51
|
Chen YC, Cheng CH, Chen GD, Hung CC, Yang CH, Hwang SPL, Kawakami K, Wu BK, Huang CJ. Recapitulation of zebrafishsncgaexpression pattern and labeling the habenular complex in transgenic zebrafish using green fluorescent protein reporter gene. Dev Dyn 2009; 238:746-54. [DOI: 10.1002/dvdy.21877] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
52
|
Surgucheva I, Shestopalov VI, Surguchov A. Effect of gamma-synuclein silencing on apoptotic pathways in retinal ganglion cells. J Biol Chem 2008; 283:36377-85. [PMID: 18936092 PMCID: PMC2606004 DOI: 10.1074/jbc.m806660200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/15/2008] [Indexed: 11/06/2022] Open
Abstract
gamma-Synuclein (Syn G) is highly expressed in retinal ganglion cells and the loss of these cells in glaucoma is associated with significant reduction of the intracellular Syn G level. However, a causative relationship between these two events has not been established. Here we show that the knockdown of Syn G results in a decreased viability of the immortalized retinal ganglion cells (RGC-5). The Syn G silencing reduces phosphorylation of serine 112 (Ser112) in Bad protein, a member of the Bcl-2 family that plays a critical role in apoptotic cell death signaling. Our gene expression analysis data suggests that changes in Bad phosphorylation status may be caused by a coordinated shift in activities of kinases controlling Bad phosphorylation and phosphatases catalyzing its dephosphorylation. Moreover, increased phosphorylation of Bad-sequestering protein 14-3-3 detected in these cells is also pro-apoptotic. These results suggest that the homeostatic level of Syn G in RGC-5 cells is required for transcriptional regulation of protein kinases and phosphatases, controlling phosphorylation of Bad and 14-3-3. Lowering Syn G causes Bad dephosphorylation, dissociation from phosphorylated 14-3-3, and translocation to mitochondria where it initiates apoptotic death cascade.
Collapse
Affiliation(s)
- Irina Surgucheva
- Laboratory of Retinal Biology, Veterans Affairs Medical Center, Kansas City, Missouri 64128, USA
| | | | | |
Collapse
|
53
|
Finnegan S, Robson JL, Wylie M, Healy A, Stitt AW, Curry WJ. Protein expression profiling during chick retinal maturation: a proteomics-based approach. Proteome Sci 2008; 6:34. [PMID: 19077203 PMCID: PMC2648947 DOI: 10.1186/1477-5956-6-34] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/10/2008] [Indexed: 11/16/2022] Open
Abstract
Background The underlying pathways that drive retinal neurogenesis and synaptogenesis are still relatively poorly understood. Protein expression analysis can provide direct insight into these complex developmental processes. The aim of this study was therefore to employ proteomic analysis to study the developing chick retina throughout embryonic (E) development commencing at day 12 through 13, 17, 19 and post-hatch (P) 1 and 33 days. Results 2D proteomic and mass spectrometric analysis detected an average of 1514 spots per gel with 15 spots demonstrating either modulation or constitutive expression identified via MS. Proteins identified included alpha and beta-tubulin, alpha enolase, B-creatine kinase, gamma-actin, platelet-activating factor (PAF), PREDICTED: similar to TGF-beta interacting protein 1, capping protein (actin filament muscle Z line), nucleophosmin 1 (NPM1), dimethylarginine dimethylaminohydrolase, triosphoaphate isomerase, DJ1, stathmin, fatty acid binding protein 7 (FABP7/B-FABP), beta-synuclein and enhancer of rudimentary homologue. Conclusion This study builds upon previous proteomic investigations of retinal development and represents the addition of a unique data set to those previously reported. Based on reported bioactivity some of the identified proteins are most likely to be important to normal retinal development in the chick. Continued analysis of the dynamic protein populations present at the early stages and throughout retinal development will increase our understanding of the molecular events underpinning retinogenesis.
