51
|
Grapentin C, Müller C, Kishore RS, Adler M, ElBialy I, Friess W, Huwyler J, Khan TA. Protein-Polydimethylsiloxane Particles in Liquid Vial Monoclonal Antibody Formulations Containing Poloxamer 188. J Pharm Sci 2020; 109:2393-2404. [DOI: 10.1016/j.xphs.2020.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/24/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
|
52
|
Aggregation and Particle Formation During Pumping of an Antibody Formulation Are Controlled by Electrostatic Interactions Between Pump Surfaces and Protein Molecules. J Pharm Sci 2020; 109:1473-1482. [DOI: 10.1016/j.xphs.2020.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 11/24/2022]
|
53
|
Chen D, Luo W, Hoffman J, Huang L, Sandefur S, Hall T, Murphy M, O'Donnell S. Insights into virus inactivation by polysorbate 80 in the absence of solvent. Biotechnol Prog 2019; 36:e2953. [PMID: 31846227 DOI: 10.1002/btpr.2953] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/27/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022]
Abstract
Triton X-100 has long been used either alone or in combination with solvent to inactivate enveloped viruses in biopharmaceutical manufacturing. However, European Chemicals Agency (ECHA) officially placed Triton X-100 on the Annex XIV authorization list in 2017 because 4-(1,1,3,3-tetramethylbutyl) phenol, a degradation product of Triton X-100, is of harmful endocrine disrupting activities. As a result, any use of Triton X-100 in the European Economic Area would require an ECHA issued authorization after the sunset date of January 4, 2021. In search of possible replacements for Triton X-100, we discovered that polysorbate 80 (PS80) in absence of any solvents was able to effectively inactive enveloped viruses such as xenotropic murine leukemia virus and pseudorabies virus with comparable efficacy as measured by log reduction factors. Interestingly, PS80 did not show any virucidal activities in phosphate buffered saline (PBS) while achieving robust virus inactivation in cell-free Chinese hamster ovary (CHO) bioreactor harvests. This intriguing observation led us to speculate that virus inactivation by PS80 involved components in the cell-free CHO bioreactor harvests that were absent in PBS. Specifically, we hypothesized that esterase and/or lipases in the cell-free bioreactor harvests hydrolyzed PS80 to yield oleic acid, a known potent virucidal agent, which in turn inactivated viruses. This theory was confirmed using purified recombinant lysosomal phospholipase A2 isomer (rLPLA2) in PBS. Subsequent characterization work has indicated that virus inactivation by PS80 is effective and robust within temperature and concentration ranges comparable to those of Triton X-100. Similar to Triton X-100, virus inactivation by PS80 is dually dependent on treatment time and temperature. Unlike Triton X-100, PS80 inactivation does not correlate with concentrations in a simple manner. Additionally, we have demonstrated that PS20 exhibits similar virus inactivation activities as PS80. Based on the findings described in the current work, we believe that PS80 is potentially a viable replacement for Triton X-100 and can be used in manufacturing processes for wide spectrum of biopharmaceuticals to achieve desirable virus clearance. Finally, the advantages and disadvantages of using PS80 for virus inactivation are discussed in the contexts of GMP manufacturing.
