51
|
Fowler TW, Mitchell TL, Janda CY, Xie L, Tu S, Chen H, Zhang H, Ye J, Ouyang B, Yuan TZ, Lee SJ, Newman M, Tripuraneni N, Rego ES, Mutha D, Dilip A, Vuppalapaty M, Baribault H, Yeh WC, Li Y. Development of selective bispecific Wnt mimetics for bone loss and repair. Nat Commun 2021; 12:3247. [PMID: 34059688 PMCID: PMC8167098 DOI: 10.1038/s41467-021-23374-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
The Wnt signaling pathway is intricately connected with bone mass regulation in humans and rodent models. We designed an antibody-based platform that generates potent and selective Wnt mimetics. Using this platform, we engineer bi-specific Wnt mimetics that target Frizzled and low-density lipoprotein receptor-related proteins and evaluate their effects on bone accrual in murine models. These synthetic Wnt agonists induce rapid and robust bone building effects, and correct bone mass deficiency and bone defects in various disease models, including osteoporosis, aging, and long bone fracture. Furthermore, when these Wnt agonists are combined with antiresorptive bisphosphonates or anti-sclerostin antibody therapies, additional bone accrual/maintenance effects are observed compared to monotherapy, which could benefit individuals with severe and/or acute bone-building deficiencies. Our data support the continued development of Wnt mimetics for the treatment of diseases of low bone mineral density, including osteoporosis.
Collapse
Affiliation(s)
| | | | - Claudia Y Janda
- Surrozen, Inc., South San Francisco, CA, USA.,Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Liqin Xie
- Surrozen, Inc., South San Francisco, CA, USA
| | | | - Hui Chen
- Surrozen, Inc., South San Francisco, CA, USA
| | - Haili Zhang
- Surrozen, Inc., South San Francisco, CA, USA
| | - Jingjing Ye
- Surrozen, Inc., South San Francisco, CA, USA
| | | | - Tom Z Yuan
- Surrozen, Inc., South San Francisco, CA, USA
| | | | | | | | | | - Devin Mutha
- Surrozen, Inc., South San Francisco, CA, USA
| | | | | | | | | | - Yang Li
- Surrozen, Inc., South San Francisco, CA, USA.
| |
Collapse
|
52
|
Wang F, Qian H, Kong L, Wang W, Wang X, Xu Z, Chai Y, Xu J, Kang Q. Accelerated Bone Regeneration by Astragaloside IV through Stimulating the Coupling of Osteogenesis and Angiogenesis. Int J Biol Sci 2021; 17:1821-1836. [PMID: 33994865 PMCID: PMC8120474 DOI: 10.7150/ijbs.57681] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/04/2021] [Indexed: 12/20/2022] Open
Abstract
Both osteoblasts and preosteoclasts contribute to the coupling of osteogenesis and angiogenesis, regulating bone regeneration. Astragaloside IV (AS-IV), a glycoside of cycloartane-type triterpene derived from the Chinese herb Astragalus membranaceus, exhibits various biological activities, including stimulating angiogenesis and attenuating ischemic-hypoxic injury. However, the effects and underlying mechanisms of AS-IV in osteogenesis, osteoclastogenesis, and bone regeneration remain poorly understood. In the present study, we found that AS-IV treatment inhibited osteoclastogenesis, preserved preosteoclasts, and enhanced platelet-derived growth factor-BB (PDGF-BB)-induced angiogenesis. Additionally, AS-IV promoted cell viability, osteogenic differentiation, and angiogenic gene expression in bone marrow mesenchymal stem cells (BMSCs). The activation of AKT/GSK-3β/β-catenin signaling was found to contribute to the effects of AS-IV on osteoclastogenesis and osteogenesis. Furthermore, AS-IV accelerated bone regeneration during distraction osteogenesis (DO), as evidenced from the improved radiological and histological manifestations and biomechanical parameters, accompanied by enhanced angiogenesis within the distraction zone. In summary, AS-IV accelerates bone regeneration during DO, by enhancing osteogenesis and preosteoclast-induced angiogenesis simultaneously, partially through AKT/GSK-3β/β-catenin signaling. These findings reveal that AS-IV may serve as a potential bioactive molecule for promoting the coupling of osteogenesis and angiogenesis, and imply that AKT/GSK-3β/β-catenin signaling may be a promising therapeutic target for patients during DO treatment.
Collapse
Affiliation(s)
- Feng Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Huijuan Qian
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Lingchi Kong
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Wenbo Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Xiaoyu Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Ze Xu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Yimin Chai
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Jia Xu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Qinglin Kang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| |
Collapse
|
53
|
Ohnishi T, Ogawa Y, Suda K, Komatsu M, Harmon SM, Asukai M, Takahata M, Iwasaki N, Minami A. Molecular Targeted Therapy for the Bone Loss Secondary to Pyogenic Spondylodiscitis Using Medications for Osteoporosis: A Literature Review. Int J Mol Sci 2021; 22:ijms22094453. [PMID: 33923233 PMCID: PMC8123121 DOI: 10.3390/ijms22094453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
Pyogenic spondylodiscitis can cause severe osteolytic and destructive lesions in the spine. Elderly or immunocompromised individuals are particularly susceptible to infectious diseases; specifically, infections in the spine can impair the ability of the spine to support the trunk, causing patients to be bedridden, which can also severely affect the physical condition of patients. Although treatments for osteoporosis have been well studied, treatments for bone loss secondary to infection remain to be elucidated because they have pathological manifestations that are similar to but distinct from those of osteoporosis. Recently, we encountered a patient with severely osteolytic pyogenic spondylodiscitis who was treated with romosozumab and exhibited enhanced bone formation. Romosozumab stimulated canonical Wnt/β-catenin signaling, causing robust bone formation and the inhibition of bone resorption, which exceeded the bone loss secondary to infection. Bone loss due to infections involves the suppression of osteoblastogenesis by osteoblast apoptosis, which is induced by the nuclear factor-κB and mitogen-activated protein kinase pathways, and osteoclastogenesis with the receptor activator of the nuclear factor-κB ligand-receptor combination and subsequent activation of the nuclear factor of activated T cells cytoplasmic 1 and c-Fos. In this study, we review and discuss the molecular mechanisms of bone loss secondary to infection and analyze the efficacy of the medications for osteoporosis, focusing on romosozumab, teriparatide, denosumab, and bisphosphonates, in treating this pathological condition.
Collapse
Affiliation(s)
- Takashi Ohnishi
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Bibai 072-0015, Japan; (Y.O.); (K.S.); (M.K.); (S.M.H.); (M.A.); (A.M.)
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (M.T.); (N.I.)
- Correspondence: ; Tel.: +11-81-126-63-2151
| | - Yuki Ogawa
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Bibai 072-0015, Japan; (Y.O.); (K.S.); (M.K.); (S.M.H.); (M.A.); (A.M.)
| | - Kota Suda
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Bibai 072-0015, Japan; (Y.O.); (K.S.); (M.K.); (S.M.H.); (M.A.); (A.M.)
| | - Miki Komatsu
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Bibai 072-0015, Japan; (Y.O.); (K.S.); (M.K.); (S.M.H.); (M.A.); (A.M.)
| | - Satoko Matsumoto Harmon
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Bibai 072-0015, Japan; (Y.O.); (K.S.); (M.K.); (S.M.H.); (M.A.); (A.M.)
| | - Mitsuru Asukai
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Bibai 072-0015, Japan; (Y.O.); (K.S.); (M.K.); (S.M.H.); (M.A.); (A.M.)
| | - Masahiko Takahata
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (M.T.); (N.I.)
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (M.T.); (N.I.)
| | - Akio Minami
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Bibai 072-0015, Japan; (Y.O.); (K.S.); (M.K.); (S.M.H.); (M.A.); (A.M.)
| |
Collapse
|
54
|
De Palma A, Nalesso G. WNT Signalling in Osteoarthritis and Its Pharmacological Targeting. Handb Exp Pharmacol 2021; 269:337-356. [PMID: 34510305 DOI: 10.1007/164_2021_525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA) is a highly disabling musculoskeletal condition affecting millions of people worldwide. OA is characterised by progressive destruction and irreversible morphological changes of joint tissues and architecture. At molecular level, de-regulation of several pathways contributes to the disruption of tissue homeostasis in the joint. Overactivation of the WNT/β-catenin signalling pathway has been associated with degenerative processes in OA. However, the multiple layers of complexity in the modulation of the signalling and the still insufficient knowledge of the specific molecular drivers of pathogenetic mechanisms have made difficult the pharmacological targeting of this pathway for therapeutic purposes. This review aims to provide an overview of the WNT/β-catenin signalling in OA with a particular focus on its role in the articular cartilage. Pathway components whose targeting showed therapeutic potential will be highlighted and described. A specific section will be dedicated to Lorecivivint, the first inhibitor of the β-catenin-dependent pathway currently in phase III clinical trial as OA-modifying agent.
Collapse
Affiliation(s)
- Anna De Palma
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Giovanna Nalesso
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, UK.
| |
Collapse
|
55
|
Holland R, Bain C, Alrasheed RS, Robling AG, Utreja A. The effect of overexpression of Lrp5 on orthodontic tooth movement. Orthod Craniofac Res 2020; 24:430-437. [PMID: 33326696 DOI: 10.1111/ocr.12459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/10/2020] [Accepted: 12/05/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To analyse the effect of gain-of-function mutations in the low-density lipoprotein receptor-related protein 5 (Lrp5) on orthodontic tooth movement (OTM). SETTING AND SAMPLE POPULATION A split-mouth study design was utilized. Thirty-two male Lrp5-high bone mass (HBM) knock-in mice including A214V and G171V mutants (n = 16/group) and sixteen C57BL/6 wild-type (WT) mice were included in the study. MATERIALS AND METHODS A mouse model of OTM was used for mesial movement of the maxillary first molar using a closed-coil nickel titanium (NiTi) spring attached between the molar and the incisors. After 21 days, the dissected maxillae were scanned for micro-computed tomography (micro-CT) analyses and embedded in methyl methacrylate and paraffin for histological staining and imaging. Histological analyses included immunohistochemistry for sclerostin (Sost), tartrate-resistant acid phosphatase (TRAP) staining for osteoclasts and fluorescent imaging. RESULTS OTM in the A214V and G171V groups was significantly less than the WT group. Bone volume (BV), per cent bone volume (BV/TV) and trabecular thickness (Tb.Th) were significantly increased in both A241V and G171V animals compared to the WT animals. On the compression side, decreased osteoclast activity was seen in both A214V and G171V groups compared to the WT group. Fluorescent labelling demonstrated that the pattern of bone deposition in the A214V animals was periosteal whereas the G171V animals added bone endocortically. CONCLUSION Gain-of-function mutations of Lrp5 decrease orthodontic tooth movement by increasing alveolar bone mass and reducing osteoclast-mediated bone resorption.
Collapse
Affiliation(s)
- Robert Holland
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Carol Bain
- Histotechnology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Alexander G Robling
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Achint Utreja
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, IN, USA.,Section of Orthodontics, Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, IL, USA
| |
Collapse
|
56
|
Wang L, Han L, Xue P, Hu X, Wong SW, Deng M, Tseng HC, Huang BW, Ko CC. Dopamine suppresses osteoclast differentiation via cAMP/PKA/CREB pathway. Cell Signal 2020; 78:109847. [PMID: 33242564 DOI: 10.1016/j.cellsig.2020.109847] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 01/08/2023]
Abstract
How the nervous system regulates bone remodeling is an exciting area of emerging research in bone biology. Accumulating evidence suggest that neurotransmitter-mediated inputs from neurons may act directly on osteoclasts. Dopamine is a neurotransmitter that can be released by hypothalamic neurons to regulate bone metabolism through the hypothalamic-pituitary-gonadal axis. Dopamine is also present in sympathetic nerves that penetrate skeletal structures throughout the body. It has been shown that dopamine suppresses osteoclast differentiation via a D2-like receptors (D2R)-dependent manner, but the intracellular secondary signaling pathway has not been elucidated. In this study, we found that cAMP-response element binding protein (CREB) activity responds to dopamine treatment during osteoclastogenesis. Considering the critical role of CREB in osteoclastogenesis, we hypothesize that CREB may be a critical target in dopamine's regulation of osteoclast differentiation. We confirmed that D2R is also present in RAW cells and activated by dopamine. Binding of dopamine to D2R inhibits the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway which ultimately decreases CREB phosphorylation during osteoclastogenesis. This was also associated with diminished expression of osteoclast markers that are downstream of CREB. Pharmacological activation of adenylate cyclase (to increase cAMP production) and PKA reverses the effect of dopamine on CREB activity and osteoclastogenesis. Therefore, we have identified D2R/cAMP/PKA/CREB as a candidate pathway that mediates dopamine's inhibition of osteoclast differentiation. These findings will contribute to our understanding of how the nervous and skeletal systems interact to regulate bone remodeling. This will enable future work toward elucidating the role of the nervous system in bone development, repair, aging, and degenerative disease.