Collapse
Affiliation(s)
- Sorcha Finnegan
- Centre for Vision Sciences, Queen's University of Belfast, Institute of Clinical Sciences, Royal Victoria Hospital, Belfast, Northern Ireland.
| | | | | | | | | | | |
Collapse
|
54
|
Barnes CS, Yan J, Wilmot GR. A negative electroretinogram (ERG) in a case of probable multiple system atrophy (MSA). Doc Ophthalmol 2008; 118:247-56. [PMID: 19023607 DOI: 10.1007/s10633-008-9156-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 10/30/2008] [Indexed: 11/24/2022]
Abstract
Recent articles have described negative ERGs in a small number of patients with cerebellar degeneration. Five of the previously reported seven cases were hereditary (2/5 had spinocerebellar ataxia-1 (SCA-1) gene mutations) and the other two were sporadic. We report a negative ERG in a case of cerebellar degeneration that differs significantly from earlier cases. The 65-year-old man had a 5-year history of ataxia, unsteady gait, orthostatic hypotension, and bladder and erectile dysfunction, with no family history of neurological or retinal disease. Visual acuity was 20/30 OD, 20/40 OS, but reportedly was never 20/20. His fundus exam showed optic nerve pallor, but otherwise was normal. Visual fields had enlarged blind spots but no central scotomas. Autofluorescence was normal. Photopic flash and 30-Hz ERG responses were normal. Rod b-waves were reduced and delayed. Standard flash a-waves were normal, but the b-waves were smaller than the a-waves. Blood tests were negative for Leber's hereditary optic neuropathy, dominant optic atrophy, and for expansions in SCA genes including SCA-1. This is only the third reported case of sporadic ataxia with a negative ERG. The patient's prominent autonomic dysfunction differs from the previous cases, and meets the clinical criteria for probable multiple system atrophy (MSA). This introduces another possible diagnosis in cases of negative ERGs with ataxia, and suggests that the visual system may be affected in MSA.
Collapse
Affiliation(s)
- Claire S Barnes
- Department of Ophthalmology, Emory University, 1365B Clifton Rd NE, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
55
|
Hong S, Lee HK, Kim CY, Seong GJ. Identification and localization of alpha-synuclein in human cornea. KOREAN JOURNAL OF OPHTHALMOLOGY 2008; 22:145-6. [PMID: 18612236 PMCID: PMC2629938 DOI: 10.3341/kjo.2008.22.2.145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
56
|
Arredondo JL, Fernandes JR, Rao C. Ocular Findings in Pediatric Deaths Under 2Years of Age (19942004). J Forensic Sci 2008; 53:928-34. [DOI: 10.1111/j.1556-4029.2008.00757.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
57
|
|
58
|
Ye Q, Zheng MH. Advances in γ-Synuclein and progression of tumors. Shijie Huaren Xiaohua Zazhi 2008; 16:1666-1671. [DOI: 10.11569/wcjd.v16.i15.1666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
γ-Synuclein with strong tissue specificity, a member of the synuclein family, is mainly located in nervous system. Recently, elevated levels of γ-Synuclein was detected in various types of cancers, such as breast, ovarian, liver, gastric cancers, etc., especially in their advanced stages, which indicated loss of tissue specificity in cancer development and also suggested that γ-Synuclein might serve as a new tumor marker. Additionally, multiple pathways influence the regulation of γ-Synuclein expression. γ-Synuclein has also been shown to promote invasion and metastasis of breast and ovarian cancers and enhance caners' tolerance to some chemotherapies . Overexpression of γ-synuclein also interferes with drug-induced apoptotic responses, which makes it a potential target for treatment.
Collapse
|
59
|
Buckingham BP, Inman DM, Lambert W, Oglesby E, Calkins DJ, Steele MR, Vetter ML, Marsh-Armstrong N, Horner PJ. Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma. J Neurosci 2008; 28:2735-44. [PMID: 18337403 PMCID: PMC6670674 DOI: 10.1523/jneurosci.4443-07.2008] [Citation(s) in RCA: 341] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 01/06/2008] [Accepted: 01/07/2008] [Indexed: 01/28/2023] Open
Abstract
Glaucoma is characterized by retinal ganglion cell (RGC) pathology and a progressive loss of vision. Previous studies suggest RGC death is responsible for vision loss in glaucoma, yet evidence from other neurodegenerative diseases suggests axonal degeneration, in the absence of neuronal loss, can significantly affect neuronal function. To characterize RGC degeneration in the DBA/2 mouse model of glaucoma, we quantified RGCs in mice of various ages using neuronal-specific nuclear protein (NeuN) immunolabeling, retrograde labeling, and optic nerve axon counts. Surprisingly, the number of NeuN-labeled RGCs did not decline significantly until 18 months of age, at which time a significant decrease in RGC somal size was also observed. Axon dysfunction and degeneration occurred before loss of NeuN-positive RGCs, because significant declines in RGC number assayed by retrograde tracers and axon counts were observed at 13 months. To examine whether axonal dysfunction/degeneration affected gene expression in RGC axons or somas, NeuN and neurofilament-heavy (NF-H) immunolabeling was performed along with quantitative reverse transcription-PCR for RGC-specific genes in retinas of aged DBA/2 mice. Although these mice had similar numbers of NeuN-positive RGCs, the expression of neurofilament light, Brn-3b, and Sncg mRNA varied; this variation in RGC-specific gene expression was correlated with the appearance of NF-H immunoreactive RGC axons. Together, these data support a progression of RGC degeneration in this model of glaucoma, beginning with loss of retrograde label, where axon dysfunction and degeneration precede neuronal loss. This progression of degeneration suggests a need to examine the RGC axon as a locus of pathology in glaucoma.