Collapse
Affiliation(s)
- Dayue Chen
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Wen Luo
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Jacob Hoffman
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Lihua Huang
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Stephanie Sandefur
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Troii Hall
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Marie Murphy
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Sean O'Donnell
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| |
Collapse
|
54
|
Erfani A, Flynn NH, Ramsey JD, Aichele CP. Increasing protein stability by association with zwitterionic amphiphile cocamidopropyl betaine. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
55
|
Bucciarelli A, Muthukumar T, Kim JS, Kim WK, Quaranta A, Maniglio D, Khang G, Motta A. Preparation and Statistical Characterization of Tunable Porous Sponge Scaffolds using UV Cross-linking of Methacrylate-Modified Silk Fibroin. ACS Biomater Sci Eng 2019; 5:6374-6388. [DOI: 10.1021/acsbiomaterials.9b00814] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alessio Bucciarelli
- Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento 38123, Italy
- BIOTech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Trento, via Delle Regole 101, Trento 38123, Italy
- Microsystems Technology Group, Fondazione Bruno Kessler, via Sommarive 18, Trento 38123, Italy
| | - Thangavelu Muthukumar
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Jin Su Kim
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Won Kyung Kim
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Alberto Quaranta
- Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento 38123, Italy
| | - Devid Maniglio
- Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento 38123, Italy
- BIOTech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Trento, via Delle Regole 101, Trento 38123, Italy
| | - Gilson Khang
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento 38123, Italy
- BIOTech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Trento, via Delle Regole 101, Trento 38123, Italy
| |
Collapse
|
56
|
Imamura R, Mori H. Protein-Stabilizing Effect of Amphiphilic Block Copolymers with a Tertiary Sulfonium-Containing Zwitterionic Segment. ACS OMEGA 2019; 4:18234-18247. [PMID: 31720524 PMCID: PMC6844099 DOI: 10.1021/acsomega.9b02209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Tertiary sulfonium-containing zwitterionic block copolymers consisting of N-acryloyl-l-methionine methyl sulfonium salt (A-Met(S+)-OH) and n-butyl acrylate (BA) were newly synthesized to develop a novel protein stabilizer. The zwitterionic block copolymers were prepared by reversible addition-fragmentation chain-transfer (RAFT) polymerization of BA using a hydrophilic macro-chain-transfer agent (CTA) obtained from N-acryloyl-l-methionine (A-Met-OH) and subsequent postmodification. RAFT polymerization of A-Met-OH using poly(BA) macro-CTA, followed by postmodification, also afforded the target poly(A-Met(S+)-OH)-b-poly(BA). The block copolymers stabilized horseradish peroxidase (HRP) during storage at 37 °C for 5 days, and the protein-stabilizing effect was enhanced with increase in the A-Met(S+)-OH content. In particular, the block copolymer with ∼85% A-Met(S+)-OH content showed a significant protein-stabilizing effect at a temperature (37 °C) higher than the room temperature, which is highly desirable for practical and industrial applications. The addition of sucrose into the block copolymer-protein solution led to a considerable increase in the HRP activity under the same conditions. Excellent alkaline phosphatase stabilization at 37 °C for 12 days was also achieved using the block copolymers. The zwitterionic block copolymers with the optimal hydrophilic/hydrophobic balance were found to serve as efficient protein-stabilizing agents, in comparison with the corresponding homopolymer and random copolymers. Dynamic light scattering, zeta potential, transmission electron microscopy, and circular dichroism measurements revealed that the zwitterionic block copolymer stabilizes an enzyme by wrapping with a slight change in the size, whereas the secondary and ordered structures of the enzyme are maintained.
Collapse
Affiliation(s)
- Ryutaro Imamura
- Graduate School
of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- NOF Corporation, 5-10 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Hideharu Mori
- Graduate School
of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
57
|
Hu X, Zhang X, Chen D, Li N, Hemar Y, Yu B, Tang S, Sun Y. How much can we trust polysorbates as food protein stabilizers - The case of bovine casein. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
58
|
Arsiccio A, Giorsello P, Marenco L, Pisano R. Considerations on Protein Stability During Freezing and Its Impact on the Freeze-Drying Cycle: A Design Space Approach. J Pharm Sci 2019; 109:464-475. [PMID: 31647953 DOI: 10.1016/j.xphs.2019.10.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022]
Abstract
Freezing is widely used during the manufacturing process of protein-based therapeutics, but it may result in undesired loss of biological activity. Many variables come into play during freezing that could adversely affect protein stability, creating a complex landscape of interrelated effects. The current approach to the selection of freezing conditions is however nonsystematic, resulting in poor process control. Here we show how mathematical models, and a design space approach, can guide the selection of the optimal freezing protocol, focusing on protein stability. Two opposite scenarios are identified, suggesting that the ice-water interface is the dominant cause of denaturation for proteins with high bulk stability, while the duration of the freezing process itself is the key parameter to be controlled for proteins that are susceptible to cold denaturation. Experimental data for lactate dehydrogenase and myoglobin as model proteins support the model results, with a slow freezing rate being optimal for lactate dehydrogenase and the opposite being true for myoglobin. A possible application of the calculated design space to the freezing and freeze-drying of biopharmaceuticals is finally described, and some considerations on process efficiency are discussed as well.
