51
|
Leonard SS, Cohen GM, Kenyon AJ, Schwegler-Berry D, Fix NR, Bangsaruntip S, Roberts JR. Generation of reactive oxygen species from silicon nanowires. ENVIRONMENTAL HEALTH INSIGHTS 2014; 8:21-9. [PMID: 25452695 PMCID: PMC4227628 DOI: 10.4137/ehi.s15261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 06/04/2023]
Abstract
Processing and synthesis of purified nanomaterials of diverse composition, size, and properties is an evolving process. Studies have demonstrated that some nanomaterials have potential toxic effects and have led to toxicity research focusing on nanotoxicology. About two million workers will be employed in the field of nanotechnology over the next 10 years. The unknown effects of nanomaterials create a need for research and development of techniques to identify possible toxicity. Through a cooperative effort between National Institute for Occupational Safety and Health and IBM to address possible occupational exposures, silicon-based nanowires (SiNWs) were obtained for our study. These SiNWs are anisotropic filamentary crystals of silicon, synthesized by the vapor-liquid-solid method and used in bio-sensors, gas sensors, and field effect transistors. Reactive oxygen species (ROS) can be generated when organisms are exposed to a material causing cellular responses, such as lipid peroxidation, H2O2 production, and DNA damage. SiNWs were assessed using three different in vitro environments (H2O2, RAW 264.7 cells, and rat alveolar macrophages) for ROS generation and possible toxicity identification. We used electron spin resonance, analysis of lipid peroxidation, measurement of H2O2 production, and the comet assay to assess generation of ROS from SiNW and define possible mechanisms. Our results demonstrate that SiNWs do not appear to be significant generators of free radicals.
Collapse
Affiliation(s)
- Stephen S Leonard
- National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, Morgantown, WV, USA
| | - Guy M Cohen
- IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Allison J Kenyon
- National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, Morgantown, WV, USA
| | - Diane Schwegler-Berry
- National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, Morgantown, WV, USA
| | - Natalie R Fix
- National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, Morgantown, WV, USA
| | | | - Jenny R Roberts
- National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, Morgantown, WV, USA
| |
Collapse
|
52
|
Losic D, Aw MS, Santos A, Gulati K, Bariana M. Titania nanotube arrays for local drug delivery: recent advances and perspectives. Expert Opin Drug Deliv 2014; 12:103-27. [DOI: 10.1517/17425247.2014.945418] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
53
|
Neacsu P, Mazare A, Cimpean A, Park J, Costache M, Schmuki P, Demetrescu I. Reduced inflammatory activity of RAW 264.7 macrophages on titania nanotube modified Ti surface. Int J Biochem Cell Biol 2014; 55:187-95. [DOI: 10.1016/j.biocel.2014.09.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 08/08/2014] [Accepted: 09/04/2014] [Indexed: 12/24/2022]
|
54
|
Ma QL, Zhao LZ, Liu RR, Jin BQ, Song W, Wang Y, Zhang YS, Chen LH, Zhang YM. Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization. Biomaterials 2014; 35:9853-9867. [PMID: 25201737 DOI: 10.1016/j.biomaterials.2014.08.025] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/14/2014] [Indexed: 12/19/2022]
Abstract
The use of endosseous implanted materials is often limited by undesirable effects that may be due to macrophage-related inflammation. The purpose of this study was to fabricate a nanostructured surface on a titanium implant to regulate the macrophage inflammatory response and improve the performance of the implant. Anodization at 5 and 20 V as well as UV irradiation were used to generate hydrophilic, nanostructured TiO2 surfaces (denoted as NT5 and NT20, respectively). Their surface characteristics and in vivo osseointegration as well as the inflammatory response they elicit were analyzed. In addition, the behavior of macrophages in vitro was evaluated. Although the in vitro osteogenic activity on the two surfaces was similar, the NT5 surface was associated with more bone formation, less inflammation, and a reduced CD68(+) macrophage distribution in vivo compared to the NT20 and polished Ti surfaces. Consistently, further experiments revealed that the NT5 surface induced healing-associated M2 polarization in vitro and in vivo. By contrast, the NT20 surface promoted the pro-inflammatory M1 polarization, which could further impair bone regeneration. The results demonstrate the dominant role of macrophage-related inflammation in bone healing around implants and that surface nanotopography can be designed to have an immune-regulating effect in support of the success of implants.
