51
|
Henshall DC. MicroRNAs in the pathophysiology and treatment of status epilepticus. Front Mol Neurosci 2013; 6:37. [PMID: 24282394 PMCID: PMC3824358 DOI: 10.3389/fnmol.2013.00037] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/17/2013] [Indexed: 12/19/2022] Open
Abstract
MicroRNA (miRNA) are an important class of non-coding RNA which function as post-transcriptional regulators of gene expression in cells, repressing and fine-tuning protein output. Prolonged seizures (status epilepticus, SE) can cause damage to brain regions such as the hippocampus and result in cognitive deficits and the pathogenesis of epilepsy. Emerging work in animal models has found that SE produces select changes to miRNAs within the brain. Similar changes in over 20 miRNAs have been found in the hippocampus in two or more studies, suggesting conserved miRNA responses after SE. The miRNA changes that accompany SE are predicted to impact levels of multiple proteins involved in neuronal morphology and function, gliosis, neuroinflammation, and cell death. miRNA expression also displays select changes in the blood after SE, supporting blood genomic profiling as potential molecular biomarkers of seizure-damage or epileptogenesis. Intracerebral delivery of chemically modified antisense oligonucleotides (antagomirs) has been shown to have potent, specific and long-lasting effects on brain levels of miRNAs. Targeting miR-34a, miR-132 and miR-184 has been reported to alter seizure-induced neuronal death, whereas targeting miR-134 was neuroprotective, reduced seizure severity during status epilepticus and reduced the later emergence of recurrent spontaneous seizures. These studies support roles for miRNAs in the pathophysiology of status epilepticus and miRNAs may represent novel therapeutic targets to reduce brain injury and epileptogenesis.
Collapse
Affiliation(s)
- David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland Dublin, Ireland
| |
Collapse
|
52
|
Garcia-Reyero N, Martyniuk CJ, Kroll KJ, Escalon BL, Spade DJ, Denslow ND. Transcriptional signature of progesterone in the fathead minnow ovary (Pimephales promelas). Gen Comp Endocrinol 2013; 192:159-69. [PMID: 23796460 PMCID: PMC4349561 DOI: 10.1016/j.ygcen.2013.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 11/17/2022]
Abstract
A growing number of studies have examined transcriptional responses to sex steroids along the hypothalamic-pituitary-gonadal axis in teleost fishes. However, data are lacking on the molecular cascades that underlie progesterone signaling. The objective of this study was to characterize the transcriptional response in the ovary of fathead minnows (Pimephales promelas) in response to progesterone (P4). Fathead minnow ovaries were exposed in vitro to 500 ng P4/L. Germinal vesicle migration and breakdown (GVBD) was observed and microarrays were used to identify gene cascades affected by P4. Microarray analysis identified 1702 differentially expressed transcripts after P4 treatment. Functional enrichment analysis revealed that transcripts involved in the molecular functions of protein serine/threonine kinase activity, ATP binding, and activity of calcium channels were increased after P4 treatment. There was an overwhelming decrease in levels of transcripts of genes that are structural constituents of ribosomes with P4 treatment. There was also evidence for gene expression changes in steroid and maturation-related transcripts. Pathway analyses identified cell cycle regulation, insulin action, hedgehog, and B cell activation as pathways containing an over-representation of highly regulated transcripts. Significant regulatory sub-networks of P4-mediated transcripts included genes regulated by tumor protein p53 and E2F transcription factor 1. These data provide novel insight into the molecular signaling cascades that underlie P4-signaling in the ovary and identify genes and processes that may indicate premature GVBD due to environmental pollutants that mimic progestins.
