51
|
Liu R, Cheng Q, Wang X, Chen H, Wang W, Zhang H, Wang L, Song L. The B-cell translocation gene 1 (CgBTG1) identified in oyster Crassostrea gigas exhibit multiple functions in immune response. FISH & SHELLFISH IMMUNOLOGY 2017; 61:68-78. [PMID: 27940367 DOI: 10.1016/j.fsi.2016.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/26/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
B-cell translocation gene 1 (BTG1) is a member of the anti-proliferative gene family, which plays important roles in regulation of cell cycle. In the present study, a B-cell translocation gene 1 molecule homologue (designed CgBTG1) are identified and characterized in oyster Crassostrea gigas. CgBTG1 contains a conserved BTG domain with Box A and Box B motifs, and it shares high similarities with both BTG1 and BTG2 proteins in vertebrates. CgBTG1 mRNA is predominantly expressed in hemocytes, and its expression level in hemocytes is significantly up-regulated at 6 h (5.40-fold, p < 0.01) post Vibrio splendidus stimulation. The apoptosis rate of oyster hemocytes is significantly decreased (p < 0.05) after CgBTG1 interfered by dsRNA (dsCgBTG1). This is indicated that CgBTG1 participated in the regulation of oyster hemocytes apoptosis. Furthermore, CgBTG1 could also induce the apoptosis of cancer cells (HeLa, A549 and BEL7402) in vitro. Compared with normal oysters, both vessel-like structures and muscle fibers in CgBTG1 interfered oysters are severely damaged after V. splendidus challenge in paraffin section, considering that CgBTG1 possessed an analogous feature of angiogenesis for maintenance of vessel-like structures in adductor muscle of oyster. The results suggests that CgBTG1 is a multi-functional molecule involved in the immune response of C. gigas against pathogen infection, which provides more clues for intensive studies of BTG family proteins in invertebrates.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qi Cheng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiudan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
52
|
Jostes S, Nettersheim D, Fellermeyer M, Schneider S, Hafezi F, Honecker F, Schumacher V, Geyer M, Kristiansen G, Schorle H. The bromodomain inhibitor JQ1 triggers growth arrest and apoptosis in testicular germ cell tumours in vitro and in vivo. J Cell Mol Med 2016; 21:1300-1314. [PMID: 28026145 PMCID: PMC5487916 DOI: 10.1111/jcmm.13059] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022] Open
Abstract
Type II testicular germ cell cancers (TGCT) are the most frequently diagnosed tumours in young men (20–40 years) and are classified as seminoma or non‐seminoma. TGCTs are commonly treated by orchiectomy and chemo‐ or radiotherapy. However, a subset of metastatic non‐seminomas (embryonal carcinomas) displays only incomplete remission or relapse and requires novel treatment options. Recent studies have shown effective application of the small‐molecule inhibitor JQ1 in tumour therapy, which interferes with the function of ‘bromodomain and extraterminal (BET)’ proteins. JQ1‐treated TGCT cell lines display up‐regulation of genes indicative for DNA damage and cellular stress response and induce cell cycle arrest. Embryonal carcinoma (EC) cell lines, which presented as JQ1 sensitive, display down‐regulation of pluripotency factors and induction of mesodermal differentiation. In contrast, seminoma‐like TCam‐2 cells tolerated higher JQ1 concentrations and were resistant to differentiation. ECs xenografted in vivo showed a reduction in tumour size, proliferation rate and angiogenesis in response to JQ1. Finally, the combination of JQ1 and the histone deacetylase inhibitor romidepsin allowed for lower doses and less frequent application, compared with monotherapy. Thus, we propose that JQ1 in combination with romidepsin may serve as a novel therapeutic option for (mixed) TGCTs.
Collapse
Affiliation(s)
- Sina Jostes
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - Daniel Nettersheim
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - Martin Fellermeyer
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - Simon Schneider
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - François Hafezi
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | | | - Valerie Schumacher
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Matthias Geyer
- Institute of Innate Immunity, Department of Structural Immunology, University Medical School, Bonn, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Medical School, Bonn, Germany
| | - Hubert Schorle
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| |
Collapse
|
53
|
Yuniati L, van der Meer LT, Tijchon E, van Ingen Schenau D, van Emst L, Levers M, Palit SAL, Rodenbach C, Poelmans G, Hoogerbrugge PM, Shan J, Kilberg MS, Scheijen B, van Leeuwen FN. Tumor suppressor BTG1 promotes PRMT1-mediated ATF4 function in response to cellular stress. Oncotarget 2016; 7:3128-43. [PMID: 26657730 PMCID: PMC4823095 DOI: 10.18632/oncotarget.6519] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 11/19/2015] [Indexed: 11/25/2022] Open
Abstract
Cancer cells are frequently exposed to physiological stress conditions such as hypoxia and nutrient limitation. Escape from stress-induced apoptosis is one of the mechanisms used by malignant cells to survive unfavorable conditions. B-cell Translocation Gene 1 (BTG1) is a tumor suppressor that is frequently deleted in acute lymphoblastic leukemia and recurrently mutated in diffuse large B cell lymphoma. Moreover, low BTG1 expression levels have been linked to poor outcome in several solid tumors. How loss of BTG1 function contributes to tumor progression is not well understood. Here, using Btg1 knockout mice, we demonstrate that loss of Btg1 provides a survival advantage to primary mouse embryonic fibroblasts (MEFs) under stress conditions. This pro-survival effect involves regulation of Activating Transcription Factor 4 (ATF4), a key mediator of cellular stress responses. We show that BTG1 interacts with ATF4 and positively modulates its activity by recruiting the protein arginine methyl transferase PRMT1 to methylate ATF4 on arginine residue 239. We further extend these findings to B-cell progenitors, by showing that loss of Btg1 expression enhances stress adaptation of mouse bone marrow-derived B cell progenitors. In conclusion, we have identified the BTG1/PRMT1 complex as a new modifier of ATF4 mediated stress responses.
Collapse
Affiliation(s)
- Laurensia Yuniati
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurens T van der Meer
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Esther Tijchon
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dorette van Ingen Schenau
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Liesbeth van Emst
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marloes Levers
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sander A L Palit
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline Rodenbach
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert Poelmans
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Peter M Hoogerbrugge
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.,Prinses Maxima Center for Pediatric Oncology, De Bilt, The Netherlands
| | - Jixiu Shan
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Michael S Kilberg
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Blanca Scheijen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
54
|
Zheng HC, Li J, Shen DF, Yang XF, Zhao S, Wu YZ, Takano Y, Sun HZ, Su RJ, Luo JS, Gou WF. BTG1 expression correlates with pathogenesis, aggressive behaviors and prognosis of gastric cancer: a potential target for gene therapy. Oncotarget 2016; 6:19685-705. [PMID: 26050197 PMCID: PMC4637314 DOI: 10.18632/oncotarget.4081] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/23/2015] [Indexed: 02/06/2023] Open
Abstract
Here, we found that BTG1 overexpression inhibited proliferation, migration and invasion, induced G2/M arrest, differentiation, senescence and apoptosis in BGC-823 and MKN28 cells (p < 0.05). BTG1 transfectants showed a higher mRNA expression of Cyclin D1 and Bax, but a lower mRNA expression of cdc2, p21, mTOR and MMP-9 than the control and mock (p < 0.05). After treated with cisplatin, MG132, paclitaxel and SAHA, both BTG1 transfectants showed lower mRNA viability and higher apoptosis than the control in both time- and dose-dependent manners (p < 0.05) with the hypoexpression of chemoresistance-related genes (slug, CD147, GRP78, GRP94, FBXW7 TOP1, TOP2 and GST-π). BTG1 expression was restored after 5-aza-2′-deoxycytidine treatment in gastric cancer cells. BTG1 expression was statistically lower in gastric cancer than non-neoplastic mucosa and metastatic cancer in lymph node (p < 0.05). BTG1 expression was positively correlated with depth of invasion, lymphatic and venous invasion, lymph node metastasis, TNM staging and worse prognosis (p < 0.05). The diffuse-type carcinoma showed less BTG1 expression than intestinal- and mixed-type ones (p < 0.05). BTG1 overexpression suppressed tumor growth and lung metastasis of gastric cancer cells by inhibiting proliferation, enhancing autophagy and apoptosis in xenograft models. It was suggested that down-regulated BTG1 expression might promote gastric carcinogenesis partially due to its promoter methylation. BTG1 overexpression might reverse the aggressive phenotypes and be employed as a potential target for gene therapy of gastric cancer.
Collapse
Affiliation(s)
- Hua-chuan Zheng
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Jing Li
- Department of Gastroenterology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Dao-fu Shen
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Xue-feng Yang
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Shuang Zhao
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Ya-zhou Wu
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Yasuo Takano
- School of Health Science, Tokyo University of Technology, Ohta-ku, Tokyo, Japan
| | - Hong-zhi Sun
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Rong-jian Su
- Experimental Center, Liaoning Medical University, Jinzhou, China
| | - Jun-sheng Luo
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Wen-feng Gou
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| |
Collapse
|
55
|
Xiao F, Deng J, Guo Y, Niu Y, Yuan F, Yu J, Chen S, Guo F. BTG1 ameliorates liver steatosis by decreasing stearoyl-CoA desaturase 1 (SCD1) abundance and altering hepatic lipid metabolism. Sci Signal 2016; 9:ra50. [PMID: 27188441 DOI: 10.1126/scisignal.aad8581] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Liver steatosis, a condition in which lipid accumulates in liver cells, is a leading cause of many liver diseases. The livers of patients with hepatocellular carcinoma, a cancer characterized by liver steatosis, have decreased abundance of the transcription cofactor BTG1 (B cell translocation gene 1). We showed that the livers of db/db mice, which are a genetic model of obesity, had decreased BTG1 mRNA and protein abundance. BTG1 overexpression ameliorated liver steatosis in db/db mice, whereas knockdown of BTG1 induced liver steatosis in wild-type mice. Consistent with these changes, we found that BTG1 decreased triglyceride accumulation in cultured hepatocytes. BTG1 overexpression inhibited the expression of the gene encoding stearoyl-CoA desaturase 1 (SCD1), an enzyme involved in the synthesis of fatty acids, by suppressing the activity of activating transcription factor 4 (ATF4). Knockdown of SCD1 prevented liver steatosis in wild-type mice induced by knockdown of BTG1. Conversely, the ability of BTG1 overexpression to ameliorate liver steatosis in db/db mice was negated by ATF4 overexpression. Moreover, BTG1 transgenic mice were resistant to liver steatosis induced by a high-carbohydrate diet. BTG1 abundance was decreased by this diet through a pathway that involved mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase 1 (S6K1), and cAMP response element-binding protein (CREB). Together, our study identifies a role of BTG1 in regulating hepatic lipid metabolism and specifically in preventing ATF4 and SCD1 from inducing liver steatosis.