Collapse
Affiliation(s)
- Lufei Wang
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Lichi Han
- Department of Oral Medicine, Medical College, Dalian University, Dalian, China
| | - Peng Xue
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Xiangxiang Hu
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Sing-Wai Wong
- Division of Comprehensive Oral Health, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Meng Deng
- Division of Craniofacial and Surgical Care, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Henry C Tseng
- Duke Eye Center and Department of Ophthalmology, Duke University Medical Center, Durham, NC, United States
| | - Bo-Wen Huang
- Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH, United States
| | - Ching-Chang Ko
- Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH, United States.
| |
Collapse
|
57
|
Li X, Ren G, Cai C, Yang X, Nie L, Jing X, Li C. TNF‑α regulates the osteogenic differentiation of bone morphogenetic factor 9 adenovirus‑transduced rat follicle stem cells via Wnt signaling. Mol Med Rep 2020; 22:3141-3150. [PMID: 32945435 PMCID: PMC7453510 DOI: 10.3892/mmr.2020.11439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
Periodontitis is a chronic infectious disease that alters the cellular microenvironment and promotes bone absorption. Bone morphogenetic protein 9 (BMP9) serves an important role in proliferation and differentiation, and tumor necrosis factor‑alpha (TNF‑α) is an important contributor to bone resorption. The present study aimed to investigate the effect of osteogenic differentiation in the presence of BMP9 and TNF‑α in rat follicle stem cells (rDFCs). rDFCs were transfected with adenoviruses expressing BMP9 (AdBMP9) and the expression levels of important proteins [BMP9, β‑catenin, glycogen synthase kinase 3β (GSK3β), phosphorylated‑GSK3β, calcium/calmodulin dependent protein kinase II and nemo like kinase] were determined using western blotting. The effect of osteogenesis was analyzed using reverse transcription‑quantitative PCR, in addition to alkaline phosphatase, Alizarin Red S, and hematoxylin and eosin staining methods. The results of the present study revealed that TNF‑α activated the canonical Wnt signaling pathway and suppressed osteogenesis. High concentrations of Dickkopf 1 (DKK1) reduced the osteogenic differentiation of AdBMP9‑transduced rDFCs, whereas low concentrations of DKK1 promoted BMP9‑induced bone formation, which was discovered to partially act via the canonical and non‑canonical Wnt signaling pathways. In conclusion, the findings of the present study suggested that the enhanced promoting effect of BMP9 alongside the treatment with low concentrations of DKK1 may be useful for treating periodontitis bone absorption.
Collapse
Affiliation(s)
- Xinyue Li
- Department of Outpatients, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Ge Ren
- Department of Outpatients, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Changjun Cai
- Department of Outpatients, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Xia Yang
- Department of Outpatients, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Li Nie
- Department of Outpatients, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Xueqin Jing
- Department of Outpatients, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Conghua Li
- Department of Outpatients, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
| |
Collapse
|
58
|
Schupbach D, Comeau-Gauthier M, Harvey E, Merle G. Wnt modulation in bone healing. Bone 2020; 138:115491. [PMID: 32569871 DOI: 10.1016/j.bone.2020.115491] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
Abstract
Genetic studies have been instrumental in the field of orthopaedics for finding tools to improve the standard management of fractures and delayed unions. The Wnt signaling pathway that is crucial for development and maintenance of many organs also has a very promising pathway for enhancement of bone regeneration. The Wnt pathway has been shown to have a direct effect on stem cells during bone regeneration, making Wnt a potential target to stimulate bone repair after trauma. A more complete view of how Wnt influences animal bone regeneration has slowly come to light. This review article provides an overview of studies done investigating the modulation of the canonical Wnt pathway in animal bone regeneration models. This not only includes a summary of the recent work done elucidating the roles of Wnt and β-catenin in fracture healing, but also the results of thirty transgenic studies, and thirty-eight pharmacological studies. Finally, we discuss the discontinuation of sclerostin clinical trials, ongoing clinical trials with lithium, the results of Dkk antibody clinical trials, the shift into combination therapies and the future opportunities to enhance bone repair and regeneration through the modulation of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Drew Schupbach
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Experimental Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A7-117, Montreal, Québec H3G 1A4, Canada.
| | - Marianne Comeau-Gauthier
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Experimental Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A7-117, Montreal, Québec H3G 1A4, Canada.
| | - Edward Harvey
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada.
| | - Geraldine Merle
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Department of Chemical Engineering, Polytechnique Montreal, 2500, chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
59
|
Li Q, Wang M, Xue H, Liu W, Guo Y, Xu R, Shao B, Yuan Q. Ubiquitin-Specific Protease 34 Inhibits Osteoclast Differentiation by Regulating NF-κB Signaling. J Bone Miner Res 2020; 35:1597-1608. [PMID: 32212276 DOI: 10.1002/jbmr.4015] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 02/05/2023]
Abstract
The ubiquitination and deubiquitination enzymes ensure the stability and proper function of most cellular proteins. Disturbance of either enzyme compromises tissue homeostasis. We recently have identified that the ubiquitin-specific protease 34 (USP34) contributes to bone formation by promoting osteogenic differentiation of mesenchymal stem cells. However, its role in bone resorption, which couples bone formation, remains unknown. Here we show that knockdown of Usp34 promotes osteoclast differentiation of RAW264.7 cells. Conditional knockout of Usp34 in bone marrow-derived macrophages (BMMs) or in osteoclasts leads to elevated osteoclast function and low bone mass. Mechanically, we identify that USP34 restrains NF-κB signaling by deubiquitinating and stabilizing the NF-κB inhibitor alpha (IκBα). Overexpression of IκBα represses osteoclastic hyperfunction of Usp34-deficient RAW264.7 cells. Collectively, our results show that USP34 inhibits osteoclastogenesis by regulating NF-κB signaling. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Qiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengyuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Hanxiao Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weiqing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuchen Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruoshi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
60
|
Gu H, Shi S, Xiao F, Huang Z, Xu J, Chen G, Zhou K, Lu L, Yin X. MiR-1-3p regulates the differentiation of mesenchymal stem cells to prevent osteoporosis by targeting secreted frizzled-related protein 1. Bone 2020; 137:115444. [PMID: 32447074 DOI: 10.1016/j.bone.2020.115444] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/11/2023]
Abstract
Osteoporosis (OP) is a systemic skeletal disorder with the characteristics of bone mass reduction and microarchitecture deterioration, resulting in bone fragility and increased fracture risk. A reduction in the osteoblast-differentiation of bone marrow mesenchymal stem cells (BMSCs) is considered as a basic pathogenesis of osteoporosis. miRNAs play a substantial role in the development and differentiation of BMSCs. In the present study, we found that miR-1-3p was significantly downregulated in the bones of Chinese osteoporotic patients (n = 29). Secreted frizzled-related protein 1 (SFRP1) was predicted as a target gene of miR-1-3p via the TargetScan and PicTar softwares and validated by dual-luciferase reporter assays. The findings revealed that the expression of SFRP1 was inversely correlated with miR-1-3p in osteoporotic patients. We induced mouse MSCs (mMSCs) to osteogenesis or adipogenesis and found that miR-1-3p was upregulated during osteogenesis but downregulated during adipogenesis. The overexpression of miR-1-3p stimulated osteogenesis and inhibited adipogenesis of mMSCs. In addition, ovariectomized (OVX) mice were tested and the function of miR-1-3p in vivo was explored. Immunohistochemistry and histomorphometric assays showed that in vivo inhibition of miR-1-3p increased the expression level of SFRP1 and reduced bone formation and bone mass. Furthermore, tartrate-resistant acid phosphatase (TRAP) staining indicated that the in vivo suppression of miR-1-3p promoted osteoclast activity, suggesting that miR-1-3p may influence bone mass by regulating bone resorption. It can be concluded that miR-1-3p plays a pivotal role in the pathogenesis of osteoporosis via targeting SFRP1 and may be a potential therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Huijie Gu
- Department of Orthopedics, Minhang Hospital, Fudan University, 170 Xin Song Road, Shanghai 201199, PR China
| | - Si Shi
- Department of Biochemistry and Molecular Biology, School of medicine, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Fangzhu Xiao
- Department of Orthopedics, The Fifth Hospital of Xiamen, 101 Min 'an Road, Maxiang Town, Xiang 'an District, Xiamen, Fujian Province, 361101, PR China
| | - Zhongyue Huang
- Department of Orthopedics, Minhang Hospital, Fudan University, 170 Xin Song Road, Shanghai 201199, PR China
| | - Jun Xu
- Department of Orthopedics, Minhang Hospital, Fudan University, 170 Xin Song Road, Shanghai 201199, PR China
| | - Guangnan Chen
- Department of Orthopedics, Minhang Hospital, Fudan University, 170 Xin Song Road, Shanghai 201199, PR China
| | - Kaifeng Zhou
- Department of Orthopedics, Minhang Hospital, Fudan University, 170 Xin Song Road, Shanghai 201199, PR China
| | - Lixia Lu
- Department of Biochemistry and Molecular Biology, School of medicine, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| | - Xiaofan Yin
- Department of Orthopedics, Minhang Hospital, Fudan University, 170 Xin Song Road, Shanghai 201199, PR China.
| |
Collapse
|
61
|
Local Wnt3a treatment restores bone regeneration in large osseous defects after surgical debridement of osteomyelitis. J Mol Med (Berl) 2020; 98:897-906. [PMID: 32424558 PMCID: PMC8526481 DOI: 10.1007/s00109-020-01924-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/13/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
Impaired bone homeostasis caused by osteomyelitis provokes serious variations in the bone remodeling process, thereby involving multiple inflammatory cytokines to activate bone healing. We have previously established a mouse model for post-traumatic osteomyelitis and studied bone regeneration after sufficient debridement. Moreover, we could further characterize the postinfectious inflammatory state of bony defects after debridement with elevated osteoclasts and decreased bone formation despite the absence of bacteria. In this study, we investigated the positive effects of Wnt-pathway modulation on bone regeneration in our previous established mouse model. This was achieved by local application of Wnt3a, a recombinant activator of the canonical Wnt-pathway. Application of Wnt3a could enhance new bone formation, which was verified by histological and μ-CT analysis. Moreover, histology and western blots revealed enhanced osteoblastogenesis and downregulated osteoclasts in a RANKL-dependent manner. Further analysis of Wnt-pathway showed downregulation after bone infections were reconstituted by application of Wnt3a. Interestingly, Wnt-inhibitory proteins Dickkopf 1 (DKK1), sclerostin, and secreted frizzled protein 1 (sFRP1) were upregulated simultaneously to Wnt-pathway activation, indicating a negative feedback for active form of Beta-catenin. In this study, we could demonstrate enhanced bone formation in defects caused by post-traumatic osteomyelitis after Wnt3a application. KEY MESSAGES: Osteomyelitis decreases bone regeneration Wnt3a restores bone healing after infection Canonical Wnt-pathway activation with negative feedback.
Collapse
|
62
|
De Maré A, D’Haese PC, Verhulst A. The Role of Sclerostin in Bone and Ectopic Calcification. Int J Mol Sci 2020; 21:ijms21093199. [PMID: 32366042 PMCID: PMC7246472 DOI: 10.3390/ijms21093199] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Sclerostin, a 22-kDa glycoprotein that is mainly secreted by the osteocytes, is a soluble inhibitor of canonical Wnt signaling. Therefore, when present at increased concentrations, it leads to an increased bone resorption and decreased bone formation. Serum sclerostin levels are known to be increased in the elderly and in patients with chronic kidney disease. In these patient populations, there is a high incidence of ectopic cardiovascular calcification. These calcifications are strongly associated with cardiovascular morbidity and mortality. Although data are still controversial, it is likely that there is a link between ectopic calcification and serum sclerostin levels. The main question, however, remains whether sclerostin exerts either a protective or deleterious role in the ectopic calcification process.
