51
|
Modular peptides promote human mesenchymal stem cell differentiation on biomaterial surfaces. Acta Biomater 2010; 6:21-8. [PMID: 19665062 DOI: 10.1016/j.actbio.2009.08.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/31/2009] [Accepted: 08/03/2009] [Indexed: 12/22/2022]
Abstract
Molecular design strategies in biomedical applications often involve creating modular "fusion" proteins, in which distinct domains within a single molecule can perform multiple functions. We have synthesized a new class of modular peptides that include a biologically active sequence derived from the growth factor BMP-2 and a series of hydroxyapatite-binding sequences inspired by the N-terminal alpha-helix of osteocalcin. These modular peptides can bind in a sequence-dependent manner to the surface of "bone-like" hydroxyapatite coatings, which are nucleated and grown on a biodegradable polymer surface via a biomimetic process. The BMP-2-derived sequence of the modular peptides is biologically active, as measured by its ability to promote osteogenic differentiation of human mesenchymal stem cells. Our study indicates that the modular peptides described here are multifunctional, and the characteristics of this approach suggest that it can potentially be applied to a range of biomaterials for regenerative medicine applications.
Collapse
|
52
|
Lee JS, Lee JS, Wagoner-Johnson A, Murphy WL. Modular peptide growth factors for substrate-mediated stem cell differentiation. Angew Chem Int Ed Engl 2009; 48:6266-9. [PMID: 19610001 DOI: 10.1002/anie.200901618] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jae Sam Lee
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
53
|
Nyan M, Sato D, Kihara H, Machida T, Ohya K, Kasugai S. Effects of the combination with alpha-tricalcium phosphate and simvastatin on bone regeneration. Clin Oral Implants Res 2009; 20:280-7. [PMID: 19397639 DOI: 10.1111/j.1600-0501.2008.01639.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Although local application of statins stimulates bone formation, high dose of simvastatin induces inflammation. OBJECTIVE A study was conducted to test the hypothesis that maximum bone regeneration with less inflammation would be achieved by combining an optimal dose of simvastatin with alpha-tricalcium phosphate (alpha-TCP), which is an osteoconductive biomaterial capable of releasing the drug gradually. MATERIAL AND METHODS Bilateral 5-mm-diameter calvarial defects were created in adult Wistar rats and filled with preparations of different doses of simvastatin (0, 0.01, 0.1, 0.25 and 0.5 mg) combined with alpha-TCP particles or left empty. The animals were sacrificed at 2, 4 and 8 weeks and analyzed radiologically and histologically. Half of the animals of 4 and 8 weeks were labeled with fluorescence dyes and histomorphometrically analyzed. RESULTS Simvastatin doses of 0.25 and 0.5 mg caused inflammation of the soft tissue at the graft site whereas control and other doses did not. The micro-CT analysis revealed that the alpha-TCP with 0.1 mg simvastatin (TCP-0.1) group yielded significantly higher bone volumes than untreated control group at all three time points (249%, 227% and 266% at 2, 4 and 8 weeks, respectively). The percentage of defect closure, bone mineral content and bone mineral density were also higher in the TCP-0.1 group than in the other groups. CONCLUSION When combined with alpha-TCP particles, 0.1 mg simvastatin is the optimal dose for stimulation of the maximum bone regeneration in rat calvarial defects without inducing inflammation and it could be applied as an effective bone graft material.
Collapse
Affiliation(s)
- Myat Nyan
- Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| | | | | | | | | | | |
Collapse
|
54
|
Baroli B. From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges. J Pharm Sci 2009; 98:1317-75. [PMID: 18729202 DOI: 10.1002/jps.21528] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tissue engineering is an emerging multidisciplinary field of investigation focused on the regeneration of diseased or injured tissues through the delivery of appropriate molecular and mechanical signals. Therefore, bone tissue engineering covers all the attempts to reestablish a normal physiology or to speed up healing of bone in all musculoskeletal disorders and injuries that are lashing modern societies. This article attempts to give a pharmaceutical perspective on the production of engineered man-made bone grafts that are described as implantable tissue engineering therapeutics, and to highlight the importance of understanding bone composition and structure, as well as osteogenesis and bone healing processes, to improve the design and development of such implants. In addition, special emphasis is given to pharmaceutical aspects that are frequently minimized, but that, instead, may be useful for formulation developments and in vitro/in vivo correlations.
