51
|
Li Y, Liu S, Zhang Z, Xu Q, Xie F, Wang J, Ping S, Li C, Wang Z, Zhang M, Huang J, Chen D, Hu L, Li C. RAGE mediates accelerated diabetic vein graft atherosclerosis induced by combined mechanical stress and AGEs via synergistic ERK activation. PLoS One 2012; 7:e35016. [PMID: 22496883 PMCID: PMC3322163 DOI: 10.1371/journal.pone.0035016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 03/08/2012] [Indexed: 12/29/2022] Open
Abstract
Aims/Hypothesis Diabetes with hypertension rapidly accelerates vascular disease, but the underlying mechanism remains unclear. We evaluated the hypothesis that the receptor of advanced glycation end products (RAGE) might mediate combined signals initiated by diabetes-related AGEs and hypertension-induced mechanical stress as a common molecular sensor. Methods In vivo surgical vein grafts created by grafting vena cava segments from C57BL/6J mice into the common carotid arteries of streptozotocin (STZ)-treated and untreated isogenic mice for 4 and 8 weeks were analyzed using morphometric and immunohistochemical techniques. In vitro quiescent mouse vascular smooth muscle cells (VSMCs) with either knockdown or overexpression of RAGE were subjected to cyclic stretching with or without AGEs. Extracellular signal-regulated kinase (ERK) phosphorylation and Ki-67 expression were investigated. Results Significant increases in neointimal formation, AGE deposition, Ki-67 expression, and RAGE were observed in the vein grafts of STZ-induced diabetic mice. The highest levels of ERK phosphorylation and Ki-67 expression in VSMCs were induced by simultaneous stretch stress and AGE exposure. The synergistic activation of ERKs and Ki-67 in VSMCs was significantly inhibited by siRNA-RAGE treatment and enhanced by over-expression of RAGE. Conclusion RAGE may mediate synergistically increased ERK activation and VSMC proliferation induced by mechanical stretching with and without AGEs. It may serve as a common molecular bridge between the two, accelerating vascular remodeling. This study provides potential drug targets and novel therapeutic strategies for the treatment of vascular diseases resulting from diabetes with hypertension.
Collapse
MESH Headings
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/physiopathology
- Cell Proliferation
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/physiopathology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Extracellular Signal-Regulated MAP Kinases/physiology
- Glycation End Products, Advanced/metabolism
- Glycation End Products, Advanced/physiology
- Ki-67 Antigen/analysis
- Male
- Mice
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Receptor for Advanced Glycation End Products
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- Stress, Mechanical
- Tunica Intima/growth & development
- Tunica Intima/metabolism
- Veins/metabolism
- Veins/transplantation
Collapse
Affiliation(s)
- Yuhuang Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shuying Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhengyu Zhang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qingbo Xu
- Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom
| | - Fukang Xie
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jingjing Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Suning Ping
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chen Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhaojing Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Min Zhang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jintao Huang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Dadi Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liping Hu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chaohong Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- * E-mail: (CHL)
| |
Collapse
|
52
|
Swärd P, Rippe B. Acute and sustained actions of hyperglycaemia on endothelial and glomerular barrier permeability. Acta Physiol (Oxf) 2012; 204:294-307. [PMID: 21812939 DOI: 10.1111/j.1748-1716.2011.02343.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Microalbuminuria is an established marker of systemic endothelial dysfunction, which for patients with diabetes signals an increased risk of both diabetic nephropathy and cardiovascular complications. A better understanding of the pathogenesis of microalbuminuria is important in the quest of finding new approaches to treat patients with diabetes. Direct acute effects of episodes of hyperglycaemia (HG) could have implications for the microalbuminuria seen in early diabetes before renal structural alterations have started, especially in those patients with poor glycaemic control. This review summarizes the literature evidence that acute or sustained HG may lead to an increased vascular or glomerular permeability. Special focus is on glomerular barrier permeability. There is evidence in the literature that HG increases systemic capillary and glomerular barrier permeability within 20-30 min in vivo in rats and mice. Furthermore, exposure of monolayers of cultured endothelial cells to HG has been shown to increase monolayer permeability rapidly and transiently (during 60-100 min). Instant cellular changes following F-actin cytoskeleton rearrangements, which could be abrogated by Rho-kinase (ROCK) inhibition, are implicated. Data in this review also suggest that activation of protein kinase C, the polyol pathway, and an increased release of reactive oxygen species (ROS) and cytokines could contribute to the increase in barrier permeability induced by HG. Recent in vitro data from cultured podocyte monolayers also designates a role of insulin in acute podocyte F-actin remodelling, underpinning the complexity of the mechanisms leading to glomerular and endothelial barrier alterations in diabetes mellitus.