Collapse
Affiliation(s)
- Qian-Li Ma
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Ling-Zhou Zhao
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Rong-Rong Liu
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Bo-Quan Jin
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wen Song
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Ying Wang
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Yu-Si Zhang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Li-Hua Chen
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Yu-Mei Zhang
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
55
|
Yang Z, Zhong S, Yang Y, Maitz MF, Li X, Tu Q, Qi P, Zhang H, Qiu H, Wang J, Huang N. Polydopamine-mediated long-term elution of the direct thrombin inhibitor bivalirudin from TiO2nanotubes for improved vascular biocompatibility. J Mater Chem B 2014; 2:6767-6778. [DOI: 10.1039/c4tb01118j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
56
|
Schweicher J, Nyitray C, Desai TA. Membranes to achieve immunoprotection of transplanted islets. FRONT BIOSCI-LANDMRK 2014; 19:49-76. [PMID: 24389172 PMCID: PMC4230297 DOI: 10.2741/4195] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transplantation of islet or beta cells is seen as the cure for type 1 diabetes since it allows physiological regulation of blood glucose levels without requiring any compliance from the patients. In order to circumvent the use of immunosuppressive drugs (and their side effects), semipermeable membranes have been developed to encapsulate and immunoprotect transplanted cells. This review presents the historical developments of immunoisolation and provides an update on the current research in this field. A particular emphasis is laid on the fabrication, characterization and performance of membranes developed for immunoisolation applications.
Collapse
Affiliation(s)
- Julien Schweicher
- Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), 1700 4 Street, Box 2520, San Francisco, CA, 94158, USA
| | - Crystal Nyitray
- Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), 1700 4 Street, Box 2520, San Francisco, CA, 94158, USA
| | - Tejal A. Desai
- Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), 1700 4 Street, Box 2520, San Francisco, CA, 94158, USA
| |
Collapse
|
57
|
Facile Synthesis of Robust Free-Standing TiO 2 Nanotubular Membranes for Biofiltration Applications. J APPL ELECTROCHEM 2013; 44:411-418. [PMID: 24634542 DOI: 10.1007/s10800-013-0643-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Robust monodisperse nanoporous membranes have a wide range of biotechnological applications, but are often difficult or costly to fabricate. Here, a simple technique is reported to produce free-standing TiO2 nanotubular membranes with through-hole morphology. It consists in a 3-step anodization procedure carried out at room temperature on a Ti foil. The first anodization (1 h at 80 V) is used to pattern the surface of the metallic foil. Then, the second anodization (24 h at 80 V) produces the array of TiO2 nanotubes that will constitute the final membrane. A higher voltage anodization (3-5 minutes at 180 V) is finally applied to detach the TiO2 nanotubular layer from the underlying Ti foil. In order to completely remove the barrier layer that obstructs some pores of the membrane, the latter is etched 2 minutes in a buffered oxide etch solution. The overall process produces 60 μm-thick TiO2 nanotubular membranes with tube openings of 110 nm on one side and 73 nm on the other side. The through-hole morphology of these membranes has been verified by performing diffusion experiments with glucose, insulin and immunoglobulin G where in differences in diffusion rate are observed based on molecular weight. Such biocompatible TiO2 nanotubular membranes, with controlled pore size and morphology, have broad biotechnological and biomedical applications.
