutcheson
- Department of Pharmacology, Radiology & Oncology, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Salazar MD, Ratnam M, Patki M, Kisovic I, Trumbly R, Iman M, Ratnam M. During hormone depletion or tamoxifen treatment of breast cancer cells the estrogen receptor apoprotein supports cell cycling through the retinoic acid receptor α1 apoprotein. Breast Cancer Res 2011; 13:R18. [PMID: 21299862 PMCID: PMC3109587 DOI: 10.1186/bcr2827] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/07/2011] [Accepted: 02/07/2011] [Indexed: 12/15/2022] Open
Abstract
Introduction Current hormonal adjuvant therapies for breast cancer including tamoxifen treatment and estrogen depletion are overall tumoristatic and are severely limited by the frequent recurrence of the tumors. Regardless of the resistance mechanism, development and progression of the resistant tumors requires the persistence of a basal level of cycling cells during the treatment for which the underlying causes are unclear. Methods In estrogen-sensitive breast cancer cells the effects of hormone depletion and treatment with estrogen, tamoxifen, all-trans retinoic acid (ATRA), fulvestrant, estrogen receptor α (ER) siRNA or retinoic acid receptor α (RARα) siRNA were studied by examining cell growth and cycling, apoptosis, various mRNA and protein expression levels, mRNA profiles and known chromatin associations of RAR. RARα subtype expression was also examined in breast cancer cell lines and tumors by competitive PCR. Results Basal proliferation persisted in estrogen-sensitive breast cancer cells grown in hormone depleted conditioned media without or with 4-hydroxytamoxifen (OH-Tam). Downregulating ER using either siRNA or fulvestrant inhibited basal proliferation by promoting cell cycle arrest, without enrichment for ErbB2/3+ overexpressing cells. The basal expression of RARα1, the only RARα isoform that was expressed in breast cancer cell lines and in most breast tumors, was supported by apo-ER but was unaffected by OH-Tam; RAR-β and -γ were not regulated by apo-ER. Depleting basal RARα1 reproduced the antiproliferative effect of depleting ER whereas its restoration in the ER depleted cells partially rescued the basal cycling. The overlapping tamoxifen-insensitive gene regulation by apo-ER and apo-RARα1 comprised activation of mainly genes promoting cell cycle and mitosis and suppression of genes involved in growth inhibition; these target genes were generally insensitive to ATRA but were enriched in RAR binding sites in associated chromatin regions. Conclusions In hormone-sensitive breast cancer, ER can support a basal fraction of S-phase cells (i) without obvious association with ErbB2/3 expression, (ii) by mechanisms unaffected by hormone depletion or OH-Tam and (iii) through maintenance of the basal expression of apo-RARα1 to regulate a set of ATRA-insensitive genes. Since isoform 1 of RARα is genetically redundant, its targeted inactivation or downregulation should be further investigated as a potential means of enhancing hormonal adjuvant therapy.
