51
|
Liu Y, Xu Y, Yu M. MicroRNA-4722-5p and microRNA-615-3p serve as potential biomarkers for Alzheimer's disease. Exp Ther Med 2022; 23:241. [PMID: 35222718 PMCID: PMC8815048 DOI: 10.3892/etm.2022.11166] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/09/2021] [Indexed: 12/05/2022] Open
Abstract
The aim of the present study was to investigate the expression levels of microRNA(miR)-4722-5p and miR-615-3p in Alzheimer's disease (AD) and their diagnostic value. Blood samples were collected from 33 patients with AD and 33 healthy controls, and an β-amyloid (Aβ)25-35-induced PC12 cell model was also established. The relative mRNA expression levels of miR-4722-5p and miR-615-3p were detected using reverse transcription-quantitative PCR. The correlations between the mRNA expression levels of the two miRNAs and the mini-mental state examination (MMSE) scores were analyzed, and the receiver operating characteristic curve was used to assess the diagnostic value of miR-4722-5p and miR-615-3p in AD. Functional enrichment analysis of the miRNA target genes was performed using The Database for Annotation, Visualization and Integrated Discovery database and the R language analysis package. The mRNA expression levels of miR-4722-5p and miR-615-3p were increased in patients with AD and the Aβ25-35-induced PC12 cell model. The mRNA expression levels of miR-4722-5p and miR-615-3p were negatively correlated with MMSE scores, and the combination of the two miRNAs for AD had an improved diagnostic value than that of each miRNA alone. The results of Gene Ontology (GO) enrichment analysis showed that the target genes of miR-4722-5p were found in the cytoplasm and cytosol, and were mainly involved in protein folding and cell division. The molecular functions included protein binding and GTPase activator activity. The results of Kyoto Encyclopedia of Genes and Genomes analysis showed that miR-4722-5p was associated with the regulation of dopaminergic synapses and mTOR signaling pathways. GO enrichment analysis also revealed that the target genes of miR-615-3p were located in the nucleus and cytoplasm, were involved in the regulation of transcription and protein phosphorylation, and were associated with protein binding, metal ion binding and transcription factor activity. The target genes of miR-615-3p played important roles in the regulation of the Ras and FoxO signaling pathways. In conclusion, miR-4722-5p and miR-615-3p may be potential biomarkers in the early diagnosis of AD.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yuhao Xu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Ming Yu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
52
|
Xie J, Van Hoecke L, Vandenbroucke RE. The Impact of Systemic Inflammation on Alzheimer's Disease Pathology. Front Immunol 2022; 12:796867. [PMID: 35069578 PMCID: PMC8770958 DOI: 10.3389/fimmu.2021.796867] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating age-related neurodegenerative disorder with an alarming increasing prevalence. Except for the recently FDA-approved Aducanumab of which the therapeutic effect is not yet conclusively proven, only symptomatic medication that is effective for some AD patients is available. In order to be able to design more rational and effective treatments, our understanding of the mechanisms behind the pathogenesis and progression of AD urgently needs to be improved. Over the last years, it became increasingly clear that peripheral inflammation is one of the detrimental factors that can contribute to the disease. Here, we discuss the current understanding of how systemic and intestinal (referred to as the gut-brain axis) inflammatory processes may affect brain pathology, with a specific focus on AD. Moreover, we give a comprehensive overview of the different preclinical as well as clinical studies that link peripheral Inflammation to AD initiation and progression. Altogether, this review broadens our understanding of the mechanisms behind AD pathology and may help in the rational design of further research aiming to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Junhua Xie
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lien Van Hoecke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
53
|
Probiotics for Alzheimer's Disease: A Systematic Review. Nutrients 2021; 14:nu14010020. [PMID: 35010895 PMCID: PMC8746506 DOI: 10.3390/nu14010020] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common form of neurodegenerative disorders affecting mostly the elderly. It is characterized by the presence of Aβ and neurofibrillary tangles (NFT), resulting in cognitive and memory impairment. Research shows that alteration in gut microbial diversity and defects in gut brain axis are linked to AD. Probiotics are known to be one of the best preventative measures against cognitive decline in AD. Numerous in vivo trials and recent clinical trials have proven the effectiveness of selected bacterial strains in slowing down the progression of AD. It is proven that probiotics modulate the inflammatory process, counteract with oxidative stress, and modify gut microbiota. Thus, this review summarizes the current evidence, diversity of bacterial strains, defects of gut brain axis in AD, harmful bacterial for AD, and the mechanism of action of probiotics in preventing AD. A literature search on selected databases such as PubMed, Semantic Scholar, Nature, and Springer link have identified potentially relevant articles to this topic. However, upon consideration of inclusion criteria and the limitation of publication year, only 22 articles have been selected to be further reviewed. The search query includes few sets of keywords as follows. (1) Probiotics OR gut microbiome OR microbes AND (2) Alzheimer OR cognitive OR aging OR dementia AND (3) clinical trial OR in vivo OR animal study. The results evidenced in this study help to clearly illustrate the relationship between probiotic supplementation and AD. Thus, this systematic review will help identify novel therapeutic strategies in the future as probiotics are free from triggering any adverse effects in human body.
Collapse
|
54
|
Organ-on-a-Chip for Studying Gut-Brain Interaction Mediated by Extracellular Vesicles in the Gut Microenvironment. Int J Mol Sci 2021; 22:ijms222413513. [PMID: 34948310 PMCID: PMC8707342 DOI: 10.3390/ijms222413513] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are a group of membrane vesicles that play important roles in cell-to-cell and interspecies/interkingdom communications by modulating the pathophysiological conditions of recipient cells. Recent evidence has implied their potential roles in the gut–brain axis (GBA), which is a complex bidirectional communication system between the gut environment and brain pathophysiology. Despite the evidence, the roles of EVs in the gut microenvironment in the GBA are less highlighted. Moreover, there are critical challenges in the current GBA models and analyzing techniques for EVs, which may hinder the research. Currently, advances in organ-on-a-chip (OOC) technologies have provided a promising solution. Here, we review the potential effects of EVs occurring in the gut environment on brain physiology and behavior and discuss how to apply OOCs to research the GBA mediated by EVs in the gut microenvironment.
Collapse
|
55
|
Delivery of Toxins and Effectors by Bacterial Membrane Vesicles. Toxins (Basel) 2021; 13:toxins13120845. [PMID: 34941684 PMCID: PMC8703475 DOI: 10.3390/toxins13120845] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/22/2023] Open
Abstract
Pathogenic bacteria interact with cells of their host via many factors. The surface components, i.e., adhesins, lipoproteins, LPS and glycoconjugates, are particularly important in the initial stages of colonization. They enable adhesion and multiplication, as well as the formation of biofilms. In contrast, virulence factors such as invasins and toxins act quickly to damage host cells, causing tissue destruction and, consequently, organ dysfunction. These proteins must be exported from the bacterium and delivered to the host cell in order to function effectively. Bacteria have developed a number of one- and two-step secretion systems to transport their proteins to target cells. Recently, several authors have postulated the existence of another transport system (sometimes called "secretion system type zero"), which utilizes extracellular structures, namely membrane vesicles (MVs). This review examines the role of MVs as transporters of virulence factors and the interaction of toxin-containing vesicles and other protein effectors with different human cell types. We focus on the unique ability of vesicles to cross the blood-brain barrier and deliver protein effectors from intestinal or oral bacteria to the central nervous system.
Collapse
|
56
|
Frausto DM, Forsyth CB, Keshavarzian A, Voigt RM. Dietary Regulation of Gut-Brain Axis in Alzheimer's Disease: Importance of Microbiota Metabolites. Front Neurosci 2021; 15:736814. [PMID: 34867153 PMCID: PMC8639879 DOI: 10.3389/fnins.2021.736814] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that impacts 45 million people worldwide and is ranked as the 6th top cause of death among all adults by the Centers for Disease Control and Prevention. While genetics is an important risk factor for the development of AD, environment and lifestyle are also contributing risk factors. One such environmental factor is diet, which has emerged as a key influencer of AD development/progression as well as cognition. Diets containing large quantities of saturated/trans-fats, refined carbohydrates, limited intake of fiber, and alcohol are associated with cognitive dysfunction while conversely diets low in saturated/trans-fats (i.e., bad fats), high mono/polyunsaturated fats (i.e., good fats), high in fiber and polyphenols are associated with better cognitive function and memory in both humans and animal models. Mechanistically, this could be the direct consequence of dietary components (lipids, vitamins, polyphenols) on the brain, but other mechanisms are also likely to be important. Diet is considered to be the single greatest factor influencing the intestinal microbiome. Diet robustly influences the types and function of micro-organisms (called microbiota) that reside in the gastrointestinal tract. Availability of different types of nutrients (from the diet) will favor or disfavor the abundance and function of certain groups of microbiota. Microbiota are highly metabolically active and produce many metabolites and other factors that can affect the brain including cognition and the development and clinical progression of AD. This review summarizes data to support a model in which microbiota metabolites influence brain function and AD.
Collapse
Affiliation(s)
- Dulce M. Frausto
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Christopher B. Forsyth
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Ali Keshavarzian
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
- Department of Physiology, Rush University Medical Center, Chicago, IL, United States
| | - Robin M. Voigt
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
57
|
Bacterial extracellular vesicles: Understanding biology promotes applications as nanopharmaceuticals. Adv Drug Deliv Rev 2021; 173:125-140. [PMID: 33774113 DOI: 10.1016/j.addr.2021.03.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022]
Abstract
Extracellular vesicle (EV)-mediated communication between proximal and distant cells is a highly conserved characteristic in all of the life domains, including bacteria. These vesicles that contain a variety of biomolecules, such as proteins, lipids, nucleic acids, and small-molecule metabolites play a key role in the biology of bacteria. They are one of the key underlying mechanisms behind harmful or beneficial effects of many pathogenic, symbiont, and probiotic bacteria. These nanoscale EVs mediate extensive crosstalk with mammalian cells and deliver their cargos to the host. They are stable in physiological condition, can encapsulate diverse biomolecules and nanoparticles, and their surface could be engineered with available technologies. Based on favorable characteristics of bacterial vesicles, they can be harnessed for designing a diverse range of therapeutics and diagnostics for treatment of disorders including tumors and resistant infections. However, technical limitations for their production, purification, and characterization must be addressed in future studies.
Collapse
|
58
|
Wu S, Liu X, Jiang R, Yan X, Ling Z. Roles and Mechanisms of Gut Microbiota in Patients With Alzheimer's Disease. Front Aging Neurosci 2021; 13:650047. [PMID: 34122039 PMCID: PMC8193064 DOI: 10.3389/fnagi.2021.650047] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common age-related progressive neurodegenerative disease, characterized by a decline in cognitive function and neuronal loss, and is caused by several factors. Numerous clinical and experimental studies have suggested the involvement of gut microbiota dysbiosis in patients with AD. The altered gut microbiota can influence brain function and behavior through the microbiota-gut-brain axis via various pathways such as increased amyloid-β deposits and tau phosphorylation, neuroinflammation, metabolic dysfunctions, and chronic oxidative stress. With no current effective therapy to cure AD, gut microbiota modulation may be a promising therapeutic option to prevent or delay the onset of AD or counteract its progression. Our present review summarizes the alterations in the gut microbiota in patients with AD, the pathogenetic roles and mechanisms of gut microbiota in AD, and gut microbiota-targeted therapies for AD. Understanding the roles and mechanisms between gut microbiota and AD will help decipher the pathogenesis of AD from novel perspectives and shed light on novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Shaochang Wu
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ruilai Jiang
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Xiumei Yan
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Microbe & Host Health, Linyi University, Linyi, China
| |
Collapse
|
59
|
Dhital S, Deo P, Stuart I, Naderer T. Bacterial outer membrane vesicles and host cell death signaling. Trends Microbiol 2021; 29:1106-1116. [PMID: 34001418 DOI: 10.1016/j.tim.2021.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022]
Abstract
The programmed cell death pathways of pyroptosis and apoptosis protect mammals from infections. The activation of host cell death signaling depends on cell surface and cytosolic receptors that bind bacterial molecules or sense their activity. The formation of cytosolic protein complexes, such as the inflammasome and apoptosome, activates caspases, pore-forming proteins, and inflammatory cytokines. These pathways respond to bacteria and their released membrane vesicles. Outer membrane vesicles (OMVs) that emerge from the outer membrane of Gram-negative bacteria deliver a range of bacterial molecules, including lipids, proteins, polysaccharides and nucleic acids to host cells. Recent findings describe how OMV-associated molecules activate pyroptosis, apoptosis, and other inflammatory pathways. We discuss here how OMV-associated molecules are sensed by the immune system and how this contributes to infections and inflammatory diseases.
Collapse
Affiliation(s)
- Subhash Dhital
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia
| | - Pankaj Deo
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia
| | - Isabella Stuart
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia
| | - Thomas Naderer
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia.
| |
Collapse
|
60
|
Zhao L, Ye Y, Gu L, Jian Z, Stary CM, Xiong X. Extracellular vesicle-derived miRNA as a novel regulatory system for bi-directional communication in gut-brain-microbiota axis. J Transl Med 2021; 19:202. [PMID: 33975607 PMCID: PMC8111782 DOI: 10.1186/s12967-021-02861-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 11/27/2020] [Indexed: 02/08/2023] Open
Abstract
The gut-brain-microbiota axis (GBMAx) coordinates bidirectional communication between the gut and brain, and is increasingly recognized as playing a central role in physiology and disease. MicroRNAs are important intracellular components secreted by extracellular vesicles (EVs), which act as vital mediators of intercellular and interspecies communication. This review will present current advances in EV-derived microRNAs and their potential functional link with GBMAx. We propose that EV-derived microRNAs comprise a novel regulatory system for GBMAx, and a potential novel therapeutic target for modifying GBMAx in clinical therapy.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Creed M Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
61
|
Sun M, Ma K, Wen J, Wang G, Zhang C, Li Q, Bao X, Wang H. A Review of the Brain-Gut-Microbiome Axis and the Potential Role of Microbiota in Alzheimer's Disease. J Alzheimers Dis 2021; 73:849-865. [PMID: 31884474 DOI: 10.3233/jad-190872] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative process characterized by loss of neurons in the hippocampus and cerebral cortex, leading to progressive cognitive decline. Pathologically, the hallmark of AD is accumulation of "senile" plaques composed of amyloid-β (Aβ) protein surrounding neurons in affected regions. Despite extensive research into AD pathogenesis and therapeutic targets, there remains no breakthroughs in its management. In recent years, there has been a spark of interest in the connection between the brain and gastrointestinal tract, referred to as the brain-gut axis, and its potential implications for both metabolic and neurologic disease. Moreover, the gastrointestinal flora, referred to as the microbiome, appears to exert significant influence over the brain-gut axis. With the need for expanded horizons in understanding and treating AD, many have turned to the brain-gut-microbiome axis for answers. Here we provide a review of the brain-gut-microbiome axis and discuss the evidence supporting alterations of the axis in the pathogenesis of AD. Specifically, we highlight the role for the microbiome in disruption of Aβ metabolism/clearance, increased permeability of the blood-brain barrier and modulation of the neuroinflammatory response, and inhibition of hippocampal neurogenesis. The majority of the above described findings are the result of excellent, albeit basic and pre-clinical studies. Therefore, we conclude with a brief description of documented clinical support for brain-gut-microbiome axis alteration in AD, including potential microbiome-based therapeutics for AD. Collectively, these findings suggest that the brain-gut-microbiome axis may be a "lost link" in understanding and treating AD and call for future work.