Collapse
Affiliation(s)
- Biancamaria Baroli
- Dip. Farmaco Chimico Tecnologico, Università di Cagliari, Via Ospedale, 72, 09124 Cagliari, Italy
| |
Collapse
|
55
|
Lee J, Lee J, Wagoner-Johnson A, Murphy W. Modular Peptide Growth Factors for Substrate-Mediated Stem Cell Differentiation. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200901618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
56
|
Chen FM, Shelton RM, Jin Y, Chapple ILC. Localized delivery of growth factors for periodontal tissue regeneration: role, strategies, and perspectives. Med Res Rev 2009; 29:472-513. [PMID: 19260070 DOI: 10.1002/med.20144] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Difficulties associated with achieving predictable periodontal regeneration, means that novel techniques need to be developed in order to regenerate the extensive soft and hard tissue destruction that results from periodontitis. Localized delivery of growth factors to the periodontium is an emerging and versatile therapeutic approach, with the potential to become a powerful tool in future regenerative periodontal therapy. Optimized delivery regimes and well-defined release kinetics appear to be logical prerequisites for safe and efficacious clinical application of growth factors and to avoid unwanted side effects and toxicity. While adequate concentrations of growth factor(s) need to be appropriately localized, delivery vehicles are also expected to possess properties such as protein protection, precision in controlled release, biocompatibility and biodegradability, self-regulated therapeutic activity, potential for multiple delivery, and good cell/tissue penetration. Here, current knowledge, recent advances, and future possibilities of growth factor delivery strategies are outlined for periodontal regeneration. First, the role of those growth factors that have been implicated in the periodontal healing/regeneration process, general requirements for their delivery, and the different material types available are described. A detailed discussion follows of current strategies for the selection of devices for localized growth factor delivery, with particular emphasis placed upon their advantages and disadvantages and future prospects for ongoing studies in reconstructing the tooth supporting apparatus.
Collapse
Affiliation(s)
- Fa-Ming Chen
- Department of Periodontology and Oral Medicine, School of Stomatology, The Fourth Military Medical University, Shaanxi, People's Republic of China.
| | | | | | | |
Collapse
|
57
|
Suvorova EI, Arkharova NA, Buffat PA. Transmission electron microscopy of Ca oxide nano- and microcrystals in α-tricalcium phosphate prepared by sintering of β-tricalcium phosphate. Micron 2009; 40:563-70. [DOI: 10.1016/j.micron.2009.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 03/20/2009] [Accepted: 03/20/2009] [Indexed: 10/20/2022]
|
58
|
Ohtsuki C, Kamitakahara M, Miyazaki T. Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration. J R Soc Interface 2009; 6 Suppl 3:S349-60. [PMID: 19158015 DOI: 10.1098/rsif.2008.0419.focus] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bioactive ceramics have been used clinically to repair bone defects owing to their biological affinity to living bone; i.e. the capability of direct bonding to living bone, their so-called bioactivity. However, currently available bioactive ceramics do not satisfy every clinical application. Therefore, the development of novel design of bioactive materials is necessary. Bioactive ceramics show osteoconduction by formation of biologically active bone-like apatite through chemical reaction of the ceramic surface with surrounding body fluid. Hence, the control of their chemical reactivity in body fluid is essential to developing novel bioactive materials as well as biodegradable materials. This paper reviews novel bioactive materials designed based on chemical reactivity in body fluid.
Collapse
Affiliation(s)
- Chikara Ohtsuki
- Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Naogya 464-8603, Japan.