Collapse
|
63
|
Volleman TNE, Schol J, Morita K, Sakai D, Watanabe M. Wnt3a and wnt5a as Potential Chondrogenic Stimulators for Nucleus Pulposus Cell Induction: A Comprehensive Review. Neurospine 2020; 17:19-35. [PMID: 32252152 PMCID: PMC7136098 DOI: 10.14245/ns.2040040.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Low back pain remains a highly prevalent pathology engendering a tremendous socioeconomic burden. Low back pain is generally associated with intervertebral disc (IVD) degeneration, a process involving the deterioration of nucleus pulpous (NP) cells and IVD matrix. Scientific interest has directed efforts to restoring cell numbers as a strategy to enable IVD regeneration. Currently, mesenchymal stromal cells (MSCs) are being explored as cell therapy agents, due to their easy accessibility and differentiation potential. For enhancement of MSCs, growth factor supplementation is commonly applied to induce differentiation towards a chondrogenic (NP) cell phenotype. The wnt signaling pathways play a crucial role in chondrogenesis, nonetheless, literature appears to present controversies with regard to wnt3a and wnt5a for the induction of NP cells, chondrocytes, and MSCs. This review aims to summarize the reporting on wnt3a/wnt5a mediated NP cell differentiation, and to elucidate the mechanisms involved in wnt3a and wnt5a mediated chondrogenesis for potential application as cell therapy supplements for IVD regeneration. Our review suggests that wnt3a, subsequently replaced with a chondrogenic stimulating growth factor, can enhance the chondrogenic potential of MSCs in vitro. Contrariwise, wnt5a is suggested to play a role in maintaining cell potency of differentiated NP or chondrogenic cells.
Collapse
Affiliation(s)
- Tibo Nico Emmie Volleman
- Department Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jordy Schol
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Kosuke Morita
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
64
|
Autophagy negative-regulating Wnt signaling enhanced inflammatory osteoclastogenesis from Pre-OCs in vitro. Biomed Pharmacother 2020; 126:110093. [PMID: 32199225 DOI: 10.1016/j.biopha.2020.110093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022] Open
Abstract
Periodontitis thereby the alveolar bone loss induced by inflammation, is a wide-spread phenomenon around the world. It is an ongoing challenge faced by clinicians worldwide. This study aimed to identify the effects of lipopolysaccharide (LPS) on osteoclasts (OCs) differentiation in vitro and to investigate its molecular mechanism. For bone marrow derived macrophages (considered as Pro-OCs), LPS impaired their differentiation into OCs in a dose-dependent manner. In contrast, it promoted Pre-OCs (referred to receptor activator of nuclear factor-κB ligand (RANKL) pretreated Pro-OCs) and differentiated to OCs with increased maximum diameter, quantity, the covering area and the fusion index in vitro. It also facilitated OCs proliferation, bone resorption and OCs related genes expression. Furthermore, it was revealed that LPS enhanced OCs genesis from Pre-OCs via activating autophagy pathway consequently elevated the accumulation of TRAP, Cts K and NFATC1, specific genes of OCs. The members of Wnt signaling were expressed as at lower states during the LPS induced OCs formation, but they could be rescued in the presence of autophagy inhibitor. The most promising observation was the direct interaction of LC3B and Dvl2, indicating that the crosstalk between above pathways existed in OCs. Taken together, we consider that LPS activates autophagy which negatively regulates Wnt signaling via autophagic degradation of Dvl2 is significant for osteoclastogenesis from Pre-OCs in vitro. Our study sheds light on the fact that autophagy inhibitors will become a new, potentially applicable therapeutic option in the treatment of periodontal bone loss.
Collapse
|
65
|
Kozielewicz P, Turku A, Schulte G. Molecular Pharmacology of Class F Receptor Activation. Mol Pharmacol 2020; 97:62-71. [PMID: 31591260 DOI: 10.1124/mol.119.117986] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/25/2019] [Indexed: 12/29/2022] Open
Abstract
The class Frizzled (FZD) or class F of G protein-coupled receptors consists of 10 FZD paralogues and Smoothened (SMO). FZDs coordinate wingless/Int-1 signaling and SMO mediates Hedgehog signaling. Class F receptor signaling is intrinsically important for embryonic development and its dysregulation leads to diseases, including diverse forms of tumors. With regard to the importance of class F signaling in human disease, these receptors provide an attractive target for therapeutics, exemplified by the use of SMO antagonists for the treatment of basal cell carcinoma. Here, we review recent structural insights in combination with a more detailed functional understanding of class F receptor activation, G protein coupling, conformation-based functional selectivity, and mechanistic details of activating cancer mutations, which will lay the basis for further development of class F-targeting small molecules for human therapy. SIGNIFICANCE STATEMENT: Stimulated by recent insights into the activation mechanisms of class F receptors from structural and functional analysis of Frizzled and Smoothened, we aim to summarize what we know about the molecular details of ligand binding, agonist-driven conformational changes, and class F receptor activation. A better understanding of receptor activation mechanisms will allow us to engage in structure- and mechanism-driven drug discovery with the potential to develop more isoform-selective and potentially pathway-selective drugs for human therapy.
Collapse
Affiliation(s)
- Pawel Kozielewicz
- Section of Receptor Biology and Signaling, Department Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ainoleena Turku
- Section of Receptor Biology and Signaling, Department Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Schulte
- Section of Receptor Biology and Signaling, Department Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
66
|
Geniposide promotes the proliferation and differentiation of MC3T3-E1 and ATDC5 cells by regulation of microRNA-214. Int Immunopharmacol 2020; 80:106121. [PMID: 31972426 DOI: 10.1016/j.intimp.2019.106121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/20/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022]
Abstract
The research plans to make sure how Geniposide (GEN) functions in osteoblast proliferation and differentiation. The MC3T3-E1 and ATDC5 cells were treated with the GEN, XAV-939 and/or transfected with microRNA (miR)-214 mimic or corresponding control. Cell viability was detected with the CCK-8. The CyclinD1, Runx2, Osx, Ocn, Wnt3a and β-catenin were individually quantified via western blot. The cell cycle was tested by cell cycle analysis assay. The ALP activity was tested by ALP assay. qRT-PCR was used to examine the miR-214 expression level. The cell viability and the expressions of the CyclinD1, Runx2, Osx, Ocn Wnt3a and β-catenin, as well as the ALP activity were individually and significantly promoted by the GEN. Besides, miR-214 was down-regulated by the GEN. The XAV-939 or the miR-214 mimic destroyed the promotional effect of GEN on these elements above. In conclusion, GEN induced the proliferation and differentiation of the MC3T3-E1 and ATDC5 cells by targeting the miR-214 through Wnt/β-catenin activation.
Collapse
|
67
|
Rossi M, Buonuomo PS, Battafarano G, Conforti A, Mariani E, Algeri M, Pelle S, D'Agostini M, Macchiaiolo M, De Vito R, Gonfiantini MV, Jenkner A, Rana I, Bartuli A, Del Fattore A. Dissecting the mechanisms of bone loss in Gorham-Stout disease. Bone 2020; 130:115068. [PMID: 31525474 DOI: 10.1016/j.bone.2019.115068] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
Gorham-Stout disease (GSD) is a rare disorder characterized by progressive osteolysis and angiomatous proliferation. Since the mechanisms leading to bone loss in GSD are not completely understood, we performed histological, serum, cellular and molecular analyses of 7 patients. Increased vessels, osteoclast number and osteocyte lacunar area were revealed in patients' bone biopsies. Biochemical analysis of sera showed high levels of ICTP, Sclerostin, VEGF-A and IL-6. In vitro experiments revealed increased osteoclast differentiation and activity, and impaired mineralization ability of osteoblasts. To evaluate the involvement of systemic factors in GSD, control cells were treated with patients' sera and displayed an increase of osteoclastogenesis, bone resorption activity and a reduction of osteoblast function. Interestingly, GSD sera stimulated the vessel formation by endothelial cells EA.hy926. These results suggest that bone cell autonomous alterations with the cooperation of systemic factors are involved in massive bone loss and angiomatous proliferation observed in GSD patients.
Collapse
Affiliation(s)
- Michela Rossi
- Bone Physiopathology Group, Multifactorial Disease and Complex Phenotype Research Area, Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Giulia Battafarano
- Bone Physiopathology Group, Multifactorial Disease and Complex Phenotype Research Area, Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonella Conforti
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Eda Mariani
- Research Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Mattia Algeri
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Rome, Italy
| | | | | | - Marina Macchiaiolo
- Rare Diseases and Medical Genetic Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - Rita De Vito
- Histopathology, Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Alessandro Jenkner
- Division of Immunology and Infectious Diseases Department of Pediatrics, Bambino Gesù Children Hospital, Rome, Italy
| | - Ippolita Rana
- Rare Diseases and Medical Genetic Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Bartuli
- Rare Diseases and Medical Genetic Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Del Fattore
- Bone Physiopathology Group, Multifactorial Disease and Complex Phenotype Research Area, Bambino Gesù Children's Hospital, Rome, Italy.
| |
Collapse
|
68
|
Li X, Chen D, Jing X, Li C. DKK1 and TNF-alpha influence osteogenic differentiation of adBMP9-infected-rDFCs. Oral Dis 2019; 26:360-369. [PMID: 31733158 DOI: 10.1111/odi.13235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/12/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Rat dental follicle cells (rDFCs) function as precursor cells of periodontal tissues. Bone morphogenetic protein (BMP9) plays an important role in proliferation and differentiation. Tumour necrosis factor-alpha (TNF-alpha) is an important contributor to bone resorption. Wnt canonical pathway can be inhibited by Dickkopf 1 (DKK1). The aim of the study was to enhance the osteogenesis of BMP9 treated rDFCs in an inflammatory environment and elucidate the mechanism. MATERIALS AND METHODS rDFCs were infected by adenoviruses expressing BMP9 (adBMP9). Expression levels of proteins and genes were measured by Western blotting and qPCR. The effect on osteogenesis was evaluated by measuring the activity of alkaline phosphatase (ALP), observation of Alizarin Red S and haematoxylin and eosin staining. RESULTS TNF-alpha activated the canonical Wnt pathway and inhibited the non-canonical pathway. DKK1 suppressed the canonical pathway and promoted the non-canonical pathway. Addition of TNF-alpha or DKK1 inhibited BMP9/Smad pathway. However, this inhibition was reduced by the addition of DKK1 with TNF-alpha. CONCLUSIONS DKK1 reduces the inhibitory effects of TNF-alpha in adBMP9-infected-rDFCs, possibly through interaction with the Smad signalling pathway and Wnt pathways. These findings may lead to a novel approach for the treatment of periodontitis-related alveolar bone defects.
Collapse
Affiliation(s)
- Xinyue Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Dongcai Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xueqin Jing
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Conghua Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
69
|
The Regulation of Bone Metabolism and Disorders by Wnt Signaling. Int J Mol Sci 2019; 20:ijms20225525. [PMID: 31698687 PMCID: PMC6888566 DOI: 10.3390/ijms20225525] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
Wnt, a secreted glycoprotein, has an approximate molecular weight of 40 kDa, and it is a cytokine involved in various biological phenomena including ontogeny, morphogenesis, carcinogenesis, and maintenance of stem cells. The Wnt signaling pathway can be classified into two main pathways: canonical and non-canonical. Of these, the canonical Wnt signaling pathway promotes osteogenesis. Sclerostin produced by osteocytes is an inhibitor of this pathway, thereby inhibiting osteogenesis. Recently, osteoporosis treatment using an anti-sclerostin therapy has been introduced. In this review, the basics of Wnt signaling, its role in bone metabolism and its involvement in skeletal disorders have been covered. Furthermore, the clinical significance and future scopes of Wnt signaling in osteoporosis, osteoarthritis, rheumatoid arthritis and neoplasia are discussed.