Collapse
Affiliation(s)
- Marcela D Salazar
- Department of Biochemistry and Cancer Biology, Medical University of Ohio, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | | | | | | | | | | | | |
Collapse
|
90
|
Cittelly DM, Das PM, Salvo VA, Fonseca JP, Burow ME, Jones FE. Oncogenic HER2{Delta}16 suppresses miR-15a/16 and deregulates BCL-2 to promote endocrine resistance of breast tumors. Carcinogenesis 2010; 31:2049-57. [PMID: 20876285 PMCID: PMC2994280 DOI: 10.1093/carcin/bgq192] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tamoxifen is the most commonly prescribed therapy for patients with estrogen receptor (ER)α-positive breast tumors. Tumor resistance to tamoxifen remains a serious clinical problem especially in patients with tumors that also overexpress human epidermal growth factor receptor 2 (HER2). Current preclinical models of HER2 overexpression fail to recapitulate the clinical spectrum of endocrine resistance associated with HER2/ER-positive tumors. Here, we show that ectopic expression of a clinically important oncogenic isoform of HER2, HER2Δ16, which is expressed in >30% of ER-positive breast tumors, promotes tamoxifen resistance and estrogen independence of MCF-7 xenografts. MCF-7/HER2Δ16 cells evade tamoxifen through upregulation of BCL-2, whereas mediated suppression of BCL-2 expression or treatment of MCF-7/HER2Δ16 cells with the BCL-2 family pharmacological inhibitor ABT-737 restores tamoxifen sensitivity. Tamoxifen-resistant MCF-7/HER2Δ16 cells upregulate BCL-2 protein levels in response to suppressed ERα signaling mediated by estrogen withdrawal, tamoxifen treatment or fulvestrant treatment. In addition, HER2Δ16 expression results in suppression of BCL-2-targeting microRNAs miR-15a and miR-16. Reintroduction of miR-15a/16 reduced tamoxifen-induced BCL-2 expression and sensitized MCF-7/HER2Δ16 to tamoxifen. Conversely, inhibition of miR-15a/16 in tamoxifen-sensitive cells activated BCL-2 expression and promoted tamoxifen resistance. Our results suggest that HER2Δ16 expression promotes endocrine-resistant HER2/ERα-positive breast tumors and in contrast to wild-type HER2, preclinical models of HER2Δ16 overexpression recapitulate multiple phenotypes of endocrine-resistant human breast tumors. The mechanism of HER2Δ16 therapeutic evasion, involving tamoxifen-induced upregulation of BCL-2 and suppression of miR-15a/16, provides a template for unique therapeutic interventions combining tamoxifen with modulation of microRNAs and/or ABT-737-mediated BCL-2 inhibition and apoptosis.
Collapse
Affiliation(s)
- Diana M Cittelly
- Department of Pathology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
91
|
Carraway KL. E3 ubiquitin ligases in ErbB receptor quantity control. Semin Cell Dev Biol 2010; 21:936-43. [PMID: 20868762 DOI: 10.1016/j.semcdb.2010.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 09/15/2010] [Indexed: 02/08/2023]
Abstract
Signaling through ErbB family growth factor receptor tyrosine kinases is necessary for the development and homeostasis of a wide variety of tissue types. However, the intensity of receptor-mediated cellular signaling must fall within a precise range; insufficient signaling can lead to developmental abnormalities or tissue atrophy, while over-signaling can lead to hyperplastic and ultimately neoplastic events. While a plethora of mechanisms have been described that regulate downstream signaling events, it appears that cells also utilize various mechanisms to regulate their ErbB receptor levels. Such mechanisms are collectively termed "ErbB receptor quantity control." Notably, studies over the past few years have highlighted roles for post-transcriptional processes, particularly protein degradation, in ErbB quantity control. Here the involvement of ErbB-directed E3 ubiquitin ligases is discussed, including Nrdp1-mediated ErbB3 degradation, ErbB4 degradation mediated by Nedd4 family E3 ligases, and CHIP-mediated ErbB2 degradation. The hypothesis is forwarded that protein degradation-based ErbB quantity control mechanisms play central roles in suppressing receptor overexpression in normal cells, and that the loss of such mechanisms could facilitate the onset or progression of ErbB-dependent tumors.
Collapse
|
92
|
Abstract
Background: Breast cancer anti-oestrogen resistance 4 (BCAR4) was identified in a search for genes involved in anti-oestrogen resistance in breast cancer. We explored whether BCAR4 is predictive for tamoxifen resistance and prognostic for tumour aggressiveness, and studied its function. Methods: BCAR4 mRNA levels were measured in primary breast tumours, and evaluated for association with progression-free survival (PFS) and clinical benefit in patients with oestrogen receptor (ERα)-positive tumours receiving tamoxifen as first-line monotherapy for advanced disease. In a separate cohort of patients with lymph node-negative, ERα-positive cancer, and not receiving systemic adjuvant therapy, BCAR4 levels were evaluated for association with distant metastasis-free survival (MFS). The function of BCAR4 was studied with immunoblotting and RNA interference in a cell model. Results: Multivariate analyses established high BCAR4 mRNA levels as an independent predictive factor for poor PFS after start of tamoxifen therapy for recurrent disease. High BCAR4 mRNA levels were associated with poor MFS and overall survival, reflecting tumour aggressiveness. In BCAR4-expressing cells, phosphorylation of v-erb-b2 erythroblastic leukaemia viral oncogene homolog (ERBB)2, ERBB3, and their downstream mediators extracellular signal-regulated kinase 1/2 and v-akt murine thymoma viral oncogene homolog (AKT) 1/2, was increased. Selective knockdown of ERBB2 or ERBB3 inhibited proliferation, confirming their role in BCAR4-induced tamoxifen resistance. Conclusion: BCAR4 may have clinical relevance for tumour aggressiveness and tamoxifen resistance. Our cell model suggests that BCAR4-positive breast tumours are driven by ERBB2/ERBB3 signalling. Patients with such tumours may benefit from ERBB-targeted therapy.