Collapse
Affiliation(s)
- Brian P. Buckingham
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98104
| | - Denise M. Inman
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98104
| | - Wendi Lambert
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98104
| | - Ericka Oglesby
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, and
- Kennedy Krieger Institute, Baltimore, Maryland 21205
| | - David J. Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Michael R. Steele
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah 84132
| | - Monica L. Vetter
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah 84132
| | - Nicholas Marsh-Armstrong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, and
- Kennedy Krieger Institute, Baltimore, Maryland 21205
| | - Philip J. Horner
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98104
| |
Collapse
|
60
|
Retinal ganglion cells downregulate gene expression and lose their axons within the optic nerve head in a mouse glaucoma model. J Neurosci 2008; 28:548-61. [PMID: 18184797 DOI: 10.1523/jneurosci.3714-07.2008] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Little is known about molecular changes occurring within retinal ganglion cells (RGCs) before their death in glaucoma. Taking advantage of the fact that gamma-synuclein (Sncg) mRNA is expressed specifically and highly in adult mouse RGCs, we show in the DBA/2J mouse model of glaucoma that there is not only a loss of cells expressing this gene, but also a downregulation of gene expression of Sncg and many other genes within large numbers of RGCs. This downregulation of gene expression within RGCs occurs together with reductions in FluoroGold (FG) retrograde transport. Surprisingly, there are also large numbers of Sncg-expressing cells without any FG labeling, and among these many that have a marker previously associated with disconnected RGCs, accumulation of phosphorylated neurofilaments in their somas. These same diseased retinas also have large numbers of RGCs that maintain the intraocular portion while losing the optic nerve portion of their axons, and these disconnected axons terminate within the optic nerve head. Our data support the view that RGC degeneration in glaucoma has two separable stages: the first involves atrophy of RGCs, whereas the second involves an insult to axons, which causes the degeneration of axon portions distal to the optic nerve head but does not cause the immediate degeneration of intraretinal portions of axons or the immediate death of RGCs.
Collapse
|
61
|
Chapter 6 Molecular and Cellular Biology of Synucleins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 270:225-317. [DOI: 10.1016/s1937-6448(08)01406-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
62
|
Göritz C, Thiebaut R, Tessier LH, Nieweg K, Moehle C, Buard I, Dupont JL, Schurgers LJ, Schmitz G, Pfrieger FW. Glia-induced neuronal differentiation by transcriptional regulation. Glia 2007; 55:1108-22. [PMID: 17582617 DOI: 10.1002/glia.20531] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There is increasing evidence that different phases of brain development depend on neuron-glia interactions including postnatal key events like synaptogenesis. To address how glial cells influence synapse development, we analyzed whether and how glia-derived factors affect gene expression in primary cultures of immunoisolated rat retinal ganglion cells (RGCs) by oligonucleotide microarrays. Our results show that the transcript pattern matched the developmental stage and characteristic properties of RGCs in vitro. Glia-conditioned medium (GCM) and cholesterol up- and downregulated a limited number of genes that influence the development of dendrites and synapses and regulate cholesterol and fatty acid metabolism. The oligonucleotide microarrays detected the transcriptional regulation of neuronal cholesterol homeostasis in response to GCM and cholesterol treatment. Surprisingly, our study revealed neuronal expression and glial regulation of matrix gla protein (Mgp). Together, our results suggest that glial cells promote different aspects of neuronal differentiation by regulating transcription of distinct classes of genes.
Collapse
Affiliation(s)
- Christian Göritz
- Department of Neurotransmission/Neuroendocrine Secretion, Institute of Cellular and Integrative Neurosciences (INCI) UMR7168/LC2 CNRS/ULP, Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Ahmad M, Attoub S, Singh MN, Martin FL, El-Agnaf OMA. Gamma-synuclein and the progression of cancer. FASEB J 2007; 21:3419-30. [PMID: 17567567 DOI: 10.1096/fj.07-8379rev] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The synucleins are a small, soluble, highly conserved group of neuronal proteins that have been implicated in both neurodegenerative diseases and cancer. The synuclein family consists of alpha-, beta-, and gamma-synucleins (gamma-syn). They are a natively unfolded group of proteins that share sequence homologies and structural properties. So far, the biological functions of the synucleins are still unclear, but their involvement in neurodegenerative diseases and cancer may provide insights into the pathological processes that result from these two groups of debilitating diseases, and present the possibility to use them as potential targets for early diagnosis and treatment. Recently, elevated levels of gamma-syn proteins have been detected in various types of cancer, especially in advanced stages of the disease. Furthermore, studies to date indicate that overexpression of gamma-syn compromises normal mitotic checkpoint controls, resulting in multinucleation as well as faster cell growth. Gamma-syn has also been shown to promote invasion and metastasis in in vitro assays as well as in animal models. Overexpression of gamma-syn also interferes with drug-induced apoptotic responses. These observations raise questions about the involvement of gamma-syn in the process of tumorigenesis and metastasis, and efforts have already been made to use gamma-syn as a marker for assessing breast cancer progression. This review will discuss the involvement of gamma-syn in cancer progression, metastasis and its potential as a marker.
Collapse
Affiliation(s)
- Mushfika Ahmad
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates, Al Ain, PO BOX 17666, United Arab Emirates
| | | | | | | | | |
Collapse
|
64
|
Surguchov A. Focus on molecules: the synucleins: "When friends become foes". Exp Eye Res 2006; 86:1-2. [PMID: 17049462 DOI: 10.1016/j.exer.2006.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 09/01/2006] [Accepted: 09/06/2006] [Indexed: 11/26/2022]
Affiliation(s)
- Andrei Surguchov
- Retinal Biology Laboratory, VA Medical Center, Kansas City, 4801 Linwood blvd, Kansas City, MO 64128, USA.
| |
Collapse
|
65
|
Surgucheva I, McMahon B, Surguchov A. gamma-synuclein has a dynamic intracellular localization. ACTA ACUST UNITED AC 2006; 63:447-58. [PMID: 16732559 DOI: 10.1002/cm.20135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
gamma-Synuclein is a member of the synuclein family consisting of three proteins. Within the last several years increasing attention has focused on these proteins because of their role in human diseases. alpha-Synuclein relevance to Parkinson's disease is based on mutations found in familial cases of the disease and its presence in filaments and inclusion bodies in sporadic cases. gamma-Synuclein is implicated in some forms of cancer and ocular diseases, while beta-synuclein may antagonize their pathological functions. In this paper we present data on the localization and properties of gamma-synuclein in several neuronal and nonneuronal cell cultures. We show that contrary to the current opinion, gamma-synuclein is not an exclusively cytoplasmic protein, but has a dynamic localization and can associate with subcellular structures. It is present in the perinuclear area and may be associated to centrosomes. On late steps of mitosis gamma-synuclein is not found in the centrosomes, and redistributes to the midbody in telophase. Under stress conditions a translocation of gamma-synuclein from the perinuclear area to the nucleus occurs exhibiting nucleocytoplasmic shuttling. gamma-Synuclein overexpression reduces neurite outgrowth in a greater extent then alpha-synuclein overexpression. These data support the view that gamma-synuclein may change its intracellular localization and associate with subcellular structures in response to intracellular signaling or stress.