Collapse
|
58
|
McNichols C, Wilkins J, Kubota A, Shiu YT, Aouadi SM, Kohli P. Investigating surface topology and cyclic-RGD peptide functionalization on vascular endothelialization. J Biomed Mater Res A 2013; 102:532-9. [PMID: 23505215 DOI: 10.1002/jbm.a.34700] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 01/13/2013] [Accepted: 01/14/2013] [Indexed: 11/09/2022]
Abstract
The advantages of endothelialization of a stent surface in comparison with the bare metal and drug-eluting stents used today include reduced late-stent restenosis and in-stent thrombosis. In this article, we study the effect of surface topology and functionalization of tantalum (Ta) with cyclic-(arginine-glycine-aspartic acid-d-phenylalanine-lysine) (cRGDfK) on the attachment, spreading, and growth of vascular endothelial cells. Self-assembled nanodimpling on Ta surfaces was performed using a one-step electropolishing technique. Next, cRGDfK was covalently bonded onto the surface using silane chemistry. Our results suggest that nanotexturing alone was sufficient to enhance cell spreading, but the combination of a nanodimpled surfaces along with the cRGDfK peptide may produce a better endothelialization coating on the surface in terms of higher cell density, better cell spreading, and more cell-cell interactions, when compared to using cRGDfK peptide functionalization alone or nanotexturing alone. We believe that future research should look into how to implement both modifications (topographic and chemical modifications) to optimize the stent surface for endothelialization.
Collapse
Affiliation(s)
- Colton McNichols
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois
| | | | | | | | | | | |
Collapse
|
59
|
Free radicals generated by tantalum implants antagonize the cytotoxic effect of doxorubicin. Int J Pharm 2013; 448:214-20. [PMID: 23538094 DOI: 10.1016/j.ijpharm.2013.03.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/18/2013] [Indexed: 11/22/2022]
Abstract
Little is known about the interaction between antineoplastic drugs and implants in bone cancer patients. We investigated the interaction between commercially available porous tantalum (Ta) implants and the chemotherapeutic drug, Doxorubicin (DOX). DOX solutions were prepared in the presence of Ta implant. The changes in fluorescence intensity of the DOX chromophore were measured by spectrofluorometry and the efficacy of DOX was evaluated by viability of rabbit rectal tumor cells (VX2). After 5 min interaction of the DOX solution (5 μg/ml) with the Ta implant, the fluorescent intensity of the DOX solution was 85% degraded, and only 20% the drug efficacy to kill VX2 cells was retained. However, after adding a reducing agent, Dithiothreitol (DTT, 10 μg/ml), 80% of the original fluorescence and 50% of the drug efficacy were restored while UV irradiation enhanced drug degradation in the presence of Ta implant. The action of DTT and UV irradiation indicated that reactive oxygen species (ROS) were involved in the drug degradation mechanism. We detected that Ta implants in aqueous medium produced hydroxyl radicals. Cells showed higher intracellular ROS activity when culture medium was incubated with the Ta implant prior to cell culture. It is concluded that the porous Ta implant antagonizes the cytotoxicity of DOX via ROS generation of the porous Ta implant.
Collapse
|
60
|
Rydén L, Molnar D, Esposito M, Johansson A, Suska F, Palmquist A, Thomsen P. Early inflammatory response in soft tissues induced by thin calcium phosphates. J Biomed Mater Res A 2013; 101:2712-7. [PMID: 23463679 DOI: 10.1002/jbm.a.34571] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/11/2012] [Accepted: 12/17/2012] [Indexed: 12/19/2022]
Abstract
The inflammatory response to titanium and hydroxyapatite (HA)-coated titanium in living tissue is controlled by a number of humoral factors, of which monocyte chemoattractant protein-1 (MCP-1) has been specifically linked to the recruitment of monocytes. These cells subsequently mature into tissue-bound macrophages. Macrophages adhering to the proteins adsorbed at the implant surface play a pivotal role in initiating the rejection or integration of the foreign material. Despite this, little is known about the initial inflammatory events that occur in soft tissues following the implantation of titanium and HA-coated titanium implants. In this study, circular discs of commercially pure titanium (c.p. Ti) with either a thin crystalline HA coating or amorphous HA coating or uncoated were implanted subcutaneously into rats. The implants were retrieved after 24 and 72 h. The lactate dehydrogenase (LD) activity, DNA content, expression of MCP-1, interleukin-10 (IL-10), tumor necrosis factor α (TNF-α), as well as monocyte and polymorphonuclear granulocyte counts in the exudate surrounding the implants were analyzed. There were significantly higher DNA and LD levels around the titanium implants at 24 h compared with HA-coated titanium. A rapid decrease in MCP-1 levels was observed for all the implants over the period of observation. No statistically significant differences were found between the two HA-coated implants. Our results suggest a difference in the early soft-tissue response to HA-coated implants when compared with titanium implants, expressed as a downregulation of inflammatory cell recruitment. This suggests that thin HA coatings are promising surfaces for soft tissue applications.