Collapse
Affiliation(s)
- P Swärd
- Department of Nephrology, University of Lund, University Hospital of Lund, Sweden
| | | |
Collapse
|
53
|
Kim YJ, Kim YA, Yokozawa T. Pycnogenol modulates apoptosis by suppressing oxidative stress and inflammation in high glucose-treated renal tubular cells. Food Chem Toxicol 2011; 49:2196-201. [DOI: 10.1016/j.fct.2011.06.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/27/2011] [Accepted: 06/04/2011] [Indexed: 11/26/2022]
|
54
|
|
55
|
Helfenstein T, Fonseca FA, Ihara SS, Bottós JM, Moreira FT, Pott H, Farah ME, Martins MC, Izar MC. Impaired glucose tolerance plus hyperlipidaemia induced by diet promotes retina microaneurysms in New Zealand rabbits. Int J Exp Pathol 2011; 92:40-9. [PMID: 21272105 DOI: 10.1111/j.1365-2613.2010.00753.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
UNLABELLED With the increasing prevalence of diabetes mellitus and metabolic syndrome worldwide, experimental models are required to better understand the pathophysiology and therapeutic approaches to preserve pancreatic beta cells, attenuate atherosclerosis and protect target organs. The aims of this study were to develop an experimental model of impaired glucose tolerance combined with hypercholesterolaemia induced by diet and assess metabolic alterations and target organ lesions. New Zealand male rabbits were fed high-fat/high-sucrose (10/40%) and cholesterol-enriched diet for 24 weeks, when they were sacrificed. Biochemistry, fundus photographs with fluorescein angiography and pathological analyses were performed. Cholesterol-fed and normal animals of same age were compared. RESULTS The animals with diet-induced impaired glucose tolerance combined with hypercholesterolaemia gained weight, increased blood glucose, total cholesterol, LDL-C and triglycerides and decreased HDL-C (P < 0.05 vs. baseline). Fructosamine levels and the homeostasis model assessment of insulin resistance (HOMA-IR) index were increased, while there was a reduction in the HOMA-β (P < 0.05 for all vs. baseline). Histomorphologic findings of this model were aortic atherosclerosis, hepatic steatofibrosis and glomerular macrophage infiltration. Early clinical features of diabetic retinopathy with hyperfluorescent dots consistent with presence of retina microaneurysms were seen since week 12, progressing up to the end of the experiment (P < 0.0005 vs. baseline and 12 weeks). Our model reproduced several metabolic characteristics of human diabetes mellitus and promoted early signs of retinopathy. This non-expensive model is suitable for studying mechanistic pathways and allowing novel strategic approaches.
Collapse
Affiliation(s)
- Tatiana Helfenstein
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Long J, Wang Y, Wang W, Chang BHJ, Danesh FR. MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J Biol Chem 2011; 286:11837-48. [PMID: 21310958 DOI: 10.1074/jbc.m110.194969] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Although several recent publications have suggested that microRNAs contribute to the pathogenesis of diabetic nephropathy, the role of miRNAs in vivo still remains poorly understood. Using an integrated in vitro and in vivo comparative miRNA expression array, we identified miR-29c as a signature miRNA in the diabetic environment. We validated our profiling array data by examining miR-29c expression in the kidney glomeruli obtained from db/db mice in vivo and in kidney microvascular endothelial cells and podocytes treated with high glucose in vitro. Functionally, we found that miR-29c induces cell apoptosis and increases extracellular matrix protein accumulation. Indeed, forced expression of miR-29c strongly induced podocyte apoptosis. Conversely, knockdown of miR-29c prevented high glucose-induced cell apoptosis. We also identified Sprouty homolog 1 (Spry1) as a direct target of miR-29c with a nearly perfect complementarity between miR-29c and the 3'-untranslated region (UTR) of mouse Spry1. Expression of miR-29c decreased the luciferase activity of Spry1 when co-transfected with the mouse Spry1 3'-UTR reporter construct. Overexpression of miR-29c decreased the levels of Spry1 protein and promoted activation of Rho kinase. Importantly, knockdown of miR-29c by a specific antisense oligonucleotide significantly reduced albuminuria and kidney mesangial matrix accumulation in the db/db mice model in vivo. These findings identify miR-29c as a novel target in diabetic nephropathy and provide new insights into the role of miR-29c in a previously unrecognized signaling cascade involving Spry1 and Rho kinase activation.