Collapse
Affiliation(s)
- Natàlia Garcia-Reyero
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS 39759, USA
| | | | | | | | | | | |
Collapse
|
53
|
O'Mahony AM, Godinho BMDC, Cryan JF, O'Driscoll CM. Non-viral nanosystems for gene and small interfering RNA delivery to the central nervous system: formulating the solution. J Pharm Sci 2013; 102:3469-84. [PMID: 23893329 DOI: 10.1002/jps.23672] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/12/2013] [Accepted: 06/25/2013] [Indexed: 01/06/2023]
Abstract
The application of gene and RNAi-based therapies to the central nervous system (CNS), for neurological and neurodegenerative disease, offers immense potential. The issue of delivery to the target site remains the single greatest barrier to achieving this. There are challenges to gene and siRNA (small interfering RNA) delivery which are specific to the CNS, including the post-mitotic nature of neurons, their resistance to transfection and the blood-brain barrier. Viral vectors are highly efficient and have been used extensively in pre-clinical studies for CNS diseases. However, non-viral delivery offers an exciting alternative. In this review, we will discuss the extracellular and intracellular barriers to gene and siRNA delivery in the CNS. Our focus will be directed towards various non-viral strategies used to overcome these barriers. In this regard, we describe selected non-viral vectors and categorise them according to the barriers that they overcome by their formulation and targeting strategies. Some of the difficulties associated with non-viral vectors such as toxicity, large-scale manufacture and route of administration are discussed. We provide examples of optimised formulation approaches and discuss regulatory hurdles to clinical validation. Finally, we outline the components of an "ideal" formulation, based on a critical analysis of the approaches highlighted throughout the review.
Collapse
Affiliation(s)
- Aoife M O'Mahony
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | | | | | | |
Collapse
|
54
|
Current progress for the use of miRNAs in glioblastoma treatment. Mol Neurobiol 2013; 48:757-68. [PMID: 23625340 DOI: 10.1007/s12035-013-8464-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/16/2013] [Indexed: 12/24/2022]
Abstract
Glioblastoma (GBM) is a highly aggressive brain cancer with the worst prognosis of any central nervous system disease despite intensive multimodal therapy. Inevitably, glioblastoma is fatal, with recurrence of treatment-resistant tumour growth at distal sites leading to an extremely low median survival rate of 12-15 months from the time of initial diagnosis. With the advent of microarray and gene profiling technology, researchers have investigated trends in genetic alterations and, in this regard, the role of dysregulated microRNAs (highly conserved endogenous small RNA molecules) in glioblastoma has been studied with a view to identifying novel mechanisms of acquired drug resistance and allow for development of microRNA (miRNA)-based therapeutics for GBM patients. Considering the development of miRNA research from initial association to GBM to commercial development of miR-based therapeutics in less than a decade, it is not beyond reasonable doubt to anticipate significant advancements in this field of study, hopefully with the ultimate conclusion of improved patient outcome. This review discusses the recent advancements in miRNA-based therapeutic development for use in glioblastoma treatment and the challenges faced with respect to in vivo and clinical application.
Collapse
|
55
|
Abstract
The inner blood-retina barrier (iBRB) is essential in restricting the movement of systemic components such as enzymes, anaphylatoxins, or pathogens that could otherwise enter the neural retina and cause extensive damage. The barrier has evolved to confer protection to the delicate microenvironment of the retina, and the tight junctions located between adjacent microvascular endothelial cells can restrict the passage of up to 98% of clinically validated low-molecular-weight therapeutics which could hold significant promise for a range of degenerative retinal conditions. Here, we describe a method for the selective RNAi-mediated targeting of one component of the tight junction, claudin-5. We outline the generation of a doxycycline inducible adeno-associated viral vector for the localized, inducible, and size-selective modulation of the iBRB and describe how this vector can be used in ophthalmology research.
