51
|
Tong W, Maira M, Roychoudhury R, Galan A, Brahimi F, Gilbert M, Cunningham AM, Josephy S, Pirvulescu I, Moffett S, Saragovi HU. Vaccination with Tumor-Ganglioside Glycomimetics Activates a Selective Immunity that Affords Cancer Therapy. Cell Chem Biol 2019; 26:1013-1026.e4. [DOI: 10.1016/j.chembiol.2019.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/19/2018] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
|
52
|
Rossi JF, Céballos P, Lu ZY. Immune precision medicine for cancer: a novel insight based on the efficiency of immune effector cells. Cancer Commun (Lond) 2019; 39:34. [PMID: 31200766 PMCID: PMC6567551 DOI: 10.1186/s40880-019-0379-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer cell growth is associated with immune surveillance failure. Nowadays, restoring the desired immune response against cancer cells remains a major therapeutic strategy. Due to the recent advances in biological knowledge, efficient therapeutic tools have been developed to support the best bio-clinical approaches for immune precision therapy. One of the most important successes in immune therapy is represented by the applicational use of monoclonal antibodies, particularly the use of rituximab for B-cell lymphoproliferative disorders. More recently, other monoclonal antibodies have been developed, to inhibit immune checkpoints within the tumor microenvironment that limit immune suppression, or to enhance some immune functions with immune adjuvants through different targets such as Toll-receptor agonists. The aim is to inhibit cancer proliferation by the diminishing/elimination of cancer residual cells and clinically improving the response duration with no or few adverse effects. This effect is supported by enhancing the number, functions, and activity of the immune effector cells, including the natural killer (NK) lymphocytes, NKT-lymphocytes, γδ T-lymphocytes, cytotoxic T-lymphocytes, directly or indirectly through vaccines particularly with neoantigens, and by lowering the functions of the immune suppressive cells. Beyond these new therapeutics and their personalized usage, new considerations have to be taken into account, such as epigenetic regulation particularly from microbiota, evaluation of transversal functions, particularly cellular metabolism, and consideration to the clinical consequences at the body level. The aim of this review is to discuss some practical aspects of immune therapy, giving to clinicians the concept of immune effector cells balancing between control and tolerance. Immunological precision medicine is a combination of modern biological knowledge and clinical therapeutic decisions in a global vision of the patient.
Collapse
Affiliation(s)
- Jean-François Rossi
- Institut Sainte Catherine, 84918, Avignon, France. .,Université Montpellier 1, UFR Médecine, 34396, Montpellier, France. .,Département d'Hématologie, CHU de Montpellier, 34295, Montpellier, France.
| | - Patrice Céballos
- Département d'Hématologie, CHU de Montpellier, 34295, Montpellier, France
| | - Zhao-Yang Lu
- Unité de Thérapie Cellulaire, CHU Saint-Eloi, 34295, Montpellier, France
| |
Collapse
|
53
|
Rotolo R, Leuci V, Donini C, Cykowska A, Gammaitoni L, Medico G, Valabrega G, Aglietta M, Sangiolo D. CAR-Based Strategies beyond T Lymphocytes: Integrative Opportunities for Cancer Adoptive Immunotherapy. Int J Mol Sci 2019; 20:ijms20112839. [PMID: 31212634 PMCID: PMC6600566 DOI: 10.3390/ijms20112839] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/26/2022] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T lymphocytes (CAR Ts) produced impressive clinical results against selected hematological malignancies, but the extension of CAR T cell therapy to the challenging field of solid tumors has not, so far, replicated similar clinical outcomes. Many efforts are currently dedicated to improve the efficacy and safety of CAR-based adoptive immunotherapies, including application against solid tumors. A promising approach is CAR engineering of immune effectors different from αβT lymphocytes. Herein we reviewed biological features, therapeutic potential, and safety of alternative effectors to conventional CAR T cells: γδT, natural killer (NK), NKT, or cytokine-induced killer (CIK) cells. The intrinsic CAR-independent antitumor activities, safety profile, and ex vivo expansibility of these alternative immune effectors may favorably contribute to the clinical development of CAR strategies. The proper biological features of innate immune response effectors may represent an added value in tumor settings with heterogeneous CAR target expression, limiting the risk of tumor clonal escape. All these properties bring out CAR engineering of alternative immune effectors as a promising integrative option to be explored in future clinical studies.
Collapse
Affiliation(s)
- Ramona Rotolo
- Department of Oncology, University of Torino, 10140 Torino, Italy.
| | - Valeria Leuci
- Department of Oncology, University of Torino, 10140 Torino, Italy.
- Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo TO, Italy.
| | - Chiara Donini
- Department of Oncology, University of Torino, 10140 Torino, Italy.
| | - Anna Cykowska
- Department of Oncology, University of Torino, 10140 Torino, Italy.
| | | | - Giovanni Medico
- Department of Oncology, University of Torino, 10140 Torino, Italy.
| | - Giorgio Valabrega
- Department of Oncology, University of Torino, 10140 Torino, Italy.
- Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo TO, Italy.
| | - Massimo Aglietta
- Department of Oncology, University of Torino, 10140 Torino, Italy.
- Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo TO, Italy.
| | - Dario Sangiolo
- Department of Oncology, University of Torino, 10140 Torino, Italy.
- Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo TO, Italy.
| |
Collapse
|
54
|
Wang Z, Wang Z, Li B, Wang S, Chen T, Ye Z. Innate Immune Cells: A Potential and Promising Cell Population for Treating Osteosarcoma. Front Immunol 2019; 10:1114. [PMID: 31156651 PMCID: PMC6531991 DOI: 10.3389/fimmu.2019.01114] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 05/01/2019] [Indexed: 12/13/2022] Open
Abstract
Advanced, recurrent, or metastasized osteosarcomas remain challenging to cure or even alleviate. Therefore, the development of novel therapeutic strategies is urgently needed. Cancer immunotherapy has greatly improved in recent years, with options including adoptive cellular therapy, vaccination, and checkpoint inhibitors. As such, immunotherapy is becoming a potential strategy for the treatment of osteosarcoma. Innate immunocytes, the first line of defense in the immune system and the bridge to adaptive immunity, are one of the vital effector cell subpopulations in cancer immunotherapy. Innate immune cell-based therapy has shown potent antitumor activity against hematologic malignancies and some solid tumors, including osteosarcoma. Importantly, some immune checkpoints are expressed on both innate and adaptive immune cells, modulating their functions in tumor immunity. Therefore, blocking or activating immune checkpoint-mediated downstream signaling pathways can improve the therapeutic effects of innate immune cell-based therapy. In this review, we summarize the current status and future prospects of innate immune cell-based therapy for the treatment of osteosarcoma, with a focus on the potential synergistic effects of combination therapy involving innate immunotherapy and immune checkpoint inhibitors/oncolytic viruses.
Collapse
Affiliation(s)
- Zenan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Binghao Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| |
Collapse
|
55
|
Zhao H, Feng R, Peng A, Li G, Zhou L. The expanding family of noncanonical regulatory cell subsets. J Leukoc Biol 2019; 106:369-383. [DOI: 10.1002/jlb.6ru0918-353rrrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Hai Zhao
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Ridong Feng
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Aijun Peng
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Gaowei Li
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Liangxue Zhou
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| |
Collapse
|
56
|
Abstract
Human T cells are a highly heterogeneous population and can recognize a wide variety of antigens by their T cell receptors (TCRs). Tumor cells display a large repertoire of antigens that serve as potential targets for recognition, thus making T cells in the tumor micro-environment more complicated. Making a connection between TCRs and the transcriptional information of individual T cells will be interesting for investigating clonal expansion within T cell populations under pathologic conditions. Advances in single cell RNA-sequencing (scRNA-seq) have allowed for comprehensive analysis of T cells. In this review, we briefly describe the research progress on tumor micro-environment T cells using single cell RNA sequencing, and then discuss how scRNA-seq can be used to resolve immune system heterogeneity in health and disease. Finally, we point out future directions in this field and potential for immunotherapy.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Hematology, First Affiliated Hospital, School of Medicine, Jinan University, Guangzhou 510632, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital, School of Medicine, Jinan University, Guangzhou 510632, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
57
|
Mulder DT, Mahé ER, Dowar M, Hanna Y, Li T, Nguyen LT, Butler MO, Hirano N, Delabie J, Ohashi PS, Pugh TJ. CapTCR-seq: hybrid capture for T-cell receptor repertoire profiling. Blood Adv 2018; 2:3506-3514. [PMID: 30530777 PMCID: PMC6290103 DOI: 10.1182/bloodadvances.2017014639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/21/2018] [Indexed: 12/26/2022] Open
Abstract
Mature T-cell lymphomas consisting of an expanded clonal population of T cells that possess common rearrangements of the T-cell receptor (TCR) encoding genes can be identified and monitored using molecular methods of T-cell repertoire analysis. We have developed a hybrid-capture method that enriches DNA sequencing libraries for fragments encoding rearranged TCR genes from all 4 loci in a single reaction. We use this method to describe the TCR repertoires of 63 putative lymphoma clinical isolates, 7 peripheral blood mononuclear cell (PBMC) populations, and a collection of tumor infiltrating lymphocytes. Dominant Variable (V) and Joining (J) gene pair rearrangements in cancer cells were confirmed by polymerase chain reaction (PCR) amplification and Sanger sequencing; clonality assessment of clinical isolates using BIOMED-2 methods showed agreement for 73% and 77% of samples at the β and γ loci, respectively, whereas β locus V and J allele prevalence in PBMCs were well correlated with results from commercial PCR-based DNA sequencing assays (r 2 = 0.94 with Adaptive ImmunoSEQ, 0.77-0.83 with Invivoscribe LymphoTrack TRB Assay). CapTCR-seq allows for rapid, high-throughput and flexible characterization of dominant clones within TCR repertoire that will facilitate quantitative analysis of patient samples and enhance sensitivity of tumor surveillance over time.
