51
|
Yoon S, Huang KW, Reebye V, Spalding D, Przytycka TM, Wang Y, Swiderski P, Li L, Armstrong B, Reccia I, Zacharoulis D, Dimas K, Kusano T, Shively J, Habib N, Rossi JJ. Aptamer-Drug Conjugates of Active Metabolites of Nucleoside Analogs and Cytotoxic Agents Inhibit Pancreatic Tumor Cell Growth. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 6:80-88. [PMID: 28325302 PMCID: PMC5363417 DOI: 10.1016/j.omtn.2016.11.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/21/2016] [Accepted: 11/02/2016] [Indexed: 01/05/2023]
Abstract
Aptamer-drug conjugates (ApDCs) have the potential to improve the therapeutic index of traditional chemotherapeutic agents due to their ability to deliver cytotoxic drugs specifically to cancer cells while sparing normal cells. This study reports on the conjugation of cytotoxic drugs to an aptamer previously described by our group, the pancreatic cancer RNA aptamer P19. To this end, P19 was incorporated with gemcitabine and 5-fluorouracil (5-FU), or conjugated to monomethyl auristatin E (MMAE) and derivative of maytansine 1 (DM1). The ApDCs P19-dFdCMP and P19-5FdUMP were shown to induce the phosphorylation of histone H2AX on Ser139 (γ-H2AX) and significantly inhibited cell proliferation by 51%-53% in PANC-1 and by 54%-34% in the gemcitabine-resistant pancreatic cancer cell line AsPC-1 (p ≤ 0.0001). P19-MMAE and P19-DM1 caused mitotic G2/M phase arrest and inhibited cell proliferation by up to 56% in a dose-dependent manner when compared to the control group (p ≤ 0.001). In addition, the cytotoxicity of P19-MMAE and P19-DM1 in normal cells and the control human breast cancer cell line MCF7 was minimal. These results suggest that this approach may be useful in decreasing cytotoxic side effects in non-tumoral tissue.
Collapse
Affiliation(s)
- Sorah Yoon
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Kai-Wen Huang
- Department of Surgery and Hepatitis Research Center, National Taiwan University Hospital, College of Medicine, Taipei 10051, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Vikash Reebye
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Duncan Spalding
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Teresa M Przytycka
- National Center of Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20894, USA
| | - Yijie Wang
- National Center of Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20894, USA
| | - Piotr Swiderski
- Drug Discovery and Structural Biology Core-DNA/RNA Synthesis Laboratory, Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Lin Li
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Brian Armstrong
- Light Microscopy Digital Imaging Core, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Isabella Reccia
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Dimitris Zacharoulis
- Department of Surgery and Pharmacology, University Hospital of Larissa, Larissa 41110, Greece
| | - Konstantinos Dimas
- Department of Surgery and Pharmacology, University Hospital of Larissa, Larissa 41110, Greece
| | - Tomokazu Kusano
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - John Shively
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Nagy Habib
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, City of Hope, 1500 East Duarte Rd., Duarte, CA 91010, USA.
| |
Collapse
|
53
|
Imaging mass spectrometry for the precise design of antibody-drug conjugates. Sci Rep 2016; 6:24954. [PMID: 27098163 PMCID: PMC4838941 DOI: 10.1038/srep24954] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/07/2016] [Indexed: 01/25/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a class of immunotherapeutic agents that enable the delivery of cytotoxic drugs to target malignant cells. Because various cancers and tumour vascular endothelia strongly express anti-human tissue factor (TF), we prepared ADCs consisting of a TF-specific monoclonal antibody (mAb) linked to the anticancer agent (ACA) monomethyl auristatin E (MMAE) via a valine-citrulline (Val-Cit) linker (human TF ADC). Identifying the most efficient drug design in advance is difficult because ADCs have complicated structures. The best method of assessing ADCs is to examine their selectivity and efficiency in releasing and distributing the ACA within tumour tissue. Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) can be used to directly detect the distributions of native molecules within tumour tissues. Here, MALDI-IMS enabled the identification of the intratumour distribution of MMAE released from the ADC. In conclusion, MALDI-IMS is a useful tool to assess ADCs and facilitate the optimization of ADC design.