Collapse
|
70
|
Amirhosseini M, Bernhardsson M, Lång P, Andersson G, Flygare J, Fahlgren A. Cyclin-dependent kinase 8/19 inhibition suppresses osteoclastogenesis by downregulating RANK and promotes osteoblast mineralization and cancellous bone healing. J Cell Physiol 2019; 234:16503-16516. [PMID: 30793301 DOI: 10.1002/jcp.28321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 01/24/2023]
Abstract
Cyclin-dependent kinase 8 (CDK8) is a mediator complex-associated transcriptional regulator that acts depending on context and cell type. While primarily under investigation as potential cancer therapeutics, some inhibitors of CDK8-and its paralog CDK19-have been reported to affect the osteoblast lineage and bone formation. This study investigated the effects of two selective CDK8/19 inhibitors on osteoclastogenesis and osteoblasts in vitro, and further evaluated how local treatment with a CDK8/19 inhibitor affects cancellous bone healing in rats. CDK8/19 inhibitors did not alter the proliferation of neither mouse bone marrow-derived macrophages (BMMs) nor primary mouse osteoblasts. Receptor activator of nuclear factor κΒ (NF-κB) ligand (RANKL)-induced osteoclastogenesis from mouse BMMs was suppressed markedly by inhibition of CDK8/19, concomitant with reduced tartrate-resistant acid phosphatase (TRAP) activity and C-terminal telopeptide of type I collagen levels. This was accompanied by downregulation of PU.1, RANK, NF-κB, nuclear factor of activated T-cells 1 (NFATc1), dendritic cell-specific transmembrane protein (DC-STAMP), TRAP, and cathepsin K in RANKL-stimulated BMMs. Downregulating RANK and its downstream signaling in osteoclast precursors enforce CDK8/19 inhibitors as anticatabolic agents to impede excessive osteoclastogenesis. In mouse primary osteoblasts, CDK8/19 inhibition did not affect differentiation but enhanced osteoblast mineralization by promoting alkaline phosphatase activity and downregulating osteopontin, a negative regulator of mineralization. In rat tibiae, a CDK8/19 inhibitor administered locally promoted cancellous bone regeneration. Our data indicate that inhibitors of CDK8/19 have the potential to develop into therapeutics to restrict osteolysis and enhance bone regeneration.
Collapse
Affiliation(s)
- Mehdi Amirhosseini
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Magnus Bernhardsson
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Pernilla Lång
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Göran Andersson
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Johan Flygare
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anna Fahlgren
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
71
|
Weivoda MM, Ruan M, Hachfeld CM, Pederson L, Howe A, Davey RA, Zajac JD, Kobayashi Y, Williams BO, Westendorf JJ, Khosla S, Oursler MJ. Wnt Signaling Inhibits Osteoclast Differentiation by Activating Canonical and Noncanonical cAMP/PKA Pathways. J Bone Miner Res 2019; 34:1546-1548. [PMID: 31415114 DOI: 10.1002/jbmr.3740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
72
|
Danieau G, Morice S, Rédini F, Verrecchia F, Royer BBL. New Insights about the Wnt/β-Catenin Signaling Pathway in Primary Bone Tumors and Their Microenvironment: A Promising Target to Develop Therapeutic Strategies? Int J Mol Sci 2019; 20:ijms20153751. [PMID: 31370265 PMCID: PMC6696068 DOI: 10.3390/ijms20153751] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma and Ewing sarcoma are the most common malignant primary bone tumors mainly occurring in children, adolescents and young adults. Current standard therapy includes multidrug chemotherapy and/or radiation specifically for Ewing sarcoma, associated with tumor resection. However, patient survival has not evolved for the past decade and remains closely related to the response of tumor cells to chemotherapy, reaching around 75% at 5 years for patients with localized forms of osteosarcoma or Ewing sarcoma but less than 30% in metastatic diseases and patients resistant to initial chemotherapy. Despite Ewing sarcoma being characterized by specific EWSR1-ETS gene fusions resulting in oncogenic transcription factors, currently, no targeted therapy could be implemented. It seems even more difficult to develop a targeted therapeutic strategy in osteosarcoma which is characterized by high complexity and heterogeneity in genomic alterations. Nevertheless, the common point between these different bone tumors is their ability to deregulate bone homeostasis and remodeling and divert them to their benefit. Therefore, targeting different actors of the bone tumor microenvironment has been hypothesized to develop new therapeutic strategies. In this context, it is well known that the Wnt/β-catenin signaling pathway plays a key role in cancer development, including osteosarcoma and Ewing sarcoma as well as in bone remodeling. Moreover, recent studies highlight the implication of the Wnt/β-catenin pathway in angiogenesis and immuno-surveillance, two key mechanisms involved in metastatic dissemination. This review focuses on the role played by this signaling pathway in the development of primary bone tumors and the modulation of their specific microenvironment.
Collapse
MESH Headings
- Adolescent
- Antineoplastic Agents/therapeutic use
- Bone Neoplasms/drug therapy
- Bone Neoplasms/genetics
- Bone Neoplasms/immunology
- Bone Neoplasms/mortality
- Bone and Bones
- Child
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphatic Metastasis
- Molecular Targeted Therapy/methods
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/mortality
- Neovascularization, Pathologic/prevention & control
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/immunology
- Osteosarcoma/drug therapy
- Osteosarcoma/genetics
- Osteosarcoma/immunology
- Osteosarcoma/mortality
- Proto-Oncogene Proteins c-ets/antagonists & inhibitors
- Proto-Oncogene Proteins c-ets/genetics
- Proto-Oncogene Proteins c-ets/immunology
- RNA-Binding Protein EWS/antagonists & inhibitors
- RNA-Binding Protein EWS/genetics
- RNA-Binding Protein EWS/immunology
- Sarcoma, Ewing/drug therapy
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/immunology
- Sarcoma, Ewing/mortality
- Survival Analysis
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- Wnt Signaling Pathway/drug effects
- Young Adult
- beta Catenin/antagonists & inhibitors
- beta Catenin/genetics
- beta Catenin/immunology
Collapse
Affiliation(s)
- Geoffroy Danieau
- Université de Nantes, INSERM, UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, 44035 Nantes, France
| | - Sarah Morice
- Université de Nantes, INSERM, UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, 44035 Nantes, France
| | - Françoise Rédini
- Université de Nantes, INSERM, UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, 44035 Nantes, France
| | - Franck Verrecchia
- Université de Nantes, INSERM, UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, 44035 Nantes, France
| | - Bénédicte Brounais-Le Royer
- Université de Nantes, INSERM, UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, 44035 Nantes, France.
| |
Collapse
|
73
|
Zhao H, Lazarenko OP, Chen JR. Hippuric acid and 3-(3-hydroxyphenyl) propionic acid inhibit murine osteoclastogenesis through RANKL-RANK independent pathway. J Cell Physiol 2019; 235:599-610. [PMID: 31271661 PMCID: PMC6852477 DOI: 10.1002/jcp.28998] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/04/2019] [Indexed: 12/22/2022]
Abstract
Nutritional factors influence bone development. Previous studies demonstrated that bone mass significantly increased with suppressed bone resorption in early life of rats fed with AIN-93G semi-purified diets supplemented with 10% whole blueberry (BB) powder for 2 weeks. However, the effects of increased phenolic acids in animal serum due to this diet on bone and bone resorption were unclear. This in vitro and in ex vivo study examined the effects of phenolic hippuric acid (HA) and 3-(3-hydroxyphenyl) propionic acid (3-3-PPA) on osteoclastic cell differentiation and bone resorption. We cultured murine osteoclast (macrophage) cell line, RAW 264.7 cells, and hematopoietic osteoclast progenitor cells (isolated from 4-week-old C57BL6/J mice) with 50 ng/ml of receptor activator of nuclear factor κ-Β ligand (RANKL). Morphologic studies showed decreased osteoclast number with treatment of 2.5% mouse serum from BB diet-fed animals compared with those treated with serum from standard casein diet-fed mice in both RAW 264.7 cell and primary cell cultures. HA and 3-3-PPA, but not 3-4-PPA, had dose-dependent suppressive effects on osteoclastogenesis and osteoclast resorptive activity in Corning osteo-assay plates. Signaling pathway analysis showed that after pretreatment with HA or 3-3-PPA, RANKL-stimulated increase of osteoclastogenic markers, such as nuclear factor of activated T-cells, cytoplasmic 1 and matrix metallopeptidase 9 gene/protein expression were blunted. Inhibitory effects of HA and 3-3-PPA on osteoclastogenesis utilized RANKL/RANK independent mediators. The study revealed that HA and 3-3-PPA significantly inhibited osteoclastogenesis and bone osteoclastic resorptive activity.
Collapse
Affiliation(s)
- Haijun Zhao
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Arkansas Children's Nutrition Center, Little Rock, Arkansas
| | - Oxana P Lazarenko
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Arkansas Children's Nutrition Center, Little Rock, Arkansas
| | - Jin-Ran Chen
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Arkansas Children's Nutrition Center, Little Rock, Arkansas
| |
Collapse
|
74
|
Sfrp4 repression of the Ror2/Jnk cascade in osteoclasts protects cortical bone from excessive endosteal resorption. Proc Natl Acad Sci U S A 2019; 116:14138-14143. [PMID: 31239337 DOI: 10.1073/pnas.1900881116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Loss-of-function mutations in the Wnt inhibitor secreted frizzled receptor protein 4 (SFRP4) cause Pyle's disease (OMIM 265900), a rare skeletal disorder characterized by wide metaphyses, significant thinning of cortical bone, and fragility fractures. In mice, we have shown that the cortical thinning seen in the absence of Sfrp4 is associated with decreased periosteal and endosteal bone formation and increased endocortical resorption. While the increase in Rankl/Opg in cortical bone of mice lacking Sfrp4 suggests an osteoblast-dependent effect on endocortical osteoclast (OC) activity, whether Sfrp4 can cell-autonomously affect OCs is not known. We found that Sfrp4 is expressed during bone marrow macrophage OC differentiation and that Sfrp4 significantly suppresses the ability of early and late OC precursors to respond to Rankl-induced OC differentiation. Sfrp4 deletion in OCs resulted in activation of canonical Wnt/β-catenin and noncanonical Wnt/Ror2/Jnk signaling cascades. However, while inhibition of canonical Wnt/β-catenin signaling did not alter the effect of Sfrp4 on OCgenesis, blocking the noncanonical Wnt/Ror2/Jnk cascade markedly suppressed its regulation of OC differentiation in vitro. Importantly, we report that deletion of Ror2 exclusively in OCs (CtskCreRor2 fl/fl ) in Sfrp4 null mice significantly reversed the increased number of endosteal OCs seen in these mice and reduced their cortical thinning. Altogether, these data show autocrine and paracrine effects of Sfrp4 in regulating OCgenesis and demonstrate that the increase in endosteal OCs seen in Sfrp4 -/- mice is a consequence of noncanonical Wnt/Ror2/Jnk signaling activation in OCs overriding the negative effect that activation of canonical Wnt/β-catenin signaling has on OCgenesis.
Collapse
|
75
|
Local delivery of adenosine receptor agonists to promote bone regeneration and defect healing. Adv Drug Deliv Rev 2019; 146:240-247. [PMID: 29913176 DOI: 10.1016/j.addr.2018.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 05/08/2018] [Accepted: 06/12/2018] [Indexed: 01/07/2023]
Abstract
Adenosine receptor activation has been investigated as a potential therapeutic approach to heal bone. Bone has enhanced regenerative potential when influenced by either direct or indirect adenosine receptor agonism. As investigators continue to elucidate how adenosine influences bone cell homeostasis at the cellular and molecular levels, a small but growing body of literature has reported successful in vivo applications of adenosine delivery. This review summarizes the role adenosine receptor ligation plays in osteoblast and osteoclast biology and remodeling/regeneration. It also reports on all the modalities described in the literature at this point for delivery of adenosine through in vivo models for bone healing and regeneration.