Collapse
|
93
|
Streckfus CF, Brown RE, Bull JM. Proteomics, morphoproteomics, saliva and breast cancer: An emerging approach to guide the delivery of individualised thermal therapy, thermochemotherapy and monitor therapy response. Int J Hyperthermia 2010; 26:649-61. [DOI: 10.3109/02656736.2010.506470] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
94
|
ZNF217, a candidate breast cancer oncogene amplified at 20q13, regulates expression of the ErbB3 receptor tyrosine kinase in breast cancer cells. Oncogene 2010; 29:5500-10. [PMID: 20661224 PMCID: PMC4256946 DOI: 10.1038/onc.2010.289] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Understanding the mechanisms underlying ErbB3 overexpression in breast cancer will facilitate the rational design of therapies to disrupt ErbB2-ErbB3 oncogenic function. Although ErbB3 overexpression is frequently observed in breast cancer, the factors mediating its aberrant expression are poorly understood. In particular, the ErbB3 gene is not significantly amplified, raising the question as to how ErbB3 overexpression is achieved. In this study we showed that the ZNF217 transcription factor, amplified at 20q13 in ∼20% of breast tumors, regulates ErbB3 expression. Analysis of a panel of human breast cancer cell lines (n = 50) and primary human breast tumors (n = 15) showed a strong positive correlation between ZNF217 and ErbB3 expression. Ectopic expression of ZNF217 in human mammary epithelial cells induced ErbB3 expression, whereas ZNF217 silencing in breast cancer cells resulted in decreased ErbB3 expression. Although ZNF217 has previously been linked with transcriptional repression because of its close association with C-terminal-binding protein (CtBP)1/2 repressor complexes, our results show that ZNF217 also activates gene expression. We showed that ZNF217 recruitment to the ErbB3 promoter is CtBP1/2-independent and that ZNF217 and CtBP1/2 have opposite roles in regulating ErbB3 expression. In addition, we identify ErbB3 as one of the mechanisms by which ZNF217 augments PI-3K/Akt signaling.
Collapse
|
95
|
Elevated expression of erbB3 confers paclitaxel resistance in erbB2-overexpressing breast cancer cells via upregulation of Survivin. Oncogene 2010; 29:4225-36. [DOI: 10.1038/onc.2010.180] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
96
|
Bogush TA, Dudko EA, Bogush EA, Tikhomirov MV, Yu Kirsanov V, Davydov MI. MRP as a new predictive marker of tamoxifen efficiency in treatment of estrogen receptor-positive breast cancer. DOKL BIOCHEM BIOPHYS 2010; 430:36-40. [PMID: 20380160 DOI: 10.1134/s1607672910010114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- T A Bogush
- N.N. Blokhin Russian Cancer Research Center of the Russian Academy of Medical Sciences, Kashirskoe sh. 24, Moscow, 115478 Russia
| | | | | | | | | | | |
Collapse
|
97
|
Koutras AK, Fountzilas G, Kalogeras KT, Starakis I, Iconomou G, Kalofonos HP. The upgraded role of HER3 and HER4 receptors in breast cancer. Crit Rev Oncol Hematol 2010; 74:73-8. [DOI: 10.1016/j.critrevonc.2009.04.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 04/15/2009] [Accepted: 04/29/2009] [Indexed: 01/06/2023] Open
|
98
|
Campbell MR, Amin D, Moasser MM. HER3 comes of age: new insights into its functions and role in signaling, tumor biology, and cancer therapy. Clin Cancer Res 2010; 16:1373-83. [PMID: 20179223 DOI: 10.1158/1078-0432.ccr-09-1218] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human epidermal growth family (HER) of tyrosine kinase receptors underlies the pathogenesis of many types of human cancer. The oncogenic functions of three of the HER proteins can be unleashed through amplification, overexpression, or mutational activation. This has formed the basis for the development of clinically active targeted therapies. However, the third member HER3 is catalytically inactive, not found to be mutated or amplified in cancers, and its