Collapse
MESH Headings
- Gene Library
- Gene Rearrangement, T-Lymphocyte/genetics
- Genetic Loci
- Humans
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/metabolism
- Lymphoma, T-Cell/diagnosis
- Lymphoma, T-Cell/genetics
- Polymerase Chain Reaction
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Sequence Analysis, DNA/methods
Collapse
Affiliation(s)
- David T Mulder
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Etienne R Mahé
- Division of Hematology, Calgary Laboratory Services and Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark Dowar
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Youstina Hanna
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Tiantian Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Linh T Nguyen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Marcus O Butler
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Naoto Hirano
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Jan Delabie
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada; and
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
58
|
Allaoui R, Hagerling C, Desmond E, Warfvinge CF, Jirström K, Leandersson K. Infiltration of γδ T cells, IL-17+ T cells and FoxP3+ T cells in human breast cancer. Cancer Biomark 2018; 20:395-409. [PMID: 29060923 PMCID: PMC5814667 DOI: 10.3233/cbm-170026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Tumor-infiltrating lymphocytes (TILs) have a strong prognostic value in various forms of cancers. These data often refer to use of the pan-T cell marker CD3, or the cytotoxic T lymphocyte marker CD8α. However, T cells are a heterogeneous group of cells with a wide array of effector mechanisms ranging from immunosuppression to cytotoxicity. OBJECTIVE In this study we have investigated the prognostic effects of some unconventional T cell subtypes in breast cancer; γδ T cells, IL-17+ T cells and FoxP3+ T cells (Tregs) in relation to the conventional CD3 and CD8α T cell markers. METHODS This was done using immunohistochemistry on a human breast cancer tissue microarray consisting of 498 consecutive cases of primary breast cancer. RESULTS Infiltration of γδ T cells and T cell infiltration in general (CD3), correlated with a good prognosis, while Treg infiltration with a worse. Infiltration of γδ T cells was associated with a significantly improved clinical outcome in all breast cancer subtypes except triple negative tumors. Only infiltration of either CD3+ or CD8α+ cells was independently associated with better prognosis for all breast cancer patients. CONCLUSIONS This study sheds further light on the prognostic impact of various T cell subtypes in breast cancer.
Collapse
Affiliation(s)
- Roni Allaoui
- Cancer Immunology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Catharina Hagerling
- Cancer Immunology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Eva Desmond
- Cancer Immunology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Carl-Fredrik Warfvinge
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Lund, Sweden
| | - Karin Jirström
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Lund, Sweden
| | - Karin Leandersson
- Cancer Immunology, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
59
|
Juraske C, Wipa P, Morath A, Hidalgo JV, Hartl FA, Raute K, Oberg HH, Wesch D, Fisch P, Minguet S, Pongcharoen S, Schamel WW. Anti-CD3 Fab Fragments Enhance Tumor Killing by Human γδ T Cells Independent of Nck Recruitment to the γδ T Cell Antigen Receptor. Front Immunol 2018; 9:1579. [PMID: 30038626 PMCID: PMC6046647 DOI: 10.3389/fimmu.2018.01579] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 06/26/2018] [Indexed: 01/18/2023] Open
Abstract
T lymphocytes expressing the γδ T cell receptor (γδ TCR) can recognize antigens expressed by tumor cells and subsequently kill these cells. γδ T cells are indeed used in cancer immunotherapy clinical trials. The anti-CD3ε antibody UCHT1 enhanced the in vitro tumor killing activity of human γδ T cells by an unknown molecular mechanism. Here, we demonstrate that Fab fragments of UCHT1, which only bind monovalently to the γδ TCR, also enhanced tumor killing by expanded human Vγ9Vδ2 γδ T cells or pan-γδ T cells of the peripheral blood. The Fab fragments induced Nck recruitment to the γδ TCR, suggesting that they stabilized the γδ TCR in an active CD3ε conformation. However, blocking the Nck-CD3ε interaction in γδ T cells using the small molecule inhibitor AX-024 neither reduced the γδ T cells' natural nor the Fab-enhanced tumor killing activity. Likewise, Nck recruitment to CD3ε was not required for intracellular signaling, CD69 and CD25 up-regulation, or cytokine secretion by γδ T cells. Thus, the Nck-CD3ε interaction seems to be dispensable in γδ T cells.