Collapse
Affiliation(s)
- Irina Surgucheva
- Retinal Biology Research Laboratory, Veterans Administration Medical Center, Kansas City, MO 66148, USA.
| | | | | |
Collapse
|
66
|
Amer DAM, Irvine GB, El-Agnaf OMA. Inhibitors of alpha-synuclein oligomerization and toxicity: a future therapeutic strategy for Parkinson's disease and related disorders. Exp Brain Res 2006; 173:223-33. [PMID: 16733698 DOI: 10.1007/s00221-006-0539-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Accepted: 05/01/2006] [Indexed: 01/12/2023]
Abstract
An abundance of genetic, histopathological, and biochemical evidence has implicated the neuronal protein, alpha-synuclein (alpha-syn) as a key player in the development of several neurodegenerative diseases, the so-called synucleinopathies, of which Parkinson's disease (PD) is the most prevalent. Development of disease appears to be linked to events that increase the intracellular concentration of alpha-syn or cause its chemical modification, either of which can accelerate the rate at which it forms aggregates. Examples of such events include increased copy number of genes, decreased rate of degradation via the proteasome or other proteases, or altered forms of alpha-syn, such as truncations, missense mutations, or chemical modifications by oxidative reactions. Aggregated forms of the protein, especially newly formed soluble aggregates, are toxic to cells, so that one therapeutic strategy would be to reduce the rate at which such oligomerization occurs. We have therefore designed several peptides and also identified small molecules that can inhibit alpha-syn oligomerization and toxicity in vitro. These compounds could serve as lead compounds for the design of new drugs for the treatment of PD and related disorders in the future.
Collapse
Affiliation(s)
- Dena A M Amer
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, P.O.Box: 17666, Al Ain, United Arab Emirates
| | | | | |
Collapse
|
67
|
Surgucheva I, Ninkina N, Buchman VL, Grasing K, Surguchov A. Protein aggregation in retinal cells and approaches to cell protection. Cell Mol Neurobiol 2005; 25:1051-66. [PMID: 16392036 DOI: 10.1007/s10571-005-8474-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Accepted: 04/21/2005] [Indexed: 10/25/2022]
Abstract
1. Retinal dystrophies (RD) comprise a group of clinically and genetically heterogeneous retinal disorders, which typically result in the degeneration of photoreceptors followed by the impairment or loss of vision. Although age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are among the most common forms of RD, currently, there is no effective treatment for either disorder. 2. Recently, abnormal protein accumulation and aggregation due to protein misfolding and proteasome inhibition have been implicated in the pathogenesis of RD. In this paper we describe effects of several factors on protein aggregation and survival of photoreceptor cells. 3. Expression of rhodopsin carrying P23H mutation causes its accumulation in intracellular inclusion bodies in a perinuclear area of photoreceptor cells. beta- and gamma-synucleins and heat shock protein Hsp-70, but not alpha-synuclein, protect cultured ocular cells from mutant opsin accumulation. This effect might be explained by their chaperonic activity. 4. Knock-out of alpha- and gamma-synucleins does not affect gross retinal morphology, but induces tyrosine hydroxylase in the inner prexiform layer of the retina. Selegiline-a monoamine oxidase inhibitor used for the treatment of Parkinson's disease, reduces apoptosis and increases viability in cultured retinal pigment epithelium cells (APRE-19). 5. These results suggest that chaperones and selegiline may be considered promising candidates for the protection of ocular cells from the accumulation of misfolded and aggregated proteins.
Collapse
Affiliation(s)
- Irina Surgucheva
- Retinal Disease Research Laboratory, Veterans Administration Medical Center, Kansas City, Missouri 66148, USA
| | | | | | | | | |
Collapse
|
68
|
Surgucheva I, Park BC, Yue BYJT, Tomarev S, Surguchov A. Interaction of myocilin with gamma-synuclein affects its secretion and aggregation. Cell Mol Neurobiol 2005; 25:1009-33. [PMID: 16392033 DOI: 10.1007/s10571-005-8471-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 04/12/2005] [Indexed: 10/25/2022]
Abstract
Mutations in the gene encoding human myocilin are associated with some cases of juvenile and early-onset glaucoma. Glaucomatous mutations prevent myocilin from being secreted. The analysis of the defects associated with mutations point to the existence of factor(s) in addition to mutations that might be implicated in the development of glaucoma. In the present paper, we found that interaction of myocilin with one of the members of the synuclein family alters its properties, including its ability to be secreted. Results of immunoprecipitation show that myocilin is a gamma-synuclein-interacting protein. Further analysis demonstrated that both myocilin and gamma-synuclein are expressed in human TM cells, immortalized rat ganglion (RGC-5) cells, and HT22 hippocampal neurons. According to Western blotting, in addition to monomeric form with molecular weight 17 kDa gamma-synuclein is present as higher molecular weight forms ( approximately 35 and 68 KDa), presumably dimer and tetramer. Myocilin and gamma-synuclein have partially overlapping perinuclear localization. Dexamethasone upregulates myocilin expression in RGC-5 cells and HT22 hippocampal neurons. We found alterations of myocilin properties as a result of its interaction with gamma-synuclein. In cultured cells, gamma-synuclein upregulates myocilin expression, inhibits its secretion and prevents the formation of high molecular weight forms of myocilin. Although both alpha-synuclein and gamma-synuclein are expressed in HTM cells, only gamma-synuclein interacts with myocilin and alters its properties. We conclude that myocilin and gamma-synuclein interact and as a result, myocilin's properties are changed. Since myocilin and gamma-synuclein have partially overlapping intracellular localization in cell types that are implicated in glaucoma development, their interaction may play an important role in glaucoma.
