51
|
Pham D, Kiliaridis S. Evaluation of changes in trabecular alveolar bone during growth using conventional panoramic radiographs. Acta Odontol Scand 2012; 70:127-32. [PMID: 21793639 DOI: 10.3109/00016357.2011.600706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To assess changes of the alveolar trabecular bone during growth using panoramic radiographs and to detect possible differences in trabecular bone patterns when comparing individuals of various ages and genders. MATERIALS AND METHODS Conventional panoramic radiographs of 18 young (eight females, 10 males) and 21 adult (12 females, nine males) subjects were taken at 2 years (T1) and 10 years (T2) after the end of orthodontic treatment. At T1, mean ages were 15.6 ± 0.9 years and 31.3 ± 9.7 years in the young and the adult groups, respectively. A three-scale visual analysis was used to evaluate bilaterally the alveolar bone trabeculation in the interdental spaces, from the distal side of the first mandibular premolar to the mesial side of the second lower molar. An analysis of variance (ANOVA), associated with t-tests whenever significance was found, was used to appraise the role of the age, the extent of the follow-up period and the gender on trabecular bone structure. RESULTS The adult group had a denser alveolar bone trabeculation, compared to the young group. This was also observed in the 8 years follow-up recordings among the adults, but no statistically significant differences were found in the growing individuals. No gender discrepancy was detected. CONCLUSIONS From puberty to the middle age adulthood, denser alveolar bone trabeculation in the mandible seems to be related to the age. No differences were found between male and female subjects in the sample.
Collapse
Affiliation(s)
- Diane Pham
- Department of Orthodontics, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
52
|
Yao S, Sucheston LE, Smiley SL, Davis W, Conroy JM, Nowak NJ, Ambrosone CB, McCarthy PL, Hahn T. Common genetic variants are associated with accelerated bone mineral density loss after hematopoietic cell transplantation. PLoS One 2011; 6:e25940. [PMID: 22022476 PMCID: PMC3195081 DOI: 10.1371/journal.pone.0025940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/14/2011] [Indexed: 11/19/2022] Open
Abstract
Background Bone mineral density (BMD) loss commonly occurs after hematopoietic cell transplantation (HCT). Hypothesizing that genetic variants may influence post-HCT BMD loss, we conducted a prospective study to examine the associations of single nucleotide polymorphisms (SNP) in bone metabolism pathways and acute BMD loss after HCT. Methods and Findings We genotyped 122 SNPs in 45 genes in bone metabolism pathways among 121 autologous and allogeneic HCT patients. BMD changes from pre-HCT to day +100 post-HCT were analyzed in relation to these SNPs in linear regression models. After controlling for clinical risk factors, we identified 16 SNPs associated with spinal or femoral BMD loss following HCT, three of which have been previously implicated in genome-wide association studies of bone phenotypes, including rs2075555 in COL1A1, rs9594738 in RANKL, and rs4870044 in ESR1. When multiple SNPs were considered simultaneously, they explained 5–35% of the variance in post-HCT BMD loss. There was a significant trend between the number of risk alleles and the magnitude of BMD loss, with patients carrying the most risk alleles having the greatest loss. Conclusion Our data provide the first evidence that common genetic variants play an important role in BMD loss among HCT patients similar to age-related BMD loss in the general population. This infers that the mechanism for post-HCT bone loss is a normal aging process that is accelerated during HCT. A limitation of our study comes from its small patient population; hence future larger studies are warranted to validate our findings.
Collapse
Affiliation(s)
- Song Yao
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Lara E. Sucheston
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Shannon L. Smiley
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Warren Davis
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Jeffrey M. Conroy
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Norma J. Nowak
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Department of Biochemistry, University at Buffalo, Buffalo, New York, United States of America
| | - Christine B. Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Philip L. McCarthy
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Theresa Hahn
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
53
|
Barvencik F, Beil FT, Gebauer M, Busse B, Koehne T, Seitz S, Zustin J, Pogoda P, Schinke T, Amling M. Skeletal mineralization defects in adult hypophosphatasia--a clinical and histological analysis. Osteoporos Int 2011; 22:2667-75. [PMID: 21267545 DOI: 10.1007/s00198-011-1528-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 01/03/2011] [Indexed: 10/18/2022]
Abstract
UNLABELLED Histomorphometry and quantitative backscattered electron microscopy of iliac crest biopsies from patients with adult hypophosphatasia not only confirmed the expected enrichment of non-mineralized osteoid, but also demonstrated an altered trabecular microarchitecture, an increased number of osteoblasts, and an impaired calcium distribution within the mineralized bone matrix. INTRODUCTION Adult hypophosphatasia is an inherited disorder of bone metabolism caused by inactivating mutations of the ALPL gene, encoding tissue non-specific alkaline phosphatase. While it is commonly accepted that the increased fracture risk of the patients is the consequence of osteomalacia, there are only few studies describing a complete histomorphometric analysis of bone biopsies from affected individuals. Therefore, we analyzed iliac crest biopsies from eight patients and set them in direct comparison to biopsies from healthy donors or from individuals with other types of osteomalacia. METHODS Histomorphometric analysis was performed on non-decalcified sections stained either after von Kossa/van Gieson or with toluidine blue. Bone mineral density distribution was quantified by backscattered electron microscopy. RESULTS Besides the well-documented enrichment of non-mineralized bone matrix in individuals suffering from adult hypophosphatasia, our histomorphometric analysis revealed alterations of the trabecular microarchitecture and an increased number of osteoblasts compared to healthy controls or to individuals with other types of osteomalacia. Moreover, the analysis of the mineralized bone matrix revealed significantly decreased calcium content in patients with adult hypophosphatasia. CONCLUSIONS Taken together, our data show that adult hypophosphatasia does not solely result in an enrichment of osteoid, but also in a considerable degradation of bone quality, which might contribute to the increased fracture risk of the affected individuals.
Collapse
Affiliation(s)
- F Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Cejka D, Patsch JM, Weber M, Diarra D, Riegersperger M, Kikic Z, Krestan C, Schueller-Weidekamm C, Kainberger F, Haas M. Bone microarchitecture in hemodialysis patients assessed by HR-pQCT. Clin J Am Soc Nephrol 2011; 6:2264-71. [PMID: 21737853 PMCID: PMC3358993 DOI: 10.2215/cjn.09711010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 05/11/2011] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND OBJECTIVES Dialysis patients are at high risk for low-trauma bone fracture. Bone density measurements using dual-energy x-ray absorptiometry (DXA) do not reliably differentiate between patients with and without fractures. The aim of this study was to identify differences in bone microarchitecture between patients with and without a history of fracture using high-resolution peripheral quantitative computed tomography (HR-pQCT). DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Seventy-four prevalent hemodialysis patients were recruited for measurements of areal bone mineral density (aBMD) by DXA and bone microarchitecture by HR-pQCT. Patients with a history of trauma-related fracture were excluded. Forty healthy volunteers served as controls. Blood levels of parathyroid hormone, vitamin D, and markers of bone turnover were determined. RESULTS Dialysis patients, particularly women, had markedly impaired bone microarchitecture. Patients with fractures had significantly reduced cortical and trabecular microarchitecture compared with patients without fractures. aBMD tended to be lower in patients with fractures, but differences were statistically not significant. The strongest determinant of fracture was the HR-pQCT-measured trabecular density of the tibia, which also had the highest discriminatory power to differentiate patients according to fracture status. Radial DXA had a lower discriminatory power than trabecular density. CONCLUSIONS Bone microarchitecture is severely impaired in dialysis patients and even more so in patients with a history of fracture. HR-pQCT can identify dialysis patients with a history of low-trauma fracture.
Collapse
Affiliation(s)
- Daniel Cejka
- Department of Internal Medicine III, Division of Nephrology and Dialysis
| | - Janina M. Patsch
- Department of Radiology, Division of Neuroradiology and Musculoskeletal Radiology, and
| | - Michael Weber
- Department of Radiology, Medical University Vienna, Vienna, Austria
| | - Danielle Diarra
- Department of Internal Medicine III, Division of Nephrology and Dialysis
| | | | - Zeljko Kikic
- Department of Internal Medicine III, Division of Nephrology and Dialysis
| | - Christian Krestan
- Department of Radiology, Division of Neuroradiology and Musculoskeletal Radiology, and
| | | | - Franz Kainberger
- Department of Radiology, Division of Neuroradiology and Musculoskeletal Radiology, and
| | - Martin Haas
- Department of Internal Medicine III, Division of Nephrology and Dialysis
| |
Collapse
|
55
|
Jobke B, Burghardt AJ, Muche B, Hahn M, Semler J, Amling M, Majumdar S, Busse B. Trabecular reorganization in consecutive iliac crest biopsies when switching from bisphosphonate to strontium ranelate treatment. PLoS One 2011; 6:e23638. [PMID: 21858188 PMCID: PMC3156767 DOI: 10.1371/journal.pone.0023638] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 07/21/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Several agents are available to treat osteoporosis while addressing patient-specific medical needs. Individuals' residual risk to severe fracture may require changes in treatment strategy. Data at osseous cellular and microstructural levels due to a therapy switch between agents with different modes of action are rare. Our study on a series of five consecutively taken bone biopsies from an osteoporotic individual over a six-year period analyzes changes in cellular characteristics, bone microstructure and mineralization caused by a therapy switch from an antiresorptive (bisphosphonate) to a dual action bone agent (strontium ranelate). METHODOLOGY/PRINCIPAL FINDINGS Biopsies were progressively taken from the iliac crest of a female patient. Four biopsies were taken during bisphosphonate therapy and one biopsy was taken after one year of strontium ranelate (SR) treatment. Furthermore, serum bone markers and dual x-ray absorptiometry measurements were acquired. Undecalcified histology was used to assess osteoid parameters and bone turnover. Structural indices and degree of mineralization were determined using microcomputed tomography, quantitative backscattered electron imaging, and combined energy dispersive x-ray/µ-x-ray-fluorescence microanalysis. CONCLUSIONS/SIGNIFICANCE Microstructural data revealed a notable increase in bone volume fraction after one year of SR treatment compared to the bisphosphonate treatment period. Indices of connectivity density, structure model index and trabecular bone pattern factor were predominantly enhanced indicating that the architectural transformation from trabecular rods to plates was responsible for the bone volume increase and less due to changes in trabecular thickness and number. Administration of SR following bisphosphonates led to a maintained mineralization profile with an uptake of strontium on the bone surface level. Reactivated osteoclasts designed tunneling, hook-like intratrabecular resorption sites. The appearance of tunneling resorption lacunae and the formation of both mini-modeling units and osteon-like structures within increased plate-like cancellous bone mass provides additional information on the mechanisms of strontium ranelate following bisphosphonate treatment, which may deserve special attention when monitoring a treatment switch.