Collapse
Affiliation(s)
- Andrea Arsiccio
- Department of Applied Science and Technology, Politecnico di Torino, 24 corso Duca degli Abruzzi, Torino 10129, Italy
| | - Paolo Giorsello
- Department of Applied Science and Technology, Politecnico di Torino, 24 corso Duca degli Abruzzi, Torino 10129, Italy
| | - Livio Marenco
- Department of Applied Science and Technology, Politecnico di Torino, 24 corso Duca degli Abruzzi, Torino 10129, Italy
| | - Roberto Pisano
- Department of Applied Science and Technology, Politecnico di Torino, 24 corso Duca degli Abruzzi, Torino 10129, Italy.
| |
Collapse
|
59
|
Grabarek AD, Bozic U, Rousel J, Menzen T, Kranz W, Wuchner K, Jiskoot W, Hawe A. What Makes Polysorbate Functional? Impact of Polysorbate 80 Grade and Quality on IgG Stability During Mechanical Stress. J Pharm Sci 2019; 109:871-880. [PMID: 31614127 DOI: 10.1016/j.xphs.2019.10.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 11/18/2022]
Abstract
Polysorbate 80 (PS80) is a commonly used surfactant in therapeutic protein formulations to mitigate adsorption and interface-induced protein aggregation. Several PS80 grades and qualities are available on the market for parenteral application. The role of PS80 grade on protein stability remains debatable, and the impact of (partially) degraded PS on protein aggregation is not yet well understood. In our study, a monoclonal antibody (IgG) was subjected to 3 different mechanical stress conditions in the presence of multicompendial (MC) and Chinese pharmacopeia (ChP) grade PS80. Furthermore, IgG formulations were spiked with (partly) hydrolyzed PS80 to investigate the effect of PS80 degradants on protein stability. PS80 functionality was assessed by measuring the extent of protein aggregation and particle formation induced during mechanical stress by using size-exclusion chromatography, dynamic light scattering, backgrounded membrane imaging, and flow imaging microscopy. No distinguishable differences in PS80 functionality between MC and ChP grade were observed in the 3 stress tests. However, with increasing degree of PS80 hydrolysis, higher counts of subvisible particles were measured after stress. Furthermore, higher levels of PS80 degradants at a constant PS80 concentration may destabilize the IgG. In conclusion, MC and ChP grade PS80 are equally protective, but PS80 degradants compromise IgG stability.
Collapse
Affiliation(s)
- Adam Dariusz Grabarek
- Coriolis Pharma Research, Fraunhoferstr. 18b, 82152 Martinsried, Germany; Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Ula Bozic
- Coriolis Pharma Research, Fraunhoferstr. 18b, 82152 Martinsried, Germany
| | - Jannik Rousel
- Coriolis Pharma Research, Fraunhoferstr. 18b, 82152 Martinsried, Germany; Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Tim Menzen
- Coriolis Pharma Research, Fraunhoferstr. 18b, 82152 Martinsried, Germany
| | - Wendelin Kranz
- Coriolis Pharma Research, Fraunhoferstr. 18b, 82152 Martinsried, Germany
| | - Klaus Wuchner
- Janssen Research & Development, Pharmaceutical Development & Manufacturing Sciences, Large Molecule Analytical Development, Schaffhausen, Switzerland
| | - Wim Jiskoot
- Coriolis Pharma Research, Fraunhoferstr. 18b, 82152 Martinsried, Germany; Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Andrea Hawe
- Coriolis Pharma Research, Fraunhoferstr. 18b, 82152 Martinsried, Germany.