Collapse
|
56
|
Klaassen I, Van Noorden CJF, Schlingemann RO. Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog Retin Eye Res 2013; 34:19-48. [PMID: 23416119 DOI: 10.1016/j.preteyeres.2013.02.001] [Citation(s) in RCA: 471] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/19/2012] [Accepted: 02/01/2013] [Indexed: 12/16/2022]
Abstract
Breakdown of the inner endothelial blood-retinal barrier (BRB), as occurs in diabetic retinopathy, age-related macular degeneration, retinal vein occlusions, uveitis and other chronic retinal diseases, results in vasogenic edema and neural tissue damage, causing loss of vision. The central mechanism of altered BRB function is a change in the permeability characteristics of retinal endothelial cells caused by elevated levels of growth factors, cytokines, advanced glycation end products, inflammation, hyperglycemia and loss of pericytes. Subsequently, paracellular but also transcellular transport across the retinal vascular wall increases via opening of endothelial intercellular junctions and qualitative and quantitative changes in endothelial caveolar transcellular transport, respectively. Functional changes in pericytes and astrocytes, as well as structural changes in the composition of the endothelial glycocalyx and the basal lamina around BRB endothelium further facilitate BRB leakage. As Starling's rules apply, active transcellular transport of plasma proteins by the BRB endothelial cells causing increased interstitial osmotic pressure is probably the main factor in the formation of macular edema. The understanding of the complex cellular and molecular processes involved in BRB leakage has grown rapidly in recent years. Although appropriate animal models for human conditions like diabetic macular edema are lacking, these insights have provided tools for rational design of drugs aimed at restoring the BRB as well as for design of effective transport of drugs across the BRB, to treat the chronic retinal diseases such as diabetic macular edema that affect the quality-of-life of millions of patients.
Collapse
Affiliation(s)
- Ingeborg Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
57
|
Sohet F, Daneman R. Genetic mouse models to study blood-brain barrier development and function. Fluids Barriers CNS 2013; 10:3. [PMID: 23305182 PMCID: PMC3675378 DOI: 10.1186/2045-8118-10-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/20/2012] [Indexed: 12/21/2022] Open
Abstract
The blood–brain barrier (BBB) is a complex physiological structure formed by the blood vessels of the central nervous system (CNS) that tightly regulates the movement of substances between the blood and the neural tissue. Recently, the generation and analysis of different genetic mouse models has allowed for greater understanding of BBB development, how the barrier is regulated during health, and its response to disease. Here we discuss: 1) Genetic mouse models that have been used to study the BBB, 2) Available mouse genetic tools that can aid in the study of the BBB, and 3) Potential tools that if generated could greatly aid in our understanding of the BBB.
Collapse
Affiliation(s)
- Fabien Sohet
- UCSF Department of Anatomy, 513 Parnassus Ave HSW1301, San Francisco, 94117, California, USA.
| | | |
Collapse
|
58
|
Campbell M, Humphries P. The Blood-Retina Barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013. [DOI: 10.1007/978-1-4614-4711-5_3] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
59
|
Abstract
Efficient drug delivery to the brain or the eye remains a key challenge for future therapies directed against neurodegenerative disorders. Indeed it has been estimated that up to 98% of clinically relevant drugs will not diffuse across the endothelial cells associated with the delicate microvasculature of the brain and inner retina. Using RNAi-based methods for suppression of claudin-5, a molecular constituent of the tight junctions associated with both the blood-brain and inner blood-retina barriers, it has been shown that these barriers can be rendered transiently and size-selectively permeable to molecules up to approximately I kDa. This review will discuss the principles upon which this technology is based and the potential therapeutic applications with regard to neurodegenerative disorders as well as common retinopathies.
Collapse
|
60
|
Drug delivery to the brain via the blood-brain barrier: a review of the literature and some recent patent disclosures. Ther Deliv 2012; 2:311-27. [PMID: 22834002 DOI: 10.4155/tde.11.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Delivery of drugs to the brain is challenging, not only for large biopharmaceutical molecules, but also for small organics, which are effluxed from the brain capillary endothelial cells. These cells constitute, in part, the selectively permeable blood-brain barrier. Progress is being made using delivery systems comprising a vector, a linker and cargo, which are purported to enter the brain via receptors on the luminal surface of the brain capillary endothelial cells. Unfortunately, from a delivery perspective, these receptors are not expressed only on brain capillary endothelial cells; so the approaches described in this review are for enhanced delivery to the brain, not for specific brain targeting. The inventions disclosed in patents relate to technologies to screen for new blood-brain barrier receptors and to identify new vectors, or describe systems that deliver cargoes to the brain via any blood-brain barrier receptor, or define specified peptide vectors that target a specific receptor. To date, only one of the technologies has reached early clinical trials and, as always, major challenges remain to be addressed.
Collapse
|
61
|
Delivery of siRNA into the blood-brain barrier: recent advances and future perspective. Ther Deliv 2012; 3:417-20. [PMID: 22834073 DOI: 10.4155/tde.12.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
62
|
From RNA interference technology to effective therapy: how far have we come and how far to go? Ther Deliv 2012; 2:1395-406. [PMID: 22826872 DOI: 10.4155/tde.11.109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Over a decade has passed since the first description of RNAi in animals--the fundamental endogenous process by which small dsRNAs mediate sequence-specific gene silencing. This discovery has radically transformed our understanding of gene regulation and function and spawned a whole new biotechnology industry focused on developing RNAi-based therapeutic approaches to a variety of human diseases that have otherwise proved challenging to conventional therapies. While RNAi technologies hold great promise as a powerful medical tool, successful delivery of RNAi agents and effective measurement of their uptake are major challenges in translating RNAi therapies to the clinic. Exciting developments in the field have also been tempered by safety concerns surrounding the immunogenic potential of this gene silencing technology and the potential side effects associated with exploiting a crucial biological pathway for therapeutic benefit. This article examines the progress of RNAi therapeutics including advances in delivery and safety, and recent findings from several Phase I-III clinical trials. The emergence of a novel application of RNAi in enhancing the delivery of low-molecular weight drugs to neuronal tissues will also be presented to provide an outlook on the future of RNAi technologies.
Collapse
|
63
|
Campbell M, Hanrahan F, Gobbo OL, Kelly ME, Kiang AS, Humphries MM, Nguyen AT, Ozaki E, Keaney J, Blau CW, Kerskens CM, Cahalan SD, Callanan JJ, Wallace E, Grant GA, Doherty CP, Humphries P. Targeted suppression of claudin-5 decreases cerebral oedema and improves cognitive outcome following traumatic brain injury. Nat Commun 2012; 3:849. [DOI: 10.1038/ncomms1852] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/18/2012] [Indexed: 02/04/2023] Open
|
64
|
The age-related deficit in LTP is associated with changes in perfusion and blood-brain barrier permeability. Neurobiol Aging 2012; 33:1005.e23-35. [DOI: 10.1016/j.neurobiolaging.2011.09.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 09/22/2011] [Accepted: 09/30/2011] [Indexed: 12/11/2022]
|
65
|
On further development of barrier modulation as a technique for systemic ocular drug delivery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:155-9. [PMID: 22183328 DOI: 10.1007/978-1-4614-0631-0_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
66
|
Nguyen ATH, Campbell M, Kenna PF, Kiang AS, Tam L, Humphries MM, Humphries P. Calpain and photoreceptor apoptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:547-52. [PMID: 22183376 DOI: 10.1007/978-1-4614-0631-0_69] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Anh T H Nguyen
- The Ocular Genetics Unit, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
67
|
Nguyen JH. Blood-brain barrier in acute liver failure. Neurochem Int 2011; 60:676-83. [PMID: 22100566 DOI: 10.1016/j.neuint.2011.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 10/20/2011] [Accepted: 10/26/2011] [Indexed: 12/16/2022]
Abstract
Brain edema remains a challenging obstacle in the management of acute liver failure (ALF). Cytotoxic mechanisms associated with brain edema have been well recognized, but evidence for vasogenic mechanisms in the pathogenesis of brain edema in ALF has been lacking. Recent reports have not only shown a role of matrix metalloproteinase-9 in the pathogenesis of brain edema in experimental ALF but have also found significant alterations in the tight junction elements including occludin and claudin-5, suggesting a vasogenic injury in the blood-brain barrier (BBB) integrity. This article reviews and explores the role of the paracellular tight junction proteins in the increased selective BBB permeability that leads to brain edema in ALF.
Collapse
Affiliation(s)
- Justin H Nguyen
- Division of Transplant Surgery, Department of Transplantation, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, United States.
| |
Collapse
|
68
|
Kievit FM, Zhang M. Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:H217-47. [PMID: 21842473 PMCID: PMC3397249 DOI: 10.1002/adma.201102313] [Citation(s) in RCA: 350] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/12/2011] [Indexed: 05/03/2023]
Abstract
Cancer nanotheranostics aims to combine imaging and therapy of cancer through use of nanotechnology. The ability to engineer nanomaterials to interact with cancer cells at the molecular level can significantly improve the effectiveness and specificity of therapy to cancers that are currently difficult to treat. In particular, metastatic cancers, drug-resistant cancers, and cancer stem cells impose the greatest therapeutic challenge for targeted therapy. Targeted therapy can be achieved with appropriately designed drug delivery vehicles such as nanoparticles, adult stem cells, or T cells in immunotherapy. In this article, we first review the different types of nanotheranostic particles and their use in imaging, followed by the biological barriers they must bypass to reach the target cancer cells, including the blood, liver, kidneys, spleen, and particularly the blood-brain barrier. We then review how nanotheranostics can be used to improve targeted delivery and treatment of cancer cells. Finally, we discuss development of nanoparticles to overcome current limitations in cancer therapy.
Collapse
Affiliation(s)
- Forrest M Kievit
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
69
|
Efficient in vivo delivery of siRNA into brain capillary endothelial cells along with endogenous lipoprotein. Mol Ther 2011; 19:2213-21. [PMID: 21915100 DOI: 10.1038/mt.2011.186] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The brain capillary endothelial cell (BCEC) is a major functional component of the blood-brain barrier and is an underlying factor in the pathophysiology of various diseases, including brain ischemia, multiple sclerosis, and neurodegenerative disorders. We examined gene silencing in BCECs by using endogenous lipoprotein to introduce short-interfering RNA (siRNA) in vivo. A cholesterol-conjugated 21/23-mer siRNA targeting organic anion transporter 3 (OAT3) mRNA (Chol-siOAT3) was intravenously injected into mice after its incorporation into extracted endogenous lipoproteins. Chol-siOAT3 was not delivered to neurons or glia, but was successfully delivered into BCECs and resulted in a significant reduction of OAT3 mRNA levels when injected after its incorporation into high-density lipoprotein (HDL). Efficient delivery was not achieved, however, when Chol-siOAT3 was injected without any lipoproteins, or after its incorporation into low-density lipoprotein (LDL). Investigations in apolipoprotein E (ApoE)-deficient and LDL receptor (LDLR)-deficient mice revealed that the uptake of HDL-containing Chol-siOAT3 was mainly mediated by ApoE and LDLR in mice. These findings indicate that siRNA can be delivered into BCECs in vivo by using endogenous lipoprotein, which could make this strategy useful as a new gene silencing therapy for diseases involving BCECs.