Collapse
Affiliation(s)
- Björn Jobke
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology, University of California San Francisco, San Francisco, California, United States of America
- Institute of Radiology, Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Andrew J. Burghardt
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology, University of California San Francisco, San Francisco, California, United States of America
| | - Burkhard Muche
- Department of Bone Metabolism and Osteology, Immanuel Hospital Berlin-Wannsee, Berlin, Germany
| | - Michael Hahn
- Department of Osteology & Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jutta Semler
- Department of Bone Metabolism and Osteology, Immanuel Hospital Berlin-Wannsee, Berlin, Germany
| | - Michael Amling
- Department of Osteology & Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sharmila Majumdar
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology, University of California San Francisco, San Francisco, California, United States of America
| | - Björn Busse
- Department of Osteology & Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
56
|
Bodic F, Amouriq Y, Gayet-Delacroix M, Maugars Y, Hamel L, Baslé MF, Chappard D. Relationships between bone mass and micro-architecture at the mandible and iliac bone in edentulous subjects: a dual X-ray absorptiometry, computerised tomography and microcomputed tomography study. Gerodontology 2011; 29:e585-94. [DOI: 10.1111/j.1741-2358.2011.00527.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
57
|
Glucocorticoid induced osteopenia in cancellous bone of sheep: validation of large animal model for spine fusion and biomaterial research. Spine (Phila Pa 1976) 2010; 35:363-70. [PMID: 20110841 DOI: 10.1097/brs.0b013e3181b8e0ff] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Glucocorticoid with low calcium and phosphorus intake induces osteopenia in cancellous bone of sheep. OBJECTIVE To validate a large animal model for spine fusion and biomaterial research. SUMMARY OF BACKGROUND DATA A variety of ovariectomized animals has been used to study osteoporosis. Most experimental spine fusions were based on normal animals, and there is a great need for suitable large animal models with adequate bone size that closely resemble osteoporosis in humans. METHODS Eighteen female skeletal mature sheep were randomly allocated into 3 groups, 6 each. Group 1 (GC-1) received prednisolone (GC) treatment (0.60 mg/kg/day, 5 times weekly) for 7 months. Group 2 (GC-2) received the same treatment as GC-1 for 7 months followed by 3 months without treatment. Group 3 was left untreated and served as the controls. All sheep received restricted diet with low calcium and phosphorus during experiment. After killing the animals, cancellous bone specimens from the vertebra, femurs, and tibias were micro-CT scanned and tested mechanically. Serum biomarkers were determined. RESULTS In lumbar vertebra, the GC treatment resulted in significant decrease of cancellous bone volume fraction and trabecular thickness, and bone strength. However, the microarchitecture and bone strength of GC-2 recovered to a similar level of the controls. A similar trend of microarchitectural changes was also observed in the distal femur and proximal tibia of both GC treated sheep. The bone formation marker serum-osteocalcin was largely reduced in GC-1 compared to the controls, but recovered with a rebound increase at month 10 in GC-2. CONCLUSION The current investigation demonstrates that the changes in microarchitecture and mechanical properties were comparable with those observed in humans after long-term GC treatment. A prolonged GC treatment is needed for a long-term observation to keep osteopenic bone. This model resembles long-term glucocorticoid treated osteoporotic model, and is useful in preclinical studies.
Collapse
|
58
|
Bone mineralization defects and vitamin D deficiency: histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J Bone Miner Res 2010; 25:305-12. [PMID: 19594303 DOI: 10.1359/jbmr.090728] [Citation(s) in RCA: 366] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Parathyroid hormone (PTH) is only one measurable index of skeletal health, and we reasoned that a histomorphometric analysis of iliac crest biopsies would be another and even more direct approach to assess bone health and address the required minimum 25-Hydroxyvitamin D [25(OH)D] level. A cohort from the northern European population with its known high prevalence of vitamin D deficiency therefore would be ideal to answer the latter question. We examined 675 iliac crest biopsies from male and female individuals, excluding all patients who showed any signs of secondary bone diseases at autopsy. Structural histomorphometric parameters, including osteoid indices, were quantified using the Osteomeasure System according to ASBMR standards, and serum 25(OH)D levels were measured for all patients. Statistical analysis was performed by Student's t test. The histologic results demonstrate an unexpected high prevalence of mineralization defects, that is, a pathologic increase in osteoid. Indeed, 36.15% of the analyzed patients presented with an osteoid surface per bone surface (OS/BS) of more than 20%. Based on the most conservative threshold that defines osteomalacia at the histomorphometric level with a pathologic increase in osteoid volume per bone volume (OV/BV) greater than 2% manifest mineralization defects were present in 25.63% of the patients. The latter were found independent of bone volume per trabecular volume (BV/TV) throughout all ages and affected both sexes equally. While we could not establish a minimum 25(OH)D level that was inevitably associated with mineralization defects, we did not find pathologic accumulation of osteoid in any patient with circulating 25(OH)D above 75 nmol/L. Our data demonstrate that pathologic mineralization defects of bone occur in patients with a serum 25(OH)D below 75 nmol/L and strongly argue that in conjunction with a sufficient calcium intake, the dose of vitamin D supplementation should ensure that circulating levels of 25(OH)D reach this minimum threshold (75 nmol/L or 30 ng/mL) to maintain skeletal health.
Collapse
|
59
|
Wang X, Nyman J, Dong X, Leng H, Reyes M. Fundamental Biomechanics in Bone Tissue Engineering. ACTA ACUST UNITED AC 2010. [DOI: 10.2200/s00246ed1v01y200912tis004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
60
|
Gebauer M, Barvencik F, Mumme M, Beil FT, Vettorazzi E, Rueger JM, Pueschel K, Amling M. Microarchitecture of the radial head and its changes in aging. Calcif Tissue Int 2010; 86:14-22. [PMID: 19911109 DOI: 10.1007/s00223-009-9304-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 10/02/2009] [Indexed: 10/20/2022]
Abstract
Fractures of the radial head are common; however, it remains to be determined whether the radial head has to be considered as a typical location for fractures associated with osteoporosis. To investigate whether the human radial head shows structural changes during aging, we analyzed 30 left and 30 right human radial heads taken from 30 individuals. The specimens taken from the left side were analyzed by peripheral quantitative computed tomography (pQCT) and micro-CT. The specimens taken from the right elbow joint were analyzed by radiography and histomorphometry. In these specimens pQCT revealed a significant decrease of total and cortical bone mineral density (BMD(to) BMD(co)) with aging, regardless of sex. Histomorphometry revealed a significant reduction of cortical thickness (Ct.Th), bone volume per tissue volume (BV/TV), and trabecular thickness (Tb.Th) in male and female specimens. In this context, mean BV/TV and mean trabecular number (Tb.N) values were significantly lower and, accordingly, mean trabecular separation (Tb.Sp) was significantly higher in female samples. The presented study demonstrates that the radial head is a skeletal site where different age- and sex-related changes of the bone structure become manifest. These microarchitectural changes might contribute to the pathogenesis of radial head fractures, especially in aged female patients where trabecular parameters (BMD(tr) and Tb.Sp) change significantly for the worse compared to male patients.
Collapse
Affiliation(s)
- Matthias Gebauer
- Department of Trauma, Hand, and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Barvencik F, Gebauer M, Beil FT, Vettorazzi E, Mumme M, Rupprecht M, Pogoda P, Wegscheider K, Rueger JM, Pueschel K, Amling M. Age- and sex-related changes of humeral head microarchitecture: histomorphometric analysis of 60 human specimens. J Orthop Res 2010; 28:18-26. [PMID: 19630001 DOI: 10.1002/jor.20957] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fractures of the humeral head are frequent and will further increase due to demographic changes. Prior to operative fracture treatment, the regional differences of bone quality, especially of elderly people, have to be carefully considered to assure stable implant fixation. However, conclusive data concerning the variation of histomorphometric parameters are still lacking. Consequently, the purpose of this study was to analyze the age- and sex-related changes in bone microarchitecture. For that reason, 60 proximal humeri were harvested from patients at autopsy. Twelve regions of interest (ROI) were defined for each centered coronar humeral head slice and the specimens were subjected to radiographic, histological, and histomorphometric analyses. We could demonstrate that in contrast to men, women over 60 years of age had a significant age-related decrease in bone mass. The most prominent decrease was observed in the region of the greater tuberosity, which represents an osteoporotic fracture site. The most superior and medially located part of the centered coronar humeral head slice showed, independent from age and sex, the highest bone mass and can therefore be considered as the best location for subchondral screw placement. Taken together, our study revealed distinct sex-related changes of the humeral head bone microarchitecture with aging, which should be considered in implant positioning.
Collapse
Affiliation(s)
- Florian Barvencik
- Center for Biomechanics and Skeletal Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Busse B, Hahn M, Soltau M, Zustin J, Püschel K, Duda GN, Amling M. Increased calcium content and inhomogeneity of mineralization render bone toughness in osteoporosis: mineralization, morphology and biomechanics of human single trabeculae. Bone 2009; 45:1034-43. [PMID: 19679206 DOI: 10.1016/j.bone.2009.08.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 07/13/2009] [Accepted: 08/03/2009] [Indexed: 11/22/2022]
Abstract
The differentiation and degree of the effects of mineral content and/or morphology on bone quality remain, to a large extent, unanswered due to several microarchitectural particularities in spatial measuring fields (e.g., force transfer, trajectories, microcalli). Therefore, as the smallest basic component of cancellous bone, we focused on single trabeculae to investigate the effects of mineralization and structure, both independently and in superposition. Transiliac Bordier bone cores and T12 vertebrae were obtained from 20 females at autopsy for specimen preparation, enabling radiographical analyses, histomorphometry, Bone Mineral Density Distribution (BMDD) analyses, and trabecular singularization to be performed. Evaluated contact X-rays and histomorphometric limits from cases with osteoporotic vertebral fractures generated two subdivisions, osteoporotic (n=12, Ø 78 years) and non-osteoporotic (n=8, Ø 49 years) cases, based on fracture appearance and bone volume (BV/TV). Measurements of trabecular number (Tb.N.), trabecular separation (Tb.Sp.), trabecular thickness (Tb.Th.), trabecular bone pattern factor (TBPf) and eroded surface (ES/BS) were carried out to provide detailed structural properties of the investigated groups. The mechanical properties of 400 rod-like single vertebral trabeculae, assessed by three-point bending, were matched with mineral properties as quantified by BMDD analyses of cross-sectioned rod-like and plate-like trabeculae, both in superposition and independently. Non-osteoporotic iliac crests and vertebrae displayed linear dependency on structure parameters, whereas osteoporotic compartments proved to be non-correlated with bone structure. Independent of trabecular thickness, osteoporotic rod-like trabeculae showed decreases in Young's modulus, fracture load, yield strength, ultimate stress, work to failure and bending stiffness, along with significantly increased mean calcium content and calcium width. Non-osteoporotic trabeculae showed biomechanically beneficial properties due to a homogeneous mineralization configuration, whereas osteoporotic trabeculae predominantly demonstrated various mineralized bone packets, eroded surfaces, highly mineralized cement lines and microcracks. The Young's moduli of single trabeculae exhibited significantly negative linear correlations with trabecular thickness. Because of increased, but inhomogeneously distributed, calcium content, osteoporotic trabeculae may be subject to shear stresses that render bone fragile beyond structure impairment due to cracks and lacunae.
Collapse
Affiliation(s)
- Björn Busse
- Center for Biomechanics and Skeletal Biology, University Medical Center Hamburg-Eppendorf, Lottestr. 59, D-22529 Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
63
|
Chen H, Zhou X, Emura S, Shoumura S. Site-specific bone loss in senescence-accelerated mouse (SAMP6): a murine model for senile osteoporosis. Exp Gerontol 2009; 44:792-8. [PMID: 19815059 DOI: 10.1016/j.exger.2009.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/28/2009] [Accepted: 09/29/2009] [Indexed: 11/19/2022]
Abstract
The senescence-accelerated mouse strain P6 (SAMP6) is a model of senile osteoporosis, which possesses many features of senile osteoporosis in humans. So far, little is known about the systemic bone microstructural changes that occur at multiple skeletal sites. In this study, we therefore, investigated site (vertebra, femur and tibia) dependence of bone microstructure and bone mineral density (BMD) in SAMP6 and the normal control mouse (SAMR1) at 5 and 12months of age using quantitative micro computed tomography (micro-CT) and image analysis software. As compared with SAMR1, the most prominent change in SAMP6 was the reduction of vertebral trabecular bone volume fraction (BV/TV) and trabecular BMD. Moderate decrease of trabecular bone mass was observed in the proximal tibia and distal femur. Increased marrow area and periosteal perimeter were investigated, though the cortical area and cortical thickness had no marked changes in the mid-tibial and mid-femoral cortical bones. These results indicate that bone microstructural properties in SAMP6 are remarkably heterogeneous throughout the skeleton, which is analogous to changes that occur in human bones. These findings further validate the relevance of SAMP6 as a model of senile osteoporosis.