Collapse
Affiliation(s)
- Claudia Juraske
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Piyamaporn Wipa
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.,Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Anna Morath
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Jose Villacorta Hidalgo
- Department of Pathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,University Hospital "José de San Martin", University of Buenos Aires, Buenos Aires, Argentina
| | - Frederike A Hartl
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Raute
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Paul Fisch
- Department of Pathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susana Minguet
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sutatip Pongcharoen
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand.,Research Center for Academic Excellence in Petroleum, Petrochemical and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok, Thailand.,Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Wolfgang W Schamel
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
60
|
Pauza CD, Liou ML, Lahusen T, Xiao L, Lapidus RG, Cairo C, Li H. Gamma Delta T Cell Therapy for Cancer: It Is Good to be Local. Front Immunol 2018; 9:1305. [PMID: 29937769 PMCID: PMC6003257 DOI: 10.3389/fimmu.2018.01305] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/25/2018] [Indexed: 12/28/2022] Open
Abstract
Human gamma delta T cells have extraordinary properties including the capacity for tumor cell killing. The major gamma delta T cell subset in human beings is designated Vγ9Vδ2 and is activated by intermediates of isoprenoid biosynthesis or aminobisphosphonate inhibitors of farnesyldiphosphate synthase. Activated cells are potent for killing a broad range of tumor cells and demonstrated the capacity for tumor reduction in murine xenotransplant tumor models. Translating these findings to the clinic produced promising initial results but greater potency is needed. Here, we review the literature on gamma delta T cells in cancer therapy with emphasis on the Vγ9Vδ2 T cell subset. Our goal was to examine obstacles preventing effective Vγ9Vδ2 T cell therapy and strategies for overcoming them. We focus on the potential for local activation of Vγ9Vδ2 T cells within the tumor environment to increase potency and achieve objective responses during cancer therapy. The gamma delta T cells and especially the Vγ9Vδ2 T cell subset, have the potential to overcome many problems in cancer therapy especially for tumors with no known treatment, lacking tumor-specific antigens for targeting by antibodies and CAR-T, or unresponsive to immune checkpoint inhibitors. Translation of amazing work from many laboratories studying gamma delta T cells is needed to fulfill the promise of effective and safe cancer immunotherapy.
Collapse
Affiliation(s)
- C David Pauza
- American Gene Technologies International Inc., Rockville, MD, United States
| | - Mei-Ling Liou
- American Gene Technologies International Inc., Rockville, MD, United States
| | - Tyler Lahusen
- American Gene Technologies International Inc., Rockville, MD, United States
| | - Lingzhi Xiao
- American Gene Technologies International Inc., Rockville, MD, United States
| | - Rena G Lapidus
- Department of Medicine, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Cristiana Cairo
- Institute of Human Virology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Haishan Li
- American Gene Technologies International Inc., Rockville, MD, United States
| |
Collapse
|
61
|
Wang Z, Wang Z, Li S, Li B, Sun L, Li H, Lin P, Wang S, Teng W, Zhou X, Ye Z. Decitabine Enhances Vγ9Vδ2 T Cell-Mediated Cytotoxic Effects on Osteosarcoma Cells via the NKG2DL-NKG2D Axis. Front Immunol 2018; 9:1239. [PMID: 29910819 DOI: 10.3389/fimmu.2018.01239] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/17/2018] [Indexed: 01/18/2023] Open
Abstract
γδ T cell-based immunotherapy for osteosarcoma (OS) has shown limited success thus far. DNA-demethylating agents not only induce tumor cell death but also have an immunomodulatory function. In this study, we have assessed the potential benefit of combining decitabine (DAC, a DNA demethylation drug) and γδ T cells for OS immunotherapy. DAC increased the expression of natural killer group 2D (NKG2D) ligands (NKG2DLs), including major histocompatibility complex class I-related chains B (MICB) and UL16-binding protein 1 (ULBP1), on the OS cell surface, making the cells more sensitive to recognition and destruction by cytotoxic γδ T cells. The upregulation of MICB and ULBP1 was due to promoter DNA demethylation. Importantly, the killing of OS cells by γδ T cells was partially reversed by blocking the NKG2D receptor, suggesting that the γδ T cell-mediated cytolysis of DAC-pretreated OS cells was mainly dependent on the NKG2D-NKG2DL axis. The in vivo results were consistent with the in vitro results. In summary, DAC could upregulate MICB and ULBP1 expression in OS cells, and combination treatment involving γδ T cell immunotherapy and DAC could be used to enhance the cytotoxic killing of OS cells by γδ T cells.