| |
Collapse
|
60
|
Moleirinho MG, Rosa S, Carrondo MJT, Silva RJS, Hagner-McWhirter Å, Ahlén G, Lundgren M, Alves PM, Peixoto C. Clinical-Grade Oncolytic Adenovirus Purification Using Polysorbate 20 as an Alternative for Cell Lysis. Curr Gene Ther 2019; 18:366-374. [PMID: 30411681 PMCID: PMC6327138 DOI: 10.2174/1566523218666181109141257] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/01/2018] [Accepted: 11/09/2018] [Indexed: 01/06/2023]
Abstract
Introduction: Oncolytic virus therapy is currently considered as a promising therapeutic ap-proach for cancer treatment. Adenovirus is well-known and extensively characterized as an oncolytic agent. The increasing number of clinical trials using this virus generates the demand for the development of a well-established purification approach. Triton X-100 is commonly used in cell lysis buffer prepara-tions. The addition of this surfactant in the list of substances with the very high concern of the Registra-tion, Evaluation, Authorization and Restriction of Chemicals (REACH) regulation promoted the research for effective alternatives. Methods: In this work, a purification strategy for oncolytic adenovirus compatible with phase I clinical trials, using an approved surfactant – Polysorbate 20 was developed. The proposed downstream train, composed by clarification, concentration using tangential flow filtration, intermediate purification with anion exchange chromatography, followed by a second concentration and a final polishing step was evaluated for both Triton X-100 and Polysorbate 20 processes. The impact of cell lysis with Polysorb-ate20 and Triton X-100 for each downstream step was evaluated in terms of product recovery and impu-rities removal. Overall, 61 ± 4% of infectious viral particles were recovered. Depletion of host cell pro-teins and ds-DNA was 99.9% and 97.1%, respectively. Results & Conclusion: The results indicated that Polysorbate 20 can be used as a replacement for Triton X-100 during cell lysis with no impact on product recovery, potency, and purity. Moreover, the devel-oped process is scalable and able to provide a highly purified product to be used in phase I and II clinical trials.
Collapse
Affiliation(s)
- Mafalda G Moleirinho
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sara Rosa
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Manuel J T Carrondo
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal.,Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Monte da Caparica, Portugal
| | - Ricardo J S Silva
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Gustaf Ahlén
- GE Healthcare Bio-Sciences AB, Bjorkgatan 30, 751 84 Uppsala, Sweden
| | - Mats Lundgren
- GE Healthcare Bio-Sciences AB, Bjorkgatan 30, 751 84 Uppsala, Sweden
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
61
|
Dávila B, Sánchez C, Fernández M, Cerecetto H, Lecot N, Cabral P, Glisoni R, González M. Selective Hypoxia‐Cytotoxin 7‐Fluoro‐2‐Aminophenazine 5,10‐Dioxide: Toward “Candidate‐to‐Drug” Stage in the Drug‐Development Pipeline. ChemistrySelect 2019. [DOI: 10.1002/slct.201902601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Belén Dávila
- Laboratorio de Química Orgánica MedicinalInstituto de Química Biológica. Facultad de CienciasUniversidad de la República. Iguá 4225 Montevideo 11400 Uruguay
| | - Carina Sánchez
- Laboratorio de Química Orgánica MedicinalInstituto de Química Biológica. Facultad de CienciasUniversidad de la República. Iguá 4225 Montevideo 11400 Uruguay
| | - Marcelo Fernández
- Laboratorio de Experimentación AnimalCentro de Investigaciones Nucleares. Facultad de CienciasUniversidad de la República. Mataojo 2055 Montevideo 11400 Uruguay
| | - Hugo Cerecetto
- Laboratorio de Química Orgánica MedicinalInstituto de Química Biológica. Facultad de CienciasUniversidad de la República. Iguá 4225 Montevideo 11400 Uruguay