Collapse
Affiliation(s)
- Huayue Chen
- Department of Anatomy, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | | | | | | |
Collapse
|
64
|
Eswaran SK, Bevill G, Nagarathnam P, Allen MR, Burr DB, Keaveny TM. Effects of suppression of bone turnover on cortical and trabecular load sharing in the canine vertebral body. J Biomech 2009; 42:517-23. [PMID: 19181318 DOI: 10.1016/j.jbiomech.2008.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Revised: 07/28/2008] [Accepted: 11/13/2008] [Indexed: 10/21/2022]
Abstract
The relative biomechanical effects of antiresorptive treatment on cortical thickness vs. trabecular bone microarchitecture in the spine are not well understood. To address this, T-10 vertebral bodies were analyzed from skeletally mature female beagle dogs that had been treated with oral saline (n=8 control) or a high dose of oral risedronate (0.5mg/kg/day, n=9 RIS-suppressed) for 1 year. Two linearly elastic finite element models (36-mum voxel size) were generated for each vertebral body-a whole-vertebra model and a trabecular-compartment model-and subjected to uniform compressive loading. Tissue-level material properties were kept constant to isolate the effects of changes in microstructure alone. Suppression of bone turnover resulted in increased stiffness of the whole vertebra (20.9%, p=0.02) and the trabecular compartment (26.0%, p=0.01), while the computed stiffness of the cortical shell (difference between whole-vertebra and trabecular-compartment stiffnesses, 11.7%, p=0.15) was statistically unaltered. Regression analyses indicated subtle but significant changes in the relative structural roles of the cortical shell and the trabecular compartment. Despite higher average cortical shell thickness in RIS-suppressed vertebrae (23.1%, p=0.002), the maximum load taken by the shell for a given value of shell mass fraction was lower (p=0.005) for the RIS-suppressed group. Taken together, our results suggest that-in this canine model-the overall changes in the compressive stiffness of the vertebral body due to suppression of bone turnover were attributable more to the changes in the trabecular compartment than in the cortical shell. Such biomechanical studies provide an unique insight into higher-scale effects such as the biomechanical responses of the whole vertebra.
Collapse
Affiliation(s)
- Senthil K Eswaran
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
65
|
Abstract
Although Paget's disease of bone (PDB) is the second most common metabolic bone disease, to our knowledge, there is only one quantitative analysis on the histological and especially on the histomorphometric level. Therefore, the aim of this study was to analyze, on the basis of the Hamburg Bone Register, PBD in terms of incidence, skeletal distribution, malignant transformation, and histological and histomorphometric characteristics. Bone biopsies and patient files of 754 cases with histologically proven PDB were reviewed in a retrospective study. Quantitative static histomorphometry was performed on a representative subgroup of 247 biopsies derived from patients with manifestation of PDB at the iliac crest and compared with an age- and sex-matched control group. The peak incidence of PDB was between 70 and 80 yr of age. The majority of monostotic skeletal manifestation was localized at the os ilium, followed by the spine and femur. Histomorphometric results showed a high bone turnover with a significant increase in bone resorption and bone formation indices leading to an increased bone volume. Paget sarcoma was diagnosed in 6 of 754 patients, indicating a malignant transformation in 0.8% of the affected patients. Taken together, our study characterizes PDB in Germany on the basis of one of the largest cohorts of patients with histologically proven PDB. Moreover, for the first time, a quantitative histomorphometric approach was taken for >200 cases, where we could show local high bone mass lesions as a result of an increase of both osteoclast and osteoblast indices.
Collapse
|
66
|
Site-specific deterioration of trabecular bone architecture in men and women with advancing age. J Bone Miner Res 2008; 23:1964-73. [PMID: 18665791 DOI: 10.1359/jbmr.080709] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We tested the hypothesis that the age dependence of trabecular bone microstructure differs between men and women and is specific to skeletal site. Furthermore, we aimed to investigate the microstructural pattern of bone loss in aging. Microstructural properties of trabecular bone were measured in vitro in 75 men and 75 age-matched women (age, 52-99 yr) using microCT. Trabecular bone samples were scanned at a 26-microm isotropic resolution at seven anatomical sites (i.e., distal radius, T(10) and L(2) vertebrae, iliac crest, femoral neck and trochanter, and calcaneus). DXA measurements were obtained at the distal radius and proximal femur and QCT was used at T(12). No significant decrease in bone density or structure with age was found in men using microCT, DXA, or QCT at any of the anatomical sites. In women, a significant age-dependent decrease in BV/TV was observed at most sites, which was strongest at the iliac crest and weakest at the distal radius. At most sites, the reduction in BV/TV was associated with an increase in structure model index, decrease in Tb.N, and an increase in Tb.Sp. Only in the calcaneus was it associated with a significant decrease in Tb.Th. In conclusion, a significant, site-specific correlation of trabecular bone microstructure with age was found in women but not in men of advanced age. The microstructural basis by which a loss of BV/TV occurs with age can vary between anatomical sites.
Collapse
|
67
|
van Lenthe GH, Müller R. CT-based visualization and quantification of bone microstructure in vivo. ACTA ACUST UNITED AC 2008. [DOI: 10.1138/20080348] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
68
|
Barvencik F, Gebauer M, Schinke T, Amling M. Case report: multiple fractures in a patient with mutations of TWIST1 and TNSALP. Clin Orthop Relat Res 2008; 466:990-6. [PMID: 18219546 PMCID: PMC2504648 DOI: 10.1007/s11999-008-0123-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 01/07/2008] [Indexed: 01/31/2023]
Abstract
Hypophosphatasia is a rare inherited disorder characterized by defective skeletal mineralization and low alkaline phosphatase activities in the serum. The genetic cause of hypophosphatasia is believed related to inactivating mutations in the TNSALP gene, encoding tissue-nonspecific alkaline phosphatase. Another rare inheritable disease, Saethre-Chotzen syndrome, leads to premature fusion of the cranial sutures caused by heterozygous mutations of the human TWIST1 gene. Because the two disorders apparently are not genetically related (only reported individually) yet both involve defective skeletal formation, we believe it is important to report our findings on a patient harboring mutations of TNSALP and TWIST1.
Collapse
Affiliation(s)
- Florian Barvencik
- Department of Trauma, Hand, and Reconstructive Surgery and the Department of Experimental Trauma Surgery and Skeletal Biology, Center for Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Matthias Gebauer
- Department of Trauma, Hand, and Reconstructive Surgery and the Department of Experimental Trauma Surgery and Skeletal Biology, Center for Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Thorsten Schinke
- Department of Trauma, Hand, and Reconstructive Surgery and the Department of Experimental Trauma Surgery and Skeletal Biology, Center for Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Michael Amling
- Department of Trauma, Hand, and Reconstructive Surgery and the Department of Experimental Trauma Surgery and Skeletal Biology, Center for Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
69
|
Chappard C, Marchadier A, Benhamou L. Interindividual and intraspecimen variability of 3-D bone microarchitectural parameters in iliac crest biopsies imaged by conventional micro-computed tomography. J Bone Miner Metab 2008; 26:506-13. [PMID: 18758910 DOI: 10.1007/s00774-008-0856-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 01/23/2008] [Indexed: 11/29/2022]
Abstract
Bone microarchitecture of the iliac bone is used to characterize the properties of bone tissue in osteoporosis, particularly in pharmacological studies. Trabecular bone is known to be heterogeneous media. For a few years, the analysis of three-dimensional (3-D) bone microarchitecture has been based on micro-computed tomography (micro-CT). To assess the interindividual variability (inter-indVar) and the intrasample variability (intra-sampVar) of iliac crest biopsies, we used a Bordier needle trephine in 35 postmenopausal female cadavers (mean age, 74.4 +/- 10.4 years). Finally, we had at our disposal 32 individual iliac crests to assess the inter-indVar and 21 oriented specimens to assess the intra-sampVar. All the samples were chemically defatted, and the images were performed with a desktop micro-CT with a voxel size of 10.77 microm. We measured trabecular bone parameters: bone volume/tissue volume (BV/TV %), trabecular thickness and spacing (Tb. Th*, Tb.Sp* microm), bone surface/bone volume (BS/BV, 1/mm), the trabecular number (Tb.N, 1/mm), structure model index (SMI), trabecular pattern factor (Tb.Pf), and degree of anisotropy (DA). We also measured cortical bone parameters: cortical thickness (Cort.Th), porosity (PoV/TV), and pore diameter (Po.Dm). For the inter-indVar, we analyzed a fixed volume of interest corresponding to 119.8 mm(3) centered on each iliac crest. To assess the intra-sampVar, we divided the whole trabecular volume into three equal height parts (external, middle, internal). BV/TV, Tb.N, and PoV/TV were negatively correlated with age and Tb.Sp* and SMI were positively correlated. The mean difference of absolute individual variations in percentage with the middle area used as a reference, comparatively to external and internal areas, ranged from 6.6% (Tb.Sp*) to 27.8% (BV/TV), except Tb.Pf, which showed large variability. There was no difference between external and internal areas, with a tendency for lower values of BV/TV, Tb.Th*, and Tb.N in the middle of the iliac crest and higher values of Tb.Sp* and BS/BV. The evaluation of bone microarchitecture of iliac crest samples on micro-CT images is reliable. The heterogeneity of bone inside the iliac crest is noticeable as leading to analyzing the largest possible quantity of bone, with standardized location, according to cortex but without any assumption of orientation.
Collapse
|
70
|
Eckstein F, Matsuura M, Kuhn V, Priemel M, Müller R, Link TM, Lochmüller EM. Sex differences of human trabecular bone microstructure in aging are site-dependent. J Bone Miner Res 2007; 22:817-24. [PMID: 17352643 DOI: 10.1359/jbmr.070301] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED In this study, we characterize bone microstructure, specifically sex differences, at multiple skeletal sites in 165 subjects >52 yr of age, using microCT technology in vitro. Significant sex differences are observed at the distal radius, femoral neck, and femoral trochanter, but not at the iliac crest, calcaneus, and lumbar vertebral body. Correlations in BV/TV between sites ranged from r = 0.13 to 0.56. INTRODUCTION The goals of this study were (1) to assess potential sex differences of bone microstructure and their difference between skeletal sites and (2) to explore the relationship of trabecular microstructural properties between relevant skeletal sites. MATERIALS AND METHODS Trabecular bone microstructural properties were measured in vitro in 165 subjects 52-99 yr of age using microCT. Defined volumes of interest (cylinders with 6 mm diameter and 6 mm length) were scanned at a resolution of 26 microm (isotropic) in six different anatomical sites: distal radius, femoral neck and trochanter, iliac crest, calcaneus, and second lumbar vertebral body. RESULTS At the radius and femoral neck, trabecular bone displayed a more plate-like structure, thicker trabeculae, smaller separation/higher trabecular number, higher connectivity, and a higher degree of anisotropy in men than in women (p < 0.05). At the trochanter, men displayed more plate-like structure and thicker trabeculae (p < 0.05), but no differences in trabecular separation or other parameters compared with the women. At the calcaneus, iliac crest, and second lumbar vertebra none of the bone parameters displayed significant differences between sexes. The BV/TV at one site explained a range of only 2-32% of the variability at other sites. CONCLUSIONS These results suggest that trabecular bone microstructural properties are remarkably heterogeneous throughout the skeleton. Significant differences between men and women are observed at some, but not at all, sites. The magnitude of sex differences in trabecular microstructure coincides with that of fracture incidence observed for some of the sites in epidemiological studies.