Collapse
|
76
|
Li X, Liu D, Li J, Yang S, Xu J, Yokota H, Zhang P. Wnt3a involved in the mechanical loading on improvement of bone remodeling and angiogenesis in a postmenopausal osteoporosis mouse model. FASEB J 2019; 33:8913-8924. [PMID: 31017804 DOI: 10.1096/fj.201802711r] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoporosis is a major health problem, making bones fragile and susceptible to fracture. Previous works showed that mechanical loading stimulated bone formation and accelerated fracture healing. Focusing on the role of Wnt3a (wingless/integrated 3a), this study was aimed to assess effects of mechanical loading to the spine, using ovariectomized (OVX) mice as a model of osteoporosis. Two-week daily application of this novel loading (4 N, 10 Hz, 5 min/d) altered bone remodeling with an increase in Wnt3a. Spinal loading promoted osteoblast differentiation, endothelial progenitor cell migration, and tube formation and inhibited osteoclast formation, migration, and adhesion. A transient silencing of Wnt3a altered the observed loading effects. Spinal loading significantly increased bone mineral density, bone mineral content, and bone area per tissue area. The loaded OVX group showed a significant increase in the number of osteoblasts and reduction in osteoclast surface/bone surface. Though expression of osteoblastic genes was increased, the levels of osteoclastic genes were decreased by loading. Spinal loading elevated a microvascular volume as well as VEGF expression. Collectively, this study supports the notion that Wnt3a-mediated signaling involves in the effect of spinal loading on stimulating bone formation, inhibiting bone resorption, and promoting angiogenesis in OVX mice. It also suggests that Wnt3a might be a potential therapeutic target for osteoporosis treatment.-Li, X., Liu, D., Li, J., Yang, S., Xu, J., Yokota, H., Zhang, P. Wnt3a involved in the mechanical loading on improvement of bone remodeling and angiogenesis in a postmenopausal osteoporosis mouse model.
Collapse
Affiliation(s)
- Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China; and
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China; and
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shuang Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jinfeng Xu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indiana, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China; and.,Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indiana, USA
| |
Collapse
|
77
|
Terkawi MA, Kadoya K, Takahashi D, Tian Y, Hamasaki M, Matsumae G, Alhasan H, Elmorsy S, Uetsuki K, Onodera T, Takahata M, Iwasaki N. Identification of IL-27 as potent regulator of inflammatory osteolysis associated with vitamin E-blended ultra-high molecular weight polyethylene debris of orthopedic implants. Acta Biomater 2019; 89:242-251. [PMID: 30880234 DOI: 10.1016/j.actbio.2019.03.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022]
Abstract
Vitamin E-blended ultra-high molecular weight polyethylene (VE-UHMWPE) is a newly introduced material for prosthetic components that has proven a better mechanical performance with lesser adverse cellular responses than conventional polyethylene in experimental animal models. However, the mechanisms by which VE-UHMWPE particles trigger a reduced osteolytic activity are unclear and remain to be investigated. Therefore, the current study aims at exploring a possible anti-osteolytic mechanism associated with VE-UHMWPE particles. Transcriptional profiling and bioinformatic analyses of human macrophages stimulated by VE-UHMWPE particles revealed a distinct transcriptional program from macrophages stimulated with UHMWPE particles. Out of the up-regulated genes, IL-27 was found to be significantly elevated in macrophages cultured with VE-UHMWPE particles as compared to these with UHMWPE particles (p = 0.0084). Furthermore, we studied the potential anti-osteolytic function of IL-27 in osteolysis murine model. Interestingly, administration of recombinant IL-27 onto calvariae significantly alleviated osteolytic lesions triggered by UHMWPE particles (p = 0.0002). Likewise, IL-27 inhibited differentiation of osteoclasts (p = 0.0116) and reduced inflammatory response (p < 0.0001) elicited by conventional UHMWPE particles in vitro. This is the first study demonstrating the involvement of IL-27 in macrophage response to VE-UHMWPE particles and its regulatory role in osteolysis. Our data highlight a novel therapeutic agent for treatment of inflammatory osteolysis induced by polyethylene debris. STATEMENT OF SIGNIFICANCE: Aseptic loosening due to inflammatory osteolysis remains the major cause of arthroplasty failure and represents a substantial economic burden worldwide. Ideal approach to prevent this failure should be directed to minimize inflammatory response triggered by wear particles at the site of implant. Understanding the mechanism by which VE-UHMWPE particles triggers lesser cellular responses and reduced osteolysis as compared to conventional UHMWPE particles may aid in discovery of regulatory factors. In the current study, we reported that IL-27 is a potent regulator of inflammatory osteolysis involved in the reduced biologic activities and osteolytic potentials associated with VE-UHMWPE particles. Initiating the production IL-27 in vivo after total joint arthroplasties might be a novel strategy to prolong the life-spam of implant.
Collapse
Affiliation(s)
- Mohamad Alaa Terkawi
- Department of Orthopedic Surgery, Hokkaido University, Faculty of Medicine and Graduate School of Medicine, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; Global Institution for Collaborative Research and Education (GI-CoRE), Frontier Research Center for Advanced Material and Life Science Bldg No 2, Hokkaido University, Japan.
| | - Ken Kadoya
- Department of Orthopedic Surgery, Hokkaido University, Faculty of Medicine and Graduate School of Medicine, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Daisuke Takahashi
- Department of Orthopedic Surgery, Hokkaido University, Faculty of Medicine and Graduate School of Medicine, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan.
| | - Yuan Tian
- Department of Orthopedic Surgery, Hokkaido University, Faculty of Medicine and Graduate School of Medicine, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Masanari Hamasaki
- Department of Orthopedic Surgery, Hokkaido University, Faculty of Medicine and Graduate School of Medicine, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Gen Matsumae
- Department of Orthopedic Surgery, Hokkaido University, Faculty of Medicine and Graduate School of Medicine, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Hend Alhasan
- Department of Orthopedic Surgery, Hokkaido University, Faculty of Medicine and Graduate School of Medicine, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Sameh Elmorsy
- Department of Orthopedic Surgery, Hokkaido University, Faculty of Medicine and Graduate School of Medicine, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; Department of Orthopedic Surgery, Beni-Suef University, Faculty of Medicine, Mokbel 62511, Beni-Suef, Egypt
| | - Keita Uetsuki
- R&D Center, Teijin Nakashima Medical Co., Ltd., 5322, Haga, Kita-ku, Okayama 701-1221, Japan
| | - Tomohiro Onodera
- Department of Orthopedic Surgery, Hokkaido University, Faculty of Medicine and Graduate School of Medicine, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; Global Institution for Collaborative Research and Education (GI-CoRE), Frontier Research Center for Advanced Material and Life Science Bldg No 2, Hokkaido University, Japan
| | - Masahiko Takahata
- Department of Orthopedic Surgery, Hokkaido University, Faculty of Medicine and Graduate School of Medicine, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Hokkaido University, Faculty of Medicine and Graduate School of Medicine, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; Global Institution for Collaborative Research and Education (GI-CoRE), Frontier Research Center for Advanced Material and Life Science Bldg No 2, Hokkaido University, Japan
| |
Collapse
|
78
|
Koga Y, Tsurumaki H, Aoki-Saito H, Sato M, Yatomi M, Takehara K, Hisada T. Roles of Cyclic AMP Response Element Binding Activation in the ERK1/2 and p38 MAPK Signalling Pathway in Central Nervous System, Cardiovascular System, Osteoclast Differentiation and Mucin and Cytokine Production. Int J Mol Sci 2019; 20:ijms20061346. [PMID: 30884895 PMCID: PMC6470985 DOI: 10.3390/ijms20061346] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 11/26/2022] Open
Abstract
There are many downstream targets of mitogen-activated protein kinase (MAPK) signalling that are involved in neuronal development, cellular differentiation, cell migration, cancer, cardiovascular dysfunction and inflammation via their functions in promoting apoptosis and cell motility and regulating various cytokines. It has been reported that cyclic AMP response element-binding protein (CREB) is phosphorylated and activated by cyclic AMP signalling and calcium/calmodulin kinase. Recent evidence also points to CREB phosphorylation by the MAPK signalling pathway. However, the specific roles of CREB phosphorylation in MAPK signalling have not yet been reviewed in detail. Here, we describe the recent advances in the study of this MAPK-CREB signalling axis in human diseases. Overall, the crosstalk between extracellular signal-related kinase (ERK) 1/2 and p38 MAPK signalling has been shown to regulate various physiological functions, including central nervous system, cardiac fibrosis, alcoholic cardiac fibrosis, osteoclast differentiation, mucin production in the airway, vascular smooth muscle cell migration, steroidogenesis and asthmatic inflammation. In this review, we focus on ERK1/2 and/or p38 MAPK-dependent CREB activation associated with various diseases to provide insights for basic and clinical researchers.
Collapse
Affiliation(s)
- Yasuhiko Koga
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Hiroaki Tsurumaki
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Haruka Aoki-Saito
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Makiko Sato
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Masakiyo Yatomi
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Kazutaka Takehara
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Takeshi Hisada
- Gunma University Graduate School of Health Sciences, 3-39-22 sho-wa machi Maebashi, Gunma 371-8514, Japan.
| |
Collapse
|
79
|
Han X, Gong S, Li N, Wang X, Liu P, Xu Y, He X, Jiang W, Si S. A Novel Small Molecule Which Increases Osteoprotegerin Expression and Protects Against Ovariectomy-Related Bone Loss in Rats. Front Pharmacol 2019; 10:103. [PMID: 30914947 PMCID: PMC6421503 DOI: 10.3389/fphar.2019.00103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/25/2019] [Indexed: 12/24/2022] Open
Abstract
The ratio of osteoprotegerin (OPG) to the receptor activator of NF-κB ligand (RANKL) is a key determinant in the regulation of bone metabolism. The study was performed to screen novel anti-osteoporotic drugs regulating OPG/RANKL ratio and evaluate their effect on bone metabolism. According to the screening results and in vitro results, we found a small molecule, E09241, significantly increased the ratio of OPG/RANKL by mainly increasing OPG expression. Our in vitro studies showed that E09241 increased the alkaline phosphatase (ALP) activity of mouse osteoblasts, promoted mineralization, and increased the expression of osteogenic differentiation-related genes. In addition, we observed that E09241 inhibited RANKL-induced osteoclast differentiation and reduced the expression of osteoclast differentiation-related proteins nuclear factor of activated T cells c1 (NFATc1) and matrix metalloproteinase 9 (MMP-9). More importantly, E09241 exerted therapeutic protection against bone loss in ovariectomized rats in vivo. This protective effect was confirmed to be achieved by inhibiting bone resorption and promoting bone formation in vivo. Mechanistically, E09241 regulates OPG expression through canonical Wnt/β-catenin signaling. Our findings suggest that E09241 is a promising small-molecule compound for treating osteoporosis with a dual effect on osteoblasts and osteoclasts.
Collapse
Affiliation(s)
- Xiaowan Han
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shiqiang Gong
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ni Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Liu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaobo He
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuyi Si
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
80
|
Kang KS, Hong JM, Horan DJ, Lim KE, Bullock WA, Bruzzaniti A, Hann S, Warman ML, Robling AG. Induction of Lrp5 HBM-causing mutations in Cathepsin-K expressing cells alters bone metabolism. Bone 2019; 120:166-175. [PMID: 30409757 PMCID: PMC6360125 DOI: 10.1016/j.bone.2018.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 09/06/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022]
Abstract
High-bone-mass (HBM)-causing missense mutations in the low density lipoprotein receptor-related protein-5 (Lrp5) are associated with increased osteoanabolic action and protection from disuse- and ovariectomy-induced osteopenia. These mutations (e.g., A214V and G171V) confer resistance to endogenous secreted Lrp5/6 inhibitors, such as sclerostin (SOST) and Dickkopf homolog-1 (DKK1). Cells in the osteoblast lineage are responsive to canonical Wnt stimulation, but recent work has indicated that osteoclasts exhibit both indirect and direct responsiveness to canonical Wnt. Whether Lrp5-HBM receptors, expressed in osteoclasts, might alter osteoclast differentiation, activity, and consequent net bone balance in the skeleton, is not known. To address this, we bred mice harboring heterozygous Lrp5 HBM-causing conditional knock-in alleles to Ctsk-Cre transgenic mice and studied the phenotype using DXA, μCT, histomorphometry, serum assays, and primary cell culture. Mice with HBM alleles induced in Ctsk-expressing cells (TG) exhibited higher bone mass and architectural properties compared to non-transgenic (NTG) counterparts. In vivo and in vitro measurements of osteoclast activity, population density, and differentiation yielded significant reductions in osteoclast-related parameters in female but not male TG mice. Droplet digital PCR performed on osteocyte enriched cortical bone tubes from TG and NTG mice revealed that ~8-17% of the osteocyte population (depending on sex) underwent recombination of the conditional Lrp5 allele in the presence of Ctsk-Cre. Further, bone formation parameters in the midshaft femur cortex show a small but significant increase in anabolic action on the endocortical but not periosteal surface. These findings suggest that Wnt/Lrp5 signaling in osteoclasts affects osteoclastogenesis and activity in female mice, but also that some of the changes in bone mass in TG mice might be due to Cre expression in the osteocyte population.
Collapse
Affiliation(s)
- Kyung Shin Kang
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA; School of Physical Science & Engineering, Anderson University, Anderson, IN, USA
| | - Jung Min Hong
- Department of Biomedical & Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Daniel J Horan
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kyung-Eun Lim
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Whitney A Bullock
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Angela Bruzzaniti
- Department of Biomedical & Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Steven Hann
- Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Matthew L Warman
- Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, USA; Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Alexander G Robling
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA; Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
81
|
|
82
|
Abstract
Skeletal development is exquisitely controlled both spatially and temporally by cell signaling networks. Gαs is the stimulatory α-subunit in a heterotrimeric G protein complex transducing the signaling of G-protein-coupled receptors (GPCRs), responsible for controlling both skeletal development and homeostasis. Gαs, encoded by the GNAS gene in humans, plays critical roles in skeletal development and homeostasis by regulating commitment, differentiation and maturation of skeletal cells. Gαs-mediated signaling interacts with the Wnt and Hedgehog signaling pathways, both crucial regulators of skeletal development, remodeling and injury repair. Genetic mutations that disrupt Gαs functions cause human disorders with severe skeletal defects, such as fibrous dysplasia of bone and heterotopic bone formation. This chapter focuses on the crucial roles of Gαs signaling during skeletal development and homeostasis, and the pathological mechanisms underlying skeletal diseases caused by GNAS mutations.
Collapse
Affiliation(s)
- Qian Cong
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Ruoshi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States.
| |
Collapse
|
83
|
Wright SC, Cañizal MCA, Benkel T, Simon K, Le Gouill C, Matricon P, Namkung Y, Lukasheva V, König GM, Laporte SA, Carlsson J, Kostenis E, Bouvier M, Schulte G, Hoffmann C. FZD 5 is a Gα q-coupled receptor that exhibits the functional hallmarks of prototypical GPCRs. Sci Signal 2018; 11:11/559/eaar5536. [PMID: 30514810 DOI: 10.1126/scisignal.aar5536] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Frizzleds (FZDs) are a group of seven transmembrane-spanning (7TM) receptors that belong to class F of the G protein-coupled receptor (GPCR) superfamily. FZDs bind WNT proteins to stimulate diverse signaling cascades involved in embryonic development, stem cell regulation, and adult tissue homeostasis. Frizzled 5 (FZD5) is one of the most studied class F GPCRs that promote the functional inactivation of the β-catenin destruction complex in response to WNTs. However, whether FZDs function as prototypical GPCRs has been heavily debated and, in particular, FZD5 has not been shown to activate heterotrimeric G proteins. Here, we show that FZD5 exhibited a conformational change after the addition of WNT-5A, which is reminiscent of class A and class B GPCR activation. In addition, we performed several live-cell imaging and spectrometric-based approaches, such as dual-color fluorescence recovery after photobleaching (dcFRAP) and resonance energy transfer (RET)-based assays that demonstrated that FZD5 activated Gαq and its downstream effectors upon stimulation with WNT-5A. Together, these findings suggest that FZD5 is a 7TM receptor with a bona fide GPCR activation profile and suggest novel targets for drug discovery in WNT-FZD signaling.
Collapse
Affiliation(s)
- Shane C Wright
- Section of Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, S17165 Stockholm, Sweden.,Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montréal, Montréal, QC H3C 3J7, Canada
| | - Maria Consuelo Alonso Cañizal
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany.,Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital Jena, Friedrich-Schiller University Jena, Hans-Knöll-Strasse 2, 07745 Jena, Germany
| | - Tobias Benkel
- Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Katharina Simon
- Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Christian Le Gouill
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montréal, Montréal, QC H3C 3J7, Canada
| | - Pierre Matricon
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden
| | - Yoon Namkung
- Department of Medicine, Research Institute of the McGill University Health Center, McGill University, Montréal, QC H4A 3J1, Canada
| | - Viktoria Lukasheva
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montréal, Montréal, QC H3C 3J7, Canada
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center, McGill University, Montréal, QC H4A 3J1, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden
| | - Evi Kostenis
- Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montréal, Montréal, QC H3C 3J7, Canada
| | - Gunnar Schulte
- Section of Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, S17165 Stockholm, Sweden.
| | - Carsten Hoffmann
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany. .,Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital Jena, Friedrich-Schiller University Jena, Hans-Knöll-Strasse 2, 07745 Jena, Germany
| |
Collapse
|
84
|
Duan X, Yang S, Zhang L, Yang T. V-ATPases and osteoclasts: ambiguous future of V-ATPases inhibitors in osteoporosis. Theranostics 2018; 8:5379-5399. [PMID: 30555553 PMCID: PMC6276090 DOI: 10.7150/thno.28391] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
Vacuolar ATPases (V-ATPases) play a critical role in regulating extracellular acidification of osteoclasts and bone resorption. The deficiencies of subunit a3 and d2 of V-ATPases result in increased bone density in humans and mice. One of the traditional drug design strategies in treating osteoporosis is the use of subunit a3 inhibitor. Recent findings connect subunits H and G1 with decreased bone density. Given the controversial effects of ATPase subunits on bone density, there is a critical need to review the subunits of V-ATPase in osteoclasts and their functions in regulating osteoclasts and bone remodeling. In this review, we comprehensively address the following areas: information about all V-ATPase subunits and their isoforms; summary of V-ATPase subunits associated with human genetic diseases; V-ATPase subunits and osteopetrosis/osteoporosis; screening of all V-ATPase subunits variants in GEFOS data and in-house data; spectrum of V-ATPase subunits during osteoclastogenesis; direct and indirect roles of subunits of V-ATPases in osteoclasts; V-ATPase-associated signaling pathways in osteoclasts; interactions among V-ATPase subunits in osteoclasts; osteoclast-specific V-ATPase inhibitors; perspective of future inhibitors or activators targeting V-ATPase subunits in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Xiaohong Duan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, the Fourth Military Medical University, 145 West Changle Road, Xi'an 710032, P. R. China
| | - Shaoqing Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, the Fourth Military Medical University, 145 West Changle Road, Xi'an 710032, P. R. China
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, P. R. China
| | - Tielin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, People's Republic of China
| |
Collapse
|
85
|
Appelman-Dijkstra NM, Papapoulos SE. Clinical advantages and disadvantages of anabolic bone therapies targeting the WNT pathway. Nat Rev Endocrinol 2018; 14:605-623. [PMID: 30181608 DOI: 10.1038/s41574-018-0087-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The WNT signalling pathway is a key regulator of bone metabolism, particularly bone formation, which has helped to define the role of osteocytes - the most abundant bone cells - as orchestrators of bone remodelling. Several molecules involved in the control of the WNT signalling pathway have been identified as potential targets for the development of bone-building therapeutics for patients with osteoporosis. Several of these molecules have been investigated in animal models, but only inhibitors of sclerostin (which is produced by osteocytes) have been investigated in phase III clinical studies. Here, we review the rationale for these developments and the specificity and potential off-target actions of WNT-based therapeutics. We also describe the available preclinical and clinical studies and discuss the benefits and risks of using sclerostin inhibitors for the management of patients with osteoporosis.
Collapse
|
86
|
Boyce BF, Li J, Xing L, Yao Z. Bone Remodeling and the Role of TRAF3 in Osteoclastic Bone Resorption. Front Immunol 2018; 9:2263. [PMID: 30323820 PMCID: PMC6172306 DOI: 10.3389/fimmu.2018.02263] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/11/2018] [Indexed: 02/05/2023] Open
Abstract
Skeletal health is maintained by bone remodeling, a process in which microscopic sites of effete or damaged bone are degraded on bone surfaces by osteoclasts and subsequently replaced by new bone, which is laid down by osteoblasts. This normal process can be disturbed in a variety of pathologic processes, including localized or generalized inflammation, metabolic and endocrine disorders, primary and metastatic cancers, and during aging as a result of low-grade chronic inflammation. Osteoclast formation and activity are promoted by factors, including cytokines, hormones, growth factors, and free radicals, and require expression of macrophage-colony stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) by accessory cells in the bone marrow, including osteoblastic and immune cells. Expression of TNF receptor-associated factor 6 (TRAF6) is required in osteoclast precursors to mediate RANKL-induced activation of NF-κB, which is also necessary for osteoclast formation and activity. TRAF3, in contrast is not required for osteoclast formation, but it limits RANKL-induced osteoclast formation by promoting proteasomal degradation of NF-κB-inducing kinase in a complex with TRAF2 and cellular inhibitor of apoptosis proteins (cIAP). TRAF3 also limits osteoclast formation induced by TNF, which mediates inflammation and joint destruction in inflammatory diseases, including rheumatoid arthritis. Chloroquine and hydroxychloroquine, anti-inflammatory drugs used to treat rheumatoid arthritis, prevent TRAF3 degradation in osteoclast precursors and inhibit osteoclast formation in vitro. Chloroquine also inhibits bone destruction induced by ovariectomy and parathyroid hormone in mice in vivo. Mice genetically engineered to have TRAF3 deleted in osteoclast precursors and macrophages develop early onset osteoporosis, inflammation in multiple tissues, infections, and tumors, indicating that TRAF3 suppresses inflammation and tumors in myeloid cells. Mice with TRAF3 conditionally deleted in mesenchymal cells also develop early onset osteoporosis due to a combination of increased osteoclast formation and reduced osteoblast formation. TRAF3 protein levels decrease in bone and bone marrow during aging in mice and humans. Development of drugs to prevent TRAF3 degradation in immune and bone cells could be a novel therapeutic approach to prevent or reduce bone loss and the incidence of several common diseases associated with aging.
Collapse
Affiliation(s)
- Brendan F. Boyce
- Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | | | | | | |
Collapse
|
87
|
Li Q, Li C, Xi S, Li X, Ding L, Li M. The effects of photobiomodulation therapy on mouse pre-osteoblast cell line MC3T3-E1 proliferation and apoptosis via miR-503/Wnt3a pathway. Lasers Med Sci 2018; 34:607-614. [DOI: 10.1007/s10103-018-2636-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022]
|
88
|
The origin of GSKIP, a multifaceted regulatory factor in the mammalian Wnt pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1046-1059. [DOI: 10.1016/j.bbamcr.2018.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 11/17/2022]
|
89
|
Schulte G, Wright SC. Frizzleds as GPCRs - More Conventional Than We Thought! Trends Pharmacol Sci 2018; 39:828-842. [PMID: 30049420 DOI: 10.1016/j.tips.2018.07.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 01/14/2023]
Abstract
For more than 30 years, WNT/β-catenin and planar cell polarity signaling has formed the basis for what we understand to be the primary output of the interaction between WNTs and their cognate receptors known as Frizzleds (FZDs). In the shadow of these pathways, evidence for the involvement of heterotrimeric G proteins in WNT signaling has grown substantially over the years - redefining the complexity of the WNT signaling network. Moreover, the distinct characteristics of FZD paralogs are becoming better understood, and we can now apply concepts valid for classical GPCRs to grasp FZDs as molecular machines at the interface of ligand binding and intracellular effects. This review discusses recent developments in the field of WNT/FZD signaling in the context of GPCR pharmacology, and identifies remaining mysteries with an emphasis on structural and kinetic components that support this dogma shift.