Collapse
Affiliation(s)
- Miao Sun
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Kai Ma
- Probiotics Australia, Ormeau, QLD, Australia
| | - Jie Wen
- Beijing Allwegene Health, Beijing, China
| | | | | | - Qi Li
- Beijing Allwegene Health, Beijing, China
| | - Xiaofeng Bao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
62
|
Pirolli NH, Bentley WE, Jay SM. Bacterial Extracellular Vesicles and the Gut-Microbiota Brain Axis: Emerging Roles in Communication and Potential as Therapeutics. Adv Biol (Weinh) 2021; 5:e2000540. [PMID: 33857347 DOI: 10.1002/adbi.202000540] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/24/2021] [Indexed: 12/20/2022]
Abstract
Bacterial extracellular vesicles (BEVs) have emerged as candidate signaling vectors for long-distance interkingdom communication within the gut-microbiota brain axis. Most bacteria release these nanosized vesicles, capable of signaling to the brain via their abundant protein and small RNA cargo, possibly directly via crossing the blood-brain barrier. BEVs have been shown to regulate brain gene expression and induce pathology at most stages of neuroinflammation and neurodegeneration, and thus they may play a causal role in diseases such as Alzheimer's, Parkinson's, and depression/anxiety. On the other hand, BEVs have intrinsic therapeutic properties that may be relevant to probiotic therapy and can also be engineered to function as drug delivery vehicles and vaccines. Thus, BEVs may be both a cause of and solution to neuropathological conditions. In this review, current knowledge of the physiological roles of BEVs as well as state of the art pertaining to the development of therapeutic BEVs in the context of the microbiome-gut-brain axis are summarized.
Collapse
Affiliation(s)
- Nicholas H Pirolli
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD, 20742, USA
| | - William E Bentley
- Fischell Department of Bioengineering, Robert E. Fischell Institute, and Institute for Bioscience and Biotechnology Research, University of Maryland, 5120A A. James Clark Hall, College Park, MD, 20742, USA
| | - Steven M Jay
- Fischell Department of Bioengineering and Program in Molecular and Cell Biology, University of Maryland, 3116 A. James Clark Hall, College Park, MD, 20742, USA
| |
Collapse
|
63
|
Zhang M, Han W, Xu Y, Li D, Xue Q. Serum miR-128 Serves as a Potential Diagnostic Biomarker for Alzheimer's Disease. Neuropsychiatr Dis Treat 2021; 17:269-275. [PMID: 33542630 PMCID: PMC7853421 DOI: 10.2147/ndt.s290925] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Although numerous microRNAs (miRNAs) have been discovered to participate in the progression of Alzheimer's disease (AD), they are still difficult to apply in clinical work. Thus, the identification of novel miRNAs and clarification of their clinical significance are importing for improving the diagnosis and treatment of AD. The purpose of this study was to analyze the expression of miR-128 and its diagnostic value in patients with AD. PATIENTS AND METHODS In this study, 117 AD patients and 106 controls were enrolled, and the demographic data, biochemical parameters and serum miR-128 levels were collected. These data were then used to build a logistic regression model, and receiver operating characteristic (ROC) curves were drawn to evaluate the diagnostic value of miR-128. The relationships between miR-128 and inflammatory factors (IL-1β/TNF-α) were also analyzed from clinical serum data. RESULTS Our study found that miR-128 was significantly upregulated in the serum samples of AD patients compared with controls, and that this upregulation was negatively correlated with Mini-Mental State Examination (MMSE) scores (r = -0.687, P< 0.01). ROC curve showed that the area under the curve of miR-128 was 0.831. Logistic regression analyses showed that glycosylated hemoglobin (HbA1c) levels, low-density lipoprotein (LDL) levels, MMSE scores and serum miR-128 levels were statistically significant (P< 0.01), and the ROC curve of the combined detection of these variables was 0.906. The serum miR-128 levels in AD patients were positively correlated with the serum IL-1β (r=0.798, P<0.01) and serum TNF-α levels (r=0.733, P<0.01). CONCLUSION Serum miR-128 is a candidate diagnostic biomarker in AD patients who achieved good diagnostic performance when used alone or in combination with other factors and may have the potential to be a novel therapeutic target for neuroinflammation.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu215006, People’s Republic of China
- Department of Geriatric Psychiatry, Changzhou Dean Hospital, Changzhou, Jiangsu213000, People’s Republic of China
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu212001, People’s Republic of China
| | - Wei Han
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu212001, People’s Republic of China
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu212001, People’s Republic of China
| | - Yuhao Xu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu212001, People’s Republic of China
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu212001, People’s Republic of China
| | - Dapeng Li
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu212001, People’s Republic of China
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu215006, People’s Republic of China
| |
Collapse
|