Collapse
Affiliation(s)
- Felix Eckstein
- Institute of Anatomy and Musculoskeletal Research, Paracelsus Medical University, Salzburg, Austria.
| | | | | | | | | | | | | |
Collapse
|
71
|
Chen P, Jerome CP, Burr DB, Turner CH, Ma YL, Rana A, Sato M. Interrelationships between bone microarchitecture and strength in ovariectomized monkeys treated with teriparatide. J Bone Miner Res 2007; 22:841-8. [PMID: 17352652 DOI: 10.1359/jbmr.070310] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Bone microarchitecture measured at the iliac crest at 6 mo was confirmed to be a reasonable surrogate for, and a predictor of, architecture and strength of the femoral neck and lumbar vertebra after 18 mo of teriparatide treatment. However, the data taken together showed the importance of cortical bone volume for vertebra to assess pharmacological effects on bone quality. INTRODUCTION Improvements in bone architecture with teriparatide treatment are suggested to contribute to fracture risk reduction in osteoporotic patients. Teriparatide significantly improves microarchitecture in the iliac crest of humans by stimulating bone modeling and remodeling processes that differ dramatically from those induced by antiresorptives. The relationship between improvements of bone microarchitecture and improvements of bone strength with teriparatide treatment has not yet been fully studied. MATERIALS AND METHODS Ovariectomized monkeys were administered vehicle (n = 20); teriparatide 1.0 microg/kg/d (n = 19); or teriparatide 5.0 microg/kg/d (n = 21) for 18 mo. Iliac crest biopsies were obtained at 6 and 15 mo after initiation of treatment. Animals were killed after 18 mo of treatment, and adjacent vertebrae or contralateral proximal femora were processed for biomechanical or histomorphometric analyses. Pearson correlation analyses were performed to assess the relationship between biomechanical and static histomorphometric parameters of lumbar vertebra, femoral neck, and iliac crest biopsies. RESULTS Static histomorphometric parameters of the 6- and 15-mo biopsies were significantly correlated with the vertebral and femoral neck parameters obtained at 18 mo of teriparatide treatment. Iliac crest biopsy parameters at 6 and 15 mo also correlated with vertebral and femoral neck strength at 18 mo. Static histomorphometry of the lumbar vertebra and femoral neck at 18 mo also significantly correlated with strength at these sites. However, cortical bone volume of the lumbar vertebrae had the strongest correlation with vertebral and femoral neck strength (r = 0.74 and 0.71, respectively). CONCLUSIONS Teriparatide dose dependently improved cortical and trabecular microarchitecture of vertebra and femoral neck, as well as trabecular microarchitecture of the iliac crest. Bone microarchitecture at all sites was significantly correlated with lumbar vertebra and femoral neck strength. Cortical bone volume of vertebra had the strongest correlation with vertebral and femoral neck strength. Therefore, structural improvement seemed to be part of the mechanism for improved strength observed with teriparatide treatment. Trabecular bone architecture of the iliac crest at 6 mo also correlated with vertebral and femoral neck strength, as did femoral neck (cortical and trabecular) histomorphometry and trabecular histomorphometry of vertebra after 18 mo of treatment. Because clinical assessment of cortical bone volume is not readily possible for vertebra noninvasively, these findings confirm the importance of iliac crest biopsies to monitor skeletal health and show that biopsies are a reasonable surrogate to assess spine and femoral neck structure and function.
Collapse
Affiliation(s)
- Peiqi Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | | | |
Collapse
|
72
|
Rupprecht M, Pogoda P, Barvencik F, Münch C, Püschel K, Rueger JM, Amling M. [The calcaneus as the site of manifestation for osteoporosis-associated fractures: age- and sex-specific changes in calcaneal morphology correlate with the incidence and severity of intra-articular calcaneal fractures]. Unfallchirurg 2006; 110:197-204. [PMID: 17048023 DOI: 10.1007/s00113-006-1187-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND While it is recognized that trauma energy at the time of injury is an important factor in the pathogenesis and severity of calcaneal fractures, the possible role of changes in calcaneal microarchitecture remains largely undefined. The purpose of this study was to determine whether the calcaneal bone structure changes with age and to address if local bone mass is of clinical relevance in respect to the occurrence and complexity of calcaneal fractures. MATERIAL AND METHODS The radiographic and clinical data of 182 patients with intra-articular calcaneal fractures were analyzed to provide correlative clinical evidence for a relation between local bone mass and fractures of the calcaneus. To measure bone mass, 60 calcanei were harvested from 30 age- and gender-matched patients at autopsy. RESULTS The average age at the time of fracture was higher in females (46.0+/-18.3 years) than in males (39.9+/-13.9 years). Furthermore, the relative frequency of fractures during aging shifted from males to females and the frequency of compound fractures was higher in females (65%) than in males (48%). The calcaneal bone mass was significantly reduced by 19% in older females (female symbol 20-40 years: 292 mg/cm(3); female symbol 61-80 years: 237 mg/cm(3); p<0.05). CONCLUSION The calcaneus displayed age- and gender-related changes in its microarchitecture that are known to reduce the biomechanical stability of trabecular bone. These results suggest that bone mass and structure are risk factors in respect to the occurrence and severity of calcaneal fractures.
Collapse
Affiliation(s)
- M Rupprecht
- Klinik und Poliklinik für Unfall-, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg
| | | | | | | | | | | | | |
Collapse
|
73
|
Rupprecht M, Pogoda P, Mumme M, Rueger JM, Püschel K, Amling M. Bone microarchitecture of the calcaneus and its changes in aging: a histomorphometric analysis of 60 human specimens. J Orthop Res 2006; 24:664-74. [PMID: 16514636 DOI: 10.1002/jor.20099] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bone structure and quality are an important parameter in the propensity of bone to fracture. Although the calcaneus is used as diagnostic reference site for osteoporosis by ultrasound, its structure has never been analyzed in detail. The purpose of this study was therefore to histomorphometrically analyze the trabecular microarchitecture of the calcaneus, and to determine whether the calcaneal bone structure is changing with age. Sixty complete human calcanei were harvested from thirty age- and gender-matched patients at autopsy. Each of the three different age groups (group I: 20 to 40, group II: 41 to 60, group III: 61 to 80 years of age) was represented by 20 specimens. The specimens were subjected to radiographic, microCT, and histologic analysis. Bone structure and bone mass of the calcaneus were quantified for three different regions of interest: the anterior ROI, the superior ROI (the subtalar region under the posterior facet), and the posterior ROI. An iliac crest biopsy was obtained from all patients to exclude any metabolic bone disease. Histomorphometric analysis revealed significant differences in bone volume within the calcaneus with highest values in the superior ROI: age group I: 31.3% (27.8-34.8%); II: 25.5% (22.1-28.9%); III: 18.9% (16.6-21.2%) and lowest bone volumes in the anterior ROI; age group I: 6.2% (4.8-7.6%); II: 3.6% (2.1-5.1%); III: 3.9% (2.9-4.9%). There was a significant age-related decrease in bone volume (BV/TV) in aging. Interestingly, this bone loss was most prominent in the superior ROI, with a 39% decrease in BV/TV between age group I and III (p < 0.001). Qualitative and structural analysis of trabecular number, thickness, and spacing demonstrated that the bone loss in the thalamic portion of the calcaneus was due to the transition of plate-like trabecular elements into a rod-like structure. In conclusion, our study demonstrated that the calcaneus displayed age-related changes in its microarchitecture that are known to reduce the biomechanical stability of trabecular bone, and that the age-related bone loss was most prominent in the region adjacent to the posterior facet (superior ROI). These results suggest that bone mass and structure are risk factors in respect to the occurrence and severity of calcaneal fractures, and indicate that calcaneal fractures are at least in part osteoporotic fractures.
Collapse
Affiliation(s)
- Martin Rupprecht
- Department of Trauma-, Hand-, and Reconstructive Surgery, Hamburg University School of Medicine, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
74
|
Diederichs G, Korner J, Goldhahn J, Linke B. Assessment of bone quality in the proximal humerus by measurement of the contralateral site: a cadaveric analyze. Arch Orthop Trauma Surg 2006; 126:93-100. [PMID: 16456662 DOI: 10.1007/s00402-006-0103-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The presence of osteoporosis decreases the success of osteosynthesis, especially in the proximal humerus. Estimation of the bone mineral density (BMD) at the fracture site could aid in the decision making for surgical treatment and potential implant choice with regard to the individual bone properties. BMD measurement at a fracture site is prone to inaccuracies and alternative measurement sites need to be identified. In the case of a proximal humerus fracture, promising alternative measurement sites are at the same contralateral or at a different ipsilateral location. The aim of this study was to determine if the BMD for the humeral head can be predicted by BMD measurements from the ipsilateral distal humerus or the contralateral proximal humerus. MATERIAL AND METHODS Cancellous BMD values were obtained from 88 paired human cadaver humeri (age 75.8+/-13.5 years) at the humeral head and at the distal metaphyseal area by pQCT. Correlations between BMD values of the ipsi- and contralateral sites were computed. RESULTS Correlations between proximal and distal BMD values within one bone were moderate for both left (R2=0.37) and right humeri (R2=0.40). BMD comparison between left and right humeri revealed high correlations for both the distal (R2=0.90) and the proximal humerus (R2=0.74) (all P<0.01). Elderly specimen (>or=70 years) showed better intersite correlations between all regions than younger specimen (<70 years). CONCLUSION High correlations between contralateral BMD values may be the result of similar biomechanical loading conditions. Although a relationship between proximal and distal bone quality of the same bone was found, the moderate coefficient suggests that ipsilateral measurements do not provide a good prediction of humeral head BMD. Bone quality at the humeral head is best predicted by BMD measurements at the contralateral location rather than the ipsilateral distal site.
Collapse
|
75
|
Bauer JS, Kohlmann S, Eckstein F, Mueller D, Lochmüller EM, Link TM. Structural analysis of trabecular bone of the proximal femur using multislice computed tomography: a comparison with dual X-ray absorptiometry for predicting biomechanical strength in vitro. Calcif Tissue Int 2006; 78:78-89. [PMID: 16467973 DOI: 10.1007/s00223-005-0070-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 10/08/2005] [Indexed: 10/25/2022]
Abstract
We investigated whether trabecular microstructural parameters determined in multislice spiral computed tomographic (MSCT) images of proximal femur specimens differed in male and female donors and improved the prediction of biomechanical strength of the femur compared to bone mineral density (BMD) and content (BMC) determined with dual X-ray absorptiometry (DXA) as the standard diagnostic technique. Proximal femur specimens (n = 119) were harvested from formalin-fixed human cadavers (mean age 80 +/- 10 years). BMD was determined using DXA. Trabecular microstructural parameters (bone volume fraction, fractal dimension, and trabecular thickness, spacing, and number) were calculated in MSCT-derived images of the proximal femur. Failure load (FL) was measured using a biomechanical side-impact test. An age-, height-, and weight-matched subgroup (n = 54) was chosen to compare male and female donors. BMC, BMD, and structural parameters correlated significantly with FL, with r up to 0.75, 0.71, and 0.71, respectively. In a multiple regression model, an increase up to r = 0.82 was obtained when combining trabecular structural parameters and BMC. BMD differed between males and females only at the trochanter. BMC showed significant gender differences in all regions. This experimental study showed that a combination of BMC and microstructural parameters could improve the prediction of FL, suggesting that bone mass and trabecular structure carry overlapping but complementary information and that a combination of the two provides the best prediction of bone strength. Male donors had larger femora even after adjustment for body size and height, but no differences in trabecular structure were found between males and females.
Collapse
Affiliation(s)
- J S Bauer
- Musculoskeletal and Quantitative Imaging Research, Department of Radiology, University of California, San Francisco, CA, USA.
| | | | | | | | | | | |
Collapse
|
76
|
Recker R, Masarachia P, Santora A, Howard T, Chavassieux P, Arlot M, Rodan G, Wehren L, Kimmel D. Trabecular bone microarchitecture after alendronate treatment of osteoporotic women. Curr Med Res Opin 2005; 21:185-94. [PMID: 15801989 DOI: 10.1185/030079904x20259] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To compare the microarchitecture of iliac crest trabecular bone from women treated for two to three years with alendronate versus that of women treated with placebo. RESEARCH DESIGN AND METHODS Three-dimensional micro-computed tomography (micro-CT; resolution 20 microm) and two-dimensional histomorphometry (resolution 5-7 microm) were used to examine trabecular bone from single transilial biopsies obtained at the completion of clinical trials. MAIN OUTCOME MEASURES Microarchitectural variables, including bone volume, trabecular number, trabecular thickness, and trabecular spacing in specimens from alendronate- and placebo-treated women were examined. Three-dimensional images of trabecular bone from both groups were constructed from CT images. Correlations among variables and between techniques were also calculated. RESULTS Eighty-eight specimens were suitable for evaluation by both techniques. As measured by two-dimensional histomorphometry, bone volume fraction (as a proportion of total volume) and trabecular thickness were significantly greater in alendronate specimens, 17.1 +/- 5.5% vs. 13.4 +/- 5.5% (p = 0.0043) and 127 +/- 29 microm vs. 109 +/- 28 microm (p = 0.0090), respectively, and trabecular spacing was significantly smaller, 729 +/- 227 microm vs. 862 +/- 338 microm (p = 0.005). Micro-CT yielded similar findings: bone volume and trabecular number were significantly greater in alendronate specimens: 19.4 +/- 6.2% vs. 16.2 +/- 6.3% (p = 0.0412) and 1.46(+/-) 0.32 vs. 1.31(+/-) 0.33 per mm (p = 0.0346). Two-dimensional and micro-CT measured characteristics correlated strongly with one another, with Pearson product moment correlation coefficients ranging from 0.60 (for trabecular thickness) to 0.83 (for bone volume). CONCLUSIONS Trabecular microarchitecture of the ilium, whether studied by two- or three-dimensional methods, is better (greater bone volume, greater trabecular thickness, decreased trabecular spacing) after alendronate treatment than after two to three years of treatment with placebo. Bone volume in a trabecular region is strongly correlated to its microarchitecture, suggesting that bone quantity predicts values for these microarchitectural endpoints.
