51
|
Zhao D, Pacheco-Torres J, Hallac RR, White D, Peschke P, Cerdán S, Mason RP. Dynamic oxygen challenge evaluated by NMR T1 and T2*--insights into tumor oxygenation. NMR IN BIOMEDICINE 2015; 28:937-947. [PMID: 26058575 PMCID: PMC4506740 DOI: 10.1002/nbm.3325] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 05/03/2023]
Abstract
There is intense interest in developing non-invasive prognostic biomarkers of tumor response to therapy, particularly with regard to hypoxia. It has been suggested that oxygen sensitive MRI, notably blood oxygen level-dependent (BOLD) and tissue oxygen level-dependent (TOLD) contrast, may provide relevant measurements. This study examined the feasibility of interleaved T2*- and T1-weighted oxygen sensitive MRI, as well as R2* and R1 maps, of rat tumors to assess the relative sensitivity to changes in oxygenation. Investigations used cohorts of Dunning prostate R3327-AT1 and R3327-HI tumors, which are reported to exhibit distinct size-dependent levels of hypoxia and response to hyperoxic gas breathing. Proton MRI R1 and R2* maps were obtained for tumors of anesthetized rats (isoflurane/air) at 4.7 T. Then, interleaved gradient echo T2*- and T1-weighted images were acquired during air breathing and a 10 min challenge with carbogen (95% O2 -5% CO2). Signals were stable during air breathing, and each type of tumor showed a distinct signal response to carbogen. T2* (BOLD) response preceded T1 (TOLD) responses, as expected. Smaller HI tumors (reported to be well oxygenated) showed the largest BOLD and TOLD responses. Larger AT1 tumors (reported to be hypoxic and resist modulation by gas breathing) showed the smallest response. There was a strong correlation between BOLD and TOLD signal responses, but ΔR2* and ΔR1 were only correlated for the HI tumors. The magnitude of BOLD and TOLD signal responses to carbogen breathing reflected expected hypoxic fractions and oxygen dynamics, suggesting potential value of this test as a prognostic biomarker of tumor hypoxia.
Collapse
Affiliation(s)
- Dawen Zhao
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Jesús Pacheco-Torres
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- Laboratory for Imaging and Spectroscopy by Magnetic Resonance LISMAR, Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Arturo Duperier 4, Madrid 28029, Spain
| | - Rami R. Hallac
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Derek White
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Peter Peschke
- Clinical Cooperation Unit Molecular Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Cerdán
- Laboratory for Imaging and Spectroscopy by Magnetic Resonance LISMAR, Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Arturo Duperier 4, Madrid 28029, Spain
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- To whom correspondence should be addressed: Ralph P. Mason, PhD Department of Radiology UT Southwestern Medical Center 5323 Harry Hines Blvd. Dallas, TX 75390-9058 USA Phone: +1 (214) 648-8926 Fax: +1 (214) 648-2991
| |
Collapse
|
52
|
Bluff JE, Reynolds S, Metcalf S, Alizadeh T, Kazan SM, Bucur A, Wholey EG, Bibby BAS, Williams L, Paley MN, Tozer GM. Measurement of the acute metabolic response to hypoxia in rat tumours in vivo using magnetic resonance spectroscopy and hyperpolarised pyruvate. Radiother Oncol 2015; 116:392-9. [PMID: 25824978 PMCID: PMC4612449 DOI: 10.1016/j.radonc.2015.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 03/03/2015] [Accepted: 03/08/2015] [Indexed: 12/11/2022]
Abstract
Purpose To estimate the rate constant for pyruvate to lactate conversion in tumours in response to a hypoxic challenge, using hyperpolarised 13C1-pyruvate and magnetic resonance spectroscopy. Methods and materials Hypoxic inspired gas was used to manipulate rat P22 fibrosarcoma oxygen tension (pO2), confirmed by luminescence decay of oxygen-sensitive probes. Hyperpolarised 13C1-pyruvate was injected into the femoral vein of anaesthetised rats and slice-localised 13C magnetic resonance (MR) spectra acquired. Spectral integral versus time curves for pyruvate and lactate were fitted to a precursor-product model to estimate the rate constant for tumour conversion of pyruvate to lactate (kpl). Mean arterial blood pressure (MABP) and oxygen tension (ArtpO2) were monitored. Pyruvate and lactate concentrations were measured in freeze-clamped tumours. Results MABP, ArtpO2 and tumour pO2 decreased significantly during hypoxia. kpl increased significantly (p < 0.01) from 0.029 ± 0.002 s−1 to 0.049 ± 0.006 s−1 (mean ± SEM) when animals breathing air were switched to hypoxic conditions, whereas pyruvate and lactate concentrations were minimally affected by hypoxia. Both ArtpO2 and MABP influenced the estimate of kpl, with a strong negative correlation between kpl and the product of ArtpO2 and MABP under hypoxia. Conclusion The rate constant for pyruvate to lactate conversion, kpl, responds significantly to a rapid reduction in tumour oxygenation.