Collapse
Affiliation(s)
- Jianyin Long
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
57
|
Karczewska J, Piwkowska A, Rogacka D, Stępiński J, Angielski S, Jankowski M. Purinergic modulation of glucose uptake into cultured rat podocytes: effect of diabetic milieu. Biochem Biophys Res Commun 2010; 404:723-7. [PMID: 21163251 DOI: 10.1016/j.bbrc.2010.12.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 11/29/2022]
Abstract
Extracellular purines act via P1 and P2 receptors on podocytes and may influence on their function. This action may be modified under various (patho)physiological conditions leading to development of podocytopathy. Aim of study was to investigate effects of diabetic milieu, represented by high glucose concentration (HG, 30 mM glucose) on purinergic-induced changes of 2-deoxy-D-glucose (2-DG) uptake and on extracellular purines metabolism in cultured rat podocytes. Basal 2-DG uptake was 2.7-fold enhanced in HG compared to normal glucose concentration, NG (1271 ± 86 vs. 477 ± 37 nmol/h/mg protein, P<0.001). ATP stimulated 2-DG uptake by 44 ± 4% and 29 ± 5% in NG and HG, respectively. ATP analogues, β, γ-methylene ATP and 2-methylthio ATP stimulated 2-DG uptake in range of 18-34% in NG and 16-17% in HG. Benzoylbenzoyl ATP increased 2-DG uptake about 24 ± 2% in NG however, its effect in HG reached 50 ± 1%. The antagonists of P2 receptors (suramin, reactive blue 2, PPADS) decreased basal 2-DG uptake in NG and HG; suramin and reactive blue 2 at average of 15 ± 4% in NG but in HG the effect was in following order: suramin 28 ± 3%; PPADS 20 ± 3% and RB-2 9 ± 0.9%. Extracellular adenosine concentration was higher in HG than in NG (0.48 ± 0.01 vs. 5.05 ± 0.39 μM, P < 0.05), however intracellular ATP content and extracellular ATP concentration were not affected. Neither ecto-ATPase nor ecto-5'-nucleotidase activities were affected in HG. In conclusion, diabetic milieu affects purinergic modulation of glucose transport into podocytes which may play a role in development of diabetic podocytopathy.
Collapse
Affiliation(s)
- Joanna Karczewska
- Laboratory of Molecular and Cellular Nephrology, M. Mossakowski Medical Research Centre, Polish Academy of Science, Medical University of Gdańsk, Poland
| | | | | | | | | | | |
Collapse
|
58
|
Elmarakby AA, Sullivan JC. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovasc Ther 2010; 30:49-59. [PMID: 20718759 DOI: 10.1111/j.1755-5922.2010.00218.x] [Citation(s) in RCA: 445] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The prevalence of diabetes has dramatically increased worldwide due to the vast increase in the obesity rate. Diabetic nephropathy is one of the major complications of type 1 and type 2 diabetes and it is currently the leading cause of end-stage renal disease. Hyperglycemia is the driving force for the development of diabetic nephropathy. It is well known that hyperglycemia increases the production of free radicals resulting in oxidative stress. While increases in oxidative stress have been shown to contribute to the development and progression of diabetic nephropathy, the mechanisms by which this occurs are still being investigated. Historically, diabetes was not thought to be an immune disease; however, there is increasing evidence supporting a role for inflammation in type 1 and type 2 diabetes. Inflammatory cells, cytokines, and profibrotic growth factors including transforming growth factor-β (TGF-β), monocyte chemoattractant protein-1 (MCP-1), connective tissue growth factor (CTGF), tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-18 (IL-18), and cell adhesion molecules (CAMs) have all been implicated in the pathogenesis of diabetic nephropathy via increased vascular inflammation and fibrosis. The stimulus for the increase in inflammation in diabetes is still under investigation; however, reactive oxygen species are a primary candidate. Thus, targeting oxidative stress-inflammatory cytokine signaling could improve therapeutic options for diabetic nephropathy. The current review will focus on understanding the relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy to help elucidate the question of which comes first in the progression of diabetic nephropathy, oxidative stress, or inflammation.