Collapse
Affiliation(s)
- R Recker
- Osteoporosis Research Center, Creighton University, Omaha, NE 68131-2137, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Pogoda P, Priemel M, Schilling AF, Gebauer M, Catalá-Lehnen P, Barvencik F, Beil FT, Münch C, Rupprecht M, Müldner C, Rueger JM, Schinke T, Amling M. Mouse models in skeletal physiology and osteoporosis: experiences and data on 14,839 cases from the Hamburg Mouse Archives. J Bone Miner Metab 2005; 23 Suppl:97-102. [PMID: 15984423 DOI: 10.1007/bf03026332] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Our understanding of the developmental biology of the skeleton, like that of virtually every other subject in biology, has been transformed by recent advances in human and mouse genetics, but we still know very little, in molecular and genetic terms, about skeletal physiology. Thus, among the many questions that are largely unexplained are the following: why is osteoporosis mainly a women's disease? How is bone mass maintained nearly constant between the end of puberty and the arrest of gonadal functions? Molecular genetics has emerged as a powerful tool to study previously unexplored aspects of the physiology of the skeleton. Among mammals, mice are the most promising animals for this experimental work. The input that transgenic animals can offer to our field depends on our means of phenotypic characterization of the mouse skeleton. In fact, full appreciation of the skeletal characteristics of a given mouse model requires the application of standardized protocols for noninvasive imaging, histology, histomorphometry, biomechanics, and individually adapted in vitro and in vivo analysis. Over the past years we have established a mouse archive that consists of 14,839 cases from more than 120 different mouse models that we have phenotypically characterized in Hamburg. Today, this is one of the biggest databases on the mouse skeleton. This review focuses on one aspect of skeletal physiology, namely skeletal aging, and demonstrates that mouse models can be a valuable tool to gain insights in certain facets of skeletal physiology that have been unexplored previously.
Collapse
Affiliation(s)
- Pia Pogoda
- Experimental Trauma Surgery and Skeletal Biology, Department of Trauma, Hand, and Reconstructive Surgery, Hamburg University School of Medicine, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Nägele E, Kuhn V, Vogt H, Link TM, Müller R, Lochmüller EM, Eckstein F. Technical considerations for microstructural analysis of human trabecular bone from specimens excised from various skeletal sites. Calcif Tissue Int 2004; 75:15-22. [PMID: 15037972 DOI: 10.1007/s00223-004-0151-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to test the effect of repositioning, systematic displacements of the region of interest (ROI), and acquisition parameters (scan mode and integration time) on quantitative analysis of human trabecular bone microstructure at various skeletal sites, using microcomputed tomographic (microCT) technology. We investigated 28 cylindrical specimens of human trabecular bone (length 14 mm, diameter 8 mm) from four skeletal sites (femoral neck, greater trochanter, second lumbar vertebra, and distal radius). These specimens were selected from over 200 microCT measurements, in order to cover a large range of bone volume fraction (BV/TV) observed at each site. Cylindrical ROIs (length 6 mm, diameter 6 mm) were examined twice at an isotropic resolution of 26 microm, 8 weeks apart. In addition, comparative analyses were performed for displacements of the volumes of interest (VOIs) by 1, 2, 3, and 4 mm (83.4%, 66.6%, 50%, and 33.3% overlap), respectively. Eventually, comparative measurements were obtained at different resolution scan modes and integration times. The results show that microCT measurements are highly reproducible (range of the root mean square coefficient variation % (RMS CV%) = 0.64% to 1.29% for BV/TV at different sites). Displacements of the VOI of up to 4 mm generally led to non significant systematic differences in mean values of < 10%. When comparing various combinations of resolution scan modes and integration times, the use of an integration time of 100 ms was found to be preferable for determining microstructural parameters from human samples with this microCT scanner.
Collapse
Affiliation(s)
- E Nägele
- Musculoskeletal Research Group, Institute of Anatomy, Ludwig-Maximilians-Universität München, Pettenkoferstr. 11, D-80336 München, Germany
| | | | | | | | | | | | | |
Collapse
|
79
|
Herlidou S, Grebe R, Grados F, Leuyer N, Fardellone P, Meyer ME. Influence of age and osteoporosis on calcaneus trabecular bone structure: a preliminary in vivo MRI study by quantitative texture analysis. Magn Reson Imaging 2004; 22:237-43. [PMID: 15010116 DOI: 10.1016/j.mri.2003.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2003] [Revised: 07/14/2003] [Accepted: 07/15/2003] [Indexed: 12/19/2022]
Abstract
Recent developments in high-resolution MR imaging techniques have opened up new perspectives for structural characterization of trabecular bone by non-invasive methods. In this study, 3-D MR imaging was performed on 17 healthy volunteers and 6 osteoporotic patients. Two different MR sequences were used to evaluate the impact on MR acquisition on texture analysis results. Images were analyzed with four automated methods of texture analysis (grey level histogram, cooccurrence, runlength and gradient matrices) enabling quantitative analysis of grey level intensity and distribution within three different regions of interest (ROI). Texture analysis is not very frequently used since the interpretation of the large number of calculated parameters is difficult. We applied multiparametric data analyses such as principal component analysis (CFA) and hierarchical ascending classification (HAC) to determine the relevant parameters to differentiate between three sets of images (healthy young volunteers, healthy postmenopaused and osteoporotic patients). The results suggest that relevant texture information (depending on the ROI localization in the calcaneus) can be extracted from calcaneus MR images to evaluate osteoporosis and age effects on trabecular bone structure if strictly the same acquisition sequences are used for all patients' examination.
Collapse
Affiliation(s)
- S Herlidou
- Unité de Génie Biophysique et Médical, Faculte de Médecine, Centre Hospitalier Universitaire Nord, Amiens, France.
| | | | | | | | | | | |
Collapse
|
80
|
Parkinson IH, Fazzalari NL. Interrelationships between structural parameters of cancellous bone reveal accelerated structural change at low bone volume. J Bone Miner Res 2003; 18:2200-5. [PMID: 14672355 DOI: 10.1359/jbmr.2003.18.12.2200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED This study shows that change to cancellous bone structure is bone volume-dependent in a nonlinear manner. At low bone volume (< 15%), trabecular thickness and trabecular separation change at a much greater rate than at higher bone volume. This suggests that the structural integrity of the cancellous bone may become rapidly compromised when bone volume falls below a critical value. INTRODUCTION While bone mass is the major determinant of bone strength, this mass-based paradigm does not fully account for the contribution of the bone microstructure to mechanical efficiency. Geometric models of cancellous bone structure have been formulated based on stylized representations of the trabecular elements, where the relationships between bone volume and bone surface of cancellous bone are complex and reflect the modulating effect on the cancellous bone structure of bone remodeling at the trabecular surfaces. Using the plate model of cancellous bone structure, the interrelationships between parameters of cancellous bone structure have been studied. MATERIALS AND METHODS Two hundred eighty histological sections of human cancellous bone from eight skeletal sites were analyzed. The structural parameters of cancellous bone (BV/TV, BS/TV, BS/BV, Tb.Th, Tb.Sp, Tb.N, and TBPf) were obtained. RESULTS AND CONCLUSIONS This study shows that change to cancellous bone structure is bone volume-dependent in a nonlinear manner. At low bone volume (< 15%), structural parameters of cancellous bone, such as trabecular thickness and trabecular separation, change at a much greater rate than at higher bone volume. This suggests that the structural integrity of the cancellous bone may become rapidly compromised when bone volume falls below a critical value. These data describe the complex relationships between bone mass and structure in cancellous bone that are often overlooked in the mass-based paradigm of bone strength. Histomorphometric descriptors of cancellous bone structure highlight the potential for accelerated deterioration of the structure with low bone volume, which leads to increased risk of fracture. From a clinical viewpoint, estimation of an individual's fracture risk is constrained to noninvasive techniques, which only provide bone mineral density or bone mineral content. Therefore, there is a need to better correlate measurement of bone mass with measurements of structural parameters.
Collapse
Affiliation(s)
- Ian H Parkinson
- Division of Tissue Pathology, Institute of Medical and Veterinary Science, Department of Pathology, University of Adelaide, Adelaide, South Australia, Australia.
| | | |
Collapse
|
81
|
Augat P, Schorlemmer S, Gohl C, Iwabu S, Ignatius A, Claes L. Glucocorticoid-treated sheep as a model for osteopenic trabecular bone in biomaterials research. J Biomed Mater Res A 2003; 66:457-62. [PMID: 12918027 DOI: 10.1002/jbm.a.10601] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of this study was to determine the alterations in ovine trabecular bone induced by a combination of ovariectomy and steroid treatment. Twenty-four female skeletally mature Merino sheep were randomly assigned to ovariectomy alone (OVX), ovariectomy combined with glucocorticoid treatment for 6 months (OVX + GC), or no treatment (control). Biopsies of trabecular bone were harvested 6 and 12 months after the beginning of the study from the proximal tibia. The biopsies were scanned for apparent bone mineral density by quantitative computed tomography and were mechanically tested. Three-dimensional bone reconstructions were obtained by micro-computed tomography. Trabecular bone from the OVX + GC animals had a markedly reduced apparent bone mineral density (27% less than control), bone volume (34%), and elastic modulus (36%) at 6 months. At 12 months, the reductions in apparent bone mineral density (33%), bone volume (37%), and elastic modulus (62%) appeared to be even more pronounced. Ovariectomy alone did not result in a perceptible reduction in any parameter. The combination of ovariectomy and glucocorticoid treatment in sheep resulted in a successful induction of substantial loss of trabecular bone and thus may serve as a large-animal model for osteopenic trabecular bone for the development and testing of orthopedic implants and techniques under osteoporotic conditions.
Collapse
Affiliation(s)
- Peter Augat
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstr. 14, 89081 Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
82
|
Lochmüller EM, Müller R, Kuhn V, Lill CA, Eckstein F. Can novel clinical densitometric techniques replace or improve DXA in predicting bone strength in osteoporosis at the hip and other skeletal sites? J Bone Miner Res 2003; 18:906-12. [PMID: 12733731 DOI: 10.1359/jbmr.2003.18.5.906] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
New peripheral techniques are now available for the diagnosis of osteoporosis, but their value in the clinical management of the disease remains controversial. This study tests the hypothesis that peripheral quantitative computed tomography (pQCT) at the distal radius and/or quantitative ultrasound (QUS) at the calcaneus can serve as replacement or improvement of current methodology (QCT and DXA) for predicting bone strength at the hip and other sites. In 126 human cadavers (age, 80.2 +/- 10.4 years), DXA of the femur, spine, and radius and pQCT of the radius were acquired with intact soft tissues. QCT (spine) and QUS (calcaneus) were performed ex situ in degassed specimens. Femoral failure loads were assessed in side impact and vertical loading. Failure loads of the thoracolumbar spine were determined at three levels in compression and those of the radius by simulating a fall. Site-specific DXA explained approximately 55% of the variability in femoral strength, whereas pQCT and QUS displayed a lower association (15-40%). QUS did not provide additional information on mechanical strength of the femur, spine, or radius. All techniques displayed similar capability in predicting a combined index of failure strength at these three sites, with only QUS exhibiting significantly lower associations than other methods. These experimental results suggest that clinical assessment of femoral fracture risk should preferably rely on femoral DXA, whereas DXA, QCT, and pQCT display similar capability of predicting a combined index of mechanical strength at the hip, spine, and radius.