role and functions have remained shrouded in mystery. Recent evidence derived primarily from experimental models now seems to implicate HER3 in the pathogenesis of several types of cancer. Furthermore, the failure to recognize the central role of HER3 seems to underlie resistance to epidermal growth factor receptor (EGFR)- or HER2-targeted therapies in some cancers. Structural and biochemical studies have now greatly enhanced our understanding of signaling in the HER family and revealed the previously unrecognized activating functions embodied in the catalytically impaired kinase domain of HER3. This renewed interest and mechanistic basis has fueled the development of new classes of HER3-targeting agents for cancer therapy. However, identifying HER3-dependent tumors presents a formidable challenge and the success of HER3-targeting approaches depends entirely on the development and power of predictive tools.
Collapse
Affiliation(s)
- Marcia R Campbell
- Department of Medicine & Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143-1387, USA
| | | | | |
Collapse
|
99
|
Abstract
As small non-coding regulatory RNAs, microRNAs are capable of silencing gene expression by translational repression or mRNA degradation. Accumulating evidence indicates that deregulation of microRNAs is often associated with human malignancies and suggests a causal role of microRNAs in neoplasia, presumably because microRNAs can function as oncogenes or tumor suppressors. Among them, miR-205 is significantly underexpressed in breast tumors compared with matched normal breast tissue although miR-205 has been shown to be upregulated in some other type of tumors. Furthermore, breast cancer cell lines, including MCF-7 and MDA-MB-231, express a lower level of miR-205 than the non-malignant MCF-10A cells. Ectopic expression of miR-205 significantly inhibits cell proliferation and anchorage-independent growth as well as cell invasion. These findings establish the tumor suppressive role of miR-205, which is probably through direct targeting of oncogenes such as ErbB3 and Zeb1. Therefore, miR-205 may serve as a unique therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Hailong Wu
- Southern Illinois University School of Medicine, Department of Medical Microbiology, Immunology and Cell Biology, 825 N. Rutledge, PO Box 19626, Springfield, IL 62794, USA
| | | |
Collapse
|
100
|
Huang X, Gao L, Wang S, McManaman JL, Thor AD, Yang X, Esteva FJ, Liu B. Heterotrimerization of the growth factor receptors erbB2, erbB3, and insulin-like growth factor-i receptor in breast cancer cells resistant to herceptin. Cancer Res 2010; 70:1204-14. [PMID: 20103628 DOI: 10.1158/0008-5472.can-09-3321] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Primary and acquired resistance to the breast cancer drug trastuzumab (Herceptin) is a significant clinical problem. Here, we report enhanced activation of downstream signaling pathways emanating from the growth factor receptors erbB2, erbB3, and insulin-like growth factor-I receptor (IGF-IR) in trastuzumab-resistant breast cancer cells. Interactions between IGF-IR and erbB2 or erbB3 occur exclusively in trastuzumab-resistant cells, where enhanced erbB2-erbB3 interactions are also observed. Moreover, these three receptors form a heterotrimeric complex in resistant cells. erbB3 or IGF-IR knockdown by short hairpin RNA-mediated strategies upregulates p27(kip1), inactivates downstream receptor signaling, and resensitizes resistant cells to trastuzumab. Our findings reveal a heterotrimer complex with a key role in trastuzumab resistance. On the basis of our results, we propose that trastuzumab resistance in breast cancer might be overcome by therapeutic strategies that jointly target erbB3, erbB2, and IGF-IR.
Collapse
Affiliation(s)
- Xiaoping Huang
- Departments of Pathology and Obstetrics and Gynecology, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|