Collapse
Affiliation(s)
- Fei Xiao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiali Deng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yajie Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuguo Niu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Feixiang Yuan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junjie Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shanghai Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Feifan Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
56
|
Szcześniak KA, Ciecierska A, Ostaszewski P, Sadkowski T. Transcriptomic profile adaptations following exposure of equine satellite cells to nutriactive phytochemical gamma-oryzanol. GENES & NUTRITION 2016; 11:5. [PMID: 27482297 PMCID: PMC4959553 DOI: 10.1186/s12263-016-0523-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/08/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Adult skeletal muscle myogenesis depends on the activation of satellite cells that have the potential to differentiate into new fibers. Gamma-oryzanol (GO), a commercially available nutriactive phytochemical, has gained global interest on account of its muscle-building and regenerating effects. Here, we investigated GO for its potential influence on myogenesis, using equine satellite cell culture model, since the horse is a unique animal, bred and exercised for competitive sport. To our knowledge, this is the first report where the global gene expression in cultured equine satellite cells has been described. METHODS Equine satellite cells were isolated from semitendinosus muscle and cultured until the second day of differentiation. Differentiating cells were incubated with GO for the next 24 h. Subsequently, total RNA from GO-treated and control cells was isolated, amplified, labeled, and hybridized to two-color Horse Gene Expression Microarray slides. Quantitative PCR was used for the validation of microarray data. RESULTS Our results revealed 58 genes with changed expression in GO-treated vs. control cells. Analysis of expression changes suggests that various processes are reinforced by GO in differentiating equine satellite cells, including inhibition of myoblast differentiation, increased proliferation and differentiation, stress response, and increased myogenic lineage commitment. CONCLUSIONS The present study may confirm putative muscle-enhancing abilities of GO; however, the collective role of GO in skeletal myogenesis remains equivocal. The diversity of these changes is likely due to heterogenous growth rate of cells in primary culture. Genes identified in our study, modulated by the presence of GO, may become potential targets of future research investigating impact of this supplement in skeletal muscle on proteomic and biochemical level.
Collapse
Affiliation(s)
- K A Szcześniak
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - A Ciecierska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - P Ostaszewski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - T Sadkowski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
57
|
Lee HS, Kundu J, Kim RN, Shin YK. Transducer of ERBB2.1 (TOB1) as a Tumor Suppressor: A Mechanistic Perspective. Int J Mol Sci 2015; 16:29815-28. [PMID: 26694352 PMCID: PMC4691146 DOI: 10.3390/ijms161226203] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/22/2015] [Accepted: 12/08/2015] [Indexed: 01/06/2023] Open
Abstract
Transducer of ERBB2.1 (TOB1) is a tumor-suppressor protein, which functions as a negative regulator of the receptor tyrosine-kinase ERBB2. As most of the other tumor suppressor proteins, TOB1 is inactivated in many human cancers. Homozygous deletion of TOB1 in mice is reported to be responsible for cancer development in the lung, liver, and lymph node, whereas the ectopic overexpression of TOB1 shows anti-proliferation, and a decrease in the migration and invasion abilities on cancer cells. Biochemical studies revealed that the anti-proliferative activity of TOB1 involves mRNA deadenylation and is associated with the reduction of both cyclin D1 and cyclin-dependent kinase (CDK) expressions and the induction of CDK inhibitors. Moreover, TOB1 interacts with an oncogenic signaling mediator, β-catenin, and inhibits β-catenin-regulated gene transcription. TOB1 antagonizes the v-akt murine thymoma viral oncogene (AKT) signaling and induces cancer cell apoptosis by activating BCL2-associated X (BAX) protein and inhibiting the BCL-2 and BCL-XL expressions. The tumor-specific overexpression of TOB1 results in the activation of other tumor suppressor proteins, such as mothers against decapentaplegic homolog 4 (SMAD4) and phosphatase and tensin homolog-10 (PTEN), and blocks tumor progression. TOB1-overexpressing cancer cells have limited potential of growing as xenograft tumors in nude mice upon subcutaneous implantation. This review addresses the molecular basis of TOB1 tumor suppressor function with special emphasis on its regulation of intracellular signaling pathways.
Collapse
Affiliation(s)
- Hun Seok Lee
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Juthika Kundu
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Ryong Nam Kim
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
- Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul 08826, Korea.
| | - Young Kee Shin
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
- Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul 08826, Korea.
- The Center for Anti-cancer Companion Diagnostics, School of Biological Science, Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
58
|
Ceccarelli M, Micheli L, D'Andrea G, De Bardi M, Scheijen B, Ciotti M, Leonardi L, Luvisetto S, Tirone F. Altered cerebellum development and impaired motor coordination in mice lacking the Btg1 gene: Involvement of cyclin D1. Dev Biol 2015; 408:109-25. [DOI: 10.1016/j.ydbio.2015.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/03/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
|
59
|
ZHU RAN, LI WEI, XU YAN, WAN JIANMEI, ZHANG ZENGLI. Upregulation of BTG1 enhances the radiation sensitivity of human breast cancer in vitro and in vivo. Oncol Rep 2015; 34:3017-24. [DOI: 10.3892/or.2015.4311] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/04/2015] [Indexed: 11/06/2022] Open
|
60
|
Xiao F, Deng J, Yu J, Guo Y, Chen S, Guo F. A novel function of B‐cell translocation gene 1 (
BTG1
) in the regulation of hepatic insulin sensitivity in mice
via
c‐Jun. FASEB J 2015; 30:348-59. [DOI: 10.1096/fj.15-278689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/08/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Fei Xiao
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, the Graduate School of the Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Jiali Deng
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, the Graduate School of the Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Junjie Yu
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, the Graduate School of the Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Yajie Guo
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, the Graduate School of the Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Shanghai Chen
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, the Graduate School of the Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Feifan Guo
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, the Graduate School of the Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
61
|
Micheli L, Ceccarelli M, Farioli-Vecchioli S, Tirone F. Control of the Normal and Pathological Development of Neural Stem and Progenitor Cells by the PC3/Tis21/Btg2 and Btg1 Genes. J Cell Physiol 2015; 230:2881-90. [DOI: 10.1002/jcp.25038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Laura Micheli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| |
Collapse
|
62
|
Park BV, Pan F. Metabolic regulation of T cell differentiation and function. Mol Immunol 2015; 68:497-506. [PMID: 26277275 DOI: 10.1016/j.molimm.2015.07.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 06/27/2015] [Accepted: 07/21/2015] [Indexed: 12/24/2022]
Abstract
Upon encountering pathogens, T cells mount immune responses by proliferating, increasing cellular mass and differentiating. These cellular changes impose significant energetic challenges on T cells. It was believed that TCR and cytokine-mediated signaling are dominant dictators of T cell-mediated immune responses. Recently, it was recognized that T cells utilize metabolic transporters and metabolic sensors that allow them to rapidly respond to nutrient-limiting inflammatory environments. Metabolic sensors allow T cells to find a balance between energy consumption (anabolic metabolism) and production (catabolic metabolism) in order to mount effective immune responses. Also, metabolic regulators interact with cytokine-dependent transcriptional regulators, suggesting a more integrative and advanced model of T cell activation and differentiation. In this review, we will discuss recent discoveries regarding the roles of metabolic regulators in effector and memory T cell development and their interaction with canonical transcription factors.
Collapse
Affiliation(s)
- Benjamin V Park
- Immunology and Hematopoiesis Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Fan Pan
- Immunology and Hematopoiesis Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
63
|
Amin R, Marfak A, Pangault C, Oblet C, Chanut A, Tarte K, Denizot Y, Cogné M. The class-specific BCR tonic signal modulates lymphomagenesis in a c-myc deregulation transgenic model. Oncotarget 2015; 5:8995-9006. [PMID: 25229630 PMCID: PMC4253413 DOI: 10.18632/oncotarget.2297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Deregulation of c-myc by translocation onto immunoglobulin (Ig) loci can promote B cell malignant proliferations with phenotypes as diverse as acute lymphoid leukemia, Burkitt lymphoma, diffuse large B cell lymphoma, myeloma… The B cell receptor (BCR) normally providing tonic signals for cell survival and mitogenic responses to antigens, can also contribute to lymphomagenesis upon sustained ligand binding or activating mutations. BCR signaling varies among cell compartments and BCR classes. For unknown reasons, some malignancies associate with expression of either IgM or class-switched Ig. We explored whether an IgA BCR, with strong tonic signaling, would affect lymphomagenesis in c-myc IgH 3′RR transgenic mice prone to lymphoproliferations. Breeding c-myc transgenics in a background where IgM expression was replaced with IgA delayed lymphomagenesis. By comparison to single c-myc transgenics, lymphomas from double mutant animals were more differentiated and less aggressive, with an altered transcriptional program. Larger tumor cells more often expressed CD43 and CD138, which culminated in a plasma cell phenotype in 10% of cases. BCR class-specific signals thus appear to modulate lymphomagenesis and may partly explain the observed association of specific Ig classes with human B cell malignancies of differential phenotype, progression and prognosis.
Collapse
Affiliation(s)
- Rada Amin
- Centre National de la Recherche Scientifique, Limoges, France. Université de Limoges, Limoges, France. INSERM UMR U917, Rennes, France
| | | | | | - Christelle Oblet
- Centre National de la Recherche Scientifique, Limoges, France. Université de Limoges, Limoges, France
| | - Aurélie Chanut
- Centre National de la Recherche Scientifique, Limoges, France. Université de Limoges, Limoges, France
| | | | - Yves Denizot
- Centre National de la Recherche Scientifique, Limoges, France. Université de Limoges, Limoges, France
| | - Michel Cogné
- Centre National de la Recherche Scientifique, Limoges, France. Université de Limoges, Limoges, France
| |
Collapse
|
64
|
Liu C, Tao T, Xu B, Lu K, Zhang L, Jiang L, Chen S, Liu D, Zhang X, Cao N, Chen M. BTG1 potentiates apoptosis and suppresses proliferation in renal cell carcinoma by interacting with PRMT1. Oncol Lett 2015; 10:619-624. [PMID: 26622543 PMCID: PMC4513370 DOI: 10.3892/ol.2015.3293] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 02/10/2015] [Indexed: 12/11/2022] Open
Abstract
B-cell translocation gene 1 (BTG1) is a member of the BTG/transducer of Erb family. BTG1 regulates cell cycle progression, inhibits proliferation, promotes apoptosis and stimulates cellular differentiation in multiple cell types. However, the functions of BTG1 in renal cell carcinoma (RCC) remain unclear. Therefore, the present study investigated the role of BTG1 in RCC tissue samples and 786-O RCC cells. RCC tissues and cells exhibited significantly weaker BTG1 protein and mRNA expression compared with para-carcinoma control tissues (P<0.05). Upregulated BTG1 expression induced significant G0/G1 cell cycle arrest, apoptosis and inhibition of cell proliferation in 786-O cells (P<0.05). Furthermore, BTG1 interacted with protein arginine N-methyltransferase 1 (PRMT1), and blocking the action of PRMT1 in 786-O cells resulted in inhibition of BTG1 function. These findings indicate that BTG1 may inhibit cell growth and promote apoptosis by interacting with PRMT1 in RCC; the identification of this mechanism may aid in the production of novel therapies for RCC.
Collapse
Affiliation(s)
- Chunhui Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Tao Tao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Kai Lu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Lei Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Liang Jiang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Shuqiu Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Dachuang Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaowen Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Nihao Cao
- Department of Urology, Haimen City People's Hospital, Haimen, Jiangsu 226100, P.R. China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
65
|
Bruno A, Boisselier B, Labreche K, Marie Y, Polivka M, Jouvet A, Adam C, Figarella-Branger D, Miquel C, Eimer S, Houillier C, Soussain C, Mokhtari K, Daveau R, Hoang-Xuan K. Mutational analysis of primary central nervous system lymphoma. Oncotarget 2015; 5:5065-75. [PMID: 24970810 PMCID: PMC4148122 DOI: 10.18632/oncotarget.2080] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Little is known about the genomic basis of primary central nervous system lymphoma (PCNSL) tumorigenesis. To investigate the mutational profile of PCNSL, we analyzed nine paired tumor and germline DNA samples from PCNSL patients by high throughput exome sequencing. Eight genes of interest have been further investigated by focused resequencing in 28 additional PCNSL tumors to better estimate their incidence. Our study identified recurrent somatic mutations in 37 genes, some involved in key signaling pathways such as NFKB, B cell differentiation and cell cycle control. Focused resequencing in the larger cohort revealed high mutation rates for genes already described as mutated in PCNSL such as MYD88 (38%), CD79B (30%), PIM1 (22%) and TBL1XR1 (19%) and for genes not previously reported to be involved in PCNSL tumorigenesis such as ETV6 (16%), IRF4 (14%), IRF2BP2 (11%) and EBF1 (11%). Of note, only 3 somatically acquired SNVs were annotated in the COSMIC database. Our results demonstrate a high genetic heterogeneity of PCNSL and mutational pattern similarities with extracerebral diffuse large B cell lymphomas, particularly of the activated B-cell (ABC) subtype, suggesting shared underlying biological mechanisms. The present study provides new insights into the mutational profile of PCNSL and potential targets for therapeutic strategies.
Collapse
Affiliation(s)
- Aurélie Bruno
- Sorbonne Universités, UPMC Univ Paris 06, UM 75, ICM, F-75013, Paris, France. Institut National de la Santé et de la Recherche Médicale, U 1127, ICM, F-75013, Paris, France. Centre National de la Recherche Scientifique, UMR 7225, ICM, F-75013, Paris, France. ICM, F-75013, Paris, France
| | - Blandine Boisselier
- Sorbonne Universités, UPMC Univ Paris 06, UM 75, ICM, F-75013, Paris, France. Institut National de la Santé et de la Recherche Médicale, U 1127, ICM, F-75013, Paris, France. Centre National de la Recherche Scientifique, UMR 7225, ICM, F-75013, Paris, France. ICM, F-75013, Paris, France. Plateforme de Génotypage Séquençage, ICM, F-75013, Paris, France
| | - Karim Labreche
- Sorbonne Universités, UPMC Univ Paris 06, UM 75, ICM, F-75013, Paris, France. Institut National de la Santé et de la Recherche Médicale, U 1127, ICM, F-75013, Paris, France. Centre National de la Recherche Scientifique, UMR 7225, ICM, F-75013, Paris, France. ICM, F-75013, Paris, France
| | - Yannick Marie
- Plateforme de Génotypage Séquençage, ICM, F-75013, Paris, France. Onconeurothèque, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marc Polivka
- Centre Hospitalier Universitaire Lariboisière, Assistance Publique-Hôpitaux de Paris, Service d'Anatomopathologie, Paris, France
| | - Anne Jouvet
- Hospices Civils de Lyon, Hôpital Neurologique, Bron, France and Université Lyon 1, Institut National de la Santé et de la Recherche Médicale Unité 842, Lyon, France
| | - Clovis Adam
- Centre Hospitalier Universitaire Bicêtre, Assistance Publique-Hôpitaux de Paris, Service d'anatomopathologie, Bicêtre, France
| | - Dominique Figarella-Branger
- Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille, Institut National de la Santé et de la Recherche Médicale Unité 911, Centre de Recherches en Oncologie biologique et Onco-pharmacologie, Université de la Méditerranée and Tumorothèque de l'Assistance Publique-Hôpitaux de Marseille (AC 2013-1786), Marseille, France
| | - Catherine Miquel
- Centre hospitalier Sainte Anne, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sandrine Eimer
- Service de Pathologie, CRB Tumorothèque, Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | - Caroline Houillier
- Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Service de Neurologie 2-Mazarin, Paris, France
| | - Carole Soussain
- Hôpital René Huguenin, Institut Curie, Service d'Hématologie, Saint Cloud, France
| | - Karima Mokhtari
- Sorbonne Universités, UPMC Univ Paris 06, UM 75, ICM, F-75013, Paris, France. Institut National de la Santé et de la Recherche Médicale, U 1127, ICM, F-75013, Paris, France. Centre National de la Recherche Scientifique, UMR 7225, ICM, F-75013, Paris, France. ICM, F-75013, Paris, France. Onconeurothèque, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Romain Daveau
- Institut National de la Santé et de la Recherche Médicale Unité 830, Génétique et Biologie des Cancers, Institut Curie, Paris, France
| | - Khê Hoang-Xuan
- Sorbonne Universités, UPMC Univ Paris 06, UM 75, ICM, F-75013, Paris, France. Institut National de la Santé et de la Recherche Médicale, U 1127, ICM, F-75013, Paris, France. Centre National de la Recherche Scientifique, UMR 7225, ICM, F-75013, Paris, France. ICM, F-75013, Paris, France. Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Service de Neurologie 2-Mazarin, Paris, France
| |
Collapse
|
66
|
Diversity of clinical implication of B-cell translocation gene 1 expression by histopathologic and anatomic subtypes of gastric cancer. Dig Dis Sci 2015; 60:1256-64. [PMID: 25487193 DOI: 10.1007/s10620-014-3477-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/28/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Genetic signatures may differ by histopathologic and anatomic subtypes of gastric cancer (GC). B-cell translocation gene 1 (BTG1) was identified as one of genes downregulated in GC tissues from our microarray data. AIMS To evaluate the clinical implications of BTG1 expression in GC and the genetic diversity among GC subtypes. METHODS BTG1 mRNA expression was analyzed in GC cell lines and 233 pairs of surgical specimens. The mutational and methylation status of BTG1 in GC cell lines was analyzed, and immunohistochemistry was conducted to determine the distribution of BTG1. The pattern and prognostic significance of BTG1 expression were correlated with the three proposed GC subtypes. RESULTS BTG1 mRNA was downregulated in 82 % of GC cell lines and in 88 % of clinical GC tissues. Promoter hypermethylation events or sequence mutations were not detected in GC cell lines. The pattern of BTG1 expression as observed by immunohistochemistry was consistent with that of its mRNA. Downregulation of BTG1 mRNA in GCs was significantly associated with shorter disease-specific and recurrence-free survival. Multivariate analysis of disease-specific survival identified downregulation of BTG1 transcription as an independent prognostic factor. BTG1 mRNA expression was more strongly suppressed in proximal nondiffuse and diffuse GC compared with distal nondiffuse GC, and subgroup analysis revealed that BTG1 downregulation led to adverse prognosis, specifically in patients with proximal nondiffuse and diffuse GC. CONCLUSIONS Altered expression of BTG1 is a potential biomarker for carcinogenesis and progression of GC, particularly for proximal nondiffuse and diffuse GC.
Collapse
|
67
|
Transcriptional Response to Acute Thermal Exposure in Juvenile Chinook Salmon Determined by RNAseq. G3-GENES GENOMES GENETICS 2015; 5:1335-49. [PMID: 25911227 PMCID: PMC4502368 DOI: 10.1534/g3.115.017699] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thermal exposure is a serious and growing challenge facing fish species worldwide. Chinook salmon (Oncorhynchus tshawytscha) living in the southern portion of their native range are particularly likely to encounter warmer water due to a confluence of factors. River alterations have increased the likelihood that juveniles will be exposed to warm water temperatures during their freshwater life stage, which can negatively impact survival, growth, and development and pose a threat to dwindling salmon populations. To better understand how acute thermal exposure affects the biology of salmon, we performed a transcriptional analysis of gill tissue from Chinook salmon juveniles reared at 12° and exposed acutely to water temperatures ranging from ideal to potentially lethal (12° to 25°). Reverse-transcribed RNA libraries were sequenced on the Illumina HiSeq2000 platform and a de novo reference transcriptome was created. Differentially expressed transcripts were annotated using Blast2GO and relevant gene clusters were identified. In addition to a high degree of downregulation of a wide range of genes, we found upregulation of genes involved in protein folding/rescue, protein degradation, cell death, oxidative stress, metabolism, inflammation/immunity, transcription/translation, ion transport, cell cycle/growth, cell signaling, cellular trafficking, and structure/cytoskeleton. These results demonstrate the complex multi-modal cellular response to thermal stress in juvenile salmon.
Collapse
|
68
|
eIF3 targets cell-proliferation messenger RNAs for translational activation or repression. Nature 2015; 522:111-4. [PMID: 25849773 PMCID: PMC4603833 DOI: 10.1038/nature14267] [Citation(s) in RCA: 308] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/27/2015] [Indexed: 01/23/2023]
Abstract
Regulation of protein synthesis is fundamental for all aspects of eukaryotic biology by controlling development, homeostasis and stress responses. The 13-subunit, 800-kilodalton eukaryotic initiation factor 3 (eIF3) organizes initiation factor and ribosome interactions required for productive translation. However, current understanding of eIF3 function does not explain genetic evidence correlating eIF3 deregulation with tissue-specific cancers and developmental defects. Here we report the genome-wide discovery of human transcripts that interact with eIF3 using photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP). eIF3 binds to a highly specific program of messenger RNAs involved in cell growth control processes, including cell cycling, differentiation and apoptosis, via the mRNA 5' untranslated region. Surprisingly, functional analysis of the interaction between eIF3 and two mRNAs encoding the cell proliferation regulators c-JUN and BTG1 reveals that eIF3 uses different modes of RNA stem-loop binding to exert either translational activation or repression. Our findings illuminate a new role for eIF3 in governing a specialized repertoire of gene expression and suggest that binding of eIF3 to specific mRNAs could be targeted to control carcinogenesis.
Collapse
|
69
|
Atlantic salmon (Salmo salar) liver transcriptome response to diets containing Camelina sativa products. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 14:1-15. [PMID: 25681993 DOI: 10.1016/j.cbd.2015.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 01/13/2023]
Abstract
Due to increasing demand for fish oil (FO) and fish meal (FM) in aquafeeds, more sustainable alternatives such as plant-derived oils and proteins are needed. Camelina sativa products are viable feed ingredients given the high oil and crude protein content in the seed. Atlantic salmon were fed diets with complete or partial replacement of FO and/or FM with camelina oil (CO) and/or camelina meal (CM) in a 16-week trial [Control diet: FO; Test diets: 100% CO replacement of FO (100CO), or 100CO with solvent-extracted FM (100COSEFM), 10% CM (100CO10CM), or SEFM+10% CM (100COSEFM10CM)]. Diet composition, growth, and fatty acid analyses for this feeding trial were published previously. A 44K microarray experiment identified liver transcripts that responded to 100COSEFM10CM (associated with reduced growth) compared to controls, yielding 67 differentially expressed features (FDR<5%). Ten microarray-identified genes [cpt1, pcb, bar, igfbp-5b (2 paralogues), btg1, dnph1, lect-2, clra, klf9, and fadsd6a], and three additional genes involved in lipid metabolism [elovl2, elovl5 (2 paralogues), and fadsd5], were subjected to QPCR with liver templates from all 5 dietary treatments. Of the microarray-identified genes, only bar was not QPCR validated. Both igfbp-5b paralogues were significantly down-regulated, and fadsd6a was significantly up-regulated, in all 4 camelina-containing diet groups compared with controls. Multivariate statistics were used to correlate hepatic desaturase and elongase gene expression data with tissue fatty acid profiles, indicating the involvement of these genes in LC-PUFA biosynthesis. This nutrigenomic study provides molecular biomarkers for use in developing novel aquafeeds using camelina products.
Collapse
|
70
|
SUN GUOGUI, LIU QING, CHENG YUNJIE, HU WANNING. B cell translocation gene 1 reduces the biological outcome of kidney cancer through induction of cell proliferation, cell cycle arrest, cell apoptosis and cell metastasis. Int J Mol Med 2014; 35:777-83. [DOI: 10.3892/ijmm.2014.2058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/25/2014] [Indexed: 11/05/2022] Open
|
71
|
Kanda M, Sugimoto H, Nomoto S, Oya H, Hibino S, Shimizu D, Takami H, Hashimoto R, Okamura Y, Yamada S, Fujii T, Nakayama G, Koike M, Fujiwara M, Kodera Y. B‑cell translocation gene 1 serves as a novel prognostic indicator of hepatocellular carcinoma. Int J Oncol 2014; 46:641-8. [PMID: 25405901 DOI: 10.3892/ijo.2014.2762] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/30/2014] [Indexed: 12/29/2022] Open
Abstract
Although the B‑cell translocation gene 1 (BTG1) plays an important role in apoptosis and negatively regulates cell proliferation, BTG1 expression in hepatocellular carcinoma (HCC) has not been evaluated. In this study expression analysis of BTG1 was conducted to clarify the role of BTG1 in the initiation of HCC carcinogenesis and progression. BTG1 mRNA expression levels were determined for HCC cell lines and 151 surgical specimen pairs using quantitative real‑time reverse transcription polymerase chain reaction (RT‑qPCR) assay. The mutational and methylation status of HCC cell lines were analyzed via high resolution melting (HRM) analysis and direct sequencing analysis to elucidate the regulatory mechanisms of BTG1 expression. The expression and distribution of the BTG1 protein in liver tissues were evaluated using immunohistochemistry (IHC). Decreased expression of BTG1 mRNA was confirmed in the majority of HCC cell lines (89%) and clinical HCC tissues (85%) compared with non‑cancerous liver tissues. Mutations or promoter hypermethylation were not identified in HCC cell lines. BTG1 mRNA expression levels were not influenced by background liver status. The pattern of BTG1 protein expression was consistent with that of BTG1 mRNA. Downregulation of BTG1 mRNA in HCC was significantly associated with shorter disease‑specific and recurrence‑free survival rates. Multivariate analysis of disease‑specific survival rates identified BTG1 mRNA downregulation as an independent prognostic factor for HCC (hazard ratio 2.12, 95% confidence interval 1.12‑4.04, P=0.022). Our results indicate that altered BTG1 expression might affect hepatocarcinogenesis and may represent a novel biomarker for HCC carcinogenesis and progression.
Collapse
Affiliation(s)
- Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Hiroyuki Sugimoto
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Shuji Nomoto
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Hisaharu Oya
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Soki Hibino
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Dai Shimizu
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Hideki Takami
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Ryoji Hashimoto
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Yukiyasu Okamura
- Division of Hepato‑Biliary‑Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka 411‑8777, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Tsutomu Fujii
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Michitaka Fujiwara
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| |
Collapse
|
72
|
Zhang H, Tang J, Li C, Kong J, Wang J, Wu Y, Xu E, Lai M. MiR-22 regulates 5-FU sensitivity by inhibiting autophagy and promoting apoptosis in colorectal cancer cells. Cancer Lett 2014; 356:781-90. [PMID: 25449431 DOI: 10.1016/j.canlet.2014.10.029] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/26/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023]
Abstract
Autophagy has become one of the most important mechanisms of chemotherapy resistance by supporting the survival of tumor cells under metabolic and therapeutic stress. Here, we showed that miR-22 inhibited autophagy and promoted apoptosis to increase the sensitivity of colorectal cancer (CRC) cells to 5-fluorouracil (5-FU) treatment both in vitro and in vivo. B-cell translocation gene 1 (BTG1) was identified as a new target of miR-22, which could reverse the inhibition of autophagy induced by miR-22. Thus, miR-22 may function as an important switch between autophagy and apoptosis to regulate 5-FU sensitivity through post-transcriptional silencing of BTG1. Promisingly, miR-22 could be considered as both a predictor of 5-FU sensitivity for personalized treatment and a therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Honghe Zhang
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, China
| | - Jinlong Tang
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China; Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Li
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, China
| | - Jianlu Kong
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, China
| | - Jingyu Wang
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China; Department of Pathology, The First Hospital of Jiaxing, Jiaxing, China
| | - Yihua Wu
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Enping Xu
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, China
| | - Maode Lai
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
73
|
Amid A, Wan Chik WD, Jamal P, Hashim YZHY. Microarray and quantitative PCR analysis of gene expression profiles in response to treatment with tomato leaf extract in mcf-7 breast cancer cells. Asian Pac J Cancer Prev 2014; 13:6319-25. [PMID: 23464452 DOI: 10.7314/apjcp.2012.13.12.6319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We previously found cytotoxic effects of tomato leaf extract (TLE) on the MCF-7 breast cancer cell line. The aim of this study was to ascertain the molecular mechanisms associated with the usage of TLE as an anticancer agent by microarray analysis using mRNA from MCF-7 breast cancer cells after treatment with TLE for 1 hr and 48 hrs. Approximately 991 genes out of the 30,000 genes in the human genome were significantly (p<0.05) changed after the treatment. Within this gene set, 88 were significantly changed between the TLE treated cells and the untreated MCF-7 cells (control cells) with a cut-off fold change >2.00. In order to focus on genes that were involved in cancer cell growth, only twenty-nine genes were selected, either down-regulated or up-regulated after treatment with TLE. Microarray assay results were confirmed by analyzing 10 of the most up and down regulated genes related to cancer cells progression using real-time PCR. Treatment with TLE induced significant up-regulation in the expression of the CRYAB, PIM1, BTG1, CYR61, HIF1-α and CEBP-β genes after 1 hr and 48 hrs, whereas the TXNIP and THBS1 genes were up-regulated after 1 hr of treatment but down-regulated after 48 hrs. In addition both the HMG1L1 and HIST2H3D genes were down-regulated after 1 hr and 48 hrs of treatment. These results demonstrate the potent activity of TLE as an anticancer agent.
Collapse
Affiliation(s)
- Azura Amid
- Bioprocess and Molecular Engineering Research Unit (BPMERU), International Islamic University Malaysia, Kuala Lumpur, Malaysia.
| | | | | | | |
Collapse
|
74
|
Elran R, Raam M, Kraus R, Brekhman V, Sher N, Plaschkes I, Chalifa-Caspi V, Lotan T. Early and late response of Nematostella vectensis transcriptome to heavy metals. Mol Ecol 2014; 23:4722-36. [PMID: 25145541 DOI: 10.1111/mec.12891] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/22/2014] [Accepted: 08/13/2014] [Indexed: 12/28/2022]
Abstract
Environmental contamination from heavy metals poses a global concern for the marine environment, as heavy metals are passed up the food chain and persist in the environment long after the pollution source is contained. Cnidarians play an important role in shaping marine ecosystems, but environmental pollution profoundly affects their vitality. Among the cnidarians, the sea anemone Nematostella vectensis is an advantageous model for addressing questions in molecular ecology and toxicology as it tolerates extreme environments and its genome has been published. Here, we employed a transcriptome-wide RNA-Seq approach to analyse N. vectensis molecular defence mechanisms against four heavy metals: Hg, Cu, Cd and Zn. Altogether, more than 4800 transcripts showed significant changes in gene expression. Hg had the greatest impact on up-regulating transcripts, followed by Cu, Zn and Cd. We identified, for the first time in Cnidaria, co-up-regulation of immediate-early transcription factors such as Egr1, AP1 and NF-κB. Time-course analysis of these genes revealed their early expression as rapidly as one hour after exposure to heavy metals, suggesting that they may complement or substitute for the roles of the metal-mediating Mtf1 transcription factor. We further characterized the regulation of a large array of stress-response gene families, including Hsp, ABC, CYP members and phytochelatin synthase, that may regulate synthesis of the metal-binding phytochelatins instead of the metallothioneins that are absent from Cnidaria genome. This study provides mechanistic insight into heavy metal toxicity in N. vectensis and sheds light on ancestral stress adaptations.
Collapse
Affiliation(s)
- Ron Elran
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Expression of BTG1 in hepatocellular carcinoma and its correlation with cell cycles, cell apoptosis, and cell metastasis. Tumour Biol 2014; 35:11771-9. [PMID: 25173640 DOI: 10.1007/s13277-014-2298-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 06/30/2014] [Indexed: 01/22/2023] Open
Abstract
This study aimed to analyze the expression, clinical significance of B cell translocation gene 1 (BTG1) in hepatocellular carcinoma, and the biological effect in its cell line by BTG1 overexpression. Immunohistochemistry and Western blot were used to analyze BTG1 protein expression in 70 cases of hepatocellular cancer and 32 cases of normal tissues to study the relationship between BTG1 expression and clinical factors. Recombinant lentiviral vector was constructed to overexpress BTG1 and then infect hepatocellular cancer HepG2 cell line. The level of BTG1 protein expression was found to be significantly lower in hepatocellular cancer tissue than normal tissues (P < 0.05). Decreased expression of BTG1 was significantly correlated with tumor invasion, lymph node metastasis, clinic stage, and histological grade of patients with hepatocellular cancer (P < 0.05). Meanwhile, loss of BTG1 expression correlated significantly with poor overall survival time by Kaplan-Meier analysis (P < 0.05). The result of biological function has shown that HepG2 cell-transfected BTG1 had a lower survival fraction; higher percentage of the G0/G1 phases; higher cell apoptosis; significant decrease in migration and invasion; and lower Cyclin D1 (CND1), B cell lymphoma 2 (Bcl-2), and matrix metalloproteinases (MMP)-9 protein expression compared with HepG2 cell-untransfected BTG1 (P < 0.05). BTG1 expression decreased in hepatocellular cancer and correlated significantly with lymph node metastasis, clinic stage, histological grade, poor overall survival, proliferation, and metastasis in hepatocellular cancer cell by regulating CND1, Bcl-2, and MMP-9 protein expression, suggesting that BTG1 may play important roles as a negative regulator to hepatocellular cancer cell.
Collapse
|
76
|
Wu X, Ding N, Hu W, He J, Xu S, Pei H, Hua J, Zhou G, Wang J. Down-regulation of BTG1 by miR-454-3p enhances cellular radiosensitivity in renal carcinoma cells. Radiat Oncol 2014; 9:179. [PMID: 25115181 PMCID: PMC4252025 DOI: 10.1186/1748-717x-9-179] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 08/08/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND B cell translocation gene 1 (BTG1) has long been recognized as a tumor suppressor gene. Recent reports demonstrated that BTG1 plays an important role in progression of cell cycle and is involved in cellular response to stressors. However, the microRNAs mediated regulatory mechanism of BTG1 expression has not been reported so far. MicroRNAs can effectively influence tumor radiosensitivity by preventing cell cycle progression, resulting in enhancement of the cytotoxicity of radiotherapy efficacy. This study aimed to demonstrating the effects of microRNAs on the BTG1 expression and cellular radiosensitivity. METHODS The human renal carcinoma 786-O cells were treated with 5 Gy of X-rays. Expressions of BTG1 gene and miR-454-3p, which was predicted to target BTG1 by software algorithm, were analyzed by quantitative polymerase chain reaction. Protein expressions were assessed by Western blot. Luciferase assays were used to quantify the interaction between BTG1 3'-untranslated region (3'-UTR) and miR-454-3p. The radiosensitivity was quantified by the assay of cell viability, colony formation and caspase-3 activity. RESULTS The expression of the BTG1 gene in 786-O cells was significantly elevated after treatments with X-ray irradiation, DMSO, or serum starvation. The up-regulation of BTG1 after irradiation reduced cellular radiosensitivity as demonstrated by the enhanced cell viability and colony formation, as well as the repressed caspase-3 activity. In comparison, knock down of BTG1 by siRNA led to significantly enhanced cellular radiosensitivity. It was found that miR-454-3p can regulate the expression of BTG1 through a direct interaction with the 3'-UTR of BTG1 mRNA. Decreasing of its expression level correlates well with BTG1 up-regulation during X-ray irradiation. Particularly, we observed that over-expression of miR-454-3p by transfection inhibited the BTG1 expression and enhanced the radiosensitivity. In addition, cell cycle analysis showed that over-expression of miR-454-3p shifted the cell cycle arrest from G2/M phase to S phase. CONCLUSIONS Our results indicate that BTG1 is a direct target of miR-454-3p. Down-regulation of BTG1 by miR-454-3p renders tumor cells sensitive to radiation. These results may shed light on the potential application in tumor radiotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jufang Wang
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 509 Nanchang Road, Lanzhou 730000, China.
| |
Collapse
|
77
|
Lu YF, Sun GG, Liu Q, Yang CR, Cheng YJ. BTG1 expression in thyroid carcinoma: diagnostic indicator and prognostic marker. Int J Oncol 2014; 45:1574-82. [PMID: 25017022 DOI: 10.3892/ijo.2014.2543] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/21/2014] [Indexed: 11/05/2022] Open
Abstract
We determined the expression and function of B cell translocation gene 1 (BTG1) in thyroid carcinoma. Thyroid samples were obtained from cancer lesions (n=83) and adjacent normal tissue (n=35) in thyroid cancer patients immediately after endoscopic biopsy. BTG1 expression was determined by immunohistochemistry and western blotting. The effect of BTG1 overexpression was examined in vitro utilizing the human thyroid cancer cell line FTC-133, stably transfected with a recombinant lentivirus (LeBTG1 cells) and compared to empty vector transfected controls (LeEmpty). BTG1 overexpression was verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting. The expression of proteins involved in cell cycle regulation (cyclin D1), apoptosis (Bcl-2) and cell migration (MMP-9) in LeBTG1 cells was analyzed by western blotting. The effect of BTG1 overexpression on cell viability and proliferation was assessed by MTT assay in LeBTG1 and LeEmpty cells. Flow cytometric analyses were used to evaluate the effect of BTG1 expression on cell cycle distribution and apoptosis. The migration and invasion potential of LeBTG1 cells was examined by plating cells in Matrigel-coated chambers. BTG1 protein expression was significantly lower in thyroid cancer tissue biopsies compared to normal tissue as measured by immunohistochemistry (36.1 vs. 80.0% of tissues; P<0.05) and western blotting (0.251±0.021 vs. 0.651±0.065; P<0.05). Decreased expression of BTG1 was significantly correlated with thyroid cancer lymph node metastasis, clinical stage and pathological differentiation (P<0.05), as well as with reduced overall 10‑year survival rates compared to patients with higher expression levels (30.2 vs. 66.7%; P<0.05). In vitro analyses revealed that LeBTG1 cells had a reduced survival fraction compared to control LeEmpty cells, with higher rates of apoptosis (11.6±2.1 vs. 2.1±0.4%; P<0.05). The proportion of LeBTG1 cells in G0/G1 stage and S phase was also significantly different from LeEmpty cells (81.8±6.3 and 10.2±1.0%, vs. 62.4±4.9 and 25.5±2.6%, respectively; P<0.05), and the migration and invasion of LeBTG1 cells was significantly impaired with respect to LeEmpty cells (72.0±8.0 and 55.0±7.0 vs. 113.0±16.0 and 89.0±9.0, respectively; P<0.05). These effects were accompanied by decreased protein expression of cyclin D1, Bcl-2 and MMP-9 in LeBTG1 cells (0.234±0.018, 0.209±0.021, 0.155±0.017, respectively) compared to control LeEmpty cells (0.551±0.065, 0.452±0.043, 0.609±0.072, respectively; P<0.05). Reduced BTG1 expression is associated with increased disease severity, suggesting it is a negative regulator of thyroid cancer and can serve as a prognostic indicator.
Collapse
Affiliation(s)
- Y F Lu
- Department of Endocrinology, Tangshan Workers Hospital, Tangshan 063000, P.R. China
| | - G G Sun
- Department of Chemoradiotherapy, Tangshan People's Hospital, Tangshan 063000, P.R. China
| | - Q Liu
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, P.R. China
| | - C R Yang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, P.R. China
| | - Y J Cheng
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, P.R. China
| |
Collapse
|
78
|
Sun GG, Wang YD, Cheng YJ, Hu WN. The expression of BTG1 is downregulated in nasopharyngeal carcinoma and possibly associated with tumour metastasis. Mol Biol Rep 2014; 41:5979-88. [PMID: 24985971 DOI: 10.1007/s11033-014-3475-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/14/2014] [Indexed: 01/09/2023]
Abstract
To determine the expression and function of B cell translocation gene 1 (BTG1) in nasopharyngeal carcinoma. Nasopharyngeal samples were taken from cancer lesions (n = 75) and adjacent normal tissue (n = 33) in nasopharyngeal cancer patients immediately after endoscopic biopsy. BTG1 expression was determined by immunohistochemistry and Western blotting. The effect of BTG1 overexpression was examined in vitro utilizing a human nasopharyngeal cancer cell line CNE2 stably transfected with a recombinant lentivirus (LeBTG1 cells) and compared to empty vector-transfected controls (LeEmpty). BTG1 overexpression was verified by real-time reverse transcriptase polymerase chain reaction and Western blot. The expression of proteins involved in cell cycle regulation (cyclin D1), apoptosis (Bcl-2) and cell migration (MMP-9) in LeBTG1 cells were analyzed by Western blot. The effect of BTG1 overexpression on cell viability and proliferation was assessed by an MTT assay in LeBTG1 and LeEmpty cells. Flow cytometric analyses were used to evaluate the effect of BTG1 expression on cell cycle distribution and apoptosis. The migration and invasion potential of LeBTG1 cells was examined by plating cells in Matrigel-coated chambers. BTG1 protein expression was significantly lower in nasopharyngeal cancer tissue biopsies than normal tissue as measured by immunohistochemistry (36.0 vs. 81.8 % of tissues; P < 0.05) and Western blotting (0.221 ± 0.019 vs. 0.652 ± 0.055; P < 0.05). Decreased expression of BTG1 was significantly correlated with nasopharyngeal cancer tumor stage, lymph node metastasis, clinical stage and pathologic differentiation (P < 0.05), as well as with reduced overall five-year survival rates compared to patients with higher expression levels (31.2 vs. 70.2 %; P < 0.05). In vitro analyses revealed that LeBTG1 cells had a reduced survival fraction compared to control LeEmpty cells, with higher rates of apoptosis (9.3 ± 0.7 vs. 2.3 ± 0.3 %; P < 0.05). The proportion of LeBTG1 cells in G0/G1 stage and S phase was also significantly different from LeEmpty cells (82.6 ± 3.8 and 10.1 ± 1.0 %, vs. 62.2 ± 2.4 and 28.9 ± 2.0 %, respectively; Ps < 0.05), and the migration and invasion of LeBTG1 cells was significantly impaired with respect to LeEmpty cells (96.0 ± 13.0 and 91.0 ± 11.0 vs. 158.0 ± 17.0 and 142.0 ± 15.0, respectively; Ps < 0.05). These effects were accompanied by decreased protein expression of cyclin D1, Bcl-2 and MMP-9 in LeBTG1 cells (0.231 ± 0.021, 0.413 ± 0.046, 0.131 ± 0.011, respectively) compared to control LeEmpty cells (0.636 ± 0.067, 0.821 ± 0.083, 0.451 ± 0.041, respectively; Ps < 0.05). Reduced BTG1 expression is associated with increased disease severity, suggesting it is a negative regulator of nasopharyngeal cancer and can serve as a prognostic indicator.
Collapse
Affiliation(s)
- G G Sun
- Department of Chemoradiotherapy, Tangshan People's Hospital, NO. 65, Shengli Road, Lunan District, Tangshan, 063000, Hebei province, China,
| | | | | | | |
Collapse
|
79
|
Sun GG, Wang YD, Cheng YJ, Hu WN. BTG1 underexpression is an independent prognostic marker in esophageal squamous cell carcinoma. Tumour Biol 2014; 35:9707-16. [PMID: 24969561 DOI: 10.1007/s13277-014-2245-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 06/16/2014] [Indexed: 01/05/2023] Open
Abstract
To determine the expression and function of B cell translocation gene 1 (BTG1) in esophageal carcinoma, esophageal samples were taken from cancer lesions (n = 74) and adjacent normal tissue (n = 34) in esophageal cancer patients immediately after endoscopic biopsy. BTG1 expression was determined by immunohistochemistry and Western blotting. The effect of BTG1 overexpression was examined in vitro utilizing a human esophageal cancer cell line ECA-109 stably transfected with a recombinant lentivirus (LeBTG1 cells) and compared to empty vector-transfected controls (LeEmpty). BTG1 overexpression was verified by real-time reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot. The expression of proteins involved in cell cycle regulation (cyclin D1) and apoptosis (Bcl-2) and cell migration (MMP-9) in LeBTG1 cells was analyzed by Western blot. The effect of BTG1 overexpression on cell viability and proliferation was assessed by an MTT assay in LeBTG1 and LeEmpty cells. Flow cytometric analyses were used to evaluate the effect of BTG1 expression on cell cycle distribution and apoptosis. The migration and invasion potential of LeBTG1 cells was examined by plating cells in Matrigel-coated chambers. The level of BTG1 protein expression was found to be significantly lower in esophageal cancer tissue than normal tissues (P < 0.05). Decreased expression of BTG1 was significantly correlated with lymph node metastasis, clinical stage, and histological grade of patients with esophageal cancer (P < 0.05). Meanwhile, loss of BTG1 expression correlated significantly with poor overall survival time by Kaplan-Meier analysis (P < 0.05). The result of biological function shown that Eca-109 cell-transfected BTG1 had a lower survival fraction, higher percentage of the G0/G1 phases, higher cell apoptosis, significant decrease in migration and invasion, and lower cylin D1, Bcl-2, and MMP-9 protein expression compared with Eca-109 cell-untransfected BTG1 (P < 0.05). Reduced BTG1 expression is associated with increased disease severity, suggesting it is a negative regulator of esophageal cancer and can serve as a prognostic indicator.
Collapse
Affiliation(s)
- G G Sun
- Department of Chemoradiotherapy, Tangshan People's Hospital, NO. 65, Shengli road, Lunan district, Tangshan, 063000, Hebei, China,
| | | | | | | |
Collapse
|
80
|
B-cell translocation 1 gene inhibits cellular metastasis-associated behavior in breast cancer. Mol Med Rep 2014; 9:2374-80. [DOI: 10.3892/mmr.2014.2118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 03/06/2014] [Indexed: 11/05/2022] Open
|
81
|
The genomic landscape of Waldenström macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood 2014; 123:1637-46. [DOI: 10.1182/blood-2013-09-525808] [Citation(s) in RCA: 322] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Key Points
Highly recurring mutations are present in WM, including MYD88 L265P, warts, hypogammaglobulinemia, infection, and myelokathexis-syndrome–like mutations in CXCR4, and ARID1A. Small, previously undetected CNAs affecting B-cell regulatory genes are highly prevalent in WM.
Collapse
|
82
|
Al-Maawali A, Marshall CR, Scherer SW, Dupuis L, Mendoza-Londono R, Stavropoulos DJ. Clinical characteristics in patients with interstitial deletions of chromosome region 12q21-q22 and identification of a critical region associated with keratosis pilaris. Am J Med Genet A 2013; 164A:796-800. [PMID: 24375972 DOI: 10.1002/ajmg.a.36356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 10/07/2013] [Indexed: 11/08/2022]
Abstract
We report on a male patient with a submicroscopic 1.21 Mb de novo deletion at 12q21.33-q22 with global developmental delay, characteristic facial features, and keratosis pilaris. Thus far, five other cases with a 12q de novo deletion including this segment have been reported; our case represents the smallest de novo deletion within this chromosome region. High resolution SNP microarray analysis showed a deletion of RefSeq genes BTG1 and LOC256021, and partial deletion of DCN. We propose that BTG1 is a critical gene for the development of the distinctive keratosis pilaris observed in patients with interstitial deletion of 12q21-q22, and suggest candidate genes that may contribute to dysmorphic features and global developmental delay.
Collapse
Affiliation(s)
- Almundher Al-Maawali
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
83
|
Sheng SH, Zhao CM, Sun GG. BTG1 expression correlates with the pathogenesis and progression of breast carcinomas. Tumour Biol 2013; 35:3317-26. [PMID: 24272202 DOI: 10.1007/s13277-013-1437-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/18/2013] [Indexed: 12/17/2022] Open
Abstract
This study aimed to analyze the expression, clinical significance of B cell translocation gene 1 (BTG1) in breast carcinoma and the biological effect in its cell line by BTG1 overexpression. Immunohistochemistry and western blot were used to analyze BTG1 protein expression in 72 cases of breast cancer and 36 cases of normal tissues to study the relationship between BTG1 expression and clinical factors. Recombinant lentiviral vector was constructed to over-express EMP-1 and then infect breast cancer MCF-7 cell line. Quantitative real-time RT-PCR (qRT-PCR) and western blot were used to detect the mRNA level and protein of BTG1. MTT assay, cell apoptosis, cell cycles, migration and invasion assays were also conducted as to the influence of the upregulated expression of BTG1 that might be found on MCF-7 cells biological effect. The level of BTG1 protein expression was found to be significantly lower in breast cancer tissue than normal tissues (P < 0.05). Decreased expression of BTG1 was significantly correlated with tumor invasion, lymph node metastasis, clinic stage and histological grade of patients with breast cancer (P < 0.05). Meanwhile, loss of BTG1 expression correlated significantly with poor overall survival time by Kaplan-Meier analysis (P < 0.05). The result of biological function shown that MCF-7 cell transfected BTG1 had a lower survival fraction, higher percentage of the G0/G1 phases, higher cell apoptosis, significant decrease in migration and invasion, and lower CyclinD1, Bcl-2, and MMP-9 protein expression compared with MCF-7 cell untransfected BTG1 (P < 0.05). BTG1 expression decreased in breast cancer and correlated significantly lymph node metastasis, clinic stage, histological grade, poor overall survival, proliferation, and metastasis in breast cancer cell by regulating CyclinD1, Bcl-2, and MMP-9 protein expression, suggesting that BTG1 may play important roles as a negative regulator to breast cancer cell.
Collapse
Affiliation(s)
- S H Sheng
- Department of Breast Surgery, Tangshan Workers Hospital, Tangshan, 063000, China
| | | | | |
Collapse
|
84
|
The expression of BTG1 is downregulated in NSCLC and possibly associated with tumor metastasis. Tumour Biol 2013; 35:2949-57. [PMID: 24264312 DOI: 10.1007/s13277-013-1379-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 10/30/2013] [Indexed: 01/05/2023] Open
Abstract
This study aimed to analyze the expression, clinical significance of B cell translocation gene 1 (BTG1) in nonsmall cell lung cancer (NSCLC) and the biological effect in its cell line by BTG1 overexpression. Immunohistochemistry and western blot were used to analyze BTG1 protein expression in 82 cases of NSCLC and 38 cases of normal tissues to study the relationship between BTG1 expression and clinical factors. Recombinant lentiviral vector was constructed to overexpress EMP-1 and then infect NSCLC H1299 cell line. Quantitative real-time RT-PCR and western blot were used to detect the mRNA level and protein of BTG1. 3-[4,5-dimethylthiazol -2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, cell apoptosis, cell cycles, and migration and invasion assays were also conducted as to the influence of the upregulated expression of BTG1 that might be found on H1299 cells biological effect. The level of BTG1 protein expression was found to be significantly lower in NSCLC tissue than normal tissues (P < 0.05). Decreased expression of BTG1 was significantly correlated with lymph node metastasis, clinic stage, and histological grade of patients with NSCLC (P < 0.05). Meanwhile, loss of BTG1 expression correlated significantly with poor overall survival time by Kaplan-Meier analysis (P < 0.05). The result of biological function show that H1299 cell transfected BTG1 had a lower survival fraction; higher percentage of the G0/G1 phases; higher cell apoptosis; significant decrease in migration and invasion; and lower CyclinD1, Bcl-2, and MMP-9 protein expression compared with H1299 cell untransfected BTG1 (P < 0.05). BTG1 expression decreased in NSCLC and correlated significantly with lymph node metastasis; clinical stage; histological grade; poor overall survival; cell proliferation; cell cycles; cell apoptosis; and migration and invasion in NSCLC cell by regulating CyclinD1, Bcl-2, and MMP-9 protein expression, suggesting that BTG1 may play important roles as a negative regulator to NSCLC cell.
Collapse
|
85
|
Zhao Y, Gou WF, Chen S, Takano Y, Xiu YL, Zheng HC. BTG1 expression correlates with the pathogenesis and progression of ovarian carcinomas. Int J Mol Sci 2013; 14:19670-80. [PMID: 24084718 PMCID: PMC3821579 DOI: 10.3390/ijms141019670] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 12/22/2022] Open
Abstract
BTG (B-cell translocation gene) can inhibit cell proliferation, metastasis, and angiogenesis and regulate cell cycle progression and differentiation in a variety of cell types. We aimed to clarify the role of BTG1 in ovarian carcinogenesis and progression. A BTG1-expressing plasmid was transfected into ovarian carcinoma cells and their phenotypes and related proteins were examined. BTG1 mRNA expression was detected in ovarian normal tissue (n = 17), ovarian benign tumors (n = 12), and ovarian carcinoma (n = 64) using real-time RT-PCR. Ectopic BTG1 expression resulted in lower growth rate, high cisplatin sensitivity, G1 arrest, apoptosis, and decreased migration and invasion. Phosphoinositide 3-kinase, protein kinase B, Bcl-xL, survivin, vascular endothelial growth factor, and matrix metalloproteinase-2 mRNA and protein expression was reduced in transfectants as compared to control cells. There was higher expression of BTG1 mRNA in normal tissue than in carcinoma tissue (p = 0.001) and in benign tumors than in carcinoma tissue (p = 0.027). BTG1 mRNA expression in International Federation of Gynecology and Obstetrics (FIGO) stage I/II ovarian carcinomas was higher than that in FIGO stage III/IV ovarian carcinomas (p = 0.038). Altered BTG1 expression might play a role in the pathogenesis and progression of ovarian carcinoma by modulating proliferation, migration, invasion, the cell cycle, and apoptosis.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China; E-Mails: (Y.Z.); (S.C.); (Y.-L.X.)
| | - Wen-Feng Gou
- Department of Biochemistry and Molecular Biology, Institute of Pathology and Pathophysiology, College of Basic Medicine, China Medical University, Shenyang 110001, China; E-Mail:
| | - Shuo Chen
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China; E-Mails: (Y.Z.); (S.C.); (Y.-L.X.)
| | - Yasuo Takano
- Clinical Cancer Institute, Kanagawa Cancer Center, Yokohama 241-0815, Japan; E-Mail:
| | - Yin-Ling Xiu
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China; E-Mails: (Y.Z.); (S.C.); (Y.-L.X.)
| | - Hua-Chuan Zheng
- Department of Biochemistry and Molecular Biology, Institute of Pathology and Pathophysiology, College of Basic Medicine, China Medical University, Shenyang 110001, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-187-0406-7718
| |
Collapse
|
86
|
Zhu R, Zou ST, Wan JM, Li W, Li XL, Zhu W. BTG1 inhibits breast cancer cell growth through induction of cell cycle arrest and apoptosis. Oncol Rep 2013; 30:2137-44. [PMID: 23982470 DOI: 10.3892/or.2013.2697] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/31/2013] [Indexed: 11/06/2022] Open
Abstract
BTG1, which belongs to the BTG/Tob family, regulates cell cycle progression in a variety of cell types and appears to play roles in inhibiting proliferation, promoting apoptosis and stimulating cellular differentiation in multiple cell types. However, it remains unclear whether BTG1 is a breast cancer suppressor gene, and the role of BTG1 in breast cancer cell growth has not yet been determined. In the present study, we observed that BTG1 was weakly expressed in human breast tumors and in breast cancer cells (MCF-7 and MDA-MB-231). In addition, we investigated the potential effects of BTG1 on breast cancer cell proliferation, cell cycle distribution and apoptosis after stable transfection with the BTG1 expression vector. We found that overexpression of BTG1 inhibited cell proliferation, induced G0/G1 cell cycle arrest and promoted apoptosis. Further investigation indicated that overexpression of BTG1 was involved in the inhibition of the expression of cell cycle-related proteins, cyclin B1 and cyclin D1, and pro-apoptotic factors, Bax and caspase-3, and was also involved in the promotion of anti-apoptotic factor Bcl-2. In vivo, animal experiments showed that tumors overexpressing BTG1 displayed a slower growth rate than the control xenografts. TUNEL end staining assay revealed that BTG1 induced tumor necrosis and apoptosis. Taken together, our data revealed that, in breast cancer cells, BTG1 inhibits cell growth through induction of cell cycle arrest and apoptosis. These results indicate that BTG1 may be used as a novel therapeutic target for human breast cancer treatment.
Collapse
Affiliation(s)
- Ran Zhu
- School of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | | | | | | | | | | |
Collapse
|
87
|
Radhakrishnan P, Grandgenett PM, Mohr AM, Bunt SK, Yu F, Chowdhury S, Hollingsworth MA. Expression of core 3 synthase in human pancreatic cancer cells suppresses tumor growth and metastasis. Int J Cancer 2013; 133:2824-33. [PMID: 23754791 DOI: 10.1002/ijc.28322] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/06/2013] [Indexed: 01/19/2023]
Abstract
Core 3-derived glycans, a major type of O-glycan expressed by normal epithelial cells of the gastrointestinal tract, are downregulated during malignancy because of loss of expression of functional β3-N-acetylglucosaminyltransferase-6 (core 3 synthase). We investigated the expression of core 3 synthase in normal pancreas and pancreatic cancer and evaluated the biological effects of re-expressing core 3 synthase in pancreatic cancer cells that had lost expression. We determined that pancreatic tumors and tumor cell lines have lost expression of core 3 synthase. Therefore, we re-expressed core 3 synthase in human pancreatic cancer cells (Capan-2 and FG) to investigate the contribution of core 3 glycans to malignant progression. Pancreatic cancer cells expressing core 3 synthase showed reduced in vitro cell proliferation, migration and invasion compared to vector control cells. Expression of core 3 O-glycans induced altered expression of β1 integrin, decreased activation of focal adhesion kinase, led to the downregulation of expression of several genes including REG1α and FGFR3 and altered lamellipodia formation. The addition of a GlcNAc residue by core 3 synthase leads to the extension of the tumor-associated Tn structure on MUC1. Orthotopic injection of FG cells expressing core 3 synthase into the pancreas of nude mice produced significantly smaller tumors and decreased metastasis to the surrounding tissues compared to vector control FG cells. These findings indicate that expression of core 3-derived O-glycans in pancreatic cancer cells suppresses tumor growth and metastasis through modulation of glycosylation of mucins and other cell surface and extracellular matrix proteins.
Collapse
Affiliation(s)
- Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | | | | | | | | | | | | |
Collapse
|
88
|
Ye C, Zhang X, Wan J, Chang L, Hu W, Bing Z, Zhang S, Li J, He J, Wang J, Zhou G. Radiation-induced cellular senescence results from a slippage of long-term G2 arrested cells into G1 phase. Cell Cycle 2013; 12:1424-32. [PMID: 23574719 DOI: 10.4161/cc.24528] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diploid cells undergoing senescence and mitotic slippage have been reported in the literature. However, the mechanisms triggering senescence in long-term G2-arrested cells are currently unclear. Previously, we reported that the cell cycle of the human uveal melanoma cell line, 92-1, is suspended for up to 6 d upon exposure to 10 Gy ionizing radiation (IR), followed by senescence. In the current study, we initially distinguished senescence in long-term blocked 92-1 cells from mitotic slippage by confirming the blockage of cells in the G2 phase. We subsequently showed that the genes essential for G2-M transition are prematurely downregulated at both the transcriptional and translational levels. Furthermore, levels of the G1-specific markers, Cyclin D1 and Caveolin-1, were distinctly increased, while S/G2-specific markers, Cyclin B1 and Aurora A, were significantly downregulated. These findings collectively imply that long-term G2-arrested cells undergo senescence via G2 slippage. To our knowledge, this is the first study to report that the cellular process of G2 slippage is the mechanism responsible for senescence of cells under long-term G2 arrest.
Collapse
Affiliation(s)
- Caiyong Ye
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modem Physics, Chinese Academy of Sciences, Lanzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Lin S, Zhu Q, Xu Y, Liu H, Zhang J, Xu J, Wang H, Sang Q, Xing Q, Fan J. The role of the TOB1 gene in growth suppression of hepatocellular carcinoma. Oncol Lett 2012; 4:981-987. [PMID: 23162636 DOI: 10.3892/ol.2012.864] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/25/2012] [Indexed: 12/24/2022] Open
Abstract
The TOB1 gene, mapped on 17q21, is a member of the BTG/Tob family. In breast cancer it has been identified as a candidate tumor suppressor gene. However, whether TOB1 is a bona fide tumor suppressor and downregulated in hepatocellular carcinoma (HCC) remains unclear. In addition, whether its expression is regulated through methylation requires investigation. In the present study, we therefore analyzed the expression of TOB1 in HCC and its methylation levels in human HCC and breast cancer. No significant difference in the expression levels of TOB1 was observed between tumor tissues and adjacent normal tissues in HCC. Quantitative methylation analysis by MassArray revealed no significant differences at single CpG sites or in the global promoter region, and all these CpG sites shared a similar methylation pattern in HCC and breast cancer. Moreover, 5-aza-2'-deoxycytidine treatment of three tumor cell lines did not cause elevation of TOB1 mRNA in HepG2 cell lines. Based on these data, we speculate that TOB1 may be a candidate non-tumor suppressor gene in HCC. Furthermore, the clinical outcome was not correlated with TOB1 expression or expression rate. In addition, TOB1 expression or expression rate was not correlated with the overall survival (OS) rates or cumulative recurrence rates. Taken together, we suggest that TOB1 does not act as a tumor suppressor in HCC.
Collapse
Affiliation(s)
- Sheyu Lin
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai 200032; ; School of Life Sciences, Nantong University, Nantong 226019, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
BTG1 deletions do not predict outcome in Down syndrome acute lymphoblastic leukemia. Leukemia 2012; 27:251-2. [DOI: 10.1038/leu.2012.199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
91
|
Kundu J, Wahab SMR, Kundu JK, Choi YL, Erkin OC, Lee HS, Park SG, Shin YK. Tob1 induces apoptosis and inhibits proliferation, migration and invasion of gastric cancer cells by activating Smad4 and inhibiting β‑catenin signaling. Int J Oncol 2012; 41:839-48. [PMID: 22710759 PMCID: PMC3582759 DOI: 10.3892/ijo.2012.1517] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/08/2012] [Indexed: 01/24/2023] Open
Abstract
Transducer of ErbB-2.1 (Tob1), a tumor suppressor protein, is inactivated in a variety of cancers including stomach cancer. However, the role of Tob1 in gastric carcinogenesis remains elusive. The present study aimed to investigate whether Tob1 could inhibit gastric cancer progression in vitro, and to elucidate its underlying molecular mechanisms. We found differential expression of Tob1 in human gastric cancer (MKN28, AGS and MKN1) cells. The overexpression of Tob1 induced apoptosis in MKN28 and AGS cells, which was associated with sub-G1 arrest, activation of caspase-3, induction of Bax, inhibition of Bcl-2 and cleavage of poly (ADP-ribose) polymerase (PARP). In addition, Tob1 inhibited proliferation, migration and invasion, which were reversed in MKN1 and AGS cells transfected with Tob1 siRNA. Overexpression of Tob1 in MKN28 and AGS cells induced the expression of Smad4, leading to the increased expression and the promoter activity of p15, which was diminished by silencing of Tob1 using specific siRNA. Tob1 decreased the phosphorylation of Akt and glycogen synthase kinase-3β (GSK3β) in MKN28 and AGS cells, resulting in the reduced protein expression and the transcriptional activity of β‑catenin, which in turn decreased the expression of cyclin D1, cyclin-dependent kinase-4 (CDK4), urokinase plasminogen activator receptor (uPAR) and peroxisome proliferator and activator receptor-δ (PPARδ). Conversely, silencing of Tob1 induced the phosphorylation of Akt and GSK-3β, and increased the expression of β‑catenin and its target genes. Collectively, our study demonstrates that the overexpression of Tob1 inhibits gastric cancer progression by activating Smad4- and inhibiting β‑catenin-mediated signaling pathways.
Collapse
Affiliation(s)
- Juthika Kundu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Foxa1 and Foxa2 are essential for sexual dimorphism in liver cancer. Cell 2012; 148:72-83. [PMID: 22265403 DOI: 10.1016/j.cell.2011.11.026] [Citation(s) in RCA: 310] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 08/26/2011] [Accepted: 11/07/2011] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is sexually dimorphic in both rodents and humans, with significantly higher incidence in males, an effect that is dependent on sex hormones. The molecular mechanisms by which estrogens prevent and androgens promote liver cancer remain unclear. Here, we discover that sexually dimorphic HCC is completely reversed in Foxa1- and Foxa2-deficient mice after diethylnitrosamine-induced hepatocarcinogenesis. Coregulation of target genes by Foxa1/a2 and either the estrogen receptor (ERα) or the androgen receptor (AR) was increased during hepatocarcinogenesis in normal female or male mice, respectively, but was lost in Foxa1/2-deficient mice. Thus, both estrogen-dependent resistance to and androgen-mediated facilitation of HCC depend on Foxa1/2. Strikingly, single nucleotide polymorphisms at FOXA2 binding sites reduce binding of both FOXA2 and ERα to their targets in human liver and correlate with HCC development in women. Thus, Foxa factors and their targets are central for the sexual dimorphism of HCC.
Collapse
|
93
|
Fu YJ, Huang FG, Yuan T, Gu JR, Luo GQ, Xu H. Molecular cloning, characterization and expression analysis of B cell translocation gene 1 in grass carp Ctenopharyngodon idella. JOURNAL OF FISH BIOLOGY 2012; 80:669-678. [PMID: 22380560 DOI: 10.1111/j.1095-8649.2011.03200.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
An expressed sequence tag (EST) of B cell translocation gene (BTG) 1 (gcbtg1) was obtained from a grass carp Ctenopharyngodon idellus intestinal complementary (c)DNA library and the full-length cDNA sequence was acquired by rapid amplification of cDNA ends (RACE) technology. The predicted Gcbtg1 protein contains the box A and box B motifs which characterized the BTG and transducer of ERBB2 (TOB) family. Multiple alignment analysis reveals that Gcbtg1 shares an overall identity of 65-94% with Gcbtg1s of other vertebrates. Real-time quantitative PCR analysis reveals that the highest expression level of gcbtg1 was detected in liver and the lowest in muscle. Western blotting analysis indicates that the immunological cross-reactivity occurs between C. idella and human Homo sapiens BTG1 protein. A 1008 bp 5'-flanking region sequence was cloned and analysed.
Collapse
Affiliation(s)
- Y J Fu
- School of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | | | | | | | | | | |
Collapse
|
94
|
Circulating microRNAs involved in multiple sclerosis. Mol Biol Rep 2012; 39:6219-25. [PMID: 22231906 DOI: 10.1007/s11033-011-1441-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 12/26/2011] [Indexed: 12/18/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated, demyelinating and neurodegenerative disease of the central nervous system. After traumatic brain injury, it is the leading cause of neurology disability in young adults. Considerable advances have been made in identifying genes involved in MS but the genetic and phenotypic complexity associated with this disease significantly hinders any progress. A novel class of small RNA molecules, microRNAs (miRNAs) has acquired much attention because they regulate the expression of up to 30% of protein-coding genes and may play a pivotal role in the development of many, if not all, complex diseases. Seven published studies investigated miRNAs from peripheral blood mononuclear cells, CD4+, CD8+ T cell, B lymphocytes, peripheral blood leukocytes, whole blood and brain astrocytes with MS risk. The absence of MS studies investigating plasma miRNA prompted the current investigation of identifying a circulating miRNA signature in MS. We conducted a microarray analysis of over 900 known miRNA transcripts from plasma samples collected from four MS individuals and four sex-aged and ethnicity matched healthy controls. We identified six plasma miRNA (miR-614, miR-572, miR-648, miR-1826, miR-422a and miR-22) that were significantly up-regulated and one plasma miRNA (miR-1979) that was significantly down-regulated in MS individuals. Both miR-422a and miR-22 have previously been implicated in MS. The present study is the first to show a circulating miRNA signature involved in MS that could serve as a potential prognostic and diagnostic biomarker for MS.
Collapse
|
95
|
Lundin C, Hjorth L, Behrendtz M, Nordgren A, Palmqvist L, Andersen MK, Biloglav A, Forestier E, Paulsson K, Johansson B. High frequency of BTG1 deletions in acute lymphoblastic leukemia in children with down syndrome. Genes Chromosomes Cancer 2011; 51:196-206. [PMID: 22072402 DOI: 10.1002/gcc.20944] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/28/2011] [Indexed: 02/02/2023] Open
Abstract
Previous cytogenetic studies of myeloid and acute lymphoblastic leukemias in children with Down syndrome (ML-DS and DS-ALL) have revealed significant differences in abnormality patterns between such cases and acute leukemias in general. Also, certain molecular genetic aberrations characterize DS-related leukemias, such as GATA1 mutations in ML-DS and deregulation of the CRLF2 gene in DS-ALL. Whether microdeletions/microduplications also vary between DS and non-DS cases is presently unclear. To address this issue, we performed single nucleotide polymorphism array analyses of eight pediatric ML-DS and 17 B-cell precursor DS-ALL. In the ML-DS cases, a total of 29 imbalances (20 gains and nine losses) and two partial uniparental isodisomies (pUPDs) were detected. None of the 11 small (defined as <10 Mb) imbalances were recurrent, nor were the pUPDs, whereas of the 18 large aberrations, three were recurrent-dup(1q), +8 and +21. In contrast, several frequent changes were identified in the DS-ALL cases, which harbored 82 imbalances (30 gains and 52 losses) and four pUPDs. Of the 40 large changes, 28 were gains and 12 losses, with +X, dup(Xq), dup(1q), del(7p), dup(8q), del(9p), dup(9p), del(12p), dup(17q), and +21 being recurrent. Of the 40 microdeletions identified, several targeted specific genes, with the following being repeatedly deleted: BTG1 and CDKN2A/B (29% of cases), ETV6, IKZF1, PAX5 and SERP2 (18%), and BTLA, INPP4B, P2RY8, and RB1 (12%). Loss of the SERP2 and INPP4B genes, encoding the stress-associated endoplasmic reticulum protein family member 2 and the inositol polyphosphate 4-phosphatase-II, respectively, has previously never been implicated in leukemia. Although deletions of the other genes have been associated with ALL, the high frequency of BTG1 loss is a novel finding. Such deletions may characterize a clinical subgroup of DS-ALL, comprising mainly boys with a high median age. In conclusion, ML-DS and DS-ALL are genetically distinct, with mainly gains in ML-DS and deletions in DS-ALL. Furthermore, DS-ALL is characterized by several recurrent gene deletions, with BTG1 loss being particularly frequent.
Collapse
Affiliation(s)
- Catarina Lundin
- Department of Clinical Genetics, University and Regional Laboratories, Skåne University Hospital, Lund University, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Zhou AD, Diao LT, Xu H, Xiao ZD, Li JH, Zhou H, Qu LH. β-Catenin/LEF1 transactivates the microRNA-371-373 cluster that modulates the Wnt/β-catenin-signaling pathway. Oncogene 2011; 31:2968-78. [PMID: 22020335 DOI: 10.1038/onc.2011.461] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The microRNA-371-373 (miR-371-373) cluster is specifically expressed in human embryonic stem cells (ESCs) and is thought to be involved in stem cell maintenance. Recently, microRNAs (miRNAs) of this cluster were shown to be frequently upregulated in several human tumors. However, the regulatory mechanism for the involvement of the miR-371-373 cluster in human ESCs or cancer cells remains unclear. In this study, we explored the relationship between this miRNA cluster and the Wnt/β-catenin-signaling pathway, which has been shown to be involved in both stem cell maintenance and tumorigenesis. We show that miR-371-373 expression is induced by lithium chloride and is positively correlated with Wnt/β-catenin-signaling activity in several human cancer cell lines. Mechanistically, three TCF/LEF1-binding elements (TBEs) were identified in the promoter region and shown to be required for Wnt-dependent activation of miR-371-373. Interestingly, we also found that miR-372&373, in turn, activate Wnt/β-catenin signaling. In addition, four protein genes related to the Wnt/β-catenin-signaling pathway were identified as direct targets of miR-372&373, including Dickkopf-1 (DKK1), a well-known inhibitor of Wnt/β-catenin signaling. Using a lentiviral system, we showed that overexpression of miR-372 or miR-373 promotes cell growth and the invasive activity of tumor cells as knockdown of DKK1. Taken together, our study demonstrates a novel β-catenin/LEF1-miR-372&373-DKK1 regulatory feedback loop, which may have a critical role in regulating the activity of Wnt/β-catenin signaling in human cancer cells.
Collapse
Affiliation(s)
- A-D Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, PR China
| | | | | | | | | | | | | |
Collapse
|
97
|
Heltemes-Harris LM, Willette MJL, Ramsey LB, Qiu YH, Neeley ES, Zhang N, Thomas DA, Koeuth T, Baechler EC, Kornblau SM, Farrar MA. Ebf1 or Pax5 haploinsufficiency synergizes with STAT5 activation to initiate acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2011; 208:1135-49. [PMID: 21606506 PMCID: PMC3173246 DOI: 10.1084/jem.20101947] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
As STAT5 is critical for the differentiation, proliferation, and survival of progenitor B cells, this transcription factor may play a role in acute lymphoblastic leukemia (ALL). Here, we show increased expression of activated signal transducer and activator of transcription 5 (STAT5), which is correlated with poor prognosis, in ALL patient cells. Mutations in EBF1 and PAX5, genes critical for B cell development have also been identified in human ALL. To determine whether mutations in Ebf1 or Pax5 synergize with STAT5 activation to induce ALL, we crossed mice expressing a constitutively active form of STAT5 (Stat5b-CA) with mice heterozygous for Ebf1 or Pax5. Haploinsufficiency of either Pax5 or Ebf1 synergized with Stat5b-CA to rapidly induce ALL in 100% of the mice. The leukemic cells displayed reduced expression of both Pax5 and Ebf1, but this had little effect on most EBF1 or PAX5 target genes. Only a subset of target genes was deregulated; this subset included a large percentage of potential tumor suppressor genes and oncogenes. Further, most of these genes appear to be jointly regulated by both EBF1 and PAX5. Our findings suggest a model whereby small perturbations in a self-reinforcing network of transcription factors critical for B cell development, specifically PAX5 and EBF1, cooperate with STAT5 activation to initiate ALL.
Collapse
Affiliation(s)
- Lynn M Heltemes-Harris
- Department of Laboratory Medicine and Pathology, The Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Differentiating size-dependent responses of juvenile pink salmon (Oncorhynchus gorbuscha) to sea lice (Lepeophtheirus salmonis) infections. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2011; 6:213-23. [PMID: 21543273 DOI: 10.1016/j.cbd.2011.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 11/24/2022]
Abstract
Salmon infected with an ectoparasitic marine copepod, the salmon louse Lepeophtheirus salmonis, incur a wide variety of consequences depending upon host sensitivity. Juvenile pink salmon (Oncorhynchus gorbuscha) migrate from natal freshwater systems to the ocean at a young age relative to other Pacific salmon, and require rapid development of appropriate defenses against marine pathogens. We analyzed the early transcriptomic responses of naïve juvenile pink salmon of sizes 0.3 g (no scales), 0.7 g (mid-scale development) and 2.4 g (scales fully developed) six days after a low-level laboratory exposure to L. salmonis copepodids. All infected size groups exhibited unique transcriptional profiles. Inflammation and inhibition of cell proliferation was identified in the smallest size class (0.3 g), while increased glucose absorption and retention was identified in the middle size class (0.7 g). Tissue-remodeling genes were also up-regulated in both the 0.3 g and 0.7 g size groups. Profiles of the 2.4 g size class indicated cell-mediated immunity and possibly parasite-induced growth augmentation. Understanding a size-based threshold of resistance to L. salmonis is important for fisheries management. This work characterizes molecular responses reflecting the gradual development of innate immunity to L. salmonis between the susceptible (0.3 g) and refractory (2.4 g) pink salmon size classes.
Collapse
|
99
|
Murray PG, Fan Y, Davies G, Ying J, Geng H, Ng KM, Li H, Gao Z, Wei W, Bose S, Anderton J, Kapatai G, Reynolds G, Ito A, Marafioti T, Woodman CB, Ambinder R, Tao Q. Epigenetic silencing of a proapoptotic cell adhesion molecule, the immunoglobulin superfamily member IGSF4, by promoter CpG methylation protects Hodgkin lymphoma cells from apoptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1480-90. [PMID: 20709797 DOI: 10.2353/ajpath.2010.100052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The malignant Hodgkin/Reed-Sternberg (HRS) cells of Hodgkin lymphoma (HL) are believed to derive from germinal center (GC) B cells, but lack expression of a functional B cell receptor. As apoptosis is the normal fate of B-cell receptor-negative GC B cells, mechanisms that abrogate apoptosis are thus critical in HL development, such as epigenetic disruption of certain pro-apoptotic cancer genes including tumor suppressor genes. Identifying methylated genes elucidates oncogenic mechanisms and provides valuable biomarkers; therefore, we performed a chemical epigenetic screening for methylated genes in HL through pharmacological demethylation and expression profiling. IGSF4/CADM1/TSLC1, a pro-apoptotic cell adhesion molecule of the immunoglobulin superfamily, was identified together with other methylated targets. In contrast to its expression in normal GC B cells, IGSF4 was down-regulated and methylated in HL cell lines, most primary HL, and microdissected HRS cells of 3/5 cases, but not in normal peripheral blood mononuclear cells and seldom in normal lymph nodes. We also detected IGSF4 methylation in sera of 14/18 (78%) HL patients but seldom in normal sera. Ectopic IGSF4 expression decreased HL cells survival and increased their sensitivity to apoptosis. IGSF4 induction that normally follows heat shock stress treatment was also abrogated in methylated lymphoma cells. Thus, our data demonstrate that IGSF4 silencing by CpG methylation provides an anti-apoptotic signal to HRS cells important in HL pathogenesis.
Collapse
Affiliation(s)
- Paul G Murray
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
|