Collapse
Affiliation(s)
- Gunnar Schulte
- Section of Receptor Biology and Signaling, Department of Physiology and Pharmacology, Biomedicum 6D, Tomtebodavägen 16, Karolinska Institutet, S-171 65 Stockholm, Sweden.
| | - Shane C Wright
- Section of Receptor Biology and Signaling, Department of Physiology and Pharmacology, Biomedicum 6D, Tomtebodavägen 16, Karolinska Institutet, S-171 65 Stockholm, Sweden
| |
Collapse
|
90
|
Li L, Wang Y, Zhang N, Zhang Y, Lin J, Qiu X, Gui Y, Wang F, Li D, Wang L. Heterozygous deletion of LRP5 gene in mice alters profile of immune cells and modulates differentiation of osteoblasts. Biosci Trends 2018; 12:266-274. [PMID: 29899194 DOI: 10.5582/bst.2018.01013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Skeletal homeostasis is dynamically influenced by the immune system. Low density lipoprotein receptor-related protein-5 (LRP5) is a co-receptor of the Wnt signaling pathway, which modulates bone metabolism in humans and mice. Immune disorders can lead to abnormal bone metabolism. It is unclear whether and how LRP5 alters the balance of the immune system to modulate bone homeostasis. In this study, we used primary osteoblast to detect the differentiation of osteoblasts in vitro, the immune cells of spleen and bone marrow of 6-month old LRP5 heterozygote (HZ) and wild-type (WT) mice were analyzed by Flow cytometry. We found that LRP5+/- could influence the differentiation of osteoblasts by decreasing the mRNA level of Osterix, and increasing the mRNA level of Runx2 and the ratio of receptor activator for nuclear factor-κB ligand/osteoprotegerin (RANKL/OPG). In the LRP5+/- mice, percentages of NK cells, CD3e+ cells, and CD8a+ T cells were increased in both spleen and bone marrow, and percentages of CD106+ cells and CD11c+ cells were increased in spleen while decreased in bone marrow, conversely, CD62L+ cells were decreased in spleen while increased in bone marrow compared to the WT mice. Percentages of CD4+ cells, CD14+ cells, and CD254+ cells were increased in the spleen, and CTLA4+ cells were increased in the bone marrow of the LRP5+/- mice. The mRNA level of Wnt signaling molecules such as β-catenin, and c-myc were decreased and APC was increased in spleen lymphocytes and bone marrow lymphocytes, and the mRNA level of Wnt3a was decreased in spleen lymphocytes while no change in bone marrow lymphocytes was seen with silencing LRP5 by specific small interfering RNA. In conclusion, heterozygous deletion of the LRP5 gene in mice could alter the profile of the immune cells, influence the balance of immune environment, and modulate bone homeostasis, which might present a potential mechanism to explore the Wnt signaling pathway in the modulation of the immune system.
Collapse
Affiliation(s)
- Lisha Li
- Obstetrics and Gynecology Hospital of Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Yan Wang
- Obstetrics and Gynecology Hospital of Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Na Zhang
- Obstetrics and Gynecology Hospital of Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Yang Zhang
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine
| | - Jing Lin
- Obstetrics and Gynecology Hospital of Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Xuemin Qiu
- Obstetrics and Gynecology Hospital of Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Yuyan Gui
- Obstetrics and Gynecology Hospital of Fudan University
| | - Feifei Wang
- Obstetrics and Gynecology Hospital of Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Dajin Li
- Obstetrics and Gynecology Hospital of Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Ling Wang
- Obstetrics and Gynecology Hospital of Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases.,Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
| |
Collapse
|
91
|
Zhang L, Bao D, Li P, Lu Z, Pang L, Chen Z, Guo H, Gao Z, Jin Q. Particle-induced SIRT1 downregulation promotes osteoclastogenesis and osteolysis through ER stress regulation. Biomed Pharmacother 2018; 104:300-306. [PMID: 29775898 DOI: 10.1016/j.biopha.2018.05.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sirtuin 1 (SIRT1) downregulation has been found to be induced by wear particles in aseptic prosthesis loosening (APL). Osteoclastogenesis and osteoclast activation are the main pathological factors associated with APL. However, whether SIRT1 downregulation contributes to the formation and activation of osteoclasts through the induction of endoplasmic reticulum (ER) stress is unclear. METHODS To address this, an osteolysis mouse model was used in which animals were treated with the SIRT1 activator, resveratrol (RES), or an ER stress inhibitor, 4-PBA, for two weeks. Osteolysis, osteoclastogenesis, and morphologic alteration of calvariae were observed by toluidine blue, TRAP, and H&E staining. SIRT1 expression and ER stress were evaluated by western blot analysis. In vitro, mouse macrophage RAW 264.7 cells were treated with polyethylene (PE) particles alone or combined with either RES or 4-PBA, and SIRT1 expression and ER stress were measured using western blot assays. Osteoclast differentiation was determined through TRAP staining. Osteoclast activation was evaluated by culturing osteoclast cells on bone slices followed by toluidine blue staining. Mechanistically, osteoclastogenesis-related MAPK activation, NFATc1 and c-Fos expression, and NF-κB translocation were determined. RESULTS Both in vivo and in vitro experimental results indicated that PE particles induced SIRT1 downregulation and enhanced ER stress. SIRT1 activator RES and ER stress inhibitor 4-PBA significantly suppressed PE particle-induced osteoclast differentiation and osteolysis. In vitro experimental results showed that 4-PBA suppressed PE particle-induced ERK1/2, p38, and JNK activation, NFATc1 and c-Fos upregulation, as well as NF-κB p65 nucleus translocation. CONCLUSIONS PE particle-induced downregulation of SIRT1 enhances ER stress and promotes osteoclast proliferation and bone resorption through regulation of c-Fos, NFATc1, and the MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Dongmei Bao
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Peng Li
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Zhidong Lu
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Long Pang
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Zhirong Chen
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Haohui Guo
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Zhihui Gao
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Qunhua Jin
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
92
|
Ramaswamy G, Fong J, Brewer N, Kim H, Zhang D, Choi Y, Kaplan FS, Shore EM. Ablation of Gsα signaling in osteoclast progenitor cells adversely affects skeletal bone maintenance. Bone 2018; 109:86-90. [PMID: 29183785 PMCID: PMC5866199 DOI: 10.1016/j.bone.2017.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/09/2017] [Accepted: 11/23/2017] [Indexed: 01/18/2023]
Abstract
Gsα, the alpha stimulatory subunit of heterotrimeric G proteins that activates downstream signaling through the adenylyl cyclase and cAMP/PKA pathway, plays an important role in bone development and remodeling. The role of Gsα in mesenchymal stem cell (MSC) differentiation to osteoblasts has been demonstrated in several mouse models of Gsα inactivation. Previously, using mice with heterozygous germline deletion of Gsα (Gnas+/p-), we identified a novel additional role for Gsα in bone remodeling, and showed the importance of Gnas in maintaining bone quality by regulating osteoclast differentiation and function. In this study, we show that postnatal deletion of Gsα (CreERT2;Gnasfl/fl) leads to reduction in trabecular bone quality parameters and increased trabecular osteoclast numbers. Furthermore, mice with deletion of Gsα specifically in cells of the macrophage/osteoclast lineage (LysM-Cre;Gnasfl/fl) showed reduced trabecular bone quality and increased trabecular osteoclasts, but to a reduced extent compared to the CreERT2;Gnasfl/fl global knockout. This demonstrates that while Gsα has a cell autonomous role in osteclasts in regulating bone quality, Gsα expression in other cell types additionally contribute. In both of these mouse models, cortical bone was more subtly affected than trabecular bone. Our results support that Gsα is required postnatally to maintain trabecular bone quality and that Gsα function to maintain trabecular bone is regulated in part through a specific activity in osteoclasts.
Collapse
Affiliation(s)
- Girish Ramaswamy
- Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John Fong
- Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Niambi Brewer
- Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Hyunsoo Kim
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Deyu Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Frederick S Kaplan
- Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
93
|
Farr JN, Weivoda MM, Nicks KM, Fraser DG, Negley BA, Onken JL, Thicke BS, Ruan M, Liu H, Forrest D, Hawse JR, Khosla S, Monroe DG. Osteoprotection Through the Deletion of the Transcription Factor Rorβ in Mice. J Bone Miner Res 2018; 33:720-731. [PMID: 29206307 PMCID: PMC5925424 DOI: 10.1002/jbmr.3351] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/13/2017] [Accepted: 11/25/2017] [Indexed: 01/01/2023]
Abstract
There is a clinical need to identify new molecular targets for the treatment of osteoporosis, particularly those that simultaneously inhibit bone resorption while stimulating bone formation. We have previously shown in overexpression studies that retinoic acid receptor-related orphan receptor β (Rorβ) suppresses in vitro osteoblast differentiation. In addition, the expression of Rorβ is markedly increased in bone marrow-derived mesenchymal stromal cells with aging in both mice and humans. Here we establish a critical role for Rorβ in regulating bone metabolism using a combination of in vitro and in vivo studies. We used Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 gene editing to demonstrate that loss of Rorβ in osteoblasts enhances Wnt signaling, specifically through increased recruitment of β-catenin to T-cell factor/lymphoid enhancer factor (Tcf/Lef) DNA binding sites in the promoters of the Wnt target genes Tcf7 and Opg. This resulted in increased osteogenic gene expression and suppressed osteoclast formation through increased osteoprotegerin (OPG) secretion in Rorβ-deficient cells. Consistent with our in vitro data, genetic deletion of Rorβ in both female and male mice resulted in preserved bone mass and microarchitecture with advancing age due to increased bone formation with a concomitant decrease in resorption. The improved skeletal phenotype in the Rorβ-/- mice was also associated with increased bone protein levels of TCF7 and OPG. These data demonstrate that loss of Rorβ has beneficial skeletal effects by increasing bone formation and decreasing bone resorption, at least in part through β-catenin-dependent activation of the Wnt pathway. Thus, inhibition of Rorβ represents a novel approach to potentially prevent or reverse osteoporosis. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Joshua N Farr
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Megan M Weivoda
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Kristy M Nicks
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Daniel G Fraser
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Brittany A Negley
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jennifer L Onken
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Brianne S Thicke
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Ming Ruan
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Hong Liu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - David G Monroe
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| |
Collapse
|
94
|
Lu J, Yu H, Chen C. Biological properties of calcium phosphate biomaterials for bone repair: a review. RSC Adv 2018; 8:2015-2033. [PMID: 35542623 PMCID: PMC9077253 DOI: 10.1039/c7ra11278e] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/17/2017] [Indexed: 11/21/2022] Open
Abstract
This article reviews the recent advances and various factors affecting the improvement of the biological properties of calcium phosphate for bone repair.
Collapse
Affiliation(s)
- Jingyi Lu
- Shenzhen Research Institute of Shandong University
- Shenzhen 518057
- P. R. China
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture (Shandong University)
- Ministry of Education
| | - Huijun Yu
- Shenzhen Research Institute of Shandong University
- Shenzhen 518057
- P. R. China
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture (Shandong University)
- Ministry of Education
| | - Chuanzhong Chen
- Shenzhen Research Institute of Shandong University
- Shenzhen 518057
- P. R. China
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education)
- School of Materials Science and Engineering
| |
Collapse
|
95
|
Sebastian A, Hum NR, Murugesh DK, Hatsell S, Economides AN, Loots GG. Wnt co-receptors Lrp5 and Lrp6 differentially mediate Wnt3a signaling in osteoblasts. PLoS One 2017; 12:e0188264. [PMID: 29176883 PMCID: PMC5703471 DOI: 10.1371/journal.pone.0188264] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/05/2017] [Indexed: 01/10/2023] Open
Abstract
Wnt3a is a major regulator of bone metabolism however, very few of its target genes are known in bone. Wnt3a preferentially signals through transmembrane receptors Frizzled and co-receptors Lrp5/6 to activate the canonical signaling pathway. Previous studies have shown that the canonical Wnt co-receptors Lrp5 and Lrp6 also play an essential role in normal postnatal bone homeostasis, yet, very little is known about specific contributions by these co-receptors in Wnt3a-dependent signaling. We used high-throughput sequencing technology to identify target genes regulated by Wnt3a in osteoblasts and to elucidate the role of Lrp5 and Lrp6 in mediating Wnt3a signaling. Our study identified 782 genes regulated by Wnt3a in primary calvarial osteoblasts. Wnt3a up-regulated the expression of several key regulators of osteoblast proliferation/ early stages of differentiation while inhibiting genes expressed in later stages of osteoblastogenesis. We also found that Lrp6 is the key mediator of Wnt3a signaling in osteoblasts and Lrp5 played a less significant role in mediating Wnt3a signaling.
