51
|
Yau LK, Henry FU, Man Hong C, Amy C, Wai Kwan Vincent C, Ping Keung C, Kwong Yuen C. Swelling assessment after total knee arthroplasty. J Orthop Surg (Hong Kong) 2022; 30:10225536221127668. [PMID: 36122907 DOI: 10.1177/10225536221127668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Total knee arthroplasty is a commonly performed elective orthopaedic surgery. Patients may endure substantial knee swelling following surgery, which are attributable to both effusion and edema. Studies have been aiming to identify an accurate and reliable method to quantify post-operative knee swelling to aid monitoring progress and treatment. The aim of this article was to review the means of clinically applicable measurements for knee swelling post TKA. METHODS The medical literature was searched using PubMed to search for articles published using the terms knee edema, effusion, swelling, knee arthroplasty, knee replacement, total knee arthroplasty, total knee replacement, TKA, TKR. Year of publication was not restricted. Only English language publications were included. Only full-text published articles from peer-reviewed journals were eligible for inclusion. The knee swelling measurement methods used in post TKA were reviewed. RESULTS Advancement in bioimpedance spectroscopy and handheld 3D scanning technology allows quick and precise quantification of knee swelling volume that the traditional clinical circumferential measurement and volumetric measurement lack. Handheld 3D scanning is also a potential tool to estimate the change of knee effusion volume and muscular volume after the surgery. Magnetic resonance imaging is accurate in effusion measurement but also the most time and resource demanding method. CONCLUSION Bioimpedance spectroscopy and 3D scanning technology can be the future tools for clinically measurement of knee swelling after total knee arthroplasty.
Collapse
Affiliation(s)
- Li Ka Yau
- Li Ka Shing Faculty of Medicine, 25809The University of Hong Kong, Hong Kong SAR, China
| | - F U Henry
- Division of Joint Replacement Surgery, Department of Orthopaedics and Traumatology, 25809The University of Hong Kong, Hong Kong SAR, China
| | - Cheung Man Hong
- Division of Joint Replacement Surgery, Department of Orthopaedics and Traumatology, 25809The University of Hong Kong, Hong Kong SAR, China
| | - Cheung Amy
- Division of Joint Replacement Surgery, Department of Orthopaedics and Traumatology, 26473Queen Mary Hospital, Hong Kong SAR, China
| | - Chan Wai Kwan Vincent
- Division of Joint Replacement Surgery, Department of Orthopaedics and Traumatology, 26473Queen Mary Hospital, Hong Kong SAR, China
| | - Chan Ping Keung
- Division of Joint Replacement Surgery, Department of Orthopaedics and Traumatology, 25809The University of Hong Kong, Hong Kong SAR, China
| | - Chiu Kwong Yuen
- Division of Joint Replacement Surgery, Department of Orthopaedics and Traumatology, 25809The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
52
|
Postoperative MR Imaging of the Elbow. Magn Reson Imaging Clin N Am 2022; 30:629-643. [DOI: 10.1016/j.mric.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
53
|
Espiritu J, Berangi M, Yiannakou C, Silva E, Francischello R, Kuehne A, Niendorf T, Könneker S, Willumeit-Römer R, Seitz JM. Evaluating metallic artefact of biodegradable magnesium-based implants in magnetic resonance imaging. Bioact Mater 2022; 15:382-391. [PMID: 35386351 PMCID: PMC8958470 DOI: 10.1016/j.bioactmat.2021.11.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/12/2021] [Accepted: 11/28/2021] [Indexed: 11/13/2022] Open
Abstract
Magnesium (Mg) implants have shown to cause image artefacts or distortions in magnetic resonance imaging (MRI). Yet, there is a lack of information on how the degradation of Mg-based implants influences the image quality of MRI examinations. In this study, Mg-based implants are analysed in vitro, ex vivo, and in the clinical setting for various magnetic field strengths with the aim to quantify metallic artefact behaviour. In vitro corroded Mg-based screws and a titanium (Ti) equivalent were imaged according to the ASTM F2119. Mg-based and Ti pins were also implanted into rat femurs for different time points and scanned to provide insights on the influence of soft and hard tissue on metallic artefact. Additionally, MRI data of patients with scaphoid fractures treated with CE-approved Mg-based compression screws (MAGNEZIX®) were analysed at various time points post-surgery. The artefact production of the Mg-based material decreased as implant material degraded in all settings. The worst-case imaging scenario was determined to be when the imaging plane was selected to be perpendicular to the implant axis. Moreover, the Mg-based implant outperformed the Ti equivalent in all experiments by producing lower metallic artefact (p < 0.05). This investigation demonstrates that Mg-based implants generate significantly lower metallic distortion in MRI when compared to Ti. Our positive findings suggest and support further research into the application of Mg-based implants including post-operative care facilitated by MRI monitoring of degradation kinetics and bone/tissue healing processes. Mg-based implants produce lower metallic artefact than Ti in MRI. Metallic artefact production of Mg reduces as degradation increases. Mg implants provide sufficient visualisation in MRI for better postoperative care.
Collapse
Affiliation(s)
| | - Mostafa Berangi
- MRI.TOOLS GmbH, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.,Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Eduarda Silva
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Roberto Francischello
- Chemistry and Industrial Chemistry Department, Università di Pisa, Via Moruzzi 13, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Via Moruzzi 1, Pisa, Italy
| | | | - Thoralf Niendorf
- MRI.TOOLS GmbH, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.,Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sören Könneker
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | | | | |
Collapse
|
54
|
Khodarahmi I, Brinkmann IM, Lin DJ, Bruno M, Johnson PM, Knoll F, Keerthivasan MB, Chandarana H, Fritz J. New-Generation Low-Field Magnetic Resonance Imaging of Hip Arthroplasty Implants Using Slice Encoding for Metal Artifact Correction: First In Vitro Experience at 0.55 T and Comparison With 1.5 T. Invest Radiol 2022; 57:517-526. [PMID: 35239614 PMCID: PMC9363001 DOI: 10.1097/rli.0000000000000866] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Despite significant progress, artifact-free visualization of the bone and soft tissues around hip arthroplasty implants remains an unmet clinical need. New-generation low-field magnetic resonance imaging (MRI) systems now include slice encoding for metal artifact correction (SEMAC), which may result in smaller metallic artifacts and better image quality than standard-of-care 1.5 T MRI. This study aims to assess the feasibility of SEMAC on a new-generation 0.55 T system, optimize the pulse protocol parameters, and compare the results with those of a standard-of-care 1.5 T MRI. MATERIALS AND METHODS Titanium (Ti) and cobalt-chromium total hip arthroplasty implants embedded in a tissue-mimicking American Society for Testing and Materials gel phantom were evaluated using turbo spin echo, view angle tilting (VAT), and combined VAT and SEMAC (VAT + SEMAC) pulse sequences. To refine an MRI protocol at 0.55 T, the type of metal artifact reduction techniques and the effect of various pulse sequence parameters on metal artifacts were assessed through qualitative ranking of the images by 3 expert readers while taking measured spatial resolution, signal-to-noise ratios, and acquisition times into consideration. Signal-to-noise ratio efficiency and artifact size of the optimized 0.55 T protocols were compared with the 1.5 T standard and compressed-sensing SEMAC sequences. RESULTS Overall, the VAT + SEMAC sequence with at least 6 SEMAC encoding steps for Ti and 9 for cobalt-chromium implants was ranked higher than other sequences for metal reduction ( P < 0.05). Additional SEMAC encoding partitions did not result in further metal artifact reductions. Permitting minimal residual artifacts, low magnetic susceptibility Ti constructs may be sufficiently imaged with optimized turbo spin echo sequences obviating the need for SEMAC. In cross-platform comparison, 0.55 T acquisitions using the optimized protocols are associated with 45% to 64% smaller artifacts than 1.5 T VAT + SEMAC and VAT + compressed-sensing/SEMAC protocols at the expense of a 17% to 28% reduction in signal-to-noise ratio efficiency. B 1 -related artifacts are invariably smaller at 0.55 T than 1.5 T; however, artifacts related to B 0 distortion, although frequently smaller, may appear as signal pileups at 0.55 T. CONCLUSIONS Our results suggest that new-generation low-field SEMAC MRI reduces metal artifacts around hip arthroplasty implants to better advantage than current 1.5 T MRI standard of care. While the appearance of B 0 -related artifacts changes, reduction in B 1 -related artifacts plays a major role in the overall benefit of 0.55 T.
Collapse
Affiliation(s)
- Iman Khodarahmi
- Department of Radiology, New York University Grossman School of Medicine
| | | | - Dana J. Lin
- Department of Radiology, New York University Grossman School of Medicine
| | - Mary Bruno
- Department of Radiology, New York University Grossman School of Medicine
| | | | - Florian Knoll
- Department of Radiology, New York University Grossman School of Medicine
| | | | - Hersh Chandarana
- Department of Radiology, New York University Grossman School of Medicine
| | - Jan Fritz
- Department of Radiology, New York University Grossman School of Medicine
| |
Collapse
|
55
|
Farshad-Amacker NA, Sutter R. The Great Mimickers of Spinal Pathology. Semin Musculoskelet Radiol 2022; 26:439-452. [PMID: 36103886 DOI: 10.1055/s-0042-1748914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Back pain is one of the leading causes of health costs worldwide, particularly because of the further increased aging population. After clinical examination, spinal imaging is of utmost importance in many patients to reach the correct diagnosis. There are many imaging pitfalls and mimickers of spinal pathology on radiographs, magnetic resonance imaging, and computed tomography. These mimickers may lead to a misdiagnosis or a further imaging work-up if they are not recognized and thus lead to unnecessary examinations and increased health care costs. In this review we present the common mimickers of spinal pathology and describe normal variations when reading imaging studies of the spine.
Collapse
Affiliation(s)
- Nadja A Farshad-Amacker
- Department of Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Reto Sutter
- Department of Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
56
|
Blind image quality assessment of magnetic resonance images with statistics of local intensity extrema. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.05.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
57
|
Huang C, Chen Y, Ding H, Huang Z, Zhang C, Li W, Liu X, Tu Z, Zhang W, Fang X. Metal Artifact Reduction Sequences MRI: A Useful Reference for Preoperative Diagnosis and Debridement Planning of Periprosthetic Joint Infection. J Clin Med 2022; 11:jcm11154371. [PMID: 35955986 PMCID: PMC9369276 DOI: 10.3390/jcm11154371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022] Open
Abstract
The diagnosis and treatment of periprosthetic joint infection (PJI) is complex and the use of MRI in PJI is gaining attention from orthopedic surgeons as MR technology continues to advance. This study aimed to investigate whether metal artefact reduction sequence (MARS) MRI could be used as an adjunct in the preoperative diagnosis of PJI and to explore its role in PJI debridement planning. From January 2020 to November 2021, participants with metal joint prostheses that needed to be judged for infection were prospectively enrolled. According to Musculoskeletal Infection Society standards, 31 cases were classified as infection, and 20 as non-infection. The sensitivity and specificity of MARS MRI for the diagnosis of PJI were 80.65% and 75%, respectively. In MARS MRI, the incidence of bone destruction, lamellar synovitis, and extracapsular soft tissue oedema were significantly higher in PJI than in non-PJI. Fourteen suspicious occult lesions were found in the preoperative MARS MRI in 9 cases, and the location of 9 infection lesions was confirmed intraoperatively. In conclusion, MARS MRI is an effective diagnostic tool for PJIand can provide a visual reference for preoperative surgical planning.
Collapse
Affiliation(s)
- Changyu Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350000, China; (C.H.); (Y.C.); (H.D.); (Z.H.); (C.Z.); (W.L.)
| | - Yang Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350000, China; (C.H.); (Y.C.); (H.D.); (Z.H.); (C.Z.); (W.L.)
| | - Haiqi Ding
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350000, China; (C.H.); (Y.C.); (H.D.); (Z.H.); (C.Z.); (W.L.)
| | - Zida Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350000, China; (C.H.); (Y.C.); (H.D.); (Z.H.); (C.Z.); (W.L.)
| | - Chaofan Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350000, China; (C.H.); (Y.C.); (H.D.); (Z.H.); (C.Z.); (W.L.)
| | - Wenbo Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350000, China; (C.H.); (Y.C.); (H.D.); (Z.H.); (C.Z.); (W.L.)
| | - Xi Liu
- Department of Radiology and Imaging, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350000, China; (X.L.); (Z.T.)
| | - Zhanhai Tu
- Department of Radiology and Imaging, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350000, China; (X.L.); (Z.T.)
| | - Wenming Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350000, China; (C.H.); (Y.C.); (H.D.); (Z.H.); (C.Z.); (W.L.)
- Correspondence: (W.Z.); (X.F.)
| | - Xinyu Fang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350000, China; (C.H.); (Y.C.); (H.D.); (Z.H.); (C.Z.); (W.L.)
- Correspondence: (W.Z.); (X.F.)
| |
Collapse
|
58
|
Kuah T, Vellayappan BA, Makmur A, Nair S, Song J, Tan JH, Kumar N, Quek ST, Hallinan JTPD. State-of-the-Art Imaging Techniques in Metastatic Spinal Cord Compression. Cancers (Basel) 2022; 14:3289. [PMID: 35805059 PMCID: PMC9265325 DOI: 10.3390/cancers14133289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 12/23/2022] Open
Abstract
Metastatic Spinal Cord Compression (MSCC) is a debilitating complication in oncology patients. This narrative review discusses the strengths and limitations of various imaging modalities in diagnosing MSCC, the role of imaging in stereotactic body radiotherapy (SBRT) for MSCC treatment, and recent advances in deep learning (DL) tools for MSCC diagnosis. PubMed and Google Scholar databases were searched using targeted keywords. Studies were reviewed in consensus among the co-authors for their suitability before inclusion. MRI is the gold standard of imaging to diagnose MSCC with reported sensitivity and specificity of 93% and 97% respectively. CT Myelogram appears to have comparable sensitivity and specificity to contrast-enhanced MRI. Conventional CT has a lower diagnostic accuracy than MRI in MSCC diagnosis, but is helpful in emergent situations with limited access to MRI. Metal artifact reduction techniques for MRI and CT are continually being researched for patients with spinal implants. Imaging is crucial for SBRT treatment planning and three-dimensional positional verification of the treatment isocentre prior to SBRT delivery. Structural and functional MRI may be helpful in post-treatment surveillance. DL tools may improve detection of vertebral metastasis and reduce time to MSCC diagnosis. This enables earlier institution of definitive therapy for better outcomes.