| | | | | |
Collapse
|
59
|
Chen H, Yuan L, Song W, Wu Z, Li D. Biocompatible polymer materials: Role of protein–surface interactions. Prog Polym Sci 2008. [DOI: 10.1016/j.progpolymsci.2008.07.006] [Citation(s) in RCA: 452] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
60
|
Jäger M, Fischer J, Dohrn W, Li X, Ayers DC, Czibere A, Prall WC, Lensing-Höhn S, Krauspe R. Dexamethasone modulates BMP-2 effects on mesenchymal stem cells in vitro. J Orthop Res 2008; 26:1440-8. [PMID: 18404732 DOI: 10.1002/jor.20565] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dexamethasone/ascorbic acid/glycerolphosphate (DAG) and bone morphogenic protein (BMP)-2 are potent agents in cell proliferation and differentiation pathways. This study investigates the in vitro interactions between dexamethasone and BMP-2 for an osteoblastic differentiation of mesenchymal stem cells (MSCs). Bone marrow-derived human MSCs were cultured with DAG (group A), BMP-2 + DAG (group B), and DAG + BMP-2 combined with a porous collagen I/III scaffold (group C). RT-PCR, ELISA, immuncytochemical stainings and flow cytometry analysis served to evaluate the osteogenic-promoting potency of each of the above conditions in terms of cell morphology/viability, antigen presentation, and gene expression. DAG induced collagen I secretion from MSCs, which was further increased by the combination of DAG + BMP-2. In comparison, the collagen scaffold and the control samples showed no significant influence on collagen I secretion of MSCs. DAG stimulation of MSCs led also to a steady but not significant increase of BMP-2 level. A DAG and more, a DAG + BMP-2, stimulation increased the number of mesenchymal cells (CD105+/CD73+). All samples showed mRNA of ALP, osteopontin, Runx2, Twist 1 and 2, Notch-1/2, osteonectin, osteocalcin, BSP, and collagen-A1 after 28 days of in vitro culture. Culture media of all samples showed a decrease in Ca(2+) and PO(4) (2-) concentration, whereas a collagen-I-peak only occurred at day 28 in DAG- and DAG + BMP-2-stimulated bone marrow cells. In conclusion, BMP-2 enhances DAG-induced osteogenic differentiation in mesenchymal bone marrow cells. Both agents interact in various ways and can modify osteoblastic bone formation.
Collapse
Affiliation(s)
- Marcus Jäger
- Research Laboratory for Regenerative Medicine and Biomaterials, Department of Orthopaedics, Heinrich-Heine University Medical School, Moorenstr. 5, D-40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part I (basic concepts). J Tissue Eng Regen Med 2008; 2:1-13. [PMID: 18293427 DOI: 10.1002/term.63] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Discovered in 1965, bone morphogenetic proteins (BMPs) are a group of cytokines from the transforming growth factor-beta (TGFbeta) superfamily with significant roles in bone and cartilage formation. BMPs are used as powerful osteoinductive components of diverse tissue-engineering products for the healing of bone. Several BMPs with different physiological roles have been identified in humans. The purpose of this review is to cover the biological function of the main members of BMP family, the latest research on BMPs signalling pathways and advances in the production of recombinant BMPs for tissue engineering purposes.
Collapse
Affiliation(s)
- P C Bessa
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | |
Collapse
|
62
|
Kajiwara K, Kamamoto M, Ogata SI, Tanihara M. A synthetic peptide corresponding to residues 301-320 of human Wnt-1 promotes PC12 cell adhesion and hippocampal neural stem cell differentiation. Peptides 2008; 29:1479-85. [PMID: 18584914 DOI: 10.1016/j.peptides.2008.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 05/12/2008] [Accepted: 05/13/2008] [Indexed: 12/23/2022]
Abstract
Wnt signaling cascades play a crucial role in the maintenance of stem cell niches in many tissues as well as in embryonic patterning and cell-fate determination. Wnt signaling pathways have been well studied; however, the precise binding mechanism of Wnt protein to its receptor has not yet been clarified. Here we show the design and synthesis of seven novel peptide candidates for a receptor-binding site of human Wnt-1 based on its hydrophilicity and beta-turn profiles. Among these Wnt-derived peptides, only WP7, which corresponds to residues 301-320 of human Wnt-1, bound to the soluble receptor for Wnt-1, mouse Frizzled-1/Fc chimera, promoted PC12 cell adherence, increased level of cytosolic beta-catenin in PC12 cells, and induced adhesion and neuronal differentiation of hippocampal neural precursor cells. These results suggest that residues 301-320 of human Wnt-1 is one of the receptor-binding sites and that WP7 may activate the canonical Wnt pathway. When combined with an appropriate matrix, the action of this Wnt-derived peptide, WP7, can be limited to within a location, and therefore could be useful in the regeneration of many tissues, without fear of tumor generation.
Collapse
Affiliation(s)
- Kazumi Kajiwara
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | |
Collapse
|
63
|
Kamitakahara M, Ohtsuki C, Miyazaki T. Review Paper: Behavior of Ceramic Biomaterials Derived from Tricalcium Phosphate in Physiological Condition. J Biomater Appl 2008; 23:197-212. [DOI: 10.1177/0885328208096798] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Various calcium phosphates are used for bone repair. Although hydroxyapatite (HA) sintered ceramics are widely used due to their osteoconductivity, its bioresorbability is so low that HA remains in the body for a long time after implantation. In contrast, tricalcium phosphate (TCP) ceramics show resorbable characters during bone regeneration, and can be completely substituted for the bone tissue after stimulation of bone formation. Therefore, much attention is paid to TCP ceramics for scaffold materials for supporting bone regeneration. This paper reviews bioresorbable properties of calcium phosphate ceramics derived from β-TCP and α-TCP.