Collapse
Affiliation(s)
- Joanne E Bluff
- Tumour Microcirculation Group, Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
| | - Steven Reynolds
- Academic Unit of Radiology, Department of Cardiovascular Science, University of Sheffield, UK.
| | - Stephen Metcalf
- Tumour Microcirculation Group, Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
| | - Tooba Alizadeh
- Tumour Microcirculation Group, Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
| | - Samira M Kazan
- Tumour Microcirculation Group, Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
| | - Adriana Bucur
- Academic Unit of Radiology, Department of Cardiovascular Science, University of Sheffield, UK
| | - Emily G Wholey
- Tumour Microcirculation Group, Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
| | - Becky A S Bibby
- Tumour Microcirculation Group, Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
| | - Leigh Williams
- Tumour Microcirculation Group, Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
| | - Martyn N Paley
- Academic Unit of Radiology, Department of Cardiovascular Science, University of Sheffield, UK
| | - Gillian M Tozer
- Tumour Microcirculation Group, Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
| |
Collapse
|
53
|
Li XS, Fan HX, Fang H, Song YL, Zhou CW. Value of R2* obtained from T2*-weighted imaging in predicting the prognosis of advanced cervical squamous carcinoma treated with concurrent chemoradiotherapy. J Magn Reson Imaging 2015; 42:681-8. [PMID: 25581675 DOI: 10.1002/jmri.24837] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/11/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND To prospectively investigate the value of R2* in predicting the prognosis of advanced cervical squamous carcinoma treated with concurrent chemoradiotherapy. METHODS Sixty-five patients with biopsy-proven cervical squamous carcinoma were enrolled in our study. All these subjects underwent multi-echo T2*-weighted MR imaging on a 3.0 Tesla MR scanner, and tumor R2* was calculated. The patients were divided into the responders and the nonresponders according to treatment effect. Tumor R2* values of these two groups were compared. The relationship between tumor R2* and prognosis after therapy was analyzed. RESULTS The responder group had lower R2* value than the nonresponder group (P = 0.02). The area under the receiver operating characteristics curve for tumor R2* in discriminating responders from nonresponders was 0.769. A cutoff value of 23.87 Hz for tumor R2* resulted in a sensitivity of 78.3% and a specificity of 67.6%. The low R2* group (≤28.37 Hz) had longer median progression-free survival period and overall survival period (P = 0.01, 0.03). Multivariate analysis showed that tumor R2* was a significant prognostic factor for progression-free survival and overall survival (adjusted hazards ratio = 5.34, 4.78; P = 0.02, 0.01). CONCLUSION R2* value obtained from T2*-weighted imaging, as an imaging biomarker, may be an important predictor for the prognosis of advanced cervical squamous carcinoma treated with concurrent chemoradiotherapy.
Collapse
Affiliation(s)
- Xiang Sheng Li
- Department of MRI, Air Force General Hospital, People's Liberation Army, Beijing, China
| | - Hong Xia Fan
- Department of MRI, Air Force General Hospital, People's Liberation Army, Beijing, China
| | - Hong Fang
- Department of MRI, Air Force General Hospital, People's Liberation Army, Beijing, China
| | - Yun Long Song
- Department of MRI, Air Force General Hospital, People's Liberation Army, Beijing, China
| | - Chun Wu Zhou
- Department of Radiology, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
54
|
Rich LJ, Seshadri M. Photoacoustic imaging of vascular hemodynamics: validation with blood oxygenation level-dependent MR imaging. Radiology 2014; 275:110-8. [PMID: 25423146 DOI: 10.1148/radiol.14140654] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE To noninvasively assess vascular hemodynamics with photoacoustic imaging (PAI) and blood oxygenation level-dependent (BOLD) magnetic resonance (MR) imaging in phantoms and in an animal model. MATERIALS AND METHODS In vivo studies were performed with institutional animal care and use committee approval. In vitro experiments were performed by using a tissue-mimicking phantom in multiple oxygenation conditions (n = 6) to compare PAI measurements and BOLD MR imaging measurements. PAI and T2-weighted spin-echo-based BOLD MR imaging were performed to assess tumor response to carbogen (95% O2, 5% CO2) in mice with head and neck tumors before (n = 11) and after (n = 9) treatment with a vascular disrupting agent (VDA). Two-tailed Pearson correlation analysis was performed to determine the correlation between the parameters measured with PAI and BOLD MR imaging in vitro. Two-tailed paired t tests were used to compare change in tumor hemoglobin oxygen saturation (sO2) levels and BOLD signal in response to carbogen. Changes in PAI and BOLD signal intensity before and after VDA treatment were analyzed for significance by using analysis of variance with repeated measures. RESULTS Phantom measurements yielded good correlation between photoacoustically derived sO2 levels and BOLD signal intensity (r = 0.937, P = .005) and partial pressure of oxygen (r = 0.981, P = .005). In vivo hemodynamic response to carbogen was characterized by a significant increase in tumor sO2 levels (P = .003) and BOLD signal (P = .001). When compared with pretreatment estimates, treatment with VDA resulted in a significant reduction in the tumor hemodynamic response to carbogen at PAI (P = .030). CONCLUSION Carbogen-based functional imaging with PAI and BOLD MR imaging enables monitoring of early changes in tumor hemodynamics after vascular targeted therapy.