Collapse
Affiliation(s)
- Tricia Kuah
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore; (A.M.); (S.N.); (J.S.); (S.T.Q.); (J.T.P.D.H.)
| | - Balamurugan A. Vellayappan
- Department of Radiation Oncology, National University Cancer Institute Singapore, National University Hospital, Singapore 119074, Singapore;
| | - Andrew Makmur
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore; (A.M.); (S.N.); (J.S.); (S.T.Q.); (J.T.P.D.H.)
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Shalini Nair
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore; (A.M.); (S.N.); (J.S.); (S.T.Q.); (J.T.P.D.H.)
| | - Junda Song
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore; (A.M.); (S.N.); (J.S.); (S.T.Q.); (J.T.P.D.H.)
| | - Jiong Hao Tan
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E Lower Kent Ridge Road, Singapore 119228, Singapore; (J.H.T.); (N.K.)
| | - Naresh Kumar
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E Lower Kent Ridge Road, Singapore 119228, Singapore; (J.H.T.); (N.K.)
| | - Swee Tian Quek
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore; (A.M.); (S.N.); (J.S.); (S.T.Q.); (J.T.P.D.H.)
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - James Thomas Patrick Decourcy Hallinan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore; (A.M.); (S.N.); (J.S.); (S.T.Q.); (J.T.P.D.H.)
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
59
|
Fischer T, Stern C, Fritz B, Zingg PO, Pfirrmann CWA, Sutter R. MRI findings of ischiofemoral impingement after total hip arthroplasty are associated with increased femoral antetorsion. Acta Radiol 2022; 63:948-957. [PMID: 34098775 DOI: 10.1177/02841851211021044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Ischiofemoral impingement (IFI) is a known complication after total hip arthroplasty (THA). PURPOSE To assess if increased postoperative (FA) is associated with magnetic resonance imaging (MRI) findings of IFI. MATERIAL AND METHODS In 221 patients with THA, two independent readers measured FA, ischiofemoral space (IFS), quadratus femoris space (QFS), edema, and fatty infiltration of quadratus femoris muscle. Three sets of IFI-imaging features were defined: acute IFI (set 1): IFS ≤15 mm or QFS ≤10 mm and edema in the quadratus femoris muscle; chronic IFI (set 2): IFS ≤15 mm or QFS ≤10 mm and fatty infiltration of quadratus femoris muscle Goutallier grade ≥2; acute and chronic IFI (set 3) with both criteria applicable. For each set, FA angles were compared between positive findings of IFI and negative findings of IFI. The t-test for independent samples tested statistical significance. RESULTS In 7.2% (16/221) of patients, findings of IFI (IFS ≤15 mm or QFS ≤10 mm and edema, n = 1; fatty infiltration, n = 9; or both, n = 6) were observed. In women, 11.4% (14/123) exhibited findings of IFI compared to 2.0% (2/98) in men. Comparison in set 1 (n = 7): mean antetorsion of 23.9° ± 9.8° (findings of acute IFI) compared to 14.4° ± 9.7° (P = 0.01). Comparison in set 2 (n = 15): mean antetorsion of 16.2° ± 6.3° (findings of chronic IFI) compared to 14.5° ± 9.9° (P = 0.49). Comparison in set 3 (n = 6): mean antetorsion of 20.4° ± 3.8° (findings of acute and chronic IFI) compared to 14.5° ± 9.9° (P = 0.01). CONCLUSION After THA, high postoperative FA is associated with MRI findings of acute as well as acute and chronic IFI. Findings of IFI were commonly seen in women.
Collapse
Affiliation(s)
- Tim Fischer
- Department of Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Christoph Stern
- Department of Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Benjamin Fritz
- Department of Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Patrick O Zingg
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Christian WA Pfirrmann
- Department of Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Reto Sutter
- Department of Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
60
|
Metal Artefact Reduction Sequences (MARS) in Magnetic Resonance Imaging (MRI) after Total Hip Arthroplasty (THA). BMC Musculoskelet Disord 2022; 23:620. [PMID: 35764987 PMCID: PMC9238049 DOI: 10.1186/s12891-022-05560-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background In the past, radiographic imaging was of minor relevance in the diagnosis of periprosthetic joint infections (PJI). Since metal artefact reduction sequences (MARS) are available, magnetic resonance imaging (MRI) has become a promising diagnostic tool for the evaluation of hip arthroplasty implants. The purpose of the present study was to evaluate the efficacy of MARS-MRI in comparison to established diagnostic tools to distinguish between aseptic failure and PJI. Methods From July 2018 to September 2019, 33 patients classified as having an aseptic joint effusion were recruited into the study. The group included 22 women and 11 men with a mean age of 70.4 ± 13.7 (42–88) years. In the same period, 12 patients were classified as having a PJI. The group consisted of 9 women and 3 men with a mean age of 72.5 ± 10.6 (54–88) years. MARS-MRI was conducted using the optimized parameters at 1.5 T in a coronal and axial STIR (short-tau-inversion recovery), a non-fat-saturated T2 in coronal view and a non-fat-saturated T1 in transverse view in 45 patients with painful hip after total hip arthroplasty (THA). Normally distributed continuous data were shown as mean ± standard deviation (SD) and compared using student's t-test. Non-normally distributed continuous data were shown as mean and compared using the Mann–Whitney U test. Results Synovial layering and muscle edema were significant features of periprosthetic joint infection, with sensitivities of 100% and specifities of 63.0—75.0%. The combined specifity and sensitivity levels of synovial layering and muscular edema was 88.0% and 90.0%. Granulomatous synovitis was a significant feature for aseptic failure, with 90.0% sensitivity and 57.0% specifity. Conclusion MARS-MRI is as suitable as standard diagnostic tools to distinguish between aseptic failure and PJI in patients with THA. Further studies with larger patient numbers have to prove whether MARS-MRI could be integral part of PJI diagnostic.
Collapse
|
61
|
Spronk T, Kraff O, Kreutner J, Schaefers G, Quick HH. Development and evaluation of a numerical simulation approach to predict metal artifacts from passive implants in MRI. MAGMA (NEW YORK, N.Y.) 2022; 35:485-497. [PMID: 34655346 PMCID: PMC9188622 DOI: 10.1007/s10334-021-00966-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE This study presents the development and evaluation of a numerical approach to simulate artifacts of metallic implants in an MR environment that can be applied to improve the testing procedure for MR image artifacts in medical implants according to ASTM F2119. METHODS The numerical approach is validated by comparing simulations and measurements of two metallic test objects made of titanium and stainless steel at three different field strengths (1.5T, 3T and 7T). The difference in artifact size and shape between the simulated and measured artifacts were evaluated. A trend analysis of the artifact sizes in relation to the field strength was performed. RESULTS The numerical simulation approach shows high similarity (between 75% and 84%) of simulated and measured artifact sizes of metallic implants. Simulated and measured artifact sizes in relation to the field strength resulted in a calculation guideline to determine and predict the artifact size at one field strength (e.g., 3T or 7T) based on a measurement that was obtained at another field strength only (e.g. 1.5T). CONCLUSION This work presents a novel tool to improve the MR image artifact testing procedure of passive medical implants. With the help of this tool detailed artifact investigations can be performed, which would otherwise only be possible with substantial measurement effort on different MRI systems and field strengths.
Collapse
Affiliation(s)
- Tobias Spronk
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Kokereiallee 7, Building C84, 45141, Essen, Germany.
- High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
- MRI-STaR Magnetic Resonance Institute for Safety, Technology and Research GmbH, Gelsenkirchen, Germany.
| | - Oliver Kraff
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Kokereiallee 7, Building C84, 45141, Essen, Germany
| | - Jakob Kreutner
- MRI-STaR Magnetic Resonance Institute for Safety, Technology and Research GmbH, Gelsenkirchen, Germany
- MR:Comp GmbH, Testing Services for MR Safety and Compatibility, Gelsenkirchen, Germany
| | - Gregor Schaefers
- MRI-STaR Magnetic Resonance Institute for Safety, Technology and Research GmbH, Gelsenkirchen, Germany
- MR:Comp GmbH, Testing Services for MR Safety and Compatibility, Gelsenkirchen, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Kokereiallee 7, Building C84, 45141, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
62
|
Performance of PROPELLER FSE T 2WI in reducing metal artifacts of material porcelain fused to metal crown: a clinical preliminary study. Sci Rep 2022; 12:8442. [PMID: 35589945 PMCID: PMC9120134 DOI: 10.1038/s41598-022-12402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 05/10/2022] [Indexed: 11/27/2022] Open
Abstract
This study aimed to compare MRI quality between conventional fast spin echo T2 weighted imaging (FSE T2WI) with periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) FSE T2WI for patients with various porcelain fused to metal (PFM) crown and analyze the value of PROPELLER technique in reducing metal artifacts. Conventional FSE T2WI and PROPELLER FSE T2WI sequences for axial imaging of head were applied in participants with different PFM crowns: cobalt-chromium (Co–Cr) alloy, pure titanium (Ti), gold–palladium (Au–Pd) alloy. Two radiologists evaluated overall image quality of section in PFM using a 5-point scale qualitatively and measured the maximum artifact area and artifact signal-to-noise ratio (SNR) quantitatively. Fifty-nine participants were evaluated. The metal crown with the least artifacts and the optimum image quality shown in conventional FSE T2WI and PROPELLER FSE T2WI were in Au–Pd alloy, Ti, and Co–Cr alloy order. PROPELLER FSE T2WI was superior to conventional FSE T2WI in improving image quality and reducing artifact area for Co-Cr alloy (17.0 ± 0.2% smaller artifact area, p < 0.001) and Ti (11.6 ± 0.7% smaller artifact area, p = 0.005), but had similar performance compared to FSE T2WI for Au–Pd alloy. The SNRs of the tongue and masseter muscle were significantly higher on PROPELLER FSE T2WI compared with conventional FSE T2WI (tongue: 29.76 ± 8.45 vs. 21.54 ± 9.31, p = 0.007; masseter muscle: 19.11 ± 8.24 vs. 15.26 ± 6.08, p = 0.016). Therefore, the different PFM crown generate varying degrees of metal artifacts in MRI, and the PROPELLER can effectively reduce metal artifacts especially in the PFM crown of Co-Cr alloy.
Collapse
|
63
|
Sundermann B, Billebaut B, Bauer J, Iacoban CG, Alykova O, Schülke C, Gerdes M, Kugel H, Neduvakkattu S, Bösenberg H, Mathys C. Practical Aspects of novel MRI Techniques in Neuroradiology: Part 1-3D Acquisitions, Dixon Techniques and Artefact Reduction. ROFO-FORTSCHR RONTG 2022; 194:1100-1108. [PMID: 35545104 DOI: 10.1055/a-1800-8692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Recently introduced MRI techniques offer improved image quality and facilitate examinations of patients even when artefacts are expected. They pave the way for novel diagnostic imaging strategies in neuroradiology. These methods include improved 3D imaging, movement and metal artefact reduction techniques as well as Dixon techniques. METHODS Narrative review with an educational focus based on current literature research and practical experiences of different professions involved (physicians, MRI technologists/radiographers, physics/biomedical engineering). Different hardware manufacturers are considered. RESULTS AND CONCLUSIONS 3D FLAIR is an example of a versatile 3D Turbo Spin Echo sequence with broad applicability in routine brain protocols. It facilitates detection of smaller lesions and more precise measurements for follow-up imaging. It also offers high sensitivity for extracerebral lesions. 3D techniques are increasingly adopted for imaging arterial vessel walls, cerebrospinal fluid spaces and peripheral nerves. Improved hybrid-radial acquisitions are available for movement artefact reduction in a broad application spectrum. Novel susceptibility artefact reduction techniques for targeted application supplement previously established metal artefact reduction sequences. Most of these techniques can be further adapted to achieve the desired diagnostic performances. Dixon techniques allow for homogeneous fat suppression in transition areas and calculation of different image contrasts based on a single acquisition. KEY POINTS · 3D FLAIR can replace 2 D FLAIR for most brain imaging applications and can be a cornerstone of more precise and more widely applicable protocols.. · Further 3D TSE sequences are increasingly replacing 2D TSE sequences for specific applications.. · Improvement of artefact reduction techniques increase the potential for effective diagnostic MRI exams despite movement or near metal implants.. · Dixon techniques facilitate homogeneous fat suppression and simultaneous acquisition of multiple contrasts.. CITATION FORMAT · Sundermann B, Billebaut B, Bauer J et al. Practical Aspects of novel MRI Techniques in Neuroradiology: Part 1-3D Acquisitions, Dixon Techniques and Artefact Reduction. Fortschr Röntgenstr 2022; DOI: 10.1055/a-1800-8692.
Collapse
Affiliation(s)
- Benedikt Sundermann
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus University of Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Germany.,Clinic for Radiology, University Hospital Münster, Germany
| | - Benoit Billebaut
- Clinic for Radiology, University Hospital Münster, Germany.,School for Radiologic Technologists, University Hospital Münster, Germany
| | - Jochen Bauer
- Clinic for Radiology, University Hospital Münster, Germany
| | - Catalin George Iacoban
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus University of Oldenburg, Germany
| | - Olga Alykova
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus University of Oldenburg, Germany
| | | | - Maike Gerdes
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus University of Oldenburg, Germany
| | - Harald Kugel
- Clinic for Radiology, University Hospital Münster, Germany
| | | | - Holger Bösenberg
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus University of Oldenburg, Germany
| | - Christian Mathys
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus University of Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Germany.,Department of Diagnostic and Interventional Radiology, University of Düsseldorf, Germany
| |
Collapse
|
64
|
Clinical Evaluation of an Innovative Metal-Artifact-Reduction Algorithm in FD-CT Angiography in Cerebral Aneurysms Treated by Endovascular Coiling or Surgical Clipping. Diagnostics (Basel) 2022; 12:diagnostics12051140. [PMID: 35626296 PMCID: PMC9140112 DOI: 10.3390/diagnostics12051140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 02/01/2023] Open
Abstract
Treated cerebral aneurysms (IA) require follow-up imaging to ensure occlusion. Metal artifacts complicate radiologic assessment. Our aim was to evaluate an innovative metal-artifact-reduction (iMAR) algorithm for flat-detector computed tomography angiography (FD-CTA) regarding image quality (IQ) and detection of aneurysm residua/reperfusion in comparison to 2D digital subtraction angiography (DSA). Patients with IAs treated by endovascular coiling or clipping underwent both FD-CTA and DSA. FD-CTA datasets were postprocessed with/without iMAR algorithm (MAR+/MAR−). Evaluation of all FD-CTA and DSA datasets regarding qualitative (IQ, MAR) and quantitative (coil package diameter/CPD) parameters was performed. Aneurysm occlusion was assessed for each dataset and compared to DSA findings. In total, 40 IAs were analyzed (ncoiling = 24; nclipping = 16). All iMAR+ datasets demonstrated significantly better IQ (pIQ coiling < 0.0001; pIQ clipping < 0.0001). iMAR significantly reduced the metal-artifact burden but did not affect the CPD. iMAR significantly improved the detection of aneurysm residua/reperfusion with excellent agreement with DSA (naneurysm detection MAR+/MAR−/DSA = 22/1/26). The iMAR algorithm significantly improves IQ by effective reduction of metal artifacts in FD-CTA datasets. The proposed algorithm enables reliable detection of aneurysm residua/reperfusion with good agreement to DSA. Thus, iMAR can help to reduce the need for invasive follow-up in treated IAs.
Collapse
|
65
|
Diagnostic Value of Advanced Metal Artifact Reduction Magnetic Resonance Imaging for Periprosthetic Joint Infection. J Comput Assist Tomogr 2022; 46:455-463. [PMID: 35467584 DOI: 10.1097/rct.0000000000001297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
MATERIALS AND METHODS Magnetic resonance imaging around metal joint prostheses including multiacquisition variable-resonance image combination selective at 1.5 T (from April 2014 to August 2020) was retrospectively evaluated by 2 radiologists for detection of abnormal findings (joint effusion, capsular thickening, pericapsular edema, soft-tissue fluid collection, soft-tissue edema, bone marrow edema pattern around the implant [BME pattern], lymphadenopathy, and others) and overall image impression for PJI. Regarding the soft-tissue fluid collection, presence of communication to the joint or capsular-like structure was evaluated. Clinical assessments were recorded. Positive predictive values (PPVs), negative predictive values (NPVs), and odds ratios (ORs) for PJI were calculated for the abnormal findings. Overall image impression for PJI was evaluated. χ2, Fisher exact, t, and Mann-Whitney U tests and receiver operating characteristic analysis were used. Interobserver agreement was assessed with κ statistics. RESULTS Forty-three joints in 36 patients (mean ± SD age, 75.4 ± 8.8 years; 30 women; hip [n = 29], knee [n = 12], and elbow [n = 2]) were evaluated. Eighteen joints (42%) were clinically diagnosed as PJI. The findings suggesting PJI were capsular thickening (PPV, 70%; NPV, 90%; OR, 20.6), soft-tissue fluid collection (PPV, 81%; NPV, 81%; OR, 19.1), soft-tissue edema (PPV, 67%; NPV, 89%; OR, 17), pericapsular edema (PPV, 76%; NPV, 81%; OR, 13.7), and joint effusion (PPV, 55%; NPV, 100%; OR, 12). Soft-tissue fluid collection without capsular-like structure (PPV, 83%; NPV, 74%; OR, 14.4) or with communication to the joint (PPV, 75%; NPV, 71%; OR, 7.3) suggested PJI. The combinations of joint effusion, capsular thickening, pericapsular edema, soft-tissue fluid collection, and soft-tissue edema highly suggested PJI. Regarding the BME pattern, the combination with soft-tissue edema raised the possibility of PJI (PPV, 73%; NPV, 69%; OR, 5.9). Regarding the interobserver agreements for each abnormal finding, κ values were 0.60 to 0.77. Regarding the overall image impression, weighted κ value was 0.97 and areas under the receiver operating characteristic curve were 0.949 (95% confidence interval, 0.893-1.005) and 0.926 (95% confidence interval, 0.860-0.991) with no significant difference (P = 0.534). CONCLUSIONS The findings suggesting PJI were capsular thickening, soft-tissue fluid collection, soft-tissue edema, pericapsular edema, and joint effusion. The combinations of them highly suggested PJI. Regarding the BME pattern, the combination with soft-tissue edema raised the possibility of PJI.
Collapse
|
66
|
Takahashi T, Thaker S, Lettieri G, Redmond A, Backhouse MR, Stone M, Pandit H, O'Connor P. Reliability of slice-encoding for metal artefact correction (SEMAC) MRI to identify prosthesis loosening in patients with painful total hip arthroplasty - a single centre, prospective, surgical validation study. Br J Radiol 2022; 95:20210940. [PMID: 35148205 PMCID: PMC9153704 DOI: 10.1259/bjr.20210940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES To validate reliability of slice-encoding for metal artefact correction (SEMAC)-MRI findings in prosthesis loosening detection by comparing them to surgical outcomes (gold standard) in symptomatic patients following hip arthroplasties. To evaluate periprosthetic anatomical structures in symptomatic patients to identify an alternative cause of hip symptoms. METHODS We prospectively followed 47 symptomatic patients (55 hips, 39 painful hips - group P and 16 control hips - group C) at our institution from 2011 to 2016. We acquired 1.5 T MRI conventional and SEMAC-MRI images for all patients. Two consultants scored MRI for osteolysis and marrow oedema zone-wise using predefined signal characteristics and settled scoring variations by consensus. We used Spearman Rank-Order Correlation for correlation analysis and used OMERACT (Outcome Measures in Rheumatology) filter pillars to validate SEMAC-MRI findings. RESULTS Eleven patients needed revision surgery, all from group P. None from group C required revision surgery. Remaining 28 hips in the group P were managed conservatively pain completely resolved in 21 hips, eight hips had trochanteric bursitis, eight had extraarticular cause and the remaining five hips had spontaneous pain resolution. We found moderate-to-weak correlation between SEMAC-MRI findings for prosthesis loosening and revision surgery outcomes. Sensitivity, Specificity, PPV and NPV in Group P were (72.7, 64.3, 44.4, 85.7%) in T1W-SEMAC, (90.9, 46.4, 40.0, 92.9%) in STIR-SEMAC and (36.3, 78.5, 40.0, 75.8%) in PDW-SEMAC. CONCLUSION Negative SEMAC-MRI results can effectively exclude prosthesis loosening confirmed on revision surgery and SEMAC-MRI can detect alternative cause of hip pain accurately. ADVANCES IN KNOWLEDGE Negative SEMAC-MRI in painful THA patients can effectively exclude prosthesis loosening as a cause.
Collapse
Affiliation(s)
| | - Siddharth Thaker
- Chapel Allerton Hospital, Leeds Teaching Hospital NHS Trust, Leeds, UK
| | | | | | | | | | | | | |
Collapse
|
67
|
Kreutz-Rodrigues L, Gibreel W, Carlsen BT, Frick MA, Mardini S, Bakri K. Clinical and Radiological Safety of Retained Implantable Doppler Devices Used for Free Flap Monitoring. Plast Surg (Oakv) 2022; 30:20-24. [PMID: 35096688 PMCID: PMC8793759 DOI: 10.1177/22925503211006537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Implantable Doppler devices are reliable adjuncts used for free flap monitoring. Occasionally, the probe/wire is not removed and remains in the soft tissues. The clinical safety of the retained probes and safety and compatibility with magnetic resonance imaging (MRI) have not been studied. We present a series of retained implantable Doppler probes examining clinic outcomes, safety and compatibility with MRI, and effect on MRI image quality. METHODS A retrospective review was conducted of patients who had an implantable Doppler device for free flap monitoring between July 2007 and August 2018. Routine post-operative imaging was reviewed for all patients to identify incidental findings of a retained probe. A subset of patients with retained implantable Doppler probes who underwent MRI was identified. Magnetic resonance images were reviewed to detect any degradation of image quality. RESULTS A total of 323 patients who had an implantable Doppler device placed were reviewed 18 (5.6%) patients were identified with a retained probe and were included in this study. Mean age was 49 years with mean follow-up of 34.4 months. One potential device-related complication occurred in 1 (5.6%) patient. A total of 32 MRI scans were performed in 8 patients with retained devices, including 6 patients who underwent a total of 21 MRIs of the surgical site. There were no complications related to the MRI scans, and we found no significant degradation of image quality. CONCLUSION Retained implantable Doppler probes were not associated with substantial adverse clinical outcomes nor affected MRI image quality of the surgical site.
Collapse
Affiliation(s)
| | - Waleed Gibreel
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Brian T. Carlsen
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Matthew A. Frick
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Samir Mardini
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Karim Bakri
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA,Karim Bakri, Division of Plastic and Reconstructive Surgery, Department of Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
68
|
Yin M, Yuan M, Deng K, Li J, Zhang G, Zhu J, Xie W, Wu J. Subcutaneous Low-Density Foreign Bodies Detection via Grating-Based Multimodal X-ray Imaging. J Digit Imaging 2022; 35:365-373. [PMID: 35064371 PMCID: PMC8921381 DOI: 10.1007/s10278-021-00569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/10/2021] [Accepted: 12/08/2021] [Indexed: 11/28/2022] Open
Abstract
Detecting low-density foreign bodies within soft tissues still stands for a serious challenge. Grating-based multimodal X-ray imaging typically has low hardware requirements while simultaneously providing three kinds of imaging information, i.e., absorption, phase-contrast, and dark-field. We aimed to explore the capacity of grating-based multimodal X-ray imaging technology for detecting common foreign bodies within subcutaneous tissues, and to assess the advantages as well as disadvantages of the three kinds of images obtained via grating-based X-ray multimodal technology in relation to diverse kinds of foreign bodies within different tissues. In this study, metal, glass, wood, plastic, graphite, and ceramic foreign bodies were injected into chunks of the pig adipose tissue and chicken thigh muscles. Next, a grating-based multimodal X-ray imaging device developed in our laboratory was used to detect the above foreign bodies within the adipose and muscle tissues. Our results show that grating-based multimodal X-ray imaging clearly revealed the subcutaneous foreign bodies within the adipose and muscle tissues by acquiring complementary absorption, phase-contrast, and dark-field imaging data in a single shot. Grating-based multimodal X-ray imaging has an exciting potential to detect foreign bodies underneath the epidermis.
Collapse
Affiliation(s)
- Meifang Yin
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Second People's Hospital, ShenzhenShenzhen, 518035, China
| | - Mingzhou Yuan
- Department of Burn Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Kai Deng
- Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang, 621999, China
| | - Jing Li
- Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang, 621999, China
| | - Guangya Zhang
- Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang, 621999, China
| | - Jiayuan Zhu
- Department of Burn Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Weiping Xie
- Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang, 621999, China.
| | - Jun Wu
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Second People's Hospital, ShenzhenShenzhen, 518035, China.
| |
Collapse
|
69
|
Basic and Advanced Metal-Artifact Reduction Techniques at Ultra-High Field 7-T Magnetic Resonance Imaging-Phantom Study Investigating Feasibility and Efficacy. Invest Radiol 2022; 57:387-398. [PMID: 35025835 DOI: 10.1097/rli.0000000000000850] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this study was to demonstrate the feasibility and efficacy of basic (increased receive bandwidth) and advanced (view-angle tilting [VAT] and slice-encoding for metal artifact correction [SEMAC]) techniques for metal-artifact reduction in ultra-high field 7-T magnetic resonance imaging (MRI). MATERIALS AND METHODS In this experimental study, we performed 7-T MRI of titanium alloy phantom models composed of a spinal pedicle screw (phantom 1) and an intervertebral cage (phantom 2) centered in a rectangular LEGO frame, embedded in deionized-water-gadolinium (0.1 mmol/L) solution. The following turbo spin-echo sequences were acquired: (1) nonoptimized standard sequence; (2) optimized, that is, increased receive bandwidth sequence (oBW); (3) VAT; (4) combination of oBW and VAT (oBW-VAT); and (5) SEMAC. Two fellowship-trained musculoskeletal radiologists independently evaluated images regarding peri-implant signal void and geometric distortion (a, angle measurement and b, presence of circular shape loss). Statistics included Friedman test and Cochran Q test with Bonferroni correction for multiple comparisons. P values <0.05 were considered to represent statistical significance. RESULTS All metal-artifact reduction techniques reduced peri-implant signal voids and diminished geometric distortions, with oBW-VAT and SEMAC being most efficient. Compared with nonoptimized sequences, oBW-VAT and SEMAC produced significantly smaller peri-implant signal voids (all P ≤ 0.008) and significantly smaller distortion angles (P ≤ 0.001). Only SEMAC could significantly reduce distortions of circular shapes in the peri-implant frame (P ≤ 0.006). Notably, increasing the number of slice-encoding steps in SEMAC sequences did not lead to a significantly better metal-artifact reduction (all P ≥ 0.257). CONCLUSIONS The use of basic and advanced methods for metal-artifact reduction at 7-T MRI is feasible and effective. Both a combination of increased receive bandwidth and VAT as well as SEMAC significantly reduce the peri-implant signal void and geometric distortion around metal implants.
Collapse
|
70
|
Bone and Joint Infections: The Role of Imaging in Tailoring Diagnosis to Improve Patients' Care. J Pers Med 2021; 11:jpm11121317. [PMID: 34945789 PMCID: PMC8709091 DOI: 10.3390/jpm11121317] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/28/2022] Open
Abstract
Imaging is needed for the diagnosis of bone and joint infections, determining the severity and extent of disease, planning biopsy, and monitoring the response to treatment. Some radiological features are pathognomonic of bone and joint infections for each modality used. However, imaging diagnosis of these infections is challenging because of several overlaps with non-infectious etiologies. Interventional radiology is generally needed to verify the diagnosis and to identify the microorganism involved in the infectious process through imaging-guided biopsy. This narrative review aims to summarize the radiological features of the commonest orthopedic infections, the indications and the limits of different modalities in the diagnostic strategy as well as to outline recent findings that may facilitate diagnosis.