Collapse
|
54
|
Sugaya A, Hyodo I, Koga Y, Yamamoto Y, Takashima H, Sato R, Tsumura R, Furuya F, Yasunaga M, Harada M, Tanaka R, Matsumura Y. Utility of epirubicin-incorporating micelles tagged with anti-tissue factor antibody clone with no anticoagulant effect. Cancer Sci 2016; 107:335-40. [PMID: 26676840 PMCID: PMC4814265 DOI: 10.1111/cas.12863] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/03/2015] [Accepted: 12/14/2015] [Indexed: 01/17/2023] Open
Abstract
Tissue factor (TF), an initiator of the extrinsic blood coagulation cascade, is overexpressed in different types of cancer. Tissue factor overexpression is also known as a poor prognostic factor in pancreatic cancer. We recently developed anti‐TF antibody (clone1849)‐conjugated epirubicin‐incorporating micelles (NC‐6300), and reported that this anti‐TF1849‐NC‐6300 showed enhanced antitumor activity against TF‐high expressed human pancreatic cancer cells, when compared with NC‐6300 alone. However, clone 1849 antibody inhibited TF‐associated blood coagulation activity. We studied another anti‐TF antibody, clone 1859, which had no effect on blood coagulation and prepared anti‐TF1859‐NC‐6300. In addition, to determine the optimum size of the antibody fragment to conjugate with NC‐6300, three forms of the 1859 antibody (whole IgG, F[ab’]2, and Fab’) were conjugated to NC‐6300. The antitumor effect of each anti‐TF1859‐NC‐6300 was studied in vitro and in vivo, using two human pancreatic cancer cell lines, BxPC3 with high‐expressed TF, and SUIT2 with low levels of TF. In vitro, all forms of anti‐TF1859‐NC‐6300 showed higher cytocidal effects than NC‐6300 in BxPC3, whereas this enhanced effect was not observed in SUIT2. Likewise, all forms of anti‐TF1859‐NC‐6300 significantly suppressed tumor growth when compared to NC‐6300 in the BxPC3, but not in the SUIT2, xenograft model. Among the three forms of conjugates, anti‐TF1859‐IgG‐NC‐6300 had a higher antitumor tendency in TF‐high expressed cells. Thus, we have confirmed an enhanced antitumor effect of anti‐TF1859‐NC‐6300 in a TF‐high expressing tumor; anti‐TF1859‐IgG‐NC‐6300 could be used to simplify the manufacturing process of the antibody–micelle conjugation for future clinical studies.
Collapse
Affiliation(s)
- Akinori Sugaya
- Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ichinosuke Hyodo
- Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoshikatsu Koga
- Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Yoshiyuki Yamamoto
- Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hiroki Takashima
- Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Ryuta Sato
- Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Ryo Tsumura
- Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Fumiaki Furuya
- Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Masahiro Yasunaga
- Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | | | | | - Yasuhiro Matsumura
- Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
55
|
Feasibility study of the Fab fragment of a monoclonal antibody against tissue factor as a diagnostic tool. Int J Oncol 2015; 47:2107-14. [PMID: 26497165 DOI: 10.3892/ijo.2015.3210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022] Open
Abstract
Tissue factor (TF) is expressed strongly in various types of cancer, especially cancers that are often refractory to treatment, such as pancreatic cancer. In this study, we compared the differences in the biophysical and pharmacological properties of whole IgG and the Fab fragment of anti-human TF monoclonal antibody (1849 antibodies), in order to determine their suitability for application in the diagnosis and treatment of cancers. In the biophysical examination, we investigated the characteristics of 1849-whole IgG and 1849-Fab by SPR sensing and confocal fluorescence microscopy analysis using recombinant human TF antigen and TF-overexpressing human pancreatic cancer cell line, BxPC3, respectively. After conjugation with Alexa-Flour-647, in vivo imaging was conducted in mice bearing BxPC3 xenograft tumors. Furthermore, the distribution of the conjugates in tumors and major organs was evaluated by ex vivo study. The in vitro experiments showed that 1849 antibodies had high affinity against TF antigen. In addition, 1849-Fab showed a faster dissociation rate from the antigen than 1849-whole IgG. In mice, 1849-Fab-Alexa-Flour-647 showed rapid renal clearance and faster tumor accumulation, achieving a high contrast signal over nearby normal tissues in the early phase and enhanced tumor penetration after administration. On the other hand, 1849-whole IgG-Alexa-Flour-647 showed slow clearance from the blood and sustained high tumor accumulation. These results suggest that 1849-Fab may be a useful tool for pancreatic cancer diagnosis.
Collapse
|