Collapse
Affiliation(s)
- Irina Surgucheva
- Retinal Disease Research Laboratory, Veterans Administration Medical Center, 4801 Linwood Blvd, Kansas City, MO 66148, USA
| | | | | | | | | |
Collapse
|
69
|
Papachroni K, Ninkina N, Wanless J, Kalofoutis AT, Gnuchev NV, Buchman VL. Peripheral sensory neurons survive in the absence of alpha- and gamma-synucleins. J Mol Neurosci 2005; 25:157-64. [PMID: 15784963 DOI: 10.1385/jmn:25:2:157] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Accepted: 08/30/2004] [Indexed: 11/11/2022]
Abstract
Physiological functions of alpha-synuclein, a protein implicated in certain types of neurodegeneration, and two other members of the same family, beta-synuclein and gamma-synuclein, are not clearly understood. It has been suggested that synucleins are involved in intracellular processes associated with survival of neurons and their response to stress, and that changes of synuclein ratio might have deteriorating effects on neurons. In wild-type mice, sensory neurons of the peripheral nervous system express alpha-synuclein and notably high levels of gamma-synuclein, but targeted inactivation of either of these genes has no effect on these neurons. Here we produced double, alpha-synuclein/gamma-synuclein null mutant mice, which develop normally, are fertile, and show no obvious signs of pathology in adulthood. Survival of alpha/gamma-synuclein-deficient peripheral sensory neurons in vivo and in primary tissue culture is indistinguishable from survival of wild-type neurons. The absence of two synucleins does not lead to expression in sensory neurons of the third member of the family, beta-synuclein. Therefore, our results demonstrate that neurons with normally high levels of synuclein(s) can develop and survive normally in the absence of any of these proteins. This suggests that other intraneuronal mechanisms and pathways effectively compensate the loss of synuclein function in null mutant animals.
Collapse
Affiliation(s)
- Katerina Papachroni
- Department of Preclinical Veterinary Sciences, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | | | | | | | | | | |
Collapse
|
70
|
Maurage CA, Ruchoux MM, de Vos R, Surguchov A, Destee A. Retinal involvement in dementia with Lewy bodies: A clue to hallucinations? Ann Neurol 2003; 54:542-7. [PMID: 14520672 DOI: 10.1002/ana.10730] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual hallucinations are a core feature of dementia with Lewy bodies. Their pathophysiology is not well understood, because neither clinical nor histological data have shown their basic mechanisms. Here, we report the presence of pale inclusions in the outer plexiform layer of the retina in a patient with dementia with Lewy bodies. These inclusions are related to cytoskeletal disorganization of the cones at ultrastructural level and modifications of the immunohistochemical pattern of distribution of synucleins in the retina. These modifications may participate in the visual impairment in dementia with Lewy bodies.
Collapse
|
71
|
Surgucheva IG, Sivak JM, Fini ME, Palazzo RE, Surguchov AP. Effect of gamma-synuclein overexpression on matrix metalloproteinases in retinoblastoma Y79 cells. Arch Biochem Biophys 2003; 410:167-76. [PMID: 12559990 DOI: 10.1016/s0003-9861(02)00664-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
gamma-Synuclein is a small cytoplasmic protein implicated in neurodegenerative diseases and cancer. However, the mechanism of its involvement in diseases is not clear. We studied the role of gamma-synuclein in the regulation of matrix metalloproteinases in retinoblastoma cell culture. Matrix metalloproteinases play important roles in the remodeling of extracellular matrix implicated in tumor progression and in the neurodegenerative diseases. Western blot and zymography data demonstrated a moderate elevation of matrix metalloproteinases-2 and significant upregulation of matrix metalloproteinases-9 in stable cell lines overexpressing gamma-synuclein. No effect of gamma-synuclein overexpression on matrix metalloproteinases-1 level or activity was found. Chloramphenicol-acetyltransferase assay demonstrated that overexpression of gamma-synuclein increases the efficiency of the matrix metalloproteinases-9 promoter. This increment of promoter activity may be mediated by the AP-1 binding site(s), since point mutations in one of these sites (Pr18 or Pr19) and elimination of the distal AP-1 site (Pr14) reduced the increment of promoter activity.
Collapse
Affiliation(s)
- Irina G Surgucheva
- Department of Molecular Biosciences, Kansas University, 4004 Haworth Hall, Lawrence, KS 66045, USA
| | | | | | | | | |
Collapse
|
72
|
Surgucheva I, McMahan B, Ahmed F, Tomarev S, Wax MB, Surguchov A. Synucleins in glaucoma: implication of gamma-synuclein in glaucomatous alterations in the optic nerve. J Neurosci Res 2002; 68:97-106. [PMID: 11933054 DOI: 10.1002/jnr.10198] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Synucleins are small proteins associated with neurodegenerative diseases and some forms of cancer. They are studied predominantly in the brain; information about their presence and functions in ocular tissues is scarce. Here we describe the localization of three members of the synuclein family in the optic nerve of donors with different types of glaucoma compared with control samples from donors without ocular diseases. We did not find significant differences in the localization of alpha- and beta-synucleins in the optic nerve or retina of glaucoma patients compared with controls, whereas considerable redistribution of gamma-synuclein occurred in the glaucomatous optic nerve compared with control eye without glaucoma. In the optic nerve from control and glaucomatous individuals, nerve bundles are immunopositive for gamma-synuclein; however, a strong gamma-synuclein-immunopositive staining in a subset of glial cells was observed in the lamina and postlamina cribrosa regions of the optic nerve only in glaucoma patients. In the optic nerve of rats with episcleral vein cauterization used as an animal model of glaucoma, the quantity of both gamma-synuclein mRNA and protein was decreased compared with the optic nerves of control animals. Incubation of rat astrocyte culture at elevated hydrostatic pressure reduced the amount of gamma-synuclein but did not affect the quantities of actin and glial fibrillary acidic protein. These data suggest that significant changes in the pattern of expression and/or localization occur in the glaucomatous optic nerve for gamma-synuclein but not for alpha- and beta-members of the synuclein family.
Collapse
Affiliation(s)
- Irina Surgucheva
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri, USA
| | | | | | | | | | | |
Collapse
|
73
|
Abstract
SUMMARY Synucleins are small, soluble proteins expressed primarily in neural tissue and in certain tumors. The family includes three known proteins: alpha-synuclein, beta-synuclein, and gamma-synuclein. All synucleins have in common a highly conserved alpha-helical lipid-binding motif with similarity to the class-A2 lipid-binding domains of the exchangeable apolipoproteins. Synuclein family members are not found outside vertebrates, although they have some conserved structural similarity with plant 'late-embryo-abundant' proteins. The alpha- and beta-synuclein proteins are found primarily in brain tissue, where they are seen mainly in presynaptic terminals. The gamma-synuclein protein is found primarily in the peripheral nervous system and retina, but its expression in breast tumors is a marker for tumor progression. Normal cellular functions have not been determined for any of the synuclein proteins, although some data suggest a role in the regulation of membrane stability and/or turnover. Mutations in alpha-synuclein are associated with rare familial cases of early-onset Parkinson's disease, and the protein accumulates abnormally in Parkinson's disease, Alzheimer's disease, and several other neurodegenerative illnesses. The current challenge is to understand the normal cellular function of these proteins and how they might contribute to the development of human disease.
Collapse
Affiliation(s)
- Julia M George
- Department of Cell and Structural Biology, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|