Collapse
Affiliation(s)
- Zhan Wang
- Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zenan Wang
- Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Li
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Key Laboratory of Molecular Biology in Medical Sciences, National Ministry of Education, Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Binghao Li
- Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lingling Sun
- Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hengyuan Li
- Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Lin
- Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shengdong Wang
- Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wangsiyuan Teng
- Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xingzhi Zhou
- Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoming Ye
- Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
62
|
Hoeres T, Smetak M, Pretscher D, Wilhelm M. Improving the Efficiency of Vγ9Vδ2 T-Cell Immunotherapy in Cancer. Front Immunol 2018; 9:800. [PMID: 29725332 PMCID: PMC5916964 DOI: 10.3389/fimmu.2018.00800] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/03/2018] [Indexed: 12/28/2022] Open
Abstract
Increasing immunological knowledge and advances in techniques lay the ground for more efficient and broader application of immunotherapies. gamma delta (γδ) T-cells possess multiple favorable anti-tumor characteristics, making them promising candidates to be used in cellular and combination therapies of cancer. They recognize malignant cells, infiltrate tumors, and depict strong cytotoxic and pro-inflammatory activity. Here, we focus on human Vγ9Vδ2 T-cells, the most abundant γδ T-cell subpopulation in the blood, which are able to inhibit cancer progression in various models in vitro and in vivo. For therapeutic use they can be cultured and manipulated ex vivo and in the following adoptively transferred to patients, as well as directly stimulated to propagate in vivo. In clinical studies, Vγ9Vδ2 T-cells repeatedly demonstrated a low toxicity profile but hitherto only the modest therapeutic efficacy. This review provides a comprehensive summary of established and newer strategies for the enhancement of Vγ9Vδ2 T-cell anti-tumor functions. We discuss data of studies exploring methods for the sensitization of malignant cells, the improvement of recognition mechanisms and cytotoxic activity of Vγ9Vδ2 T-cells. Main aspects are the tumor cell metabolism, antibody-dependent cell-mediated cytotoxicity, antibody constructs, as well as activating and inhibitory receptors like NKG2D and immune checkpoint molecules. Several concepts show promising results in vitro, now awaiting translation to in vivo models and clinical studies. Given the array of research and encouraging findings in this area, this review aims at optimizing future investigations, specifically targeting the unanswered questions.
Collapse
Affiliation(s)
- Timm Hoeres
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | - Manfred Smetak
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | - Dominik Pretscher
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | - Martin Wilhelm
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
63
|
Poggi A, Varesano S, Zocchi MR. How to Hit Mesenchymal Stromal Cells and Make the Tumor Microenvironment Immunostimulant Rather Than Immunosuppressive. Front Immunol 2018; 9:262. [PMID: 29515580 PMCID: PMC5825917 DOI: 10.3389/fimmu.2018.00262] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/30/2018] [Indexed: 12/17/2022] Open
Abstract
Experimental evidence indicates that mesenchymal stromal cells (MSCs) may regulate tumor microenvironment (TME). It is conceivable that the interaction with MSC can influence neoplastic cell functional behavior, remodeling TME and generating a tumor cell niche that supports tissue neovascularization, tumor invasion and metastasization. In addition, MSC can release transforming growth factor-beta that is involved in the epithelial-mesenchymal transition of carcinoma cells; this transition is essential to give rise to aggressive tumor cells and favor cancer progression. Also, MSC can both affect the anti-tumor immune response and limit drug availability surrounding tumor cells, thus creating a sort of barrier. This mechanism, in principle, should limit tumor expansion but, on the contrary, often leads to the impairment of the immune system-mediated recognition of tumor cells. Furthermore, the cross-talk between MSC and anti-tumor lymphocytes of the innate and adaptive arms of the immune system strongly drives TME to become immunosuppressive. Indeed, MSC can trigger the generation of several types of regulatory cells which block immune response and eventually impair the elimination of tumor cells. Based on these considerations, it should be possible to favor the anti-tumor immune response acting on TME. First, we will review the molecular mechanisms involved in MSC-mediated regulation of immune response. Second, we will focus on the experimental data supporting that it is possible to convert TME from immunosuppressive to immunostimulant, specifically targeting MSC.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, Policlinico San Martino, Genoa, Italy
| | - Serena Varesano
- Molecular Oncology and Angiogenesis Unit, Policlinico San Martino, Genoa, Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
64
|