Collapse
Affiliation(s)
- L Rydén
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
61
|
Bernards DA, Bhisitkul RB, Wynn P, Steedman MR, Lee OT, Wong F, Thoongsuwan S, Desai TA. Ocular biocompatibility and structural integrity of micro- and nanostructured poly(caprolactone) films. J Ocul Pharmacol Ther 2013; 29:249-57. [PMID: 23391326 DOI: 10.1089/jop.2012.0152] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The identification of biomaterials that are well tolerated in the eye is important for the development of new ocular drug delivery devices and implants, and the application of micro- and nanoengineered devices to biomedical treatments is predicated on the long-term preservation within the target organ or tissue of the very small functional design elements. This study assesses the ocular tolerance and durability of micro- and nanostructured biopolymer thin films injected or implanted into the rabbit eye. Structured poly(caprolactone) (PCL) thin films were placed in adult rabbit eyes for survival studies, with serial ophthalmic examinations over 6 months. Morphologic abnormalities and device/tissue reactions were evaluated by histologic studies, and scanning electron microscopy (SEM) of films was used to determine the structural integrity. Structured PCL thin films (20- to 40-μm thick) were constructed to design specifications with 50-μm linear microgrooves or arrays of nanopores with ~30-nm diameters. After up to 9 months of ocular residency, SEM on devices retrieved from the eye showed preservation of micro- and nanostructural features. In ocular safety evaluations carried out over 6 months, serial examinations in 18 implanted eyes showed no evidence of chronic inflammation, cataractogenesis, or retinal toxicity. Postoperative ocular inflammation was seen in 67% of eyes for 1 week, and persistent corneal edema occurred in 1 eye. Histology revealed no ocular inflammation or morphologic abnormalities of ocular tissues. Thin-film/tissue responses such as cellular reaction, fibrosis, or surface biodeposits were not seen. Micro- and nanostructured PCL thin films exhibited acceptable ocular tolerance and maintained the structural integrity of design features while residing in the eye. Thin-film micro- and nanostructured PCL appears to be a feasible biomaterial for intraocular therapeutic applications.