Collapse
Affiliation(s)
- Masanobu Kamitakahara
- Graduate School of Environmental Studies, Tohoku University 6-6-20, Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan,
| | - Chikara Ohtsuki
- Graduate School of Engineeering, Nagoya University Furo-cho, Chikusa-ku, Naogya, 464-8603, Japan
| | - Toshiki Miyazaki
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology 2-4 Hibikino, Wakamatsu-ku, Kitasyushu, 808-0196, Japan
| |
Collapse
|
64
|
Park JB, Lee JY, Park YJ, Rhee SH, Lee SC, Kim TI, Seol YJ, Lee YM, Ku Y, Rhyu IC, Han SB, Chung CP. Enhanced bone regeneration in beagle dogs with bovine bone mineral coated with a synthetic oligopeptide. J Periodontol 2008; 78:2150-5. [PMID: 17970682 DOI: 10.1902/jop.2007.070108] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Recombinant human bone morphogenic protein-2 stimulates bone augmentation in animal models. The aim of this study was to evaluate the capacity of bovine bone mineral coated with synthetic oligopeptides to enhance guided bone regeneration in the beagle 3-wall defect model and the clinical implications. METHODS The second and fourth mandibular premolars of four adult beagle dogs were extracted bilaterally, and the extraction sites were allowed to heal for 2 months. An L-shaped defect was prepared at the central part of the extraction site with a round bur on a low-speed motor. Peptide-coated bone mineral was implanted on one side, and uncoated bone mineral was implanted on the other side. The membrane was tucked underneath the mobilized lingual flap. New bone formation at the test and control sites was determined at 4 weeks. RESULTS No specimen revealed any evidence of infection or foreign body reaction, and all wounds showed a good healing response. Sites augmented with peptide-coated bone mineral and uncoated mineral exhibited excellent maintenance of the ridge contour. There was more new bone at sites with peptide-coated bone mineral than at control sites. The new bone in sites with peptide-coated bone mineral was deposited evenly around the graft material, and bone mineral was integrated fully into the new bone. CONCLUSION Deproteinized cancellous bovine bone coated with synthetic oligopeptides enhanced new bone formation, and it seemed to be a better material for guided bone regeneration in the beagle L-shaped defect model.
Collapse
Affiliation(s)
- Jun-Beom Park
- Department of Periodontology, School of Dentistry, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med 2008; 2:81-96. [DOI: 10.1002/term.74] [Citation(s) in RCA: 417] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
66
|
Cowan CM, Aghaloo T, Chou YF, Walder B, Zhang X, Soo C, Ting K, Wu B. MicroCT Evaluation of Three-Dimensional Mineralization in Response to BMP-2 DosesIn Vitroand in Critical Sized Rat Calvarial Defects. ACTA ACUST UNITED AC 2007; 13:501-12. [PMID: 17319794 DOI: 10.1089/ten.2006.0141] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Numerous growth factors, peptides, and small molecules are being developed for bone tissue engineering. The optimal dosing, stability, and bioactivity of these biological molecules are likely influenced by the carrier biomaterial. Efficient evaluation of various formulations will require objective evaluation of in vitro culture systems and in vivo regeneration models. The objective of this paper is to examine the utility of microcomputed tomography (microCT) over conventional techniques in the evaluation of the bone morphogenetic protein-2 (BMP-2) dose response effect in a three-dimensional (3D) in vitro culture system and in an established calvarial defect model. Cultured MC3T3-E1 osteoblasts displayed increased cellular density, extracellular matrix (ECM) production, and mineralization on 3D poly(lactic-co-glycolic acid) (PLGA) scaffolds in a BMP-2 dose dependent manner. MicroCT revealed differences in shape and spatial organization of mineralized areas, which would not have been possible through conventional alizarin red staining alone. Additionally, BMP-2 (doses of 30 to 240 ng/mm(3)) was grafted into 5 mm critical sized rat calvarial defects, where increased bone regeneration was observed in a dose dependent manner, with higher doses of BMP-2 inducing greater bone area, volume, and density. The data revealed the utility of microCT analysis as a beneficial addition to existing techniques for objective evaluation of bone tissue engineering and regeneration.
Collapse
Affiliation(s)
- Catherine M Cowan
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|