Collapse
Affiliation(s)
- Aimy Sebastian
- Lawrence Livermore National Laboratories, Physical and Life Sciences Directorate, Livermore, CA, United States of America
- UC Merced, School of Natural Sciences, Merced, CA, United States of America
| | - Nicholas R. Hum
- Lawrence Livermore National Laboratories, Physical and Life Sciences Directorate, Livermore, CA, United States of America
- UC Merced, School of Natural Sciences, Merced, CA, United States of America
| | - Deepa K. Murugesh
- Lawrence Livermore National Laboratories, Physical and Life Sciences Directorate, Livermore, CA, United States of America
| | - Sarah Hatsell
- Regeneron Pharmaceuticals, Tarrytown, NY, United States of America
| | | | - Gabriela G. Loots
- Lawrence Livermore National Laboratories, Physical and Life Sciences Directorate, Livermore, CA, United States of America
- UC Merced, School of Natural Sciences, Merced, CA, United States of America
- * E-mail:
| |
Collapse
|
96
|
Nishihara S, Ikeda M, Ozawa H, Akiyama M, Yamaguchi S, Nakahama KI. Role of cAMP in phenotypic changes of osteoblasts. Biochem Biophys Res Commun 2017; 495:941-946. [PMID: 29170126 DOI: 10.1016/j.bbrc.2017.11.125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 11/19/2017] [Indexed: 12/18/2022]
Abstract
Bone remodeling is precisely controlled by bone formation and bone resorption, and osteoblasts are responsible for both processes. Osteoblasts exhibit an osteoclastogenic phenotype in response to elevated intracellular cyclic AMP [cAMP]i levels. However, the role of cAMP in osteoblasts acquiring an osteogenic phenotype is controversial. To elucidate the effect of cAMP on both phenotypes, an osteoblast-like cell line, TMS-12, was established in our laboratory and used in this study. Dibutyryl-cAMP (dBcAMP), a cAMP analogue, inhibited mineralization in TMS-12 cells and MC3T3E1 cells (an osteoblast-like cell line) but promoted osteoclast-supporting activity in TMS-12 cells. Moreover, mineralization was inhibited in glucagon receptor-transduced TMS-12 cells (TMS-12GCGR) after glucagon treatment to increase endogenous [cAMP]i levels. However, the osteoclast-supporting activity of TMS-12GCGR cells was stimulated by glucagon treatment. These cAMP-induced phenotypic changes of osteoblasts were also supported by their gene expression profile. These results suggest that [cAMP]i is an important factor mediating phenotypic changes of osteoblasts. Our findings may provide valuable insights into the mechanisms that underlie bone remodeling in both, healthy and diseased states.
Collapse
Affiliation(s)
- Syun Nishihara
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Department of Maxillofacial Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Mami Ikeda
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hitoshi Ozawa
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masako Akiyama
- Research Administration Division, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Satoshi Yamaguchi
- Department of Maxillofacial Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ken-Ichi Nakahama
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
97
|
Cheng J, Zheng J, Guo N, Zi F. I‑BET151 inhibits osteoclastogenesis via the RANKL signaling pathway in RAW264.7 macrophages. Mol Med Rep 2017; 16:8406-8412. [PMID: 28983590 DOI: 10.3892/mmr.2017.7631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 07/12/2017] [Indexed: 11/06/2022] Open
Abstract
Excessive bone resorption mediated by osteoclasts may lead to the risk of various lytic bone diseases. In the present study, the effects of I‑BET151, a bromodomain and extra terminal domain protein inhibitor, on osteoclastogenesis in RAW264.7 cells and the underlying mechanism of this process was investigated. Cells were divided into 6 groups, including the control group, receptor activator of nuclear factor‑κB ligand (RANKL) group and 4 other groups containing RANKL and I‑BET151 at different concentrations. Tartrate‑resistant acid phosphatase (TRACP) staining was used to observe the effect of I‑BET151 on osteoclastogenesis and the number of TRACP positive multinucleated cells was calculated. Western blotting was used to evaluate the expression of tumor necrosis factor receptor associated factor (TRAF6), nuclear factor of activated T‑cells cytoplasmic 1 (NFATcl), transcription factor p65 (p65), nuclear factor of κ light polypeptide gene enhancer in B‑cells inhibitor‑α (IκB‑α), extracellular signal‑regulated kinase, Jun N‑terminal kinase (JNK) and p38. mRNA expression levels of osteoclast specific genes TRACP, matrix metalloproteinase‑9 (MMP9), cathepsin K (CtsK) and proto‑oncogene tyrosine‑protein kinase Src (c‑Src) were measured using the reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). TRACP staining results demonstrated that I‑BET151 inhibited osteoclastogenesis induced by RANKL and the inhibition was dose dependent. TRACP multinucleated positive cells were significantly decreased when treated with I‑BET151 compared with the RANKL group. The inhibitory effect on TRAF6 was significant when concentrations of 100 and 200 nM I‑BET151 were used, and NFATcl was significantly inhibited when a concentration of 200 nM was used compared with the RANKL group, in a dose-dependent manner. Nuclear translocation of p65 was significantly inhibited by I‑BET151 at all concentrations. The degradation of IκB‑α, and phosphorylation of JNK and p38 were also significantly inhibited by I‑BET151, with the exception of the expression of IκB‑α following treatment with 50 nM I‑BET151. The RT‑qPCR results revealed that osteoclast‑specific genes TRACP, MMP9, CtsK and c‑Src were all dose‑dependently inhibited by I‑BET151, except for CtsK. In conclusion, I‑BET151 may significantly suppress the osteoclastogenesis of RAW264.7 cells via the RANKL signaling pathway.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jifu Zheng
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ninghong Guo
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fuming Zi
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
98
|
Martineau X, Abed É, Martel-Pelletier J, Pelletier JP, Lajeunesse D. Alteration of Wnt5a expression and of the non-canonical Wnt/PCP and Wnt/PKC-Ca2+ pathways in human osteoarthritis osteoblasts. PLoS One 2017; 12:e0180711. [PMID: 28777797 PMCID: PMC5544184 DOI: 10.1371/journal.pone.0180711] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 06/20/2017] [Indexed: 01/07/2023] Open
Abstract
Objective Clinical and in vitro studies suggest that subchondral bone sclerosis due to abnormal osteoblasts (Ob) is involved in the progression and/or onset of osteoarthritis (OA). Human Ob isolated from sclerotic subchondral OA bone tissue show an altered phenotype, a decreased canonical Wnt/β-catenin signaling pathway (cWnt), and a reduced mineralization in vitro. In addition to the cWnt pathway, at least two non-canonical signaling pathways, the Wnt/PKC and Wnt/PCP pathway have been described. However, there are no reports of either pathway in OA Ob. Here, we studied the two non-canonical pathways in OA Ob and if they influence their phenotype. Methods Human primary subchondral Ob were isolated from the subchondral bone plate of tibial plateaus of OA patients undergoing total knee arthroplasty, or of normal individuals at autopsy. The expression of genes involved in non-canonical Wnt signaling was evaluated by qRT-PCR and their protein production by Western blot analysis. Alkaline phosphatase activity and osteocalcin secretion (OC) were determined with substrate hydrolysis and EIA, respectively. Mineralization levels were evaluated with Alizarin Red Staining, Wnt/PKC and Wnt/PCP pathways by target gene expression and their respective activity using the NFAT and AP-1 luciferase reporter assays. Results OA Ob showed an altered phenotype as illustrated by an increased alkaline phosphatase activity and osteocalcin release compared to normal Ob. The expression of the non-canonical Wnt5a ligand was increased in OA Ob compared to normal. Whereas, the expression of LGR5 was significantly increased in OA Ob compared to normal Ob, the expression of LGR4 was similar. Wnt5a directly stimulated the expression and production of LGR5, contrasting, Wnt5a did not stimulate the expression of LGR4. Wnt5a also stimulated the phosphorylation of both JNK and PKC, as well as the activity of both NFAT and AP-1 transcription factors. The inhibition of Wnt5a expression partially corrects the abnormal mineralization, OC secretion and ALPase activity of OA Ob. Conclusion These data indicate that the alteration of Wnt5a, a non-canonical Wnt signaling activator, is implicated in the modified signalisation and phenotype observed in OA Ob.
Collapse
Affiliation(s)
- Xavier Martineau
- Unité de recherche en Arthrose, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Élie Abed
- Unité de recherche en Arthrose, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Johanne Martel-Pelletier
- Unité de recherche en Arthrose, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Jean-Pierre Pelletier
- Unité de recherche en Arthrose, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Daniel Lajeunesse
- Unité de recherche en Arthrose, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
99
|
Amirhosseini M, Andersson G, Aspenberg P, Fahlgren A. Mechanical instability and titanium particles induce similar transcriptomic changes in a rat model for periprosthetic osteolysis and aseptic loosening. Bone Rep 2017; 7:17-25. [PMID: 28795083 PMCID: PMC5544474 DOI: 10.1016/j.bonr.2017.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 01/30/2023] Open
Abstract
Wear debris particles released from prosthetic bearing surfaces and mechanical instability of implants are two main causes of periprosthetic osteolysis. While particle-induced loosening has been studied extensively, mechanisms through which mechanical factors lead to implant loosening have been less investigated. This study compares the transcriptional profiles associated with osteolysis in a rat model for aseptic loosening, induced by either mechanical instability or titanium particles. Rats were exposed to mechanical instability or titanium particles. After 15 min, 3, 48 or 120 h from start of the stimulation, gene expression changes in periprosthetic bone tissue was determined by microarray analysis. Microarray data were analyzed by PANTHER Gene List Analysis tool and Ingenuity Pathway Analysis (IPA). Both types of osteolytic stimulation led to gene regulation in comparison to unstimulated controls after 3, 48 or 120 h. However, when mechanical instability was compared to titanium particles, no gene showed a statistically significant difference (fold change ≥ ± 1.5 and adjusted p-value ≤ 0.05) at any time point. There was a remarkable similarity in numbers and functional classification of regulated genes. Pathway analysis showed several inflammatory pathways activated by both stimuli, including Acute Phase Response signaling, IL-6 signaling and Oncostatin M signaling. Quantitative PCR confirmed the changes in expression of key genes involved in osteolysis observed by global transcriptomics. Inflammatory mediators including interleukin (IL)-6, IL-1β, chemokine (C-C motif) ligand (CCL)2, prostaglandin-endoperoxide synthase (Ptgs)2 and leukemia inhibitory factor (LIF) showed strong upregulation, as assessed by both microarray and qPCR. By investigating genome-wide expression changes we show that, despite the different nature of mechanical implant instability and titanium particles, osteolysis seems to be induced through similar biological and signaling pathways in this rat model for aseptic loosening. Pathways associated to the innate inflammatory response appear to be a major driver for osteolysis. Our findings implicate early restriction of inflammation to be critical to prevent or mitigate osteolysis and aseptic loosening of orthopedic implants.
Collapse
Affiliation(s)
- Mehdi Amirhosseini
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- Corresponding author.
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Per Aspenberg
- Orthopedics, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Anna Fahlgren
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
100
|
Perfluoroalkyl substances in human bone: concentrations in bones and effects on bone cell differentiation. Sci Rep 2017; 7:6841. [PMID: 28754927 PMCID: PMC5533791 DOI: 10.1038/s41598-017-07359-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/22/2017] [Indexed: 01/05/2023] Open
Abstract
Perfluoroalkyl substances (PFAS), including two most commonly studied compounds perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), are widely distributed environmental pollutants, used extensively earlier. Due to their toxicological effects the use of PFAS is now regulated. Based on earlier studies on PFOA’s distribution in bone and bone marrow in mice, we investigated PFAS levels and their possible link to bone microarchitecture of human femoral bone samples (n = 18). Soft tissue and bone biopsies were also taken from a 49-year old female cadaver for PFAS analyses. We also studied how PFOA exposure affects differentiation of human osteoblasts and osteoclasts. PFAS were detectable from all dry bone and bone marrow samples, PFOS and PFOA being the most prominent. In cadaver biopsies, lungs and liver contained the highest concentrations of PFAS, whereas PFAS were absent in bone marrow. Perfluorononanoic acid (PFNA) was present in the bones, PFOA and PFOS were absent. In vitro results showed no disturbance in osteogenic differentiation after PFOA exposure, but in osteoclasts, lower concentrations led to increased resorption, which eventually dropped to zero after increase in PFOA concentration. In conclusion, PFAS are present in bone and have the potential to affect human bone cells partly at environmentally relevant concentrations.
Collapse
|