Collapse
Affiliation(s)
- Daniel A Bernards
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Smith BS, Capellato P, Kelley S, Gonzalez-Juarrero M, Popat KC. Reduced in vitro immune response on titania nanotube arrays compared to titanium surface. Biomater Sci 2013; 1:322-332. [DOI: 10.1039/c2bm00079b] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
63
|
Wu J, Chu CC. Block copolymer of poly(ester amide) and polyesters: synthesis, characterization, and in vitro cellular response. Acta Biomater 2012; 8:4314-23. [PMID: 22842040 DOI: 10.1016/j.actbio.2012.07.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 07/02/2012] [Accepted: 07/19/2012] [Indexed: 11/26/2022]
Abstract
In order to expand the properties and applications of aliphatic absorbable polyesters, a new biodegradable block copolymer family, poly(ester amide)-b-poly(ε-caprolactone) (PEA-b-PCL), was synthesized and characterized. These copolymers were synthesized by first preparing l-phenylalanine-based poly(ester amide) macroinitiators (Phe-PEAs) with free amine end groups via a solution polycondensation. The amine-terminated Phe-PEA macroinitiators were then used to initiate the ring-opening polymerization of ε-caprolactone monomer to prepare the PEA-b-PCL copolymers. The molecular weight (MW) of PEA-b-PCLs can be well controlled by adjusting the Phe-PEA MW and weight ratio of ε-caprolactone to Phe-PEA, and ranged from 7 to 50kgmol(-1). The copolymers' structure and properties were characterized by various physicochemical methods, such as nuclear magnetic resonance, gel permeation chromatography and solubility testing. The in vitro enzymatic biodegradation tests were performed to evaluate the biodegradation rate of the copolymers. The results showed that the introduction of Phe-PEA to PCL did not significantly change the degradation rate of PCL. Biological studies were conducted to assess the polymer's biological properties, like supporting the cell attachment and proliferation, and inflammation response. The results showed that the bovine aortic endothelial cells had very good attachment and proliferation performance on PEA-b-PCL coating surface. TNF-α release profiles showed that PEA-b-PCL exhibited a muted J774 macrophage inflammatory response.
Collapse
|
64
|
Zachman AL, Crowder SW, Ortiz O, Zienkiewicz KJ, Bronikowski CM, Yu SS, Giorgio TD, Guelcher SA, Kohn J, Sung HJ. Pro-angiogenic and anti-inflammatory regulation by functional peptides loaded in polymeric implants for soft tissue regeneration. Tissue Eng Part A 2012; 19:437-47. [PMID: 22953721 DOI: 10.1089/ten.tea.2012.0158] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Inflammation and angiogenesis are inevitable in vivo responses to biomaterial implants. Continuous progress has been made in biomaterial design to improve tissue interactions with an implant by either reducing inflammation or promoting angiogenesis. However, it has become increasingly clear that the physiological processes of inflammation and angiogenesis are interconnected through various molecular mechanisms. Hence, there is an unmet need for engineering functional tissues by simultaneous activation of pro-angiogenic and anti-inflammatory responses to biomaterial implants. In this work, the modulus and fibrinogen adsorption of porous scaffolds were tuned to meet the requirements (i.e., ~100 kPa and ~10 nm, respectively), for soft tissue regeneration by employing tyrosine-derived combinatorial polymers with polyethylene glycol crosslinkers. Two types of functional peptides (i.e., pro-angiogenic laminin-derived C16 and anti-inflammatory thymosin β4-derived Ac-SDKP) were loaded in porous scaffolds through collagen gel embedding so that peptides were released in a controlled fashion, mimicking degradation of the extracellular matrix. The results from (1) in vitro coculture of human umbilical vein endothelial cells and human blood-derived macrophages and (2) in vivo subcutaneous implantation revealed the directly proportional relationship between angiogenic activities (i.e., tubulogenesis and perfusion capacity) and inflammatory activities (i.e., phagocytosis and F4/80 expression) upon treatment with either type of peptide. Interestingly, cotreatment with both types of peptides upregulated the angiogenic responses, while downregulating the inflammatory responses. Also, anti-inflammatory Ac-SDKP peptides reduced production of pro-inflammatory cytokines (i.e., interleukin [IL]-1β, IL-6, IL-8, and tumor necrosis factor alpha) even when treated in combination with pro-angiogenic C16 peptides. In addition to independent regulation of angiogenesis and inflammation, this study suggests a promising approach to improve soft tissue regeneration (e.g., blood vessel and heart muscle) when inflammatory diseases (e.g., ischemic tissue fibrosis and atherosclerosis) limit the regeneration process.
Collapse
Affiliation(s)
- Angela L Zachman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Local drug delivery to the bone by drug-releasing implants: perspectives of nano-engineered titania nanotube arrays. Ther Deliv 2012; 3:857-73. [PMID: 22900467 DOI: 10.4155/tde.12.66] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Titania nanotube (TNT) arrays fabricated by electrochemical anodization of titanium are currently one of the most attractive nanomaterials due to their remarkable properties. In this review, we highlight recent research activities that are focused on the application of the TNT arrays for local drug delivery, specifically for addressing problems associated with orthopedic implants. The advantages of drug-releasing implants based on TNT arrays for local delivery of therapeutics in bone related to these challenging problems including inflammation, infection and osseointegration are discussed. An overview of recent research to advance the drug-releasing performance of TNT arrays and the potential of their future applications and development are presented.
Collapse
|
66
|
Boccafoschi F, Mosca C, Cannas M. Cardiovascular biomaterials: when the inflammatory response helps to efficiently restore tissue functionality? J Tissue Eng Regen Med 2012; 8:253-67. [DOI: 10.1002/term.1526] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/30/2012] [Accepted: 04/03/2012] [Indexed: 01/25/2023]
Affiliation(s)
- F. Boccafoschi
- Department of Health Sciences; University of Piemonte Orientale; “A. Avogadro” 28100 Novara Italy
| | - C. Mosca
- Department of Health Sciences; University of Piemonte Orientale; “A. Avogadro” 28100 Novara Italy
| | - M. Cannas
- Department of Health Sciences; University of Piemonte Orientale; “A. Avogadro” 28100 Novara Italy
| |
Collapse
|
67
|
Hughes AD, Mattison J, Western LT, Powderly JD, Greene BT, King MR. Microtube Device for Selectin-Mediated Capture of Viable Circulating Tumor Cells from Blood. Clin Chem 2012; 58:846-53. [DOI: 10.1373/clinchem.2011.176669] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abstract
BACKGROUND
Circulating tumor cells (CTCs) can be used clinically to treat cancer. As a diagnostic tool, the CTC count can be used to follow disease progression, and as a treatment tool, CTCs can be used to rapidly develop personalized therapeutic strategies. To be effectively used, however, CTCs must be isolated at high purity without inflicting cellular damage.
METHODS
We designed a microscale flow device with a functionalized surface of E-selectin and antibody molecules against epithelial markers. The device was additionally enhanced with a halloysite nanotube coating. We created model samples in which a known number of labeled cancer cells were suspended in healthy whole blood to determine device capture efficiency. We then isolated and cultured primary CTCs from buffy coat samples of patients diagnosed with metastatic cancer.
RESULTS
Approximately 50% of CTCs were captured from model samples. Samples from 12 metastatic cancer patients and 8 healthy participants were processed in nanotube-coated or smooth devices to isolate CTCs. We isolated 20–704 viable CTCs per 3.75-mL sample, achieving purities of 18%–80% CTCs. The nanotube-coated surface significantly improved capture purities (P = 0.0004). Experiments suggested that this increase in purity was due to suppression of leukocyte spreading.
CONCLUSIONS
The device successfully isolates viable CTCs from both blood and buffy coat samples. The approximately 50% capture rate with purities >50% with the nanotube coating demonstrates the functionality of this device in a clinical setting and opens the door for personalized cancer therapies.