Collapse
Affiliation(s)
- Eva-Maria Lochmüller
- Universitätsfrauenklinik, Ludwig-Maximilians-Universität München, Munich, Germany.
| | | | | | | | | |
Collapse
|
83
|
Lochmüller EM, Lill CA, Kuhn V, Schneider E, Eckstein F. Radius bone strength in bending, compression, and falling and its correlation with clinical densitometry at multiple sites. J Bone Miner Res 2002; 17:1629-38. [PMID: 12211433 DOI: 10.1359/jbmr.2002.17.9.1629] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This study comprehensively analyzes the ability of site-specific and nonsite-specific clinical densitometric techniques for predicting mechanical strength of the distal radius in different loading configurations. DXA of the distal forearm, spine, femur, and total body and peripheral quantitative computed tomography (pQCT) measurements of the distal radius (4, 20, and 33%) were obtained in situ (with soft tissues) in 129 cadavers, aged 80.16 +/- 9.8 years. Spinal QCT and calcaneal quantitative ultrasound (QUS) were performed ex situ in degassed specimens. The left radius was tested in three-point bending and axial compression, and the right forearm was tested in a fall configuration, respectively. Correlation coefficients with radius DXA were r = 0.89, 0.84, and 0.70 for failure in three-point bending, axial compression, and the fall simulation, respectively. The correlation with pQCT (r = 0.75 for multiple regression models with the fall) was not significantly higher than for DXA. Nonsite-specific measurements and calcaneal QUS displayed significantly (p < 0.01) lower correlation coefficients, and QUS did only contribute to the prediction of axial failure stress but not of failure load. We conclude that a combination of pQCT parameters involves only marginal improvement in predicting mechanical strength of the distal radius, nonsite-specific measurements are less accurate for this purpose, and QUS adds only little independent information to site-specific bone mass. Therefore, the noninvasive diagnosis of loss of strength at the distal radius should rely on site-specific measurements with DXA or pQCT and may be the earliest chance to detect individuals at risk of osteoporotic fracture.
Collapse
|
84
|
Buck AM, Price RI, Sweetman IM, Oxnard CE. An investigation of thoracic and lumbar cancellous vertebral architecture using power-spectral analysis of plain radiographs. J Anat 2002; 200:445-56. [PMID: 12090391 PMCID: PMC1570713 DOI: 10.1046/j.1469-7580.2002.00051.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The internal architecture of the vertebral bodies spanning the levels T1 to L5 in seven male columns was studied using mammographic-resolution radiographs of 2.5-mm-thick planar parasagittal slices. The overlapping radiographic shadows of vertebral trabeculae combined in the image to form a series of 'elements', broadly representative of the cancellous structure. The orientations and sizes of these elements were analysed by applying the Fast Fourier transform (FFT) to the digitized radiographic images. Elements aligned in the 'vertical' orientation, along the long axis of the column, were the most prominent for all vertebral levels. The relative prominence of horizontal to vertical elements was generally constant along the column below T5. In contrast, the relative prominence of oblique to vertical elements declined in the cranio-caudal direction, particularly in individuals aged > or = 60 years. The ratio of 'large' (x > 0.3 mm) to 'small' (0.15 mm < or = x < or = 0.3 mm) elements was unchanged cranio-caudally in specimens < 60 years. However, in individuals > or = 60 years, large elements increased in relative prominence in the caudal direction. These results suggest that a basic orthogonal pattern of trabeculae is found along the male human spine, regardless of differences in vertebral body size. Power-spectral analysis is shown to yield information summarizing the predominant orientations and sizes of radiographically rendered architectural elements of vertebral cancellous bone, to define the effects of ageing on architecture, and to identify broad structural differences between vertebral levels in the adult male spine.
Collapse
Affiliation(s)
- A M Buck
- Department of Forensic Pathology, Western Australian Centre for Pathology, University of Western Australia, Nedlands.
| | | | | | | |
Collapse
|
85
|
Les CM, Whalen RT, Beaupré GS, Yan CH, Cleek TM, Wills JS. The X-ray attenuation characteristics and density of human calcaneal marrow do not change significantly during adulthood. J Orthop Res 2002; 20:633-41. [PMID: 12038641 DOI: 10.1016/s0736-0266(01)00143-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Changes in the material characteristics of bone marrow with aging can be a significant source of error in measurements of bone density when using X-ray and ultrasound imaging modalities. In the context of computed tomography, dual-energy computed techniques have been used to correct for changes in marrow composition. However, dual-energy quantitative computed tomography (DE-QCT) protocols, while increasing the accuracy of the measurement, reduce the precision and increase the radiation dose to the patient in comparison to single-energy quantitative computed tomography (SE-QCT) protocols. If the attenuation properties of the marrow for a particular bone can be shown to be relatively constant with age, it should be possible to use single-energy techniques without experiencing errors caused by unknown marrow composition. Marrow was extracted by centrifugation from 10 mm thick frontal sections of 34 adult cadaver calcanei (28 males, 6 females, ages 17-65 years). The density and energy-dependent linear X-ray attenuation coefficient of each marrow sample were determined. For purposes of comparing our results, we then computed an effective CT number at two GE CT/i scan voltages (80 and 120 kVp) for each specimen. The coefficients of variation for the density, CT number at 80 kVp and CT number at 120 kVp were each less than 1%, and the parameters did not change significantly with age (p > 0.2, r2 < 0.02, power > 0.8 where the minimum acceptable r2 = 0.216). We could demonstrate no significant gender-associated differences in these relationships. These data suggest that calcaneal bone marrow X-ray attenuation properties and marrow density are essentially constant from the third through sixth decades of life.
Collapse
Affiliation(s)
- C M Les
- Musculoskeletal Biomechanics Laboratory, NASA Ames Research Center, Moffett Field, CA, USA.
| | | | | | | | | | | |
Collapse
|
86
|
Eckstein F, Lochmüller EM, Lill CA, Kuhn V, Schneider E, Delling G, Müller R. Bone strength at clinically relevant sites displays substantial heterogeneity and is best predicted from site-specific bone densitometry. J Bone Miner Res 2002; 17:162-71. [PMID: 11771664 DOI: 10.1359/jbmr.2002.17.1.162] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this study we test the hypotheses that mechanical bone strength in elderly individuals displays substantial heterogeneity among clinically relevant skeletal sites, that ex situ dual-energy X-ray absorptiometry (DXA) provides better estimates of bone strength than in situ DXA, but that a site-specific approach of bone densitometry is nevertheless superior for optimal prediction of bone failure under in situ conditions. DXA measurements were obtained of the lumbar spine, the left femur, the left radius, and the total body in 110 human cadavers (age, 80.6 +/- 10.5 years; 72 female, 38 male), including the skin and soft tissues. The bones were then excised, spinal and femoral DXA being repeated ex situ. Mechanical failure tests were performed on thoracic vertebra 10 and lumbar vertebra 3 (compressive loading of a functional unit), the left and right femur (side impact and vertical loading configuration), and the left and right distal radius (fall configuration, axial compression, and 3-point-bending). The failure loads displayed only very moderate correlation among sites (r = 0.39 to 0.63). Ex situ DXA displayed slightly higher correlations with failure loads compared with those of in situ DXA, but the differences were not significant and relatively small. Under in situ conditions, DXA predicted 50-60% of the variability in bone failure loads at identical (or closely adjacent) sites, but only around 20-35% at distant sites, advocating a site-specific approach of densitometry. These data suggest that mechanical competence in the elderly is governed by strong regional variation, and that its loss in osteoporosis may not represent a strictly systemic process.
Collapse
Affiliation(s)
- Felix Eckstein
- Musculoskeletal Research Group, Institute of Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
87
|
Thomsen JS, Ebbesen EN, Mosekilde L. Static histomorphometry of human iliac crest and vertebral trabecular bone: a comparative study. Bone 2002; 30:267-74. [PMID: 11792596 DOI: 10.1016/s8756-3282(01)00666-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We recently developed a new, rapid method for conducting static histomorphometry on large histologic sections. This method has now been applied on both iliac crest and lumbar vertebral bone to compare the age-related changes at these two skeletal sites and to investigate the correlation between the histomorphometric measures at the iliac crest and the vertebral body. The material comprised matched sets of unilateral transiliac crest bone biopsies and lumbar vertebral bodies (L-2) from 24 women (19-96 years) and 24 men (23-95 years) selected from a larger autopsy material. Three female subjects (80, 88, and 90 years) had a known vertebral fracture of L-2. The iliac crest biopsies and 9-mm-thick mediolateral slices of half the entire vertebral bodies were embedded in methylmetacrylate, stained with aniline blue, and scanned into a computer with a flatbed image scanner at a high resolution. With a custom-made computer program the following static histomorphometric measures were determined: trabecular bone volume; marrow and bone space star volume; node-strut analysis; trabecular bone pattern factor; trabecular thickness; trabecular number; trabecular separation; and anisotropy of bone and marrow phase. In addition, connectivity density was measured (ConnEulor method). The results showed that the age-related changes in the static histomorphometric measures are generally similar in the iliac crest and the vertebral body, and that these age-related changes are independent of gender. An exception, however, is connectivity density, where the age-related changes are similar for women and men in the vertebral body but significantly different in the iliac crest. Furthermore, the results showed that the histomorphometric measures were weakly intercorrelated between the iliac crest and the vertebral body, despite the generally similar pattern in age-related changes at these two skeletal sites. The highest correlation coefficient was found for trabecular separation (Tb.Sp; r = 0.63). Trabecular bone volume showed a correlation coefficient of r = 0.59. It is concluded that static histomorphometry performed on one skeletal site does not automatically predict static histomorphometric measures at another skeletal site. Therefore, it is recommended that static histomorphometry be performed at the skeletal site of interest-if at all possible.
Collapse
Affiliation(s)
- J S Thomsen
- Department of Cell Biology, Institute of Anatomy, University of Arhus, Arhus, Denmark.
| | | | | |
Collapse
|
88
|
Lochmüller EM, Groll O, Kuhn V, Eckstein F. Mechanical strength of the proximal femur as predicted from geometric and densitometric bone properties at the lower limb versus the distal radius. Bone 2002; 30:207-16. [PMID: 11792587 DOI: 10.1016/s8756-3282(01)00621-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This experimental study compares geometric and densitometric properties of cortical and trabecular bone at the lower limb and the distal radius with those at the femoral neck, and evaluates their ability to predict mechanical failure loads of the proximal femur. One hundred five cadavers were examined with peripheral quantitative computed tomography (LpQCT), with measurements being performed in situ at the distal radius (4%, 20%, 33%), at the distal and proximal tibia, at the tibial and femoral shaft, and at the distal femur. Ex situ measurements were obtained at the femoral neck and at the proximal femoral shaft. Pairs of femora were mechanically tested in a vertical loading and a side impact (fall) configuration. The total (cross-sectional) bone mineral content and trabecular density, but not the cortical properties, displayed a higher association between the femoral neck and the peripheral lower limb than between the neck and the distal radius. Approximately 50%-60% of the variability of femoral failure loads (and >80% of trochanteric side impact fractures) were predicted by in vitro measurements at the neck. Geometric cortical parameters and density contributed independently and significantly to femoral strength. Measurements at the peripheral skeleton explained, however, only 30%-45% of the variability of femoral failure, with no significant difference between the lower limb and the distal radius. At peripheral sites, a combination of geometric and densitometric variables was slightly superior to bone mineral content alone in predicting failure in vertical loading, but this was less evident for cervical side impact fractures. The results show that a stronger association of total bone mineral content and trabecular density between the femoral neck and the lower limb does not translate into improved prediction of femoral strength from measurements at the lower limb vs. those at the distal radius.
Collapse
Affiliation(s)
- E M Lochmüller
- Universitätsfrauenklinik Innenstadt der Ludwig-Maximilians-Universität München, München, Germany.
| | | | | | | |
Collapse
|
89
|
Roschger P, Grabner BM, Rinnerthaler S, Tesch W, Kneissel M, Berzlanovich A, Klaushofer K, Fratzl P. Structural development of the mineralized tissue in the human L4 vertebral body. J Struct Biol 2001; 136:126-36. [PMID: 11886214 DOI: 10.1006/jsbi.2001.4427] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Knowledge of the structural development of the human vertebrae from non-weight-bearing before birth to weight-bearing after birth is still poor. We studied the mineralized tissue of the developing lumbar L4 vertebral body at ages 15 weeks postconception to 97 years from the tissue level (trabecular architecture) to the material level (micro- and nanostructure). Trabecular architecture was investigated by 2D histomorphometry and the material level was examined by quantitative backscattered electron imaging (for typical calcium content, CaMaxFreq) and scanning small-angle X-ray scattering (for mean mineral particle thickness). During early development, the trabecular orientation changed from a radial to a vertical/horizontal pattern. For bone area per tissue area and trabecular width in postnatal cancellous bone, the maximum was reached at adolescence (20 years), while for trabecular number the maximum was reached at childhood (approximately 1 year). CaMaxFreq was lower in early bone (approximately 21 wt%) than in mineralized cartilage (approximately 29 wt%) and adolescent bone (approximately 23 wt%). In conclusion, the changes at the tissue level were observed to continue throughout life while the development of bone at the material level (CaMaxFreq, mineral particle thickness and orientation) is essentially complete after the first years of life. CaMaxFreq and mean particle thickness increase rapidly during the first years and reach saturation. Remarkably, when these parameters are plotted versus logarithm of age, they appear linear.
Collapse
Affiliation(s)
- P Roschger
- Ludwig Boltzmann Institute of Osteology, 4th Medical Department, Hanusch Hospital and UKH-Meidling, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Beuf O, Newitt DC, Mosekilde L, Majumdar S. Trabecular structure assessment in lumbar vertebrae specimens using quantitative magnetic resonance imaging and relationship with mechanical competence. J Bone Miner Res 2001; 16:1511-9. [PMID: 11499874 DOI: 10.1359/jbmr.2001.16.8.1511] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to use quantitative magnetic resonance imaging (MRI; high-resolution [HR] and relaxometry) to assess trabecular bone structure in lumbar vertebrae specimens and to compare these techniques with bone mineral density (BMD) in predicting stress values obtained from mechanical tests. Fourteen vertebral midsagittal sections from lumbar vertebrae L3 were obtained from cadavers (aged 22-76 years). HR images with a slice thickness of 300 microm and an in-plane spatial resolution of 117 microm2 x 117 microm2 were obtained. Transverse relaxation time T2' distribution was measured by using an asymmetric spin-echo (ASE) sequence. Traditional morphometric measures of bone structure such as apparent trabecular bone fraction (app. BV/TV), apparent trabecular bone number (app. Tb.N), apparent trabecular bone separation (app. Tb.Sp), and apparent trabecular bone thickness (app. Tb.Th) as well as the directional mean intercept length (MIL) were calculated. Additionally, BMD measurements of these sections were obtained by dual-energy X-ray absorptiometry (DXA) and biomechanical properties such as directional stress values (to fracture) were determined on adjacent specimens. With the exception of T2', all morphological parameters correlated very well with age, BMD, and stress values (R between 0.79 and 0.92). However, in the direction perpendicular to the magnetic field, T2' values enhanced the adjusted R2 correlation value with horizontal (M/L) stress values in addition to BMD from 0.70 to 0.91 (p < 0.05).
Collapse
Affiliation(s)
- O Beuf
- Department of Radiology, University of California, San Francisco, 94143-1290, USA
| | | | | | | |
Collapse
|
91
|
Abstract
Several studies in vitro and a few in vivo have suggested that mature osteoblasts heterogeneously express osteoblast markers. In one recent study of the osteoblasts associated with bone nodules formed in vitro in rat calvaria cell populations, extensive diversity was documented in the overall gene repertoires expressed. To address whether comparable heterogeneity is evident in vivo, we investigated the expression of nine osteoblast lineage markers by both in situ hybridization and immunohistochemistry. At 21 days of fetal rat development, the calvaria is a rapidly growing bone with distinct maturational zones that are readily observed in coronal sections; that is, an osteogenic front emerging at sagittal and coronal sutures is adjacent to areas of growing trabeculae of bone, followed by more mature areas of remodeling bone. Based on expression patterns, markers can be divided into two categories. One category comprises markers that are globally expressed by all osteoblasts irrespective of their position in the calvaria. Of those tested, only two, alkaline phosphatase and the pth/pthrp receptor, fit into this category. All other markers analyzed, including transcription factors (c-fos and msx-2), matrix molecules (bone sialoprotein, osteopontin, and osteocalcin), and a hormone (pthrp), were differentially expressed only in subpopulations of osteoblasts, based on cell maturational status, environment (ectocranial vs. endocranial surfaces), and microenvironment (adjacent osteoblasts). Preosteoblasts and osteocytes in different regions of the calvaria also expressed different subsets of the lineage markers. Mechanisms responsible for generating differential gene expression profiles appear to be both transcriptional and posttranscriptional. These results indicate that postproliferative, morphologically indistinguishable osteoblasts are not a homogeneous class of cells, but instead are molecularly diverse. The present results also raise the possibility that lineage progression and/or maintenance of the differentiated state may be adaptable in the calvaria.
Collapse
Affiliation(s)
- G A Candeliere
- Department of Anatomy and Cell Biology, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
92
|
Vieth V, Link TM, Lotter A, Persigehl T, Newitt D, Heindel W, Majumdar S. Does the trabecular bone structure depicted by high-resolution MRI of the calcaneus reflect the true bone structure? Invest Radiol 2001; 36:210-7. [PMID: 11283418 DOI: 10.1097/00004424-200104000-00003] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RATIONALE AND OBJECTIVES The purpose of this study was to compare trabecular bone structure parameters assessed with high-resolution magnetic resonance imaging (HR-MRI) with those determined in specimen sections. METHODS High-resolution MR images were obtained for 30 calcaneus specimens with a three-dimensional, T1-weighted spin-echo sequence (spatial in-plane resolution 0.195 mm, slice thicknesses of 0.3 and 0.9 mm). Thirty-eight sections were obtained from the specimens, and contact radiography was performed. In the corresponding sections, structural parameters analogous to bone histomorphometry were determined. RESULTS Significant correlations between MRI-derived structural parameters and those derived from macro pathological sections were found: r values of up to 0.75 were obtained (P < 0.01). The highest correlations were found for apparent bone volume/total volume and trabecular thickness. Image thresholding techniques showed a significant impact on these correlations (P < 0.01). The thinner MR sections were less susceptible to the different thresholding algorithms. CONCLUSIONS Trabecular bone structure depicted by HR-MR images is significantly correlated with that shown in macro sections (P < 0.01); however, a number of limitations have to be considered, including the substantial impact of thresholding techniques and slice thickness.
Collapse
Affiliation(s)
- V Vieth
- Department of Clinical Radiology, University of Muenster, Muenster Germany
| | | | | | | | | | | | | |
Collapse
|
93
|
Oleksik A, Ott SM, Vedi S, Bravenboer N, Compston J, Lips P. Bone structure in patients with low bone mineral density with or without vertebral fractures. J Bone Miner Res 2000; 15:1368-75. [PMID: 10893686 DOI: 10.1359/jbmr.2000.15.7.1368] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vertebral fractures (VFX) are caused by low bone mass and microstructural deterioration of bone tissue. The latter is not well defined. We investigated bone structure in transiliac biopsy specimens from 88 volunteers. Biopsy specimens were obtained at baseline in the Multiple Outcomes of Raloxifene Evaluation trail, a prospective study in osteoporotic (BMD < or = -2.5 T score) postmenopausal women without or with VFX on standardized lateral spinal radiographs. Bone biopsy specimens were embedded in methylmethacrylate (MMA). Histomorphometry was done in 8 microns (U.S.A.) or 5 microns (Europe) Goldner stained sections. Vertebral fracture status (yes/no) was the outcome variable in logistic regression models adjusted for age and biopsy specimen origin (U.S.A. vs. Europe). Patients with and without VFX (26/62) were similar regarding age (69.2 +/- 5.2 years vs. 67.3 +/- 6.7 years), bone volume (BV/TV; 17.7 +/- 4.7% vs. 19.0 +/- 5.8%), and bone surface (BS/TV; 2.7 +/- 0.6 mm2/mm3 vs. 2.8 +/- 0.6 mm2/mm3). A lower cortical thickness (C.Th; 652 +/- 267 microns vs. 822 +/- 325 microns), total strut length (TSL; 826 +/- 226 microns/mm2 vs. 922 +/- 256 microns/mm2), node-to-loop (Nd-Lp) strut length (10.1 +/- 10.3% vs. 15.0 +/- 13.6%), together with a higher node-to-terminus (Nd-Tm) strut length (45.6 +/- 9.7% vs. 39.1 +/- 9.3%) were each associated with prevalent VFX (0.01 < p < 0.10). Differences in BV/TV did not explain these associations. In conclusion, cortical thinning and disruption of trabecular lattice are possible pathogenic mechanisms in patients with VFX.
Collapse
Affiliation(s)
- A Oleksik
- Department of Endocrinology, Academic Hospital Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
94
|
Abstract
Advances in our ability to assess fracture risk, predict implant success, and evaluate new therapies for bone metabolic and remodeling disorders depend on our understanding of anatomically specific measures of local tissue mechanical properties near and surrounding bone cells. Using nanoindentation, we have quantified elastic modulus and hardness of human lamellar bone tissue as a function of tissue microstructures and anatomic location. Cortical and trabecular bone specimens were obtained from the femoral neck and diaphysis, distal radius, and fifth lumbar vertebra of ten male subjects (aged 40-85 years). Tissue was tested under moist conditions at room temperature to a maximum depth of 500 nm with a loading rate of 10 nm/sec. Diaphyseal tissue was found to have greater elastic modulus and hardness than metaphyseal tissues for all microstructures, whereas interstitial elastic modulus and hardness did not differ significantly between metaphyses. Trabecular bone varied across locations, with the femoral neck having greater lamellar-level elastic modulus and hardness than the distal radius, which had greater properties than the fifth lumbar vertebra. Osteonal, interstitial, and primary lamellar tissues of compact bone had greater elastic moduli and hardnesses than trabecular bone when comparing within an anatomic location. Only femoral neck interstitial tissue had a greater elastic modulus than its osteonal counterpart, which suggests that microstructural distinctions can vary with anatomical location and may reflect differences in the average tissue age of cortical bone or mineral and collagen organization.
Collapse
Affiliation(s)
- C E Hoffler
- Orthopaedic Research Laboratories, Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109-0486, USA
| | | | | | | | | | | |
Collapse
|
95
|
Abstract
Knowledge of the baseline turnover characteristics, and of possible general and local factors influencing alveolar bone responses, is particularly important in the planning of oral rehabilitation. The conventional tool used to obtain information on bone turnover is the iliac crest biopsy, but it is not clear whether it mirrors the situation involving the jaws. The aim of this study was to compare static bone remodeling parameters in the mandible and in the iliac crest to obtain baseline values for the mandible and to test the hypothesis of site specificity of bone remodeling. Bone specimens were obtained from 50 subjects (mean age 64 +/- 17) at autopsy. Three sites were sampled: iliac crest; jaw angle; and foramen mentalis area. In addition, occlusal status was recorded. On undecalcified thin sections, cortical porosity (Ct.Po), eroded sites (ESi), formative sites (FSi), osteonal diameter (On.Dm), Haversian canal diameter (H.Ca.Dm), and wall width (W.Wi) were measured. Ct.Po in the jaw angle and in the foramen mentalis area was lower (48% and 50%, respectively) than in the iliac crest, as was ESi and FSi (80% in the jaw angle and 74% in the foramen mentalis area). In the foramen mentalis area, Ct.Po was greater in subjects with occlusion. On.Dm, H.Ca.Dm, and W.Wi were significantly larger and mutually correlated within the mandible, whereas no correlation was found between mandibular sites and iliac crest. Static cortical bone remodeling parameters are different in the mandible and the iliac crest, thus confirming the hypothesis of site specificity of bone remodeling. Within the mandible, the parameters were correlated, whereas there was no correlation between the mandible and the iliac crest. This could be ascribed to the different functional demands to the mandible and the iliac crest, which was also reflected in the observed influence of functional occlusion on bone remodeling in the mandible. It can thus be concluded that bone reaction to dental intervention is more dependent on the local environment than on general bone turnover as reflected by the iliac crest.