Collapse
|
71
|
Zak L, Tiefenboeck TM, Wozasek GE. Bone reconstruction: Subjective evaluation and objective analysis based on conventional digital X-rays - a retrospective evaluation. Orthop Traumatol Surg Res 2021; 107:103081. [PMID: 34583012 DOI: 10.1016/j.otsr.2021.103081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Various approaches have been used to evaluate callus stiffness in distraction osteogenesis. This assessment becomes even more critical as inadequate corticalization and premature removal of the frame lead to bending, refracture, and loss of length. This study aimed to verify the objective Pixel Value Ratio (PVR) and define an evaluation scheme to assess callus tissue development during internal and external bone lengthening. HYPOTHESIS There are no differences between subjective parameters and objective evaluation for external and internal bone lengthening. PATIENTS AND METHODS We included 24 patients in this retrospective study, treated by distraction osteogenesis of the lower limb. Ten patients were treated with external ring fixators and 14 with intramedullary lengthening devices. The minimum distraction distance was 3cm. Callus tissue was evaluated with the PVR, using digital X-rays during and after treatment. We combined this method with subjective evaluation parameters, including the continuity, signal intensity, and the regeneration tissue's homogeneity, presented in the X-ray Evaluation System for Distraction Osteogenesis (XESDO). RESULTS The subjective evaluation showed an increase of continuity and signal-intensity between 4th postoperative weeks and complete healing with significant differences between the external and internal groups for homogeneity only after four weeks and for all parameters at 3C (p<0.05). The PVR showed an increase during consolidation with values between 0.7 and 1.0 for both groups with almost perfect interobserver agreement. Significant lower values were found in the anterior tibial cases. CONCLUSION PVR appears to be a practical tool for radiological evaluation of callus tissue development. In combination with the newly introduced XESDO and the surgeon's experience, these methods can be helpful for decisions during all phases of distraction osteogenesis. It is important for adapting alignment or distraction-rate, as various potential complications can be detected early. However, further studies are necessary to assess the image-based determination of callus tissue stability. LEVEL OF EVIDENCE III; cohort study.
Collapse
Affiliation(s)
- Lukas Zak
- Medical University of Vienna, Department of Orthopedics and Trauma-Surgery, Division of Trauma Surgery, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Thomas M Tiefenboeck
- Medical University of Vienna, Department of Orthopedics and Trauma-Surgery, Division of Trauma Surgery, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Gerald E Wozasek
- Medical University of Vienna, Department of Orthopedics and Trauma-Surgery, Division of Trauma Surgery, Währinger Gürtel 18-20, 1090 Vienna, Austria
| |
Collapse
|
72
|
Schmidt VF, Arnone F, Dietrich O, Seidensticker M, Armbruster M, Ricke J, Kazmierczak PM. Artifact reduction of coaxial needles in magnetic resonance imaging-guided abdominal interventions at 1.5 T: a phantom study. Sci Rep 2021; 11:22963. [PMID: 34824361 PMCID: PMC8617285 DOI: 10.1038/s41598-021-02434-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 11/10/2021] [Indexed: 11/12/2022] Open
Abstract
Needle artifacts pose a major limitation for MRI-guided interventions, as they impact the visually perceived needle size and needle-to-target-distance. The objective of this agar liver phantom study was to establish an experimental basis to understand and reduce needle artifact formation during MRI-guided abdominal interventions. Using a vendor-specific prototype fluoroscopic T1-weighted gradient echo sequence with real-time multiplanar acquisition at 1.5 T, the influence of 6 parameters (flip angle, bandwidth, matrix, slice thickness, read-out direction, intervention angle relative to B0) on artifact formation of 4 different coaxial MR-compatible coaxial needles (Nitinol, 16G–22G) was investigated. As one parameter was modified, the others remained constant. For each individual parameter variation, 2 independent and blinded readers rated artifact diameters at 2 predefined positions (15 mm distance from the perceived needle tip and at 50% of the needle length). Differences between the experimental subgroups were assessed by Bonferroni-corrected non-parametric tests. Correlations between continuous variables were expressed by the Bravais–Pearson coefficient and interrater reliability was quantified using the intraclass classification coefficient. Needle artifact size increased gradually with increasing flip angles (p = 0.002) as well as increasing intervention angles (p < 0.001). Artifact diameters differed significantly between the chosen matrix sizes (p = 0.002) while modifying bandwidth, readout direction, and slice thickness showed no significant differences. Interrater reliability was high (intraclass correlation coefficient 0.776–0.910). To minimize needle artifacts in MRI-guided abdominal interventions while maintaining optimal visibility of the coaxial needle, we suggest medium-range flip angles and low intervention angles relative to B0.
Collapse
Affiliation(s)
- Vanessa Franziska Schmidt
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Federica Arnone
- Department of Radiology Sciences, University of Palermo, Palermo, Italy
| | - Olaf Dietrich
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Marco Armbruster
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | | |
Collapse
|
73
|
Christofilopoulos P, Kenanidis E, Bartolone P, Poultsides L, Tsiridis E, Kyriakopoulos G. Gluteus maximus tendon transfer for chronic abductor insufficiency: the Geneva technique. Hip Int 2021; 31:751-758. [PMID: 32397754 DOI: 10.1177/1120700020924330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The treatment options of chronic abductor insufficiency in the setting of muscle degeneration, are limited and technically demanding. We present the outcomes of a salvage technique for unreconstructable, chronic abductor tears performed by a single surgeon. METHODS We retrospectively evaluated 38 patients who were surgically managed for chronic abductor insufficiency. Patients without hip implants and patients following primary or revision total hip arthroplasty (THA) were involved. All patients had a Trendelenburg gait, impaired muscle strength of abduction (⩽M4) and fatty degeneration of muscles (Goutallier ⩾3). They underwent transfer of a flap of the anterior third of gluteus maximus to the greater trochanter that was sutured under the slightly mobilised vastus lateralis. The level of pain, functional scores, muscle strength and Trendelenburg gait were re-evaluated at 12 postoperative months. RESULTS The mean age of patients was 70.2 years. 10 patients received the tendon transfer on a native hip, 6 following primary THA and 22 after revision THA. The mean pain level (3.2 vs. 7, p < 0.001) and Harris Hip Score (80.2 vs. 41.6, p < 0.001) and the median abductor strength (4 vs. 3, p < 0.001) was significantly improved compared to the preoperative scores. 26 patients demonstrated negative and 12 positive Trendelenburg sign at 12 postoperative months. No serious complications were reported. CONCLUSIONS This salvage technique improved the strength of abduction and functional results and reduced the level of pain in 80% of patients with chronic abductor tears. The short-term outcomes of the procedure were favourable; however, further evaluation is needed.
Collapse
Affiliation(s)
| | - Eustathios Kenanidis
- Orthopaedic Department, Hospital de la Tour, Geneva, Switzerland.,Academic Orthopaedic Department, Papageorgiou General Hospital, Aristotle University Medical School, Thessaloniki, Greece.,Centre of Orthopaedics and Regenerative Medicine (C.O.RE.) - Centre of Interdisciplinary Research and Innovation (C.I.R.I.) - Aristotle University,Thessaloniki, Greece
| | | | - Lazaros Poultsides
- Academic Orthopaedic Department, Papageorgiou General Hospital, Aristotle University Medical School, Thessaloniki, Greece.,Centre of Orthopaedics and Regenerative Medicine (C.O.RE.) - Centre of Interdisciplinary Research and Innovation (C.I.R.I.) - Aristotle University,Thessaloniki, Greece
| | - Eleftherios Tsiridis
- Academic Orthopaedic Department, Papageorgiou General Hospital, Aristotle University Medical School, Thessaloniki, Greece.,Centre of Orthopaedics and Regenerative Medicine (C.O.RE.) - Centre of Interdisciplinary Research and Innovation (C.I.R.I.) - Aristotle University,Thessaloniki, Greece
| | | |
Collapse
|
74
|
Germann C, Nanz D, Sutter R. Magnetic Resonance Imaging Around Metal at 1.5 Tesla: Techniques From Basic to Advanced and Clinical Impact. Invest Radiol 2021; 56:734-748. [PMID: 34074944 DOI: 10.1097/rli.0000000000000798] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT During the last decade, metal artifact reduction in magnetic resonance imaging (MRI) has been an area of intensive research and substantial improvement. The demand for an excellent diagnostic MRI scan quality of tissues around metal implants is closely linked to the steadily increasing number of joint arthroplasty (especially knee and hip arthroplasties) and spinal stabilization procedures. Its unmatched soft tissue contrast and cross-sectional nature make MRI a valuable tool in early detection of frequently encountered postoperative complications, such as periprosthetic infection, material wear-induced synovitis, osteolysis, or damage of the soft tissues. However, metal-induced artifacts remain a constant challenge. Successful artifact reduction plays an important role in the diagnostic workup of patients with painful/dysfunctional arthroplasties and helps to improve patient outcome. The artifact severity depends both on the implant and the acquisition technique. The implant's material, in particular its magnetic susceptibility and electrical conductivity, its size, geometry, and orientation in the MRI magnet are critical. On the acquisition side, the magnetic field strength, the employed imaging pulse sequence, and several acquisition parameters can be optimized. As a rule of thumb, the choice of a 1.5-T over a 3.0-T magnet, a fast spin-echo sequence over a spin-echo or gradient-echo sequence, a high receive bandwidth, a small voxel size, and short tau inversion recovery-based fat suppression can mitigate the impact of metal artifacts on diagnostic image quality. However, successful imaging of large orthopedic implants (eg, arthroplasties) often requires further optimized artifact reduction methods, such as slice encoding for metal artifact correction or multiacquisition variable-resonance image combination. With these tools, MRI at 1.5 T is now widely considered the modality of choice for the clinical evaluation of patients with metal implants.
Collapse
|
75
|
Extrusion-based 3D printing of ex situ-alloyed highly biodegradable MRI-friendly porous iron-manganese scaffolds. Acta Biomater 2021; 134:774-790. [PMID: 34311105 DOI: 10.1016/j.actbio.2021.07.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023]
Abstract
Additively manufactured biodegradable porous iron has been only very recently demonstrated. Two major limitations of such a biomaterial are very low biodegradability and incompatibility with magnetic resonance imaging (MRI). Here, we present a novel biomaterial that resolves both of those limitations. We used extrusion-based 3D printing to fabricate ex situ-alloyed biodegradable iron-manganese scaffolds that are non-ferromagnetic and exhibit enhanced rates of biodegradation. We developed ink formulations containing iron and 25, 30, or 35 wt% manganese powders, and debinding and sintering process to achieve Fe-Mn scaffolds with 69% porosity. The Fe25Mn scaffolds had the ε-martensite and γ-austenite phases, while the Fe30Mn and Fe35Mn scaffolds had only the γ-austenite phase. All iron-manganese alloys exhibited weakly paramagnetic behavior, confirming their potential to be used as MRI-friendly bone substitutes. The in vitro biodegradation rates of the scaffolds were very much enhanced (i.e., 4.0 to 4.6 times higher than that of porous iron), with the Fe35Mn alloy exhibiting the highest rate of biodegradation (i.e., 0.23 mm/y). While the elastic moduli and yield strengths of the scaffolds decreased over 28 days of in vitro biodegradation, those values remained in the range of cancellous bone. The culture of preosteoblasts on the porous iron-manganese scaffolds revealed that cells could develop filopodia on the scaffolds, but their viability was reduced by the effect of biodegradation. Altogether, this research marks a major breakthrough and demonstrates the great prospects of multi-material extrusion-based 3D printing to further address the remaining issues of porous iron-based materials and, eventually, develop ideal bone substitutes. STATEMENT OF SIGNIFICANCE: 3D printed porous iron biomaterials for bone substitution still encounter limitations, such as the slow biodegradation and magnetic resonance imaging incompatibility. Aiming to solve the two fundamental issues of iron, we present ex-situ alloyed porous iron-manganese scaffolds fabricated by means of multi-material extrusion-based 3D printing. Our porous iron-manganese possessed enhanced biodegradability, non-ferromagnetic property, and bone-mimicking mechanical property throughout the in vitro biodegradation period. The results demonstrated a great prospect of multi-material extrusion-based 3D printing to further address the remaining challenges of porous iron-based biomaterials to be an ideal biodegradable bone substitutes.
Collapse
|
76
|
Leopold VJ, Conrad J, Hipfl C, Müllner M, Khakzad T, Perka C, Hardt S. Is transverse screw fixation really necessary in PAO?-A comparative in vivo study. J Hip Preserv Surg 2021; 8:125-131. [PMID: 34567607 PMCID: PMC8460157 DOI: 10.1093/jhps/hnab034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/05/2021] [Accepted: 03/25/2021] [Indexed: 11/21/2022] Open
Abstract
The optimal fixation technique in periacetabular osteotomy (PAO) remains controversial. This study aims to assess the in vivo stability of fixation in PAO with and without the use of a transverse screw. We performed a retrospective study to analyse consecutive patients who underwent PAO between January 2015 and June 2017. Eighty four patients (93 hips) of which 79% were female were included. In 54 cases, no transverse screw was used (group 1) compared with 39 with transverse screw (group 2). Mean age was 26.5 (15–44) in group 1 and 28.4 (16–45) in group 2. Radiological parameters relevant for DDH including lateral center edge angle of Wiberg (LCEA), Tönnis angle (TA) and femoral head extrusion index (FHEI) were measured preoperatively, post-operatively and at 3-months follow-up. All patients were mobilized with the same mobilization regimen. Post-operative LCEA, TA and FHEI were improved significantly in both groups for all parameters (P ≤ 0.0001). Mean initial correction for LCEA (P = 0.753), TA (P = 0.083) and FHEI (P = 0.616) showed no significant difference between the groups. Final correction at follow-up of the respective parameters was also not significantly different between both groups for LCEA (P = 0.447), TA (P = 0.100) and FHEI (P = 0.270). There was no significant difference between initial and final correction for the respective parameters. Accordingly, only minimal loss of correction was measured, showing no difference between the two groups for LCEA (P = 0.227), TA (P = 0.153) and FHEI (P = 0.324). Transverse screw fixation is not associated with increased fragment stability in PAO. This can be taken into account by surgeons when deciding on the fixation technique of the acetabular fragment in PAO.
Collapse
Affiliation(s)
- Vincent J Leopold
- Department of Orthopaedic Surgery and Traumatology, Charité Berlin, University Hospital, Chariteplatz 1, Berlin 10117, Germany
| | - Juana Conrad
- Department of Orthopaedic Surgery and Traumatology, Charité Berlin, University Hospital, Chariteplatz 1, Berlin 10117, Germany
| | - Christian Hipfl
- Department of Orthopaedic Surgery and Traumatology, Charité Berlin, University Hospital, Chariteplatz 1, Berlin 10117, Germany
| | - Maximilian Müllner
- Department of Orthopaedic Surgery and Traumatology, Charité Berlin, University Hospital, Chariteplatz 1, Berlin 10117, Germany
| | - Thilo Khakzad
- Department of Orthopaedic Surgery and Traumatology, Charité Berlin, University Hospital, Chariteplatz 1, Berlin 10117, Germany
| | - Carsten Perka
- Department of Orthopaedic Surgery and Traumatology, Charité Berlin, University Hospital, Chariteplatz 1, Berlin 10117, Germany
| | - Sebastian Hardt
- Department of Orthopaedic Surgery and Traumatology, Charité Berlin, University Hospital, Chariteplatz 1, Berlin 10117, Germany
| |
Collapse
|
77
|
Kimura M, Kaku N, Kubota Y, Tagomori H, Tsumura H. Fluorodeoxyglucose Positron-Emission Tomography/Computed Tomography and Magnetic Resonance Imaging for Adverse Local Tissue Reactions near Metal Implants after Total Hip Arthroplasty: A Preliminary Report. Clin Orthop Surg 2021; 13:320-328. [PMID: 34484624 PMCID: PMC8380523 DOI: 10.4055/cios20228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 11/06/2022] Open
Abstract
Background Plain computed tomography (CT) and magnetic resonance imaging (MRI) are useful for diagnosing adverse local tissue reactions after metal-on-metal total hip arthroplasty (THA), but metal artifacts can hamper radiological assessments near the implants. We sought to clarify the usefulness of 18F-fluorodeoxyglucose positron-emission tomography (18F-FDG-PET) CT and MRI in the periprosthetic region, which is difficult to assess after THA due to metal artifacts. Methods We performed preoperative 18F-FDG-PET/CT and 18F-FDG-PET/MRI, as well as plain CT and MRI, in 11 metal-on-metal THA patients who underwent revision surgery. Results Most patients showed high FDG uptake in the metal artifact areas and pseudotumors in the 18-F-FDG-PET/CT and 18-F-FDG-PET/MRI scans. Intraoperative intra-articular macroscopic and histopathological intra-articular granulation tissue findings were suggestive of adverse local tissue reaction. Conclusions The enhanced uptake in the metal artifact areas seemed to reflect adverse local tissue reaction. Therefore, 18F-FDG-PET/CT and 18-F-FDG-PET/MRI can be useful for the auxiliary diagnosis of adverse local tissue reactions after metal-on-metal THA.
Collapse
Affiliation(s)
- Makoto Kimura
- Department of Orthopedic Surgery, Faculty of Medicine, Oita University, Yufu, Japan
| | - Nobuhiro Kaku
- Department of Orthopedic Surgery, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yuta Kubota
- Department of Orthopedic Surgery, Faculty of Medicine, Oita University, Yufu, Japan
| | - Hiroaki Tagomori
- Department of Orthopedic Surgery, Faculty of Medicine, Oita University, Yufu, Japan
| | - Hiroshi Tsumura
- Department of Orthopedic Surgery, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
78
|
Kumar N, Lopez KG, Alathur Ramakrishnan S, Hallinan JTPD, Fuh JYH, Pandita N, Madhu S, Kumar A, Benneker LM, Vellayappan BA. Evolution of materials for implants in metastatic spine disease till date - Have we found an ideal material? Radiother Oncol 2021; 163:93-104. [PMID: 34419506 DOI: 10.1016/j.radonc.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/30/2021] [Accepted: 08/13/2021] [Indexed: 12/30/2022]
Abstract
"Metastatic Spine Disease" (MSD) often requires surgical intervention and instrumentation with spinal implants. Ti6Al4V is widely used in metastatic spine tumor surgery (MSTS) and is the current implant material of choice due to improved biocompatibility, mechanical properties, and compatibility with imaging modalities compared to stainless steel. However, it is still not the ideal implant material due to the following issues. Ti6Al4V implants cause stress-shielding as their Young's modulus (110 gigapascal [GPa]) is higher than cortical bone (17-21 GPa). Ti6Al4V also generates artifacts on CT and MRI, which interfere with the process of postoperative radiotherapy (RT), including treatment planning and delivery. Similarly, charged particle therapy is hindered in the presence of Ti6Al4V. In addition, artifacts on CT and MRI may result in delayed recognition of tumor recurrence and postoperative complications. In comparison, polyether-ether-ketone (PEEK) is a promising alternative. PEEK has a low Young's modulus (3.6 GPa), which results in optimal load-sharing and produces minimal artifacts on imaging with less hinderance on postoperative RT. However, PEEK is bioinert and unable to provide sufficient stability in the immediate postoperative period. This issue may possibly be mitigated by combining PEEK with other materials to form composites or through surface modification, although further research is required in these areas. With the increasing incidence of MSD, it is an opportune time for the development of spinal implants that possess all the ideal material properties for use in MSTS. Our review will explore whether there is a current ideal implant material, available alternatives and whether these require further investigation.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Orthopaedic Surgery, National University Health System, Singapore.
| | - Keith Gerard Lopez
- Department of Orthopaedic Surgery, National University Health System, Singapore
| | | | | | - Jerry Ying Hsi Fuh
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Naveen Pandita
- Department of Orthopaedic Surgery, National University Health System, Singapore
| | - Sirisha Madhu
- Department of Orthopaedic Surgery, National University Health System, Singapore
| | - Aravind Kumar
- Department of Orthopaedic Surgery, Ng Teng Fong General Hospital, Singapore
| | - Lorin M Benneker
- Department of Orthopaedics, Spine Surgery, Sonnenhofspital, Bern, Switzerland
| | | |
Collapse
|
79
|
Silemek B, Seifert F, Petzold J, Hoffmann W, Pfeiffer H, Speck O, Rose G, Ittermann B, Winter L. Rapid safety assessment and mitigation of radiofrequency induced implant heating using small root mean square sensors and the sensor matrix Q s. Magn Reson Med 2021; 87:509-527. [PMID: 34397114 DOI: 10.1002/mrm.28968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE Rapid detection and mitigation of radiofrequency (RF)-induced implant heating during MRI based on small and low-cost embedded sensors. THEORY AND METHODS A diode and a thermistor are embedded at the tip of an elongated mock implant. RF-induced voltages or temperature change measured by these root mean square (RMS) sensors are used to construct the sensor Q-Matrix (QS ). Hazard prediction, monitoring and parallel transmit (pTx)-based mitigation using these sensors is demonstrated in benchtop measurements at 300 MHz and within a 3T MRI. RESULTS QS acquisition and mitigation can be performed in <20 ms demonstrating real-time capability. The acquisitions can be performed using safe low powers (<3 W) due to the high reading precision of the diode (126 µV) and thermistor (26 µK). The orthogonal projection method used for pTx mitigation was able to reduce the induced signals and temperatures in all 155 investigated locations. Using the QS approach in a pTx capable 3T MRI with either a two-channel body coil or an eight-channel head coil, RF-induced heating was successfully assessed, monitored and mitigated while the image quality outside the implant region was preserved. CONCLUSION Small (<1.5 mm3 ) and low-cost (<1 €) RMS sensors embedded in an implant can provide all relevant information to predict, monitor and mitigate RF-induced heating in implants, while preserving image quality. The proposed pTx-based QS approach is independent of simulations or in vitro testing and therefore complements these existing safety assessments.
Collapse
Affiliation(s)
- Berk Silemek
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Johannes Petzold
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Werner Hoffmann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Harald Pfeiffer
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Oliver Speck
- Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Georg Rose
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Institute for Medical Engineering and Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Lukas Winter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
80
|
Wang X, Guo S, Li Z, Luo Q, Dai Y, Zhang H, Ye Y, Gong Q, Luo K. Amphiphilic branched polymer-nitroxides conjugate as a nanoscale agent for potential magnetic resonance imaging of multiple objects in vivo. J Nanobiotechnology 2021; 19:205. [PMID: 34243760 PMCID: PMC8272293 DOI: 10.1186/s12951-021-00951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In order to address the potential toxicity of metal-based magnetic resonance imaging (MRI) contrast agents (CAs), a concept of non-metallic MRI CAs has emerged. Currently, paramagnetic nitroxides (such as (2,2,5,5-tetramethylpyrrolidine-1-oxyl, PROXYL), (2,2,6,6-tetramethylpiperidine-1-oxide, TEMPO), etc.) are being extensively studied because their good stability and imaging mechanism are similar to metal-based contrast agents (such as Gd3+ chelate-based clinical CAs). However, a lower relaxivity and rapid in vivo metabolism of nitroxides remain to be addressed. Previous studies have demonstrated that the construction of macromolecular nitroxides contrast agents (mORCAs) is a promising solution through macromolecularization of nitroxides (i.e., use of large molecules to carry nitroxides). Macromolecular effects not only increase the stability of nitroxides by limiting their exposure to reductive substances in the body, but also improve the overall 1H water relaxation by increasing the concentration of nitroxides and slowing the molecular rotation speed. RESULTS Branched pDHPMA-mPEG-Ppa-PROXYL with a high molecular weight (MW = 160 kDa) and a nitroxides content (0.059 mmol/g) can form a nanoscale (~ 28 nm) self-assembled aggregate in a water environment and hydrophobic PROXYL can be protected by a hydrophilic outer layer to obtain strong reduction resistance in vivo. Compared with a small molecular CA (3-Carboxy-PROXYL (3-CP)), Branched pDHPMA-mPEG-Ppa-PROXYL displays three prominent features: (1) its longitudinal relaxivity (0.50 mM- 1 s- 1) is about three times that of 3-CP (0.17 mM- 1 s- 1); (2) the blood retention time of nitroxides is significantly increased from a few minutes of 3-CP to 6 h; (3) it provides long-term and significant enhancement in MR imaging of the tumor, liver, kidney and cardiovascular system (heart and aortaventralis), and this is the first report on nitroxides-based MRI CAs for imaging the cardiovascular system. CONCLUSIONS As a safe and efficient candidate metal-free magnetic resonance contrast agent, Branched pDHPMA-mPEG-Ppa-PROXYL is expected to be used not only in imaging the tumor, liver and kidney, but also the cardiovascular system, which expands the application scope of these CAs.
Collapse
Affiliation(s)
- Xiaoming Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
- Department of Radiology, Chongqing General Hospital, University of Chinese Academy of Sciences (UCAS), No. 104 Pipashan Main Street, Yuzhong District, 400014, Chongqing, China
| | - Shiwei Guo
- Department of Pharmacy of the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Sichuan Province, 646000, Luzhou, People's Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, Luzhou, People's Republic of China
| | - Zhiqian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Yan Dai
- Department of Pharmacy of the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Sichuan Province, 646000, Luzhou, People's Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, Luzhou, People's Republic of China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute Claremont, 91711, Claremont, CA, USA
| | - Yun Ye
- Department of Pharmacy of the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Sichuan Province, 646000, Luzhou, People's Republic of China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, 610041, Chengdu, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, 610041, Chengdu, China.
| |
Collapse
|
81
|
Magnetic particle imaging for artifact-free imaging of intracranial flow diverter stents: A phantom study. Phys Med 2021; 88:65-70. [PMID: 34192659 DOI: 10.1016/j.ejmp.2021.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/10/2021] [Accepted: 06/21/2021] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Magnetic Particle Imaging (MPI) is a new, background- and radiation-free tomographic imaging method that enables near real-time imaging of superparamagnetic iron-oxide nanoparticles (SPIONs) with high temporal and spatial resolution. This phantom study aims to investigate the potential of MPI for visualization of the stent lumen in intracranial flow diverters (FD). METHODS Nitinol FD of different dimensions (outer diameter: 3.5 mm, 4.0 mm, 5.5 mm; total length: 22-40 mm) were scanned in vascular phantoms in a custom-built MPI scanner (in-plane resolution: ~ 2 mm, field of view: 65 mm length, 29 mm diameter). Phantoms were filled with diluted (1:50) SPION tracer agent Ferucarbotran (10 µmol (Fe)/ml; NaCL). Each phantom was measured in 32 different projections (overall acquisition time per image: 3200 ms, 5averages). After image reconstruction from raw data, two radiologists assessed image quality using a 5-point Likert scale. The signal intensity profile was measured using a semi-automatic evaluation tool. RESULTS MPI visualized the lumen of all FD without relevant differences between the stented vessel phantom and the reference phantom. At 3.5 mm image quality was slightly inferior to the larger diameters. The FD themselves neither generated an MPI signal nor did they lead to relevant imaging artifacts. Ratings of both radiologists showed no significant difference, interrater reliability was good (ICC 0.84). A quantitative evaluation of the signal intensity profile did not reveal any significant differences (p > 0.05) either. CONCLUSION MPI visualizes the lumen of nitinol FD stents in vessel phantoms without relevant stent-induced artifacts.
Collapse
|
82
|
Fierens G, Standaert N, Peeters R, Glorieux C, Verhaert N. Safety of active auditory implants in magnetic resonance imaging. J Otol 2021; 16:185-198. [PMID: 34220987 PMCID: PMC8241703 DOI: 10.1016/j.joto.2020.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/19/2020] [Accepted: 12/17/2020] [Indexed: 11/23/2022] Open
Abstract
Magnetic resonance imaging (MRI) has become the gold standard for the diagnosis of many pathologies. Using MRI in patients with auditory implants can however raise concerns due to mutual interactions between the implant and imaging device, resulting in potential patient risks. Several implant manufacturers have been working towards more MRI safe devices. Older devices are however often labelled for more stringent conditions, possibly creating confusion with patients and professionals. With this myriad of different devices that are implanted in patients for lifetimes of at least 20 years, it is crucial that both patients and professionals have a clear understanding of the safety of their devices. This work aims at providing an exhaustive overview on the MRI safety of active auditory implants. The available industry standards that are followed by manufacturers are outlined and an overview of the latest scientific developments focusing on the last five years is provided. In addition, based on the analysis of the adverse events reported to the Food and Drug Administration (FDA) and in literature within the past ten years, a systematic review of the most commonly occurring issues for patients with auditory implants in the MRI environment is provided. Results indicate that despite the release of more MRI conditional active hearing implants on the market, adverse events still occur. An extensive overview is provided on the MRI safety of active auditory implants, aiming to increase the understanding of the topic for healthcare professionals and contribute to safer scanning conditions for patients.
Collapse
Affiliation(s)
- Guy Fierens
- Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001, Heverlee, Belgium
- Cochlear Technology Centre, Schaliënhoevedreef 20I, B-2800, Mechelen, Belgium
- KU Leuven, Department of Neurosciences, Research Group Experimental Otorhinolaryngology, Herestraat 49, B-3000, Leuven, Belgium
| | - Nina Standaert
- University Hospitals Leuven, Department of Otorhinolaryngology, Herestraat 49, B-3000, Leuven, Belgium
| | - Ronald Peeters
- University Hospitals Leuven, Department of Radiology, Herestraat 49, B-3000, Leuven, Belgium
| | - Christ Glorieux
- Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001, Heverlee, Belgium
| | - Nicolas Verhaert
- KU Leuven, Department of Neurosciences, Research Group Experimental Otorhinolaryngology, Herestraat 49, B-3000, Leuven, Belgium
- University Hospitals Leuven, Department of Otorhinolaryngology, Herestraat 49, B-3000, Leuven, Belgium
| |
Collapse
|
83
|
Sneag DB, Zochowski KC, Tan ET. MR Neurography of Peripheral Nerve Injury in the Presence of Orthopedic Hardware: Technical Considerations. Radiology 2021; 300:246-259. [PMID: 34184933 DOI: 10.1148/radiol.2021204039] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the frequency of orthopedic procedures performed each year in the United States continues to increase, evaluation of peripheral nerve injury (PNI) in the presence of pre-existing metallic hardware is in higher demand. Advances in metal artifact reduction techniques have substantially improved the capability to reduce the susceptibility effect at MRI, but few reports have documented the use of MR neurography in the evaluation of peripheral nerves in the presence of orthopedic hardware. This report delineates the challenges of MR neurography around metal given the high spatial resolution often required to adequately depict small peripheral nerves. It offers practical tips, including strategies for prescan assessment and protocol optimization, including use of more conventional two-dimensional proton density and T2-weighted fat-suppressed sequences and specialized three-dimensional techniques, such as reversed free-induction steady-state precession and multispectral imaging, which enable vascular suppression and metal artifact reduction, respectively. Finally, this article emphasizes the importance of real-time monitoring by radiologists to optimize the diagnostic yield of MR neurography in the presence of orthopedic hardware. © RSNA, 2021.
Collapse
Affiliation(s)
- Darryl B Sneag
- From the Department of Radiology and Imaging, Hospital for Special Surgery, 535 E 70th St, Room 2P-040, New York, NY 10021
| | - Kelly C Zochowski
- From the Department of Radiology and Imaging, Hospital for Special Surgery, 535 E 70th St, Room 2P-040, New York, NY 10021
| | - Ek T Tan
- From the Department of Radiology and Imaging, Hospital for Special Surgery, 535 E 70th St, Room 2P-040, New York, NY 10021
| |
Collapse
|
84
|
Lee EM, Ibrahim ESH, Dudek N, Lu JC, Kalia V, Runge M, Srinivasan A, Stojanovska J, Agarwal PP. Improving MR Image Quality in Patients with Metallic Implants. Radiographics 2021; 41:E126-E137. [PMID: 34143712 DOI: 10.1148/rg.2021200092] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The number of implanted devices such as orthopedic hardware and cardiac implantable devices continues to increase with an increase in the age of the patient population, as well as an increase in the number of indications for specific devices. Many patients with these devices have or will develop clinical conditions that are best depicted at MRI. However, implanted devices containing paramagnetic or ferromagnetic substances can cause significant artifact, which could limit the diagnostic capability of this modality. Performing imaging with MRI when an implant is present may be challenging, and there are numerous techniques the radiologist and technologist can use to help minimize artifacts related to implants. First, knowledge of the presence of an implant before patient arrival is critical to ensure safety of the patient when the device is subjected to a strong magnetic field. Once safety is ensured, the examination should be performed with the MRI system that is expected to provide the best image quality. The selection of the MRI system includes multiple considerations such as the effects of field strength and availability of specific sequences, which can reduce metal artifact. Appropriate patient positioning, attention to MRI parameters (including bandwidth, voxel size, and echo), and appropriate selection of sequences (those with less metal artifact and advanced metal reduction sequences) are critical to improve image quality. Patients with implants can be successfully imaged with MRI with appropriate planning and understanding of how to minimize artifacts. This improves image quality and the diagnostic confidence of the radiologist. ©RSNA, 2021.
Collapse
Affiliation(s)
- Elizabeth M Lee
- From the Department of Radiology, Division of Cardiothoracic Imaging (E.M.L., J.S., P.P.A.), Department of Radiology (N.D.), Department of Pediatrics, Division of Cardiology, CS Mott Children's Hospital (J.C.L.), Department of Radiology, Division of Musculoskeletal Radiology (V.K.), University of Michigan Medical School (M.R.), and Department of Radiology, Division of Neuroradiology (A.S.), University of Michigan, University Hospital Floor B1 Reception C, 1500 E Medical Center Dr, SPC 5030, Ann Arbor, MI 48109; and Center for Imaging Research, Medical College of Wisconsin, Milwaukee, Wis (E.H.I.)
| | - El-Sayed H Ibrahim
- From the Department of Radiology, Division of Cardiothoracic Imaging (E.M.L., J.S., P.P.A.), Department of Radiology (N.D.), Department of Pediatrics, Division of Cardiology, CS Mott Children's Hospital (J.C.L.), Department of Radiology, Division of Musculoskeletal Radiology (V.K.), University of Michigan Medical School (M.R.), and Department of Radiology, Division of Neuroradiology (A.S.), University of Michigan, University Hospital Floor B1 Reception C, 1500 E Medical Center Dr, SPC 5030, Ann Arbor, MI 48109; and Center for Imaging Research, Medical College of Wisconsin, Milwaukee, Wis (E.H.I.)
| | - Nancy Dudek
- From the Department of Radiology, Division of Cardiothoracic Imaging (E.M.L., J.S., P.P.A.), Department of Radiology (N.D.), Department of Pediatrics, Division of Cardiology, CS Mott Children's Hospital (J.C.L.), Department of Radiology, Division of Musculoskeletal Radiology (V.K.), University of Michigan Medical School (M.R.), and Department of Radiology, Division of Neuroradiology (A.S.), University of Michigan, University Hospital Floor B1 Reception C, 1500 E Medical Center Dr, SPC 5030, Ann Arbor, MI 48109; and Center for Imaging Research, Medical College of Wisconsin, Milwaukee, Wis (E.H.I.)
| | - Jimmy C Lu
- From the Department of Radiology, Division of Cardiothoracic Imaging (E.M.L., J.S., P.P.A.), Department of Radiology (N.D.), Department of Pediatrics, Division of Cardiology, CS Mott Children's Hospital (J.C.L.), Department of Radiology, Division of Musculoskeletal Radiology (V.K.), University of Michigan Medical School (M.R.), and Department of Radiology, Division of Neuroradiology (A.S.), University of Michigan, University Hospital Floor B1 Reception C, 1500 E Medical Center Dr, SPC 5030, Ann Arbor, MI 48109; and Center for Imaging Research, Medical College of Wisconsin, Milwaukee, Wis (E.H.I.)
| | - Vivek Kalia
- From the Department of Radiology, Division of Cardiothoracic Imaging (E.M.L., J.S., P.P.A.), Department of Radiology (N.D.), Department of Pediatrics, Division of Cardiology, CS Mott Children's Hospital (J.C.L.), Department of Radiology, Division of Musculoskeletal Radiology (V.K.), University of Michigan Medical School (M.R.), and Department of Radiology, Division of Neuroradiology (A.S.), University of Michigan, University Hospital Floor B1 Reception C, 1500 E Medical Center Dr, SPC 5030, Ann Arbor, MI 48109; and Center for Imaging Research, Medical College of Wisconsin, Milwaukee, Wis (E.H.I.)
| | - Mason Runge
- From the Department of Radiology, Division of Cardiothoracic Imaging (E.M.L., J.S., P.P.A.), Department of Radiology (N.D.), Department of Pediatrics, Division of Cardiology, CS Mott Children's Hospital (J.C.L.), Department of Radiology, Division of Musculoskeletal Radiology (V.K.), University of Michigan Medical School (M.R.), and Department of Radiology, Division of Neuroradiology (A.S.), University of Michigan, University Hospital Floor B1 Reception C, 1500 E Medical Center Dr, SPC 5030, Ann Arbor, MI 48109; and Center for Imaging Research, Medical College of Wisconsin, Milwaukee, Wis (E.H.I.)
| | - Ashok Srinivasan
- From the Department of Radiology, Division of Cardiothoracic Imaging (E.M.L., J.S., P.P.A.), Department of Radiology (N.D.), Department of Pediatrics, Division of Cardiology, CS Mott Children's Hospital (J.C.L.), Department of Radiology, Division of Musculoskeletal Radiology (V.K.), University of Michigan Medical School (M.R.), and Department of Radiology, Division of Neuroradiology (A.S.), University of Michigan, University Hospital Floor B1 Reception C, 1500 E Medical Center Dr, SPC 5030, Ann Arbor, MI 48109; and Center for Imaging Research, Medical College of Wisconsin, Milwaukee, Wis (E.H.I.)
| | - Jadranka Stojanovska
- From the Department of Radiology, Division of Cardiothoracic Imaging (E.M.L., J.S., P.P.A.), Department of Radiology (N.D.), Department of Pediatrics, Division of Cardiology, CS Mott Children's Hospital (J.C.L.), Department of Radiology, Division of Musculoskeletal Radiology (V.K.), University of Michigan Medical School (M.R.), and Department of Radiology, Division of Neuroradiology (A.S.), University of Michigan, University Hospital Floor B1 Reception C, 1500 E Medical Center Dr, SPC 5030, Ann Arbor, MI 48109; and Center for Imaging Research, Medical College of Wisconsin, Milwaukee, Wis (E.H.I.)
| | - Prachi P Agarwal
- From the Department of Radiology, Division of Cardiothoracic Imaging (E.M.L., J.S., P.P.A.), Department of Radiology (N.D.), Department of Pediatrics, Division of Cardiology, CS Mott Children's Hospital (J.C.L.), Department of Radiology, Division of Musculoskeletal Radiology (V.K.), University of Michigan Medical School (M.R.), and Department of Radiology, Division of Neuroradiology (A.S.), University of Michigan, University Hospital Floor B1 Reception C, 1500 E Medical Center Dr, SPC 5030, Ann Arbor, MI 48109; and Center for Imaging Research, Medical College of Wisconsin, Milwaukee, Wis (E.H.I.)
| |
Collapse
|
85
|
York V, Sultan N, Thapa M, Chaturvedi A. Musculoskeletal MRI in Infants: Technical Considerations, Pitfalls and Optimization Strategies. Semin Roentgenol 2021; 56:277-287. [PMID: 34281680 DOI: 10.1053/j.ro.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vincent York
- Department of Radiology, Rochester General Hospital, Rochester, NY.
| | - Nadia Sultan
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY
| | - Mahesh Thapa
- Department of Radiology, University of Washington, Seattle, WA
| | - Apeksha Chaturvedi
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
86
|
Peschke E, Ulloa P, Jansen O, Hoevener JB. Metallic Implants in MRI - Hazards and Imaging Artifacts. ROFO-FORTSCHR RONTG 2021; 193:1285-1293. [PMID: 33979870 DOI: 10.1055/a-1460-8566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) is an examination method for noninvasive soft tissue imaging without the use of ionizing radiation. Metallic implants, however, may pose a risk for the patient and often result in imaging artifacts. Due to the increasing number of implants, reducing these artifacts has become an important goal. In this review, we describe the risks associated with implants and provide the background on how metal-induced artifacts are formed. We review the literature on methods on how to reduce artifacts and summarize our findings. METHOD The literature was searched using PubMed and the keywords "MRI metal artifact reduction", "metallic implants" and "MRI artefacts/artifacts". RESULTS AND CONCLUSION The MRI compatibility of implants has to be evaluated individually. To reduce artifacts, two general approaches were found: a) parameter optimization in standard sequences (echo time, slice thickness, bandwidth) and b) specialized sequences, such as VAT, OMAR, WARP, SEMAC and MAVRIC. These methods reduced artifacts and improved image quality, albeit at the cost of a (sometimes significantly) prolonged scan time. New developments in accelerated imaging will likely shorten the scan time of these methods significantly, such that routine use may become feasible. KEY POINTS · Metallic implants may pose a risk for patients and often cause artifacts.. · Imaging artifacts can be reduced by parameter optimization or special sequences.. · Metal artifacts are reduced with a lower TE, smaller voxel size, larger matrix, and higher bandwidth.. · SPI, STIR, VAT, SEMAC, MAVRIC, and MAVRIC-SL are specialized MR sequences that can reduce artifacts further.. CITATION FORMAT · Peschke E, Ulloa P, Jansen O et al. Metallic Implants in MRI - Hazards and Imaging Artifacts. Fortschr Röntgenstr 2021; 193: 1285 - 1293.
Collapse
Affiliation(s)
- Eva Peschke
- Department for Radiology and Neuroradiology, Molecular Imaging North Competence Center (MOIN CC), Section Biomedical Imaging, University Hospital Schleswig-Holstein - Campus Kiel, Kiel University, Germany
| | - Patricia Ulloa
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein - Campus Kiel, Germany
| | - Olav Jansen
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein - Campus Kiel, Germany
| | - Jan-Bernd Hoevener
- Department for Radiology and Neuroradiology, Molecular Imaging North Competence Center (MOIN CC), Section Biomedical Imaging, University Hospital Schleswig-Holstein - Campus Kiel, Kiel University, Germany
| |
Collapse
|
87
|
Jovanovic S, Schleker P, Streun M, Merz S, Jakes P, Schatz M, Eichel RA, Granwehr J. An electrochemical cell for in operando 13C nuclear magnetic resonance investigations of carbon dioxide/carbonate processes in aqueous solution. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:265-280. [PMID: 37904775 PMCID: PMC10539767 DOI: 10.5194/mr-2-265-2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/21/2021] [Indexed: 11/01/2023]
Abstract
In operando nuclear magnetic resonance (NMR) spectroscopy is one method for the online investigation of electrochemical systems and reactions. It allows for real-time observations of the formation of products and intermediates, and it grants insights into the interactions of substrates and catalysts. An in operando NMR setup for the investigation of the electrolytic reduction of CO 2 at silver electrodes has been developed. The electrolysis cell consists of a three-electrode setup using a working electrode of pristine silver, a chlorinated silver wire as the reference electrode, and a graphite counter electrode. The setup can be adjusted for the use of different electrode materials and fits inside a 5 mm NMR tube. Additionally, a shielding setup was employed to minimize noise caused by interference of external radio frequency (RF) waves with the conductive components of the setup. The electrochemical performance of the in operando electrolysis setup is compared with a standard CO 2 electrolysis cell. The small cell geometry impedes the release of gaseous products, and thus it is primarily suited for current densities below 1 mA cm- 2 . The effect of conductive components on 13 C NMR experiments was studied using a CO 2 -saturated solution of aqueous bicarbonate electrolyte. Despite the B 0 field distortions caused by the electrodes, a proper shimming could be attained, and line widths of ca. 1 Hz were achieved. This enables investigations in the sub-Hertz range by NMR spectroscopy. High-resolution 13 C NMR and relaxation time measurements proved to be sensitive to changes in the sample. It was found that the dynamics of the bicarbonate electrolyte varies not only due to interactions with the silver electrode, which leads to the formation of an electrical double layer and catalyzes the exchange reaction between CO 2 and HCO 3 - , but also due to interactions with the electrochemical setup. This highlights the necessity of a step-by-step experiment design for a mechanistic understanding of processes occurring during electrochemical CO 2 reduction.
Collapse
Affiliation(s)
- Sven Jovanovic
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich, Jülich, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - P. Philipp M. Schleker
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich, Jülich, Germany
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Matthias Streun
- Central Institute of Engineering and Analytics, Electronic Systems (ZEA-2), Forschungszentrum Jülich, Jülich, Germany
| | - Steffen Merz
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich, Jülich, Germany
| | - Peter Jakes
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich, Jülich, Germany
| | - Michael Schatz
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich, Jülich, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Rüdiger-A. Eichel
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich, Jülich, Germany
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
| | - Josef Granwehr
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich, Jülich, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
88
|
Amin N, Pai I, Touska P, Connor SEJ. Utilization of SEMAC-VAT MRI for Improved Visualization of Posterior Fossa Structures in Patients With Cochlear Implants. Otol Neurotol 2021; 42:e451-e458. [PMID: 33534384 DOI: 10.1097/mao.0000000000003016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The number of cochlear implant (CI) users is ever increasing worldwide, as is the utilization of magnetic resonance imaging (MRI) as a key diagnostic modality for pathology of the brain and surrounding structures. Despite advances in MRI compatibility with CI, metal artefact remains a significant issue that needs to be addressed. We test our hypothesis that the slice encoding for metal artefact correction and view angle tilting (SEMAC-VAT) metal artefact reduction technique improves demonstration of posterior fossa structures on MRI in CI recipients. STUDY DESIGN A retrospective case review. SETTING A tertiary referral hearing implant and skull base center. INTERVENTIONS Dedicated MRI of the posterior fossa using T1 spin echo post-gadolinium sequences with and without the application of SEMAC-VAT in CI recipients. MAIN OUTCOME MEASURES Extent and severity of the artefact and visualization of surrounding anatomic structures with and without the application of SEMAC-VAT, allowing for direct comparison. RESULTS Eight CI recipients with nine CI devices were analyzed. We noted a significant reduction in signal void and improved visibility of the ipsilateral hemisphere in every case. Penumbra size increased although there was improved visibility through the penumbra. There was improved visualization of key intracranial structures, such as the ipsilateral internal auditory canal, cerebellopontine angle, cerebellar hemisphere, and brainstem. CONCLUSIONS Application of SEMAC-VAT produces a significant reduction in signal void and improved visualization of key structures within the temporal bone and posterior cranial fossa in patients with CIs without the need for removal of the internal magnet.
Collapse
Affiliation(s)
| | | | - Philip Touska
- Department of Radiology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Steve E J Connor
- Department of Radiology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
89
|
Hopp AC, Fahrenholtz SJ, Bashford JV, Long JR, Panda A, Katz DS, Flug JA. The Magnet Is Sometimes "Off"-Practical Strategies for Optimizing Challenging Musculoskeletal MR Imaging. Curr Probl Diagn Radiol 2021; 51:392-402. [PMID: 33836928 DOI: 10.1067/j.cpradiol.2021.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/05/2021] [Accepted: 03/04/2021] [Indexed: 11/22/2022]
Abstract
To describe practical solutions to the unique technical challenges of musculoskeletal magnetic resonance imaging, including off-isocenter imaging, artifacts from motion and metal prostheses, small field-of-view imaging, and non-conventional scan angles and slice positioning. Unique challenges of musculoskeletal magnetic resonance imaging require a collaborative approach involving radiologists, physicists, and technologists utilizing optimized magnetic resonance protocols, specialized coils, and unique patient positioning, in order to reliably diagnose critical musculoskeletal MR image findings.
Collapse
Affiliation(s)
- Alix C Hopp
- Mayo Clinic Arizona, Department of Radiology, Phoenix, AZ.
| | | | | | | | - Anshuman Panda
- Mayo Clinic Arizona, Department of Radiology, Phoenix, AZ
| | - Douglas S Katz
- NYU Langone Hospital-Long Island, Department of Radiology, Mineola, NY
| | | |
Collapse
|
90
|
Keesman R, van der Bijl E, Janssen TM, Vijlbrief T, Pos FJ, van der Heide UA. Clinical workflow for treating patients with a metallic hip prosthesis using magnetic resonance imaging-guided radiotherapy. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2021; 15:85-90. [PMID: 33458331 PMCID: PMC7807622 DOI: 10.1016/j.phro.2020.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022]
Abstract
Background & purpose Metallic prostheses distort the magnetic field during magnetic resonance imaging (MRI), leading to geometric distortions and signal loss. The purpose of this work was to develop a method to determine eligibility for MRI-guided radiotherapy (MRIgRT) on a per patient basis by estimating the magnitude of geometric distortions inside the clinical target volume (CTV). Materials & methods Three patients with prostate cancer and hip prosthesis, treated using MRIgRT, were included. Eligibility for MRIgRT was based on computed tomography and associated CTV delineations, together with a field-distortion (B0) map and anatomical images acquired during MR simulation. To verify the method, B0 maps made during MR simulation and each MRIgRT treatment fraction were compared. Results Estimates made during MR simulation of the magnitude of distortions inside the CTV were 0.43 mm, 0.19 mm and 2.79 mm compared to the average over all treatment fractions of 1.40 mm, 0.32 mm and 1.81 mm, per patient respectively. Conclusions B0 map acquisitions prior to treatment can be used to estimate the magnitude of distortions during MRIgRT to guide the decision on eligibility for MRIgRT of prostate cancer patients with metallic hip implants.
Collapse
Affiliation(s)
- Rick Keesman
- Department of Radiation Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Erik van der Bijl
- Department of Radiation Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Tomas M Janssen
- Department of Radiation Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Tineke Vijlbrief
- Department of Radiation Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Floris J Pos
- Department of Radiation Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Uulke A van der Heide
- Department of Radiation Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
91
|
Slullitel PA, Mahatma MM, Farzi M, Grammatopoulos G, Wilkinson JM, Beaulé PE. Influence of Femoral Component Design on Proximal Femoral Bone Mass After Total Hip Replacement: A Randomized Controlled Trial. J Bone Joint Surg Am 2021; 103:74-83. [PMID: 33079901 DOI: 10.2106/jbjs.20.00351] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND In this randomized controlled trial (RCT), we compared bone remodeling and bone turnover between 2 total hip arthroplasty implants-the short, proximally porous-coated Tri-Lock Bone-Preservation Stem and a conventional, fully-coated Corail prosthesis-over a 2-year postoperative period. METHODS Forty-six participants received the Tri-Lock prosthesis and 40 received the Corail prosthesis. At baseline, the 2 groups had similar demographics, proximal femoral bone mineral density (BMD), bone turnover markers, radiographic canal flare index, and patient-reported outcome measure (PROM) scores. Outcomes were measured at weeks 26, 52, and 104. RESULTS Loss of periprosthetic bone, measured by high-sensitivity dual x-ray absorptiometry region-free analysis (DXA-RFA), was identified at the calcar and proximal-lateral aspect of the femur in both prosthesis groups (p < 0.05). However, the conventional prosthesis was associated with a smaller reduction in BMD compared with the bone-preservation prosthesis (p < 0.001). This effect was most prominent in the region of the femoral calcar and greater trochanter. A small gain in BMD was also identified in some areas, and this gain was greater with the conventional than the bone-preservation prosthesis (p < 0.001). The 2 groups had similar changes in bone turnover markers and improvement in PROM scores over the study period (p > 0.05). The adverse-event rate was also similar between the groups (p > 0.05). CONCLUSIONS This RCT shows that prostheses intended to preserve proximal femoral bone do not necessarily perform better in this regard than conventional cementless designs. DXA-RFA is a sensitive tool for detecting spatially complex patterns of periprosthetic bone remodeling. LEVEL OF EVIDENCE Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Pablo A Slullitel
- Division of Orthopaedic Surgery, The Ottawa Hospital, Ottawa, Ontario, Canada.,Institute of Orthopaedics 'Carlos E. Ottolenghi', Italian Hospital of Buenos Aires, Buenos Aires, Argentina
| | - Mohit M Mahatma
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Mohsen Farzi
- Centre for Computational Imaging and Simulation Technologies in Bioscience, University of Leeds, Leeds, United Kingdom
| | | | - J Mark Wilkinson
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Paul E Beaulé
- Division of Orthopaedic Surgery, The Ottawa Hospital, Ottawa, Ontario, Canada
| |
Collapse
|
92
|
Prospective and longitudinal evolution of postoperative periprosthetic findings on metal artifact-reduced MR imaging in asymptomatic patients after uncemented total hip arthroplasty. Skeletal Radiol 2021; 50:1177-1188. [PMID: 33169220 PMCID: PMC8035088 DOI: 10.1007/s00256-020-03666-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To prospectively assess the evolution of postoperative MRI findings in asymptomatic patients after total hip arthroplasty (THA) over 24 months (mo). METHODS This prospective cohort study included 9 asymptomatic patients (56.7 ± 15.0 years) after THA. Metal artifact-reduced 1.5-T MRI was performed at 3, 6, 12, and 24 mo after surgery. The femoral stem and acetabular cup were assessed by two readers for bone marrow edema (BME), periprosthetic bone resorption, and periosteal edema in addition to periarticular soft tissue edema and joint effusion. RESULTS BME was common around the femoral stem in all Gruen zones after 3 mo (range: 50-100%) and 6 mo (range: 33-100%) and in the acetabulum in DeLee and Charnley zone II after 3 mo (100%) and 6 mo (33%). BME decreased substantially after 12 mo (range: 0-78%) and 24 mo (range: 0-50%), may however persist in particular in Gruen zones 1 + 7. Periosteal edema along the stem was common 3 mo postoperatively (range: 63-75%) and rare after 24 mo: 13% only in Gruen zones 2 and 5. Twelve months and 24 mo postoperatively, periprosthetic bone resorption was occasionally present around the femoral stem (range: 11-33% and 13-38%, respectively). Soft tissue edema occurred exclusively along the surgical access route after 3 mo (100%) and 6 mo (89%) and never at 12 mo or 24 mo (0%). CONCLUSION Around the femoral stem, BME (33-100%) and periosteal edema (0-75%) are common until 6 mo after THA, decreasing substantially in the following period, may however persist up to 24 mo (BME: 0-50%; periosteal edema: 0-13%) in few non-adjoining Gruen zones. Soft tissue edema along the surgical access route should have disappeared 12 mo after surgery.
Collapse
|
93
|
Bohner L, Tortamano P, Meier N, Gremse F, Kleinheinz J, Hanisch M. Trabecular Bone Assessment Using Magnetic-Resonance Imaging: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E9282. [PMID: 33322479 PMCID: PMC7763832 DOI: 10.3390/ijerph17249282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022]
Abstract
The aim of this study was to assess trabecular bone morphology via magnetic-resonance imaging (MRI) using microcomputed tomography (µCT) as the control group. Porcine bone samples were scanned with T1-weighted turbo spin echo sequence imaging, using TR 25 ms, TE 3.5 ms, FOV 100 × 100 × 90, voxel size 0.22 × 0.22 × 0.50 mm, and scan time of 11:18. µCT was used as the control group with 80 kV, 125 mA, and a voxel size of 16 µm. The trabecular bone was segmented on the basis of a reference threshold value and morphological parameters. Bone volume (BV), Bone-volume fraction (BvTv), Bone specific surface (BsBv), trabecular thickness (TbTh), and trabecular separation (TbSp) were evaluated. Paired t-test and Pearson correlation test were performed at p = 0.05. MRI overestimated BV, BvTv, TbTh, and TbSp values. BsBv was the only parameter that was underestimated by MRI. High statistical correlation (r = 0.826; p < 0.05) was found for BV measurements. Within the limitations of this study, MRI overestimated trabecular bone parameters, but with a statistically significant fixed linear offset.
Collapse
Affiliation(s)
- Lauren Bohner
- Department of Cranio-Maxillofacial Surgery, University Hospital Muenster, 48149 Muenster, Germany; (J.K.); (M.H.)
- Department of Prosthodontics, School of Dentistry, University of São Paulo, São Paulo 0508-000, Brazil;
| | - Pedro Tortamano
- Department of Prosthodontics, School of Dentistry, University of São Paulo, São Paulo 0508-000, Brazil;
| | - Norbert Meier
- Institute of Clinical Radiology, University Clinics Muenster, 48149 Muenster, Germany;
| | - Felix Gremse
- Department of Experimental Molecular Imaging, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany;
| | - Johannes Kleinheinz
- Department of Cranio-Maxillofacial Surgery, University Hospital Muenster, 48149 Muenster, Germany; (J.K.); (M.H.)
| | - Marcel Hanisch
- Department of Cranio-Maxillofacial Surgery, University Hospital Muenster, 48149 Muenster, Germany; (J.K.); (M.H.)
| |
Collapse
|
94
|
Abstract
Articular cartilage of the knee can be evaluated with high accuracy by magnetic resonance imaging (MRI) in preoperative patients with knee pain, but image quality and reporting are variable. This article discusses the normal MRI appearance of articular cartilage as well as the common MRI abnormalities of knee cartilage that may be considered for operative treatment. This article focuses on a practical approach to preoperative MRI of knee articular cartilage using routine MRI techniques. Current and future directions of knee MRI related to articular cartilage are also discussed.
Collapse
Affiliation(s)
| | - Akshay Chaudhari
- Department of Radiology, Stanford University, Stanford, California
| | - Robert D. Boutin
- Department of Radiology, Musculoskeletal Imaging, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
95
|
Hu Q, Yu VY, Yang Y, Hu P, Sheng K, Lee PP, Kishan AU, Raldow AC, O'Connell DP, Woods KE, Cao M. Practical Safety Considerations for Integration of Magnetic Resonance Imaging in Radiation Therapy. Pract Radiat Oncol 2020; 10:443-453. [PMID: 32781246 DOI: 10.1016/j.prro.2020.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 12/29/2022]
Abstract
Interest in integrating magnetic resonance imaging (MRI) in radiation therapy (RT) practice has increased dramatically in recent years owing to its unique advantages such as excellent soft tissue contrast and capability of measuring biological properties. Continuous real-time imaging for intrafractional motion tracking without ionizing radiation serves as a particularly attractive feature for applications in RT. Despite its many advantages, the integration of MRI in RT workflows is not straightforward, with many unmet needs. MR safety remains one of the key challenges and concerns in the clinical implementation of MR simulators and MR-guided radiation therapy systems in radiation oncology. Most RT staff are not accustomed to working in an environment with a strong magnetic field. There are specific requirements in RT that are different from diagnostic applications. A large variety of implants and devices used in routine RT practice do not have clear MR safety labels. RT-specific imaging pulse sequences focusing on fast acquisition, high spatial integrity, and continuous, real-time acquisition require additional MR safety testing and evaluation. This article provides an overview of MR safety tailored toward RT staff, followed by discussions on specific requirements and challenges associated with MR safety in the RT environment. Strategies and techniques for developing an MR safety program specific to RT are presented and discussed.
Collapse
Affiliation(s)
- Qiongge Hu
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Victoria Y Yu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yingli Yang
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Peng Hu
- Department of Radiology, University of California, Los Angeles, California
| | - Ke Sheng
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Percy P Lee
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amar U Kishan
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Ann C Raldow
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Dylan P O'Connell
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Kaley E Woods
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Minsong Cao
- Department of Radiation Oncology, University of California, Los Angeles, California.
| |
Collapse
|
96
|
Abstract
Hand infections can lead to significant morbidity if not treated promptly. Most of these infections, such as abscesses, tenosynovitis, cellulitis, and necrotizing fasciitis, can be diagnosed clinically. Laboratory values, such as white blood cell count, erythrocyte sedimentation rate, C-reactive protein, and recently, procalcitonin and interleukin-6, are helpful in supporting the diagnosis and trending disease progression. Radiographs should be obtained in all cases of infection. Ultrasound is a dynamic study that can provide quick evaluation of deeper structures but is operator dependent. Computed tomographic and MRI studies are useful for evaluating deep space or bony infections and preoperative surgical planning.
Collapse
|
97
|
Raven TF, Boxriker S, Mammadov J, Petrov K, Moghaddam A, Friedl W. Complications and imaging artifacts related to MRI in patients with intramedullary osteosynthesis after proximal femur fracture. J Orthop Surg (Hong Kong) 2020; 27:2309499019879055. [PMID: 31615327 DOI: 10.1177/2309499019879055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Fractures of the proximal femur is one of the most frequent human injuries, and most of the patients are treated with osteosynthesis, such as intramedullary nails. These patients often require magnetic resonance imaging (MRI) scans in their further lives due to various reasons. This raises the question of whether complications with implanted osteosynthesis material such as implant loosening, burning, dislocation, or other complications are to be expected or whether an MRI examination is even suitable with regard to imaging artifacts. METHODS The aim of this retrospective study was to investigate the rate and type of complications after MRI examinations in patients with inserted intramedullary osteosynthesis device. Furthermore, artifacts in MRI caused by this device were assessed. RESULTS MRI scans of the head (20 of 62), spine (20 of 62), pelvis (10 of 62), and lower extremity (6/62) were performed. Three of the 62 patients received an MRI of the abdomen, and 2 of the 62 patients received an MRI of the thorax and the upper extremity. Of the 62 patients, noneexperienced complications during the immediate examination. Similarly, none of the patients showed early complications within the first 2 weeks after MRI. In our long-term follow-up examination, no long-term complication after MRI was observed in the recorded 15 patients. Artifacts were found in 14 patients: in MRI scans of the pelvis (10/10), of the abdomen (2/3), and of the lower extremity (2/6). CONCLUSION There were no complications during the MRI scan, in the first 2 weeks after MRI, or in the recorded long-term results. MRI with an enclosed intramedullary nail provided good image quality unless the immediate implant site was imaged. MRI diagnosis is thus possible in patients with an inserted intramedullary nail. The inserted intramedullary nail should therefore not be an exclusion criterion when sectional imaging with MRI is required.
Collapse
Affiliation(s)
- Tim Friedrich Raven
- Aschaffenburg Trauma and Orthopaedic Research Group (ATORG), Center for Orthopaedics, Trauma Surgery and Sports Medicine, Hospital Aschaffenburg-Alzenau, Aschaffenburg, Germany
| | - Sonja Boxriker
- Aschaffenburg Trauma and Orthopaedic Research Group (ATORG), Center for Orthopaedics, Trauma Surgery and Sports Medicine, Hospital Aschaffenburg-Alzenau, Aschaffenburg, Germany
| | - Javad Mammadov
- Aschaffenburg Trauma and Orthopaedic Research Group (ATORG), Center for Orthopaedics, Trauma Surgery and Sports Medicine, Hospital Aschaffenburg-Alzenau, Aschaffenburg, Germany
| | - Kiril Petrov
- Aschaffenburg Trauma and Orthopaedic Research Group (ATORG), Center for Orthopaedics, Trauma Surgery and Sports Medicine, Hospital Aschaffenburg-Alzenau, Aschaffenburg, Germany
| | - Arash Moghaddam
- Aschaffenburg Trauma and Orthopaedic Research Group (ATORG), Center for Orthopaedics, Trauma Surgery and Sports Medicine, Hospital Aschaffenburg-Alzenau, Aschaffenburg, Germany
| | - Wilhelm Friedl
- Division of Orthopaedics and Trauma Surgery, Rotkreuzklinik Wertheim GmbH, Wertheim am Main, Germany
| |
Collapse
|
98
|
Bohner L, Meier N, Gremse F, Tortamano P, Kleinheinz J, Hanisch M. Magnetic resonance imaging artifacts produced by dental implants with different geometries. Dentomaxillofac Radiol 2020; 49:20200121. [PMID: 32589480 DOI: 10.1259/dmfr.20200121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES The purpose of this study was to evaluate the MRI-artifact pattern produced by titanium and zirconia dental implants with different geometries (diameter and height). METHODS Three titanium (Titan SLA, Straumann) and three zirconia (Pure Ceramic Implant, Straumann) dental implants differing on their design (diameter x height) were installed in porcine bone samples. Samples were scanned with a MRI (3T, T1W turbo spin echo sequence, TR/TE 25/3.5ms, voxel size 0.22×0.22×0.50 mm, scan time 11:18). Micro-CT was used as control group (80kV, 125mA, voxel size 16µm). Artifacts' distribution was measured at vestibular and lingual sites, mesial and distal sites, and at the apex. Statistical analysis was performed with Within-ANOVA (p=0.05). RESULTS Artifacts distribution measured 2.57 ± 1.09 mm for titanium artifacts and 0.37 ± 0.20 mm for zirconia artifacts (p<0.05). Neither the measured sites (p=0.73) nor the implant geometries (p=0.43) influenced the appearance of artifacts. CONCLUSION Artifacts were higher for titanium than zirconia implants. The artifacts pattern was similar for different dental implant geometries.
Collapse
Affiliation(s)
- Lauren Bohner
- Department of Cranio-Maxillofacial Surgery, Muenster University Hospital, Muenster, Germany.,Department of Prosthodontics, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Norbert Meier
- Institute of Clinical Radiology, University Clinics Muenster, Muenster, Germany
| | - Felix Gremse
- Experimental Molecular Imaging, HelmholtInstitute, RWTH Aachen University, Aachen, Germany
| | - Pedro Tortamano
- Department of Prosthodontics, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Johannes Kleinheinz
- Department of Cranio-Maxillofacial Surgery, Muenster University Hospital, Muenster, Germany
| | - Marcel Hanisch
- Department of Cranio-Maxillofacial Surgery, Muenster University Hospital, Muenster, Germany
| |
Collapse
|
99
|
Accelerated metallic artifact reduction imaging using spectral bin modulation of multiacquisition variable-resonance image combination selective imaging. Magn Reson Imaging 2020; 72:19-24. [PMID: 32574683 DOI: 10.1016/j.mri.2020.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 05/11/2020] [Accepted: 06/13/2020] [Indexed: 11/21/2022]
Abstract
OBJECTIVES To assess the clinical utility of a prototype sequence for metal artifact reduction, the multiacquisition variable-resonance image combination selective (MAVRIC-SL) at 3 T. This sequence allows a surgical prosthesis-dependent reduction in the number of spectral bins. We compared the prototype MAVRIC SL to the conventional two-dimensional fast spin-echo (FSE) sequences and MAVRIC SL images acquired with all spectral bins to those acquired with the optimized number of spectral bins. METHODS MAVRIC SL images were acquired in 25 image sets from August 2017 to April 2018. For each subject, the optimized number of spectral bins was determined using a short spectral calibration scan. The image sets obtained with magnetic resonance imaging that were used for the analysis consisted of MAVRIC-SL proton density (PD)-weighted or short inversion time inversion recovery (STIR) images acquired with all 24 spectral bins, the corresponding images with the optimized number of spectral bins, and the conventional two-dimensional FSE or STIR PD-weighted images. A musculoskeletal radiologist reviewed and scored the images using a five-point scale for artifact reduction around the prosthesis and visualization of the prosthesis and peri-prosthetic tissues. Quantitative evaluation of the peri-prosthetic tissues was also performed. The Wilcoxon rank-sum test was used to test for significance. RESULTS The MAVRIC SL images enabled a significantly improved reduction in metallic artifacts compared to the conventional two-dimensional FSE sequences. The optimized number of spectral bins ranged from 6 to 20, depending on the prosthesis susceptibility difference, size, and orientation to the B0 field. The scan times significantly decreased with a reduced number of spectral bins (354.0 ± 139.1 versus 283.0 ± 89.6 s; 20% reduced scan time; p < .05). Compared to the MAVRIC SL images acquired with all 24 bins, the artifact reduction and visualization of the prosthesis and peri-prosthetic tissues on the MAVRIC SL images acquired with calibrated bins were not significantly different. CONCLUSIONS Compared to the MAVRIC SL images acquired with all 24 spectral bins, those acquired with an optimized number of spectral bins can reduce metallic artifacts with no significant image quality degradation while providing reduced scan time.
Collapse
|
100
|
Technological Advances of Magnetic Resonance Imaging in Today's Health Care Environment. Invest Radiol 2020; 55:531-542. [PMID: 32487969 DOI: 10.1097/rli.0000000000000678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Today's health care environment is shifting rapidly, driven by demographic change and high economic pressures on the system. Furthermore, modern precision medicine requires highly accurate and specific disease diagnostics in a short amount of time. Future imaging technology must adapt to these challenges.Demographic change necessitates scanner technologies tailored to the needs of an aging and increasingly multimorbid patient population. Accordingly, examination times have to be short enough that diagnostic images can be generated even for patients who can only lie in the scanner for a short time because of pain or with low breath-hold capacity.For economic reasons, the rate of nondiagnostic scans due to artifacts should be reduced as far as possible. As imaging plays an increasingly pivotal role in clinical-therapeutic decision making, magnetic resonance (MR) imaging facilities are confronted with an ever-growing number of patients, emphasizing the need for faster acquisitions while maintaining image quality.Lastly, modern precision medicine requires high and standardized image quality as well as quantifiable data in order to develop image-based biomarkers on which subsequent treatment management can rely.In recent decades, a variety of approaches have addressed the challenges of high throughput, demographic change, and precision medicine in MR imaging. These include field strength, gradient, coil and sequence development, as well as an increasing consideration of artificial intelligence. This article reviews state-of-the art MR technology and discusses future implementation from the perspective of what we know today.
Collapse
|