Collapse
Affiliation(s)
- Andrew D Hughes
- Department of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Jeff Mattison
- Department of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Laura T Western
- Department of Biomedical Engineering, Cornell University, Ithaca, NY
| | - John D Powderly
- BioCytics, Inc., Huntersville, NC
- Carolina BioOncology Institute, PLLC, Huntersville, NC
| | - Bryan T Greene
- BioCytics, Inc., Huntersville, NC
- Carolina BioOncology Institute, PLLC, Huntersville, NC
| | - Michael R King
- Department of Biomedical Engineering, Cornell University, Ithaca, NY
| |
Collapse
|
68
|
The hemocompatibility and the reabsorption function of TiO2 nanotubes biomembranes. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-012-5038-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
69
|
|
70
|
Smith BS, Yoriya S, Johnson T, Popat KC. Dermal fibroblast and epidermal keratinocyte functionality on titania nanotube arrays. Acta Biomater 2011; 7:2686-96. [PMID: 21414425 DOI: 10.1016/j.actbio.2011.03.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/04/2011] [Accepted: 03/10/2011] [Indexed: 11/28/2022]
Abstract
Transcutaneous implants that penetrate through the depth of the skin are used in numerous clinical applications, including prosthetics and dental implants. Favorable interactions between the implant surface and the respective skin layers are critical for the long-term success of transcutaneous implantable devices, hence, it is essential to understand the physiologic response elicited by skin-biomaterial interactions. Recent studies have shown that material surfaces that provide topographic cues at the nanoscale level may provide one possible solution to enhanced biomaterial integration, thus preventing biomaterial rejection. In this study titania nanotube arrays were fabricated using a simple anodization technique as potential interfaces for transcutaneous implantable devices. The in vitro functionality of human dermal fibroblasts and epidermal keratinocytes were evaluated on these nanotube arrays (diameter 70-90 nm, length 1-1.5 μm). Cellular functionality in terms of adhesion, proliferation, orientation, viability, cytoskeletal organization, differentiation and morphology were investigated for up to 4 days in culture using fluorescence microscope imaging, a cell viability assay, indirect immunofluorescence and scanning electron microscopy. The results reported in this study indicate increased dermal fibroblast and decreased epidermal keratinocyte adhesion, proliferation and differentiation on titania nanotube arrays.
Collapse
Affiliation(s)
- Barbara S Smith
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|
71
|
Fischer KE, Nagaraj G, Hugh Daniels R, Li E, Cowles VE, Miller JL, Bunger MD, Desai TA. Hierarchical nanoengineered surfaces for enhanced cytoadhesion and drug delivery. Biomaterials 2011; 32:3499-506. [PMID: 21296409 DOI: 10.1016/j.biomaterials.2011.01.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 01/07/2011] [Indexed: 11/28/2022]
Abstract
Delivering therapeutics to mucosal tissues such as the nasal and gastrointestinal tracts is highly desirable due to ease of access and dense vasculature. However, the mucus layer effectively captures and removes most therapeutic macromolecules and devices. In previous work, we have shown that nanoengineered microparticles (NEMPs) adhere through the mucus layer, exhibiting up to 1000 times the pull-off force of an unmodified microsphere, and showing greater adhesion than some chemical targeting means. In this paper, we demonstrate that nanotopography improves device adhesion in vivo, increasing retention time up to ten-fold over unmodified devices. Moreover, we observe considerable adhesion in several cell lines using an in vitro shear flow model, indicating that this approach is promising for numerous tissues. We then demonstrate that nanowire-mediated adhesion is highly robust to variation in nanowire surface charge and cellular structure and function, and we characterize particle loading and elution. We present a form of cytoadhesion that utilizes the physical interaction of nanoengineered surfaces with subcellular structures to produce a robust and versatile cytoadhesive for drug delivery. These nanoscale adhesive mechanisms are also relevant to fields such as tissue engineering and wound healing because they likely affect stem cell differentiation, cell remodeling, migration, etc.
Collapse
Affiliation(s)
- Kathleen E Fischer
- UC Berkeley/UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA 94158-2330, USA
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
The exact role of engineered nanomaterials in immune system modulation remains unclear. The aim of this concise review is to give a comprehensive insight into recent published scientific data concerning the modulation of innate and adaptive immune responses by engineered nanoparticles, and to provide a basis for future experimental work related to designing safer, and more efficient biomaterials.
Collapse
Affiliation(s)
- Igor Pantic
- University of Belgrade, School of Medicine, Institute of Medical Physiology, Serbia.
| |
Collapse
|
73
|
Smith BS, Yoriya S, Grissom L, Grimes CA, Popat KC. Hemocompatibility of titania nanotube arrays. J Biomed Mater Res A 2010; 95:350-60. [DOI: 10.1002/jbm.a.32853] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|