- Área de RadiofarmaciaCentro de Investigaciones Nucleares. Facultad de CienciasUniversidad de la República. Mataojo 2055 Montevideo 11400 Uruguay
| | - Nicole Lecot
- Laboratorio de Química Orgánica MedicinalInstituto de Química Biológica. Facultad de CienciasUniversidad de la República. Iguá 4225 Montevideo 11400 Uruguay
- Laboratorio de Técnicas Nucleareas Aplicadas a Bioquímica y BiotecnologíaCentro de Investigaciones Nucleares. Facultad de CienciasUniversidad de la República. Mataojo 2055 Montevideo 11400 Uruguay
| | - Pablo Cabral
- Área de RadiofarmaciaCentro de Investigaciones Nucleares. Facultad de CienciasUniversidad de la República. Mataojo 2055 Montevideo 11400 Uruguay
| | - Romina Glisoni
- Departamento de Tecnología FarmacéuticaCátedra de Tecnología Farmacéutica II. CONICETInstituto de Nanobiotecnología (NANOBIOTEC). Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires
| | - Mercedes González
- Laboratorio de Química Orgánica MedicinalInstituto de Química Biológica. Facultad de CienciasUniversidad de la República. Iguá 4225 Montevideo 11400 Uruguay
| |
Collapse
|
62
|
Abstract
Microparticles, microspheres, and microcapsules are widely used constituents of multiparticulate drug delivery systems, offering both therapeutic and technological advantages. Microparticles are generally in the 1–1000 µm size range, serve as multiunit drug delivery systems with well-defined physiological and pharmacokinetic benefits in order to improve the effectiveness, tolerability, and patient compliance. This paper reviews their evolution, significance, and formulation factors (excipients and procedures), as well as their most important practical applications (inhaled insulin, liposomal preparations). The article presents the most important structures of microparticles (microspheres, microcapsules, coated pellets, etc.), interpreted with microscopic images too. The most significant production processes (spray drying, extrusion, coacervation, freeze-drying, microfluidics), the drug release mechanisms, and the commonly used excipients, the characterization, and the novel drug delivery systems (microbubbles, microsponges), as well as the preparations used in therapy are discussed in detail.
Collapse
|
63
|
Fan YT, Chung KR, Huang JW. Fungichromin Production by Streptomyces padanus PMS-702 for Controlling Cucumber Downy Mildew. THE PLANT PATHOLOGY JOURNAL 2019; 35:341-350. [PMID: 31481857 PMCID: PMC6706012 DOI: 10.5423/ppj.oa.03.2019.0057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/23/2019] [Accepted: 05/12/2019] [Indexed: 06/10/2023]
Abstract
Streptomyces padanus PMS-702 strain produces a polyene macrolide antibiotic fungichromin and displays antagonistic activities against many phytopathogenic fungi. In the present study, experimental formulations were assessed to improve the production of fungichromin, the efficacy of PMS-702 on the suppression of sporangial germination, and the reduction of cucumber downy mildew caused by Pseudoperonospora cubensis. PMS-702 strain cultured in a soybean meal-glucose (SMG) medium led to low levels of fungichromin accumulation and sporangial germination suppression. Increasing medium compositions and adding plant oils (noticeably coconut oil) in SMG significantly increased fungichromin production from 68 to 1,999.6 μg/ml. Microscopic examination reveals that the resultant suspensions significantly reduced sporangial germination and caused cytoplasmic aggregation. Greenhouse trials reveal that the application of PMS-702 cultural suspensions reduced downy mildew severity considerably. The addition of Tween 80 into the synthetic medium while culturing PMS-702 further increased the suppressive efficacy of downy mildew severity, particularly when applied at 24 h before inoculation or co-applied with inoculum. Fungichromin at 50 μg/ml induced phytotoxicity showing minor necrosis surrounