51
|
Gu Y, Becker MA, Müller L, Reuss K, Umlauf F, Tang T, Menger MD, Laschke MW. MicroRNAs in Tumor Endothelial Cells: Regulation, Function and Therapeutic Applications. Cells 2023; 12:1692. [PMID: 37443725 PMCID: PMC10340284 DOI: 10.3390/cells12131692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Tumor endothelial cells (TECs) are key stromal components of the tumor microenvironment, and are essential for tumor angiogenesis, growth and metastasis. Accumulating evidence has shown that small single-stranded non-coding microRNAs (miRNAs) act as powerful endogenous regulators of TEC function and blood vessel formation. This systematic review provides an up-to-date overview of these endothelial miRNAs. Their expression is mainly regulated by hypoxia, pro-angiogenic factors, gap junctions and extracellular vesicles, as well as long non-coding RNAs and circular RNAs. In preclinical studies, they have been shown to modulate diverse fundamental angiogenesis-related signaling pathways and proteins, including the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway; the rat sarcoma virus (Ras)/rapidly accelerated fibrosarcoma (Raf)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway; the phosphoinositide 3-kinase (PI3K)/AKT pathway; and the transforming growth factor (TGF)-β/TGF-β receptor (TGFBR) pathway, as well as krüppel-like factors (KLFs), suppressor of cytokine signaling (SOCS) and metalloproteinases (MMPs). Accordingly, endothelial miRNAs represent promising targets for future anti-angiogenic cancer therapy. To achieve this, it will be necessary to further unravel the regulatory and functional networks of endothelial miRNAs and to develop safe and efficient TEC-specific miRNA delivery technologies.
Collapse
Affiliation(s)
- Yuan Gu
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Saar, Germany; (M.A.B.); (L.M.); (K.R.); (F.U.); (T.T.); (M.D.M.); (M.W.L.)
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Dai S, Zhong Y, Cui H, Zhao J, Li S. Aortic dissection induced by vascular endothelial growth factor inhibitors. Front Pharmacol 2023; 14:1189910. [PMID: 37426822 PMCID: PMC10327890 DOI: 10.3389/fphar.2023.1189910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) contributes to angiogenesis and vasculogenesis. The occurrence and progression of tumors are accompanied by angiogenesis. Vascular endothelial growth factor inhibitors (VEGFI) have been used in anti-tumor treatment. However, aortic dissection (AD) is one of the VEGFI-associated adverse reactions with cute onset, rapid progression, and high case fatality rate. We collected case reports of VEGFI related to aortic dissection in PubMed and CNKI (China National Knowledge Infrastructure) from inception to 28 April 2022. Seventeen case reports were selected. The medication included sunitinib, sorafenib, pazopanib, axitinib, apatinib, anlotinib, bevacizumab, and ramucirumab. This review discusses the pathology, risk factors, diagnosis, and treatment of AD. Vascular endothelial growth factor inhibitors are related to aortic dissection. Although current literature lacks clear statistical evidence on the population, we offer points to encourage further confirmation of the best methods of care for these patients.
Collapse
|
53
|
Li X, Zhou J, Wang X, Li C, Ma Z, Wan Q, Peng F. New advances in the research of clinical treatment and novel anticancer agents in tumor angiogenesis. Biomed Pharmacother 2023; 163:114806. [PMID: 37163782 DOI: 10.1016/j.biopha.2023.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023] Open
Abstract
In 1971, Folkman proposed that tumors could be limited to very small sizes by blocking angiogenesis. Angiogenesis is the generation of new blood vessels from pre-existing vessels, considered to be one of the important processes in tumor growth and metastasis. Angiogenesis is a complex process regulated by various factors and involves many secreted factors and signaling pathways. Angiogenesis is important in the transport of oxygen and nutrients to the tumor during tumor development. Therefore, inhibition of angiogenesis has become an important strategy in the clinical management of many solid tumors. Combination therapies of angiogenesis inhibitors with radiotherapy and chemotherapy are often used in clinical practice. In this article, we will review common targets against angiogenesis, the most common and up-to-date anti-angiogenic drugs and clinical treatments in recent years, including active ingredients from chemical and herbal medicines.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jianbo Zhou
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Wang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunxi Li
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zifan Ma
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qiaoling Wan
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
54
|
Motlana MK, Ngoepe MN. Computational Fluid Dynamics (CFD) Model for Analysing the Role of Shear Stress in Angiogenesis in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:7886. [PMID: 37175591 PMCID: PMC10178063 DOI: 10.3390/ijms24097886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterised by an attack on healthy cells in the joints. Blood flow and wall shear stress are crucial in angiogenesis, contributing to RA's pathogenesis. Vascular endothelial growth factor (VEGF) regulates angiogenesis, and shear stress is a surrogate for VEGF in this study. Our objective was to determine how shear stress correlates with the location of new blood vessels and RA progression. To this end, two models were developed using computational fluid dynamics (CFD). The first model added new blood vessels based on shear stress thresholds, while the second model examined the entire blood vessel network. All the geometries were based on a micrograph of RA blood vessels. New blood vessel branches formed in low shear regions (0.840-1.260 Pa). This wall-shear-stress overlap region at the junctions was evident in all the models. The results were verified quantitatively and qualitatively. Our findings point to a relationship between the development of new blood vessels in RA, the magnitude of wall shear stress and the expression of VEGF.
Collapse
Affiliation(s)
- Malaika K. Motlana
- Department of Mechanical Engineering, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Malebogo N. Ngoepe
- Department of Mechanical Engineering, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Centre for Research in Computational and Applied Mechanics (CERECAM), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
55
|
Wiewiora M, Jopek J, Świętochowska E, Sławomir G, Piecuch J, Gąska M, Piecuch J. Blood-based protein biomarkers and red blood cell aggregation in pancreatic cancer. Clin Hemorheol Microcirc 2023; 85:371-383. [PMID: 37718785 DOI: 10.3233/ch-231814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is highly malignant with a low 5-year survival rate. Blood biomarkers may be of value for the noninvasive diagnosis of pancreatic cancer. OBJECTIVE This study assessed blood-based biomarkers and disturbances in red blood cell aggregation associated with pancreatic cancer. METHODS We studied 61 patients who underwent pancreatic resection. Of these 61 patients, 46 patients had PDAC, and 15 patients had inflammatory tumours. Serum VEGF, hypoxia-inducible factor (HIF-1α), elastin-derived peptides (EDPs), total sialic acid (TSA) and resistin levels were measured. Red blood cell aggregation was assessed by a laser-assisted optical rotational cell analyser. RESULTS VEGF (p < 0.000001), HIF-1α (p = 0.000002), resistin (p = 0.000349), EDP (p = 0.000089) and TSA (p = 0.000013) levels were significantly higher in the PDAC group than in the inflammatory tumour group. The aggregation index (AI), syllectogram amplitude (AMP) and threshold shear rate (γthr) were significantly higher in the PDAC group, whereas the aggregation half-time (t1/2) was lower than in the inflammatory tumour group. Multivariate analyses revealed that VEGF, TSA and EDP levels were variables that predicted PDAC. VEGF levels were the most powerful predictor of PDAC independent of CA 19-9 levels. The cut-off points for VEGF, TSA and EDP levels were 134.56 pg/ml, 109.11 mg/dl and 36.4 ng/ml, respectively, with sensitivities of 97.8%, 87% and 69.6%, respectively, and specificities of 86.7%, 86.7% and 93.3%, respectively. CONCLUSION This study indicated that there are significant differences in blood-based biomarkers for differentiating between PDAC and inflammatory tumours of the pancreas. We also confirmed that PDAC is associated with the excessive aggregation of RBCs.
Collapse
Affiliation(s)
- Maciej Wiewiora
- Department of Cardiac Vascular and Endovascular Surgery and Transplantology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Janusz Jopek
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Gregorczyn Sławomir
- Chair and Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Jerzy Piecuch
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Mateusz Gąska
- Department of Cardiac Vascular and Endovascular Surgery and Transplantology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Jerzy Piecuch
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
56
|
Singh MV, Dokun AO. Diabetes mellitus in peripheral artery disease: Beyond a risk factor. Front Cardiovasc Med 2023; 10:1148040. [PMID: 37139134 PMCID: PMC10149861 DOI: 10.3389/fcvm.2023.1148040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/22/2023] [Indexed: 05/05/2023] Open
Abstract
Peripheral artery disease (PAD) is one of the major cardiovascular diseases that afflicts a large population worldwide. PAD results from occlusion of the peripheral arteries of the lower extremities. Although diabetes is a major risk factor for developing PAD, coexistence of PAD and diabetes poses significantly greater risk of developing critical limb threatening ischemia (CLTI) with poor prognosis for limb amputation and high mortality. Despite the prevalence of PAD, there are no effective therapeutic interventions as the molecular mechanism of how diabetes worsens PAD is not understood. With increasing cases of diabetes worldwide, the risk of complications in PAD have greatly increased. PAD and diabetes affect a complex web of multiple cellular, biochemical and molecular pathways. Therefore, it is important to understand the molecular components that can be targeted for therapeutic purposes. In this review, we describe some major developments in enhancing the understanding of the interactions of PAD and diabetes. We also provide results from our laboratory in this context.
Collapse
Affiliation(s)
- Madhu V. Singh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Ayotunde O. Dokun
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Centre, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Correspondence: Ayotunde O. Dokun
| |
Collapse
|
57
|
Tyrosine Kinase Inhibitors for Glioblastoma Multiforme: Challenges and Opportunities for Drug Delivery. Pharmaceutics 2022; 15:pharmaceutics15010059. [PMID: 36678688 PMCID: PMC9863099 DOI: 10.3390/pharmaceutics15010059] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain tumor with high mortality rates. Due to its invasiveness, heterogeneity, and incomplete resection, the treatment is very challenging. Targeted therapies such as tyrosine kinase inhibitors (TKIs) have great potential for GBM treatment, however, their efficacy is primarily limited by poor brain distribution due to the presence of the blood-brain barrier (BBB). This review focuses on the potential of TKIs in GBM therapy and provides an insight into the reasons behind unsuccessful clinical trials of TKIs in GBM despite the success in treating other cancer types. The main section is dedicated to the use of promising drug delivery strategies for targeted delivery to brain tumors. Use of brain targeted delivery strategies can help enhance the efficacy of TKIs in GBM. Among various drug delivery approaches used to bypass or cross BBB, utilizing nanocarriers is a promising strategy to augment the pharmacokinetic properties of TKIs and overcome their limitations. This is because of their advantages such as the ability to cross BBB, chemical stabilization of drug in circulation, passive or active targeting of tumor, modulation of drug release from the carrier, and the possibility to be delivered via non-invasive intranasal route.
Collapse
|