Collapse
|
70
|
Campbell M, Humphries MM, Kiang AS, Nguyen ATH, Gobbo OL, Tam LCS, Suzuki M, Hanrahan F, Ozaki E, Farrar GJ, Kenna PF, Humphries P. Systemic low-molecular weight drug delivery to pre-selected neuronal regions. EMBO Mol Med 2011; 3:235-45. [PMID: 21374818 PMCID: PMC3377070 DOI: 10.1002/emmm.201100126] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 01/23/2023] Open
Abstract
We describe a procedure for controlled, periodic, reversible modulation of selected regions of the blood–brain barrier (BBB) or the inner-blood–retina barrier (iBRB) based on incorporation into an AAV-2/9 vector of a doxycycline-inducible gene encoding shRNA targeting claudin-5, one of 30 or so proteins constituting the BBB and iBRB. The vector may be introduced stereotaxically into pre-selected regions of the brain or into the retina, rendering these regions permeable to low-molecular weight compounds up to approximately 1 kDa for the period of time during which the inducing agent, doxycycline, is administered in drinking water, but excluding potentially toxic higher molecular weight materials. We report on the use of barrier modulation in tandem with systemic drug therapy to prevent retinal degeneration and to suppress laser-induced choroidal neovascularization (CNV), the latter being the hallmark pathology associated with the exudative, or wet, form of age-related macular degeneration (AMD). These observations constitute the basis of a minimally invasive systemic therapeutic modality for retinal diseases, including retinitis pigmentosa and AMD, where, in early stage disease, the iBRB is intact and impervious to systemically administered drugs.
Collapse
Affiliation(s)
- Matthew Campbell
- Ocular Genetics Unit, Department of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Hooper DC, Roy A, Kean RB, Phares TW, Barkhouse DA. Therapeutic immune clearance of rabies virus from the CNS. Future Virol 2011; 6:387-397. [PMID: 21686076 DOI: 10.2217/fvl.10.88] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The long-held concept that rabies infection is lethal in humans once the causative rabies virus has reached the CNS has been called into question by the recent survival of a number of patients with clinical rabies. Studies in animal models provide insight into why survival from a rabies virus infection that has spread to the CNS is possible and the immune mechanisms involved. In the CNS, both innate mechanisms capable of inhibiting virus replication and the activity of infiltrating rabies virus-specific T and B cells with the capacity to clear the virus are required. Deficiencies in the induction of either aspect of rabies immunity can lead to lethal consequences but may be overcome by novel approaches to active and passive immunization.
Collapse
Affiliation(s)
- D Craig Hooper
- Center for Neurovirology, Department of Cancer Biology, Thomas Jefferson University, 233 S. 10th Street, PA 19107, USA
| | | | | | | | | |
Collapse
|
72
|
Abdelilah-Seyfried S. Claudin-5a in developing zebrafish brain barriers: another brick in the wall. Bioessays 2010; 32:768-76. [PMID: 20652895 DOI: 10.1002/bies.201000045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Claudins serve essential roles in regulating paracellular permeability properties within occluding junctions. Recent studies have begun to elucidate developmental roles of claudins within immature tissues. This work has uncovered an involvement of several claudins in determining tight junction properties that have an effect on embryonic morphogenesis and physiology. During zebrafish brain morphogenesis, Claudin-5a determines the paracellular permeability of tight junctions within a transient neuroepithelial-ventricular barrier that maintains the hydrostatic fluid pressure required for brain ventricular lumen expansion. However, the roles of Claudins in development may well extend beyond being mere junctional components. Several post-translational modifications of Claudins have been characterized that indicate a direct regulation by developmental signals. This review focuses on the involvement of Claudin-5a in cerebral barrier formation in the zebrafish embryo and includes some speculations about possible modes of regulation.
Collapse
|
73
|
Gupta IR, Ryan AK. Claudins: unlocking the code to tight junction function during embryogenesis and in disease. Clin Genet 2010; 77:314-25. [PMID: 20447145 DOI: 10.1111/j.1399-0004.2010.01397.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Claudins are the structural and molecular building blocks of tight junctions. Individual cells express more than one claudin family member, which suggests that a combinatorial claudin code that imparts flexibility and dynamic regulation of tight junction function could exist. Although we have learned much from manipulating claudin expression and function in cell lines, loss-of-function and gain-of-function experiments in animal model systems are essential for understanding how claudin-based boundaries function in the context of a living embryo and/or tissue. These in vivo manipulations have pointed to roles for claudins in maintaining the epithelial integrity of cell layers, establishing micro-environments and contributing to the overall shape of an embryo or tissue. In addition, loss-of-function mutations in combination with the characterization of mutations in human disease have demonstrated the importance of claudins in regulating paracellular transport of solutes and water during normal physiological states. In this review, we will discuss specific examples of in vivo studies that illustrate the function of claudin family members during development and in disease.
Collapse
Affiliation(s)
- I R Gupta
- Department of Pediatrics, McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
74
|
Tam LCS, Kiang AS, Campbell M, Keaney J, Farrar GJ, Humphries MM, Kenna PF, Humphries P. Prevention of autosomal dominant retinitis pigmentosa by systemic drug therapy targeting heat shock protein 90 (Hsp90). Hum Mol Genet 2010; 19:4421-36. [PMID: 20817636 DOI: 10.1093/hmg/ddq369] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Retinitis pigmentosa (RP) is the most prevalent cause of registered visual handicap among working aged populations of developed countries. Up to 40% of autosomal dominant cases of disease are caused by mutations within the rhodopsin, RDS-peripherin and inosine 5'-monophosphate dehydrogenase type 1 (IMPDH1) genes, at least 30 mutations within which give rise to proteins that cause disease pathology by misfolding and aggregation. Given the genetic complexity of this disease, therapies that simultaneously target multiple mutations are of substantial logistic and economic significance. We show here, in a murine model of autosomal dominant RP (RP10) involving expression of an Arg224Pro mutation within the IMPDH1 gene, that treatment with the low-molecular-weight drug, 17-allylamino-17-demethoxygeldanamycin (17-AAG), an ansamycin antibiotic that binds to heat shock protein Hsp90, activating a heat shock response in mammalian cells, protects photoreceptors against degeneration induced by aggregating mutant IMPDH1 protein, systemic delivery of this low-molecular-weight drug to the retina being facilitated by RNA interference-mediated modulation of the inner-blood retina barrier. 17-AAG has an orphan drug status and is in current clinical use for the treatment of non-ocular diseases. These data show that a single low-molecular-weight drug has the potential to suppress a wide range of mutant proteins causing RP.
Collapse
Affiliation(s)
- Lawrence C S Tam
- The Ocular Genetics Unit, Department of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Kaufmann J, Ahrens K, Santel A. RNA interference for therapy in the vascular endothelium. Microvasc Res 2010; 80:286-93. [DOI: 10.1016/j.mvr.2010.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/28/2010] [Accepted: 02/02/2010] [Indexed: 12/31/2022]
|
76
|
Campbell M, Ozaki E, Humphries P. Systemic delivery of therapeutics to neuronal tissues: a barrier modulation approach. Expert Opin Drug Deliv 2010; 7:859-69. [DOI: 10.1517/17425247.2010.490554] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
77
|
Campbell M, Nguyen ATH, Kiang AS, Tam L, Kenna PF, Dhubhghaill SN, Humphries M, Farrar GJ, Humphries P. Reversible and size-selective opening of the inner Blood-Retina barrier: a novel therapeutic strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 664:301-8. [PMID: 20238029 DOI: 10.1007/978-1-4419-1399-9_34] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The inner Blood-Retina-barrier (iBRB) remains a key element in retarding the development of novel therapeutics for the treatment of many ocular disorders. The iBRB contains tight-junctions (TJ's) which reduce the space between adjacent endothelial cells lining the fine capillaries of the retinal microvasculature to form a selective and regulatable barrier. We have recently shown that in mice, the iBRB can be transiently and size-selectively opened to molecules with molecular weights of up to approximately 1 kDa using an siRNA-mediated approach involving suppression of the tight junction protein, claudin-5. We have systemically delivered siRNA targeting claudin-5 to retinal capillary endothelial cells in mice and through a series of tracer experiments and magnetic-resonance-imaging (MRI), we have shown a transient and size-selective increase in permeability at the iBRB to molecules below 1 kDa. The potential to exploit this specific compromise in iBRB integrity may have far reaching implications for the development of experimental animal models of retinal degenerative disorders, and for enhanced delivery of therapeutic molecules which would normally not traverse the iBRB. Using RNAi-mediated opening of the iBRB, the systemic delivery of low molecular weight therapeutics could in principle, hold real promise as an alternative to repeated intraocular inoculation of compounds. Results demonstrated here in mouse models, should lead to a 'humanized' form of systemic delivery as opposed to the hydrodynamic approach used in our work to date.
Collapse
Affiliation(s)
- Matthew Campbell
- Department of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
An experimental platform for systemic drug delivery to the retina. Proc Natl Acad Sci U S A 2009; 106:17817-22. [PMID: 19822744 DOI: 10.1073/pnas.0908561106] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Degenerative retinopathies, including age-related macular degeneration, diabetic retinopathy, and hereditary retinal disorders--major causes of world blindness--are potentially treatable by using low-molecular weight neuroprotective, antiapoptotic, or antineovascular drugs. These agents are, however, not in current systemic use owing to, among other factors, their inability to passively diffuse across the microvasculature of the retina because of the presence of the inner blood-retina barrier (iBRB). Moreover, preclinical assessment of the efficacies of new formulations in the treatment of such conditions is similarly compromised. We describe here an experimental process for RNAi-mediated, size-selective, transient, and reversible modulation of the iBRB in mice to molecules up to 800 Da by suppression of transcripts encoding claudin-5, a protein component of the tight junctions of the inner retinal vasculature. MRI produced no evidence indicative of brain or retinal edema, and the process resulted in minimal disturbance of global transcriptional patterns analyzed in neuronal tissue. We show that visual function can be improved in IMPDH1(-/-) mice, a model of autosomal recessive retinitis pigmentosa, and that the rate of photoreceptor cell death can be reduced in a model of light-induced retinal degeneration by systemic drug delivery after reversible barrier opening. These findings provide a platform for high-throughput drug screening in models of retinal degeneration, and they ultimately could result in the development of a novel "humanized" approach to therapy for conditions with little or no current forms of treatment.
Collapse
|
79
|
Abstract
BACKGROUND Two fundamental difficulties in the delivery of drugs to treat central nervous system (CNS) diseases are the systemic delivery of therapeutics across the bloodbrain-barrier (BBB), and the targeting of drugs to specific tissues or cells within the brain. With the advent and promise of RNA-based therapeutics that utilize RNA interference (RNAi) to trigger specific silencing of genes within diseased tissues, the necessity to surmount such obstacles has become even more urgent. OBJECTIVE Most pre-clinical and clinical studies on delivery of RNAi to the CNS have utilized invasive, intra-cerebral delivery of RNA to the targeted tissue. Thus, methods need to be developed to facilitate delivery of therapeutically significant quantities of RNA to the CNS via the systemic route, and to elicit clinically significant RNAi effects within the CNS tissues. METHODS Cell-penetrating-peptides (CPPs) are 'molecular delivery vehicles' that can traverse cell membranes and co-transport peptides or polynucleotides. The present invention examines 1) the utility of CPP-RNA duplexes for delivery of RNA to CNS tissues and, 2) cell-mediated release of the RNA payload once the CPP-RNA duplex is internalized by the CNS cells. CONCLUSIONS The invention and embodiments listed therein outline molecular tools that can be adapted for non-invasive, systemic delivery of therapeutic RNA to the CNS in a future clinical setting.
Collapse
Affiliation(s)
- Saroj P Mathupala
- Department of Neurological Surgery, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI 48201, USA.
| |
Collapse
|