Collapse
Affiliation(s)
- C Verna
- Department of Orthodontics, Aarhus University, Denmark.
| | | | | |
Collapse
|
96
|
Everts V, Korper W, Jansen DC, Steinfort J, Lammerse I, Heera S, Docherty AJ, Beertsen W. Functional heterogeneity of osteoclasts: matrix metalloproteinases participate in osteoclastic resorption of calvarial bone but not in resorption of long bone. FASEB J 1999; 13:1219-30. [PMID: 10385612 DOI: 10.1096/fasebj.13.10.1219] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Data in the literature suggest that site-specific differences exist in the skeleton with respect to digestion of bone by osteoclasts. Therefore, we investigated whether bone resorption by calvarial osteoclasts (intramembranous bone) differs from resorption by long bone osteoclasts (endochondral bone). The involvement of two major classes of proteolytic enzymes, the cysteine proteinases (CPs) and matrix metalloproteinases (MMPs), was studied by analyzing the effects of selective low molecular weight inhibitors of these enzymes on bone resorption. Mouse tissue explants (calvariae and long bones) as well as rabbit osteoclasts, which had been isolated from both skeletal sites and subsequently seeded on bone slices, were cultured in the presence of inhibitors and resorption was analyzed. The activity of the CP cathepsins B and K and of MMPs was determined biochemically (CPs and MMPs) and enzyme histochemically (CPs) in explants and isolated osteoclasts. We show that osteoclastic resorption of calvarial bone depends on activity of both CPs and MMPs, whereas long bone resorption depends on CPs, but not on the activity of MMPs. Furthermore, significantly higher levels of cathepsin B and cathepsin K activities were expressed by long bone osteoclasts than by calvarial osteoclasts. Resorption of slices of bovine skull or cortical bone by osteoclasts isolated from long bones was not affected by MMP inhibitors, whereas resorption by calvarial osteoclasts was inhibited. Inhibition of CP activity affected the resorption by the two populations of osteoclasts in a similar way. We conclude that this is the first report to show that significant differences exist between osteoclasts of calvariae and long bones with respect to their bone resorbing activities. Resorption by calvarial osteoclasts depends on the activity of CPs and MMPs, whereas resorption by long bone osteoclasts depends primarily on the activity of CPs. We hypothesize that functionally different subpopulations of osteoclasts, such as those described here, originate from different sets of progenitors.
Collapse
Affiliation(s)
- V Everts
- Department of Periodontology, Academic Centre for Dentistry, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Link TM, Majumdar S, Augat P, Lin JC, Newitt D, Lu Y, Lane NE, Genant HK. In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 1998; 13:1175-82. [PMID: 9661082 DOI: 10.1359/jbmr.1998.13.7.1175] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to use high resolution (HR) magnetic resonance (MR) images of the calcaneus to investigate the trabecular structure of patients with and without osteoporotic hip fractures and to compare these techniques with bone mineral density (BMD) in differentiating fracture and nonfracture patients. Axial and sagittal HR MR images of the calcaneus were obtained in 50 female (23 postmenopausal patients with osteoporotic hip fractures and 27 postmenopausal controls). A three-dimensional gradient-echo sequence was used with a slice thickness of 500 micron and in plane resolution of 195 x 195 micron. Texture analysis was performed using morphological features, analogous to standard histomorphometry and fractal dimension. Additionally, BMd measurements of the hip (dual-energy X-ray absorptiometry) were obtained in all patients. Significant differences between both patient groups were obtained using morphological parameters and fractal dimension as well as hip BMD (p < 0.05). Odds ratios for the texture parameters apparent (app.) bone volume/total volume and app. trabecular separation were higher than for hip BMD. Receiver operator characteristic values of texture measures and hip BMD were comparable. In conclusion, trabecular structure measures derived from HR MR images of the calcaneus can differentiate between postmenopausal women with and without osteoporotic hip fractures.
Collapse
Affiliation(s)
- T M Link
- Department of Radiology, University of California, San Francisco, USA
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Majumdar S, Kothari M, Augat P, Newitt DC, Link TM, Lin JC, Lang T, Lu Y, Genant HK. High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone 1998; 22:445-54. [PMID: 9600777 DOI: 10.1016/s8756-3282(98)00030-1] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The purpose of this study was to use high-resolution magnetic resonance (MR) imaging combined with image analysis to investigate the three-dimensional (3D) trabecular structure, anisotropy, and connectivity of human vertebral, femoral, and calcaneal specimens. The goal was to determine whether: (a) MR-derived measures depict known skeletal-site-specific differences in architecture and orientation of trabeculae; (b) 3D architectural parameters combined with bone mineral density (BMD) improve the prediction of the elastic modulus using a fabric tensor formulation; (c) MR-derived 3D architectural parameters combined with BMD improve the prediction of strength using a multiple regression model, and whether these results corresponded to the results obtained using higher resolution depictions of trabecular architecture. A total of 94 specimens (12 x 12 x 12 mm cubes) consisting of trabecular bone only were obtained, of which there were 7 from the calcaneus, 15 from distal femur, 47 from the proximal femur, and 25 from the vertebral bodies. MR images were obtained using a 1.5 Tesla MR scanner at a spatial resolution of 117 x 117 x 300 microm. Additionally, BMD was determined using quantitative computed tomography (QCT), and the specimens were nondestructively tested and the elastic modulus (YM) was measured along three orthogonal axes corresponding to the anatomic superior-inferior (axial), medial-lateral (sagittal), and anterior-posterior (coronal) directions. A subset of the specimens (n=67) was then destructively tested in the superior-inferior (axial) direction to measure the ultimate compressive strength. The MR images were segmented into bone and marrow phases and then analyzed in 3D. Ellipsoids were fitted to the mean intercept lengths, using single value decomposition and the primary orientation of the trabeculae and used to calculate the anisotropy of trabecular architecture. Stereological measures were derived using a previously developed model and measures such as mean trabecular width, spacing, and number were derived. Because the spatial resolution of MR images is comparable to trabecular bone dimensions, these measures may be subject to partial volume effects and were thus treated as apparent measures, such as BV/TV, Tb.Sp, Tb.N, and Tb.Th rather than absolute measures, as would be derived from histomorphometry. In addition, in a subset of specimens, the Euler number per unit volume was determined to characterize the connectivity of the trabecular network. There were significant differences in the BMD, trabecular architectural measures, elastic modulus, and strength at the different skeletal sites. The primary orientation axes for most of the specimens was the anatomic superior-inferior (axial) direction. Using the fabric tensor formulation, in addition to BMD, improved the prediction of YM (SI), while including some of the architectural parameters significantly improved the prediction of strength. In comparing MR-derived 3D measures with those obtained from 20 microm optical images (n=18; 9 vertebrae, 9 femur specimens), good correlations were found for the apparent Tb.Sp and Tb.N, moderate correlation was seen for the apparent BV/TV, and poor correlation was found for the apparent Tb.Th. Using these higher resolution images, the fabric tensor formulation for predicting the elastic modulus also showed improved correlation between the measured and calculated modulus in the axial (SI) direction. In summary, high-resolution MR images may be used to assess 3D architecture of trabecular bone, and the inclusion of some of the 3D architectural measures provides an improved assessment of biomechanical properties. Further studies are clearly warranted to establish the role of architecture in predicting overall bone quality, and the role of trabecular architecture measures in clinical practice. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- S Majumdar
- Magnetic Resonance Science Center, Department of Radiology, University of California, San Francisco 94143-1290, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Iwaniec UT, Crenshaw TD. Distribution of mineralization indices of modeling and remodeling over eight months in middiaphyseal cross sections of femurs from adult swine. Anat Rec (Hoboken) 1998; 250:136-45. [PMID: 9489773 DOI: 10.1002/(sici)1097-0185(199802)250:2<136::aid-ar2>3.0.co;2-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND This study assessed the distribution of active mineral formation sites within the middiaphyseal femoral cross section of swine and determined the extent to which various subsections represented bone formation activity in the entire cross section. METHODS Twenty adult female swine (sows) were injected with two double (10-day intervals) labels 8 months apart. Labels involved fluorochrome markers of active mineral formation sites. Intact femoral middiaphyseal cross sections were embedded in polymethylmethacrylate, cut, and ground to 80 microm for analysis. Each specimen was subdivided into 16 anatomical and eight geometric subsections. Labeled mineralizing surface and mineral apposition rate were determined in the periosteal and endocortical envelopes. The number of labeled osteons per unit area of bone and osteonal mineral apposition rate were determined in the intracortical envelope. RESULTS Periosteal mineralizing surface followed a bimodal distribution with highest surface activation on the anterior and posterior segments. Periosteal mineral apposition rate followed a modal distribution with highest apposition rates in the posterior portion of the cross section. The distribution of forming osteons was modal with highest frequencies of labeled osteons in the posterior segment. No significant regional differences were detected for osteonal mineral apposition rate, endocortical mineralizing surface, or endocortical mineral apposition rate. The location of either a single or a combination of two to four subsections that best predicted mineralizing surface and mineral apposition rate in the entire cross section differed with each trait and envelope. Fifty percent of the entire area as alternate anatomical subsections was required to predict > 90% of variation in all traits evaluated. Overall, the predictability of mineralizing surface and mineral apposition rate was similar for geometrically defined subsections. CONCLUSION At least 50% of the cross-sectional area from alternate anatomical subsections must be measured to predict > 90% of variation in periosteal, intracortical, and endocortical mineralizing surface and mineral apposition rate in the sow middiaphyseal femur.
Collapse
Affiliation(s)
- U T Iwaniec
- Department of Anthropology, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
100
|
Link TM, Majumdar S, Lin JC, Newitt D, Augat P, Ouyang X, Mathur A, Genant HK. A comparative study of trabecular bone properties in the spine and femur using high resolution MRI and CT. J Bone Miner Res 1998; 13:122-32. [PMID: 9443798 DOI: 10.1359/jbmr.1998.13.1.122] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The purpose of this study was to use high resolution (HR) magnetic resonance (MR) and computed tomography (CT) images combined with texture analysis to investigate the trabecular structure of human vertebral and femoral specimens and to compare these techniques with bone mineral density (BMD) in the prediction of bone strength. Twenty-nine bone cubes were harvested from 12 proximal femur cadaver specimens and 29 from 8 spines. HR MR and CT images were obtained, and texture analysis techniques were used to assess trabecular structure. Additionally, BMD, elastic modulus (EM), and maximum compressive strength were determined. R2 for EM versus texture measures computed in the MR images was higher (R2 = 0.27-0.64, p < 0.01) in the spine than in the femur specimens (R2 = 0.12-0.22, p < 0.05). R2 values were similar in the CT images. R2 for EM versus BMD was 0.66 (p < 0.01) in the spine and 0.61 (p < 0.01) in the femur specimens. In the MR images, texture measures combined with BMD in a multivariate-regression model significantly increased R2, while improvement was less significant in the CT images. Thus, texture analysis may provide additional information needed to analyze bone strength and quality.
Collapse
Affiliation(s)
- T M Link
- Magnetic Resonance Science Center, Department of Radiology, UCSF, San Francisco, California, USA
| | | | | | | | | | | | | | | |
Collapse
|