Collapse
Affiliation(s)
- Ahmed A Elmarakby
- Department of Oral Biology, Medical College of Georgia, Augusta, GA, USA Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta, GA, USA Vascular Biology Center, Medical College of Georgia, Augusta, GA, USA
| | | |
Collapse
|
59
|
|
60
|
Axelsson J, Rippe A, Rippe B. Acute hyperglycemia induces rapid, reversible increases in glomerular permeability in nondiabetic rats. Am J Physiol Renal Physiol 2010; 298:F1306-12. [PMID: 20237233 DOI: 10.1152/ajprenal.00710.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was performed to investigate the impact of acute hyperglycemia (HG) on the permeability of the normal glomerular filtration barrier in vivo. In anesthetized Wistar rats (250-280 g), the left ureter was catheterized for urine collection, while simultaneously blood access was achieved. Rats received an intravenous (iv) infusion of either 1) hypertonic glucose to maintain blood glucose at 20-25 mM (G; n = 8); 2) hypertonic glucose as in 1) and a RhoA-kinase inhibitor (Y-27632; Rho-G; n = 8); 3) 20% mannitol (MANN; n = 7) or 4) hypertonic (12%) NaCl to maintain plasma crystalloid osmotic pressure (pi(cry)) at approximately 320-325 mosmol/l (NaCl; n = 8) or 5) physiological saline (SHAM; n = 8). FITC-Ficoll 70/400 was infused iv for at least 20 min before termination of the experiments, and plasma and urine were collected to determine the glomerular sieving coefficients (theta) for polydisperse Ficoll (molecular radius 15-80 A) by high-performance size-exclusion chromatography. In G there was a marked increase in for Ficoll(55-80A) at 20 min, which was completely reversible within 60 min and abrogated by a Rho-kinase (ROCK) inhibitor, while glomerular permeability remained unchanged in MANN and NaCl. In conclusion, acute HG caused rapid, reversible increases in for large Ficolls, not related to the concomitant hyperosmolarity, but sensitive to ROCK inhibition. The changes observed were consistent with the formation of an increased number of large pores in the glomerular filter. The sensitivity of the permeability changes to ROCK inhibition strongly indicates that the cytoskeleton of the cells in the glomerular barrier may be involved in these alterations.
Collapse
|
61
|
Elmarakby AA, Abdelsayed R, Yao Liu J, Mozaffari MS. Inflammatory cytokines as predictive markers for early detection and progression of diabetic nephropathy. EPMA J 2010. [PMID: 23199046 PMCID: PMC3405301 DOI: 10.1007/s13167-010-0004-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetic nephropathy is a major complication of diabetes mellitus and the leading cause of end-stage renal disease. Both hyperglycemia and hypertension (systemic and/or intraglomerular) are established causal factors for diabetic nephropathy. Nonetheless, there is growing evidence that activated innate immunity and inflammation are also contributing factors to the pathogenesis of diabetic nephropathy. This notion is based on increasing evidence indicating that both cytokines-chemokines and pro-fibrotic growth factors are important players in the progression of diabetic nephropathy, effectively accelerating and exacerbating inflammatory and fibrotic processes leading to end-stage renal disease. In this review, we focus on several predominant cytokines-chemokines as potential predictive markers for diabetic nephropathy. These cytokines-chemokines may also be helpful as biomarkers to monitor the progression of the disease and the impact of interventional modalities aimed at halting eventual manifestation of end-stage renal disease in diabetic patients.
Collapse
Affiliation(s)
- Ahmed A. Elmarakby
- Department of Oral Biology, School of Dentistry, Medical College of Georgia, Augusta, GA 30912 USA
| | - Rafik Abdelsayed
- Department of Oral Health and Diagnostic Sciences, School of Dentistry, Medical College of Georgia, Augusta, GA 30912 USA
| | - Jun Yao Liu
- Department of Oral Biology, School of Dentistry, Medical College of Georgia, Augusta, GA 30912 USA
| | - Mahmood S. Mozaffari
- Department of Oral Biology, School of Dentistry, Medical College of Georgia, Augusta, GA 30912 USA
| |
Collapse
|