Zhao Y, Niu C, Cui J. Gamma-delta (γδ) T cells: friend or foe in cancer development? J Transl Med 2018; 16:3. [PMID: 29316940 PMCID: PMC5761189 DOI: 10.1186/s12967-017-1378-2] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/30/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND γδ T cells are a distinct subgroup of T cells containing T cell receptors (TCRs) γ and TCR δ chains with diverse structural and functional heterogeneity. As a bridge between the innate and adaptive immune systems, γδ T cells participate in various immune responses during cancer progression. Because of their direct/indirect antitumor cytotoxicity and strong cytokine production ability, the use of γδ T cells in cancer immunotherapy has received a lot of attention over the past decade. MAIN TEXT Despite the promising potential of γδ T cells, the efficacy of γδ T cell immunotherapy is limited, with an average response ratio of only 21%. In addition, research over the past 2 years has shown that γδ T cells could also promote cancer progression by inhibiting antitumor responses, and enhancing cancer angiogenesis. As a result, γδ T cells have a dual effect and can therefore be considered as being both "friends" and "foes" of cancer. In order to solve the sub-optimal efficiency problem of γδ T cell immunotherapy, we review recent observations regarding the antitumor and protumor activities of major structural and functional subsets of human γδ T cells, describing how these subsets are activated and polarized, and how these events relate to subsequent effects in cancer immunity. A mixture of both antitumor or protumor γδ T cells used in adoptive immunotherapy, coupled with the fact that γδ T cells can be polarized from antitumor cells to protumor cells appear to be the likely reasons for the mild efficacy seen with γδ T cells. CONCLUSION The future holds the promise of depleting the specific protumor γδ T cell subgroup before therapy, choosing multi-immunocyte adoptive therapy, modifying the cytokine balance in the cancer microenvironment, and using a combination of γδ T cells adoptive immunotherapy with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Yijing Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Chao Niu
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| |
Collapse
|
65
|
HEB is required for the specification of fetal IL-17-producing γδ T cells. Nat Commun 2017; 8:2004. [PMID: 29222418 PMCID: PMC5722817 DOI: 10.1038/s41467-017-02225-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/08/2017] [Indexed: 01/15/2023] Open
Abstract
IL-17-producing γδ T (γδT17) cells are critical components of the innate immune system. However, the gene networks that control their development are unclear. Here we show that HEB (HeLa E-box binding protein, encoded by Tcf12) is required for the generation of a newly defined subset of fetal-derived CD73− γδT17 cells. HEB is required in immature CD24+CD73− γδ T cells for the expression of Sox4, Sox13, and Rorc, and these genes are repressed by acute expression of the HEB antagonist Id3. HEB-deficiency also affects mature CD73+ γδ T cells, which are defective in RORγt expression and IL-17 production. Additionally, the fetal TCRγ chain repertoire is altered, and peripheral Vγ4 γδ T cells are mostly restricted to the IFNγ-producing phenotype in HEB-deficient mice. Therefore, our work identifies HEB-dependent pathways for the development of CD73+ and CD73− γδT17 cells, and provides mechanistic evidence for control of the γδT17 gene network by HEB. The γδ T cell pool includes abundant IL-17-producing cells that protect mucosal surfaces, but the signals that control γδ T cell specification are unclear. Here the authors identify a role for the transcription factor HEB, and antagonistic activity of Id3, in the development of these cells.
Collapse
|
66
|
Van Acker HH, Capsomidis A, Smits EL, Van Tendeloo VF. CD56 in the Immune System: More Than a Marker for Cytotoxicity? Front Immunol 2017; 8:892. [PMID: 28791027 PMCID: PMC5522883 DOI: 10.3389/fimmu.2017.00892] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/12/2017] [Indexed: 11/13/2022] Open
Abstract
Over the past years, the phenotypic and functional boundaries distinguishing the main cell subsets of the immune system have become increasingly blurred. In this respect, CD56 (also known as neural cell adhesion molecule) is a very good example. CD56 is the archetypal phenotypic marker of natural killer cells but can actually be expressed by many more immune cells, including alpha beta T cells, gamma delta T cells, dendritic cells, and monocytes. Common to all these CD56-expressing cell types are strong immunostimulatory effector functions, including T helper 1 cytokine production and an efficient cytotoxic capacity. Interestingly, both numerical and functional deficiencies and phenotypic alterations of the CD56+ immune cell fraction have been reported in patients with various infectious, autoimmune, or malignant diseases. In this review, we will discuss our current knowledge on the expression and function of CD56 in the hematopoietic system, both in health and disease.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Anna Capsomidis
- Cancer Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium.,Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
67
|
Chitadze G, Oberg HH, Wesch D, Kabelitz D. The Ambiguous Role of γδ T Lymphocytes in Antitumor Immunity. Trends Immunol 2017; 38:668-678. [PMID: 28709825 DOI: 10.1016/j.it.2017.06.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022]
Abstract
γδ T cells play a role in immune surveillance because they recognize stress-induced surface molecules and metabolic intermediates that are frequently dysregulated in transformed cells. Hence, γδ T cells have attracted much interest as effector cells in cell-based immunotherapy. Recently, however, it has been realized that γδ T cells can also promote tumorigenesis through various mechanisms including regulatory activity and IL-17 production. In this review we outline both the pathways involved in cancer cell recognition and killing by γδ T cells as well as current evidence for their protumorigenic activity in various models. Finally, we discuss strategies to improve the tumor reactivity of γδ T cells and to counteract their protumorigenic activities, which should open improved perspectives for their clinical application.
Collapse
Affiliation(s)
- Guranda Chitadze
- Institute of Immunology, University of Kiel, Arnold-Heller-Strasse 3, Building 17, 24105 Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, University of Kiel, Arnold-Heller-Strasse 3, Building 17, 24105 Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, University of Kiel, Arnold-Heller-Strasse 3, Building 17, 24105 Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University of Kiel, Arnold-Heller-Strasse 3, Building 17, 24105 Kiel, Germany.
| |
Collapse
|
68
|
Immune-mediated syndromes following intravenous bisphosphonate therapy. Inflammopharmacology 2017; 25:665-671. [PMID: 28567535 DOI: 10.1007/s10787-017-0365-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/24/2017] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Intravenous (IV) infusion of aminobisphosphonates (ABP) induces cytokine release by peripheral blood Vγ9δ2 T cells, resulting in an immediate short-term inflammatory response in up to 50% of patients. We evaluated possible long-term pro-inflammatory effects of IV ABP. METHODS Retrospective case-series study from one rheumatology specialist's clinic. 2261 electronic charts were reviewed for administration of 'zoledronate' or different brand names of zoledronic acid, and relevant clinical data was retrieved for patients who had received the infusion. RESULTS Thirteen patients had recieved zoledronate. In six, new-onset or exacerbation of a previous inflammatory/autoimmune disorder was diagnosed within 3 months following infusion. Of these, one patient developed new-onset rheumatoid arthritis (RA), two polymyalgia rheumatica (PMR), two suffered a flare of Crohn's disease-related and aromatase inhibitor-induced arthralgias, and one patient acquired autoimmune hemophilia. Pre-existing malignancy and immediate inflammatory response following zoledronate were more frequent in patients experiencing new or worsening immunologic manifestations (3/6 vs. 0/7, and 5/6 vs. 2/7, respectively). CONCLUSIONS Intravenous ABP may trigger induction of persistent autoimmune syndromes, especially when accompanied by an immediate adverse reaction or pre-existing malignancy.
Collapse
|
69
|
Bao Y, Guo L, Mo J. Characterization of γδ T cells in patients with non-small cell lung cancer. Oncol Lett 2017; 14:1133-1140. [PMID: 28693285 DOI: 10.3892/ol.2017.6191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 03/17/2017] [Indexed: 12/12/2022] Open
Abstract
Systemic immune defects that are associated with disease progression exist in a variety of malignancies. γδ T cells are innate-like lymphocytes that do not require self-major histocompatibility complex-restricted priming. Ex vivo-expanded circulating γδ T cells exhibit promising antitumor activity and are a potential candidate for the treatment of various malignancies, including non-small cell lung cancer (NSCLC). In the present study, flow cytometry was used as a method to study the phenotypes and characteristics of γδ T cells. A lower frequency of circulating γδ T cells was observed in NSCLC patients than in healthy controls. In advanced NSCLC patients, γδ T cells were also detected in the pleural effusion, but the frequency of γδ T cells here was significantly lower than in the peripheral blood. Vδ1+and Vδ1-Vδ2- T cells represented the most enriched subsets in the pleural effusion. Moreover, the present study demonstrated that Vδ1+ T cells are a type of γδ T cells characterized by a cluster of differentiation (CD)3dim T-cell receptor (TCR)γδbright phenotype, whereas Vδ2+ T cells represent a CD3brightTCRγδdim phenotype, according to the fluorescence intensity of CD3 and γδTCR using flow cytometry. Finally, the present study reported a decrease in the expression of CD27 and CD28 molecules on the surface of circulating γδ T cells in NSCLC. The present data suggest the existence of a dysregulated repertoire of γδ T cells in NSCLC, which exhibit impaired activation and a reformed cytokine-releasing profile. Although the ex vivo expansion of γδ T cells may be a prospective therapeutic strategy in NSCLC patients, it remains necessary to clarify which subsets (Vδ1 or Vδ2) should be expanded and the sources from which γδ T cells should be generated.
Collapse
Affiliation(s)
- Yi Bao
- Key Laboratory, The Second Affiliated Hospital of Jiaxing College, Jiaxing, Zhejiang 314000, P.R. China.,Department of Oncology, The Second Affiliated Hospital of Jiaxing College, Jiaxing, Zhejiang 314000, P.R. China
| | - Li Guo
- Key Laboratory, The Second Affiliated Hospital of Jiaxing College, Jiaxing, Zhejiang 314000, P.R. China
| | - Juanfen Mo
- Key Laboratory, The Second Affiliated Hospital of Jiaxing College, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
70
|
Jin Z, Luo Q, Lu S, Wang X, He Z, Lai J, Chen S, Yang L, Wu X, Li Y. Oligoclonal expansion of TCR Vδ T cells may be a potential immune biomarker for clinical outcome of acute myeloid leukemia. J Hematol Oncol 2016; 9:126. [PMID: 27863523 PMCID: PMC5116135 DOI: 10.1186/s13045-016-0353-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022] Open
Abstract
Background Recent data have shown that γδ T cells can act as mediators for immune defense against tumors. Our previous study has demonstrated that persisting clonally expanded TRDV4 T cells might be relatively beneficial for the outcome of patients with T cell acute lymphoblastic leukemia after hematopoietic stem cell transplantation (HSCT). However, little is known about the distribution and clonality of the TRDV repertoire in T cell receptor (TCR) of γδ T cells and their effects on the clinical outcome of patients with acute myeloid leukemia (AML). The aim of this study was to assess whether the oligoclonal expansion of TCR Vδ T cells could be used as an immune biomarker for AML outcome. Findings γδ T cells were sorted from the peripheral blood of 30 patients with untreated AML and 12 healthy donors. The complementarity-determining region 3 (CDR3) sizes of eight TCR Vδ subfamily genes (TRDV1 to TRDV8) were analyzed in sorted γδ T cells using RT-PCR and GeneScan. The most frequently expressed TRDV subfamilies in the AML patients were TRDV8 (86.67 %) and TRDV2 (83.33 %), and the frequencies for TRDV1, TRDV3, TRDV4, and TRDV6 were significantly lower than those in healthy individuals. The most frequent clonally expanded TRDV subfamilies in the AML patients included TRDV8 (56.67 %) and TRDV4 (40 %). The clonal expansion frequencies of the TRDV2 and TRDV4 T cells were significantly higher than those in healthy individuals, whereas a significantly lower TRDV1 clonal expansion frequency was observed in those with AML. Moreover, the oligoclones of TRDV4 and TRDV8 were independent protective factors for complete remission. Furthermore, the oligoclonal expansion frequencies of TRDV5 and TRDV6 in patients with relapse were significantly higher than those in non-recurrent cases. Conclusions To the best of our knowledge, we characterized for the first time a significant alteration in the distribution and clonality of the TRDV subfamily members in γδ T cells sorted from AML patients. Clonally expanded TRDV4 and TRDV8 T cells might contribute to the immune response directed against AML, while oligoclonal TRDV5 and TRDV6 might occur in patients who undergo relapse. While the function of such γδ T cell clones requires further investigation, TRDV γδ T cell clones might be potential immune biomarkers for AML outcome. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0353-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenyi Jin
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Qiang Luo
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Shuai Lu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Xinyu Wang
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Zifan He
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Jing Lai
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China.,Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Shaohua Chen
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Lijian Yang
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Xiuli Wu
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China.
| | - Yangqiu Li
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China. .,Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
71
|
Poggi A, Giuliani M. Mesenchymal Stromal Cells Can Regulate the Immune Response in the Tumor Microenvironment. Vaccines (Basel) 2016; 4:E41. [PMID: 27834810 PMCID: PMC5192361 DOI: 10.3390/vaccines4040041] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/01/2016] [Accepted: 10/31/2016] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment is a good target for therapy in solid tumors and hematological malignancies. Indeed, solid tumor cells' growth and expansion can influence neighboring cells' behavior, leading to a modulation of mesenchymal stromal cell (MSC) activities and remodeling of extracellular matrix components. This leads to an altered microenvironment, where reparative mechanisms, in the presence of sub-acute inflammation, are not able to reconstitute healthy tissue. Carcinoma cells can undergo epithelial mesenchymal transition (EMT), a key step to generate metastasis; these mesenchymal-like cells display the functional behavior of MSC. Furthermore, MSC can support the survival and growth of leukemic cells within bone marrow participating in the leukemic cell niche. Notably, MSC can inhibit the anti-tumor immune response through either carcinoma-associated fibroblasts or bone marrow stromal cells. Experimental data have indicated their relevance in regulating cytolytic effector lymphocytes of the innate and adaptive arms of the immune system. Herein, we will discuss some of the evidence in hematological malignancies and solid tumors. In particular, we will focus our attention on the means by which it is conceivable to inhibit MSC-mediated immune suppression and trigger anti-tumor innate immunity.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS AOU San Martino IST, 16132 Genoa, Italy.
| | - Massimo Giuliani
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health, Luxembourg City L-1526, Luxembourg.
| |
Collapse
|