Collapse
Affiliation(s)
- Laurie J Rich
- From the Departments of Molecular and Cellular Biophysics (L.J.R., M.S.), Pharmacology and Therapeutics (M.S.) and Head and Neck Surgery (M.S.), Roswell Park Cancer Institute, CGP L4-314, Elm and Carlton Streets, Buffalo, NY 14263
| | | |
Collapse
|
55
|
Kim CK, Park SY, Park BK, Park W, Huh SJ. Blood oxygenation level-dependent MR imaging as a predictor of therapeutic response to concurrent chemoradiotherapy in cervical cancer: a preliminary experience. Eur Radiol 2014; 24:1514-20. [DOI: 10.1007/s00330-014-3167-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/13/2014] [Accepted: 03/26/2014] [Indexed: 02/01/2023]
|
56
|
Dominietto M, Rudin M. Could magnetic resonance provide in vivo histology? Front Genet 2014; 4:298. [PMID: 24454320 PMCID: PMC3888945 DOI: 10.3389/fgene.2013.00298] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 12/06/2013] [Indexed: 12/16/2022] Open
Abstract
The diagnosis of a suspected tumor lesion faces two basic problems: detection and identification of the specific type of tumor. Radiological techniques are commonly used for the detection and localization of solid tumors. Prerequisite is a high intrinsic or enhanced contrast between normal and neoplastic tissue. Identification of the tumor type is still based on histological analysis. The result depends critically on the sampling sites, which given the inherent heterogeneity of tumors, constitutes a major limitation. Non-invasive in vivo imaging might overcome this limitation providing comprehensive three-dimensional morphological, physiological, and metabolic information as well as the possibility for longitudinal studies. In this context, magnetic resonance based techniques are quite attractive since offer at the same time high spatial resolution, unique soft tissue contrast, good temporal resolution to study dynamic processes and high chemical specificity. The goal of this paper is to review the role of magnetic resonance techniques in characterizing tumor tissue in vivo both at morphological and physiological levels. The first part of this review covers methods, which provide information on specific aspects of tumor phenotypes, considered as indicators of malignancy. These comprise measurements of the inflammatory status, neo-vascular physiology, acidosis, tumor oxygenation, and metabolism together with tissue morphology. Even if the spatial resolution is not sufficient to characterize the tumor phenotype at a cellular level, this multiparametric information might potentially be used for classification of tumors. The second part discusses mathematical tools, which allow characterizing tissue based on the acquired three-dimensional data set. In particular, methods addressing tumor heterogeneity will be highlighted. Finally, we address the potential and limitation of using MRI as a tool to provide in vivo tissue characterization.
Collapse
Affiliation(s)
- Marco Dominietto
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich Zurich Switzerland
| | - Markus Rudin
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich Zurich Switzerland
| |
Collapse
|
57
|
Hallac RR, Zhou H, Pidikiti R, Song K, Stojadinovic S, Zhao D, Solberg T, Peschke P, Mason RP. Correlations of noninvasive BOLD and TOLD MRI with pO2 and relevance to tumor radiation response. Magn Reson Med 2013; 71:1863-73. [PMID: 23813468 DOI: 10.1002/mrm.24846] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 05/21/2013] [Accepted: 05/24/2013] [Indexed: 12/21/2022]
Abstract
PURPOSE To examine the potential use of blood oxygenation level dependent (BOLD) and tissue oxygenation level dependent (TOLD) contrast MRI to assess tumor oxygenation and predict radiation response. METHODS BOLD and TOLD MRI were performed on Dunning R3327-AT1 rat prostate tumors during hyperoxic gas breathing challenge at 4.7 T. Animals were divided into two groups. In Group 1 (n = 9), subsequent (19) F MRI based on spin lattice relaxation of hexafluorobenzene reporter molecule provided quantitative oximetry for comparison. For Group 2 rats (n = 13) growth delay following a single dose of 30 Gy was compared with preirradiation BOLD and TOLD assessments. RESULTS Oxygen (100%O2 ) and carbogen (95%O2 /5%CO2 ) challenge elicited similar BOLD, TOLD and pO2 responses. Strong correlations were observed between BOLD or R2* response and quantitative (19) F pO2 measurements. TOLD response showed a general trend with weaker correlation. Irradiation caused a significant tumor growth delay and tumors with larger changes in TOLD and R1 values upon oxygen breathing exhibited significantly increased tumor growth delay. CONCLUSION These results provide further insight into the relationships between oxygen sensitive (BOLD/TOLD) MRI and tumor pO2 . Moreover, a larger increase in R1 response to hyperoxic gas challenge coincided with greater tumor growth delay following irradiation.
Collapse
Affiliation(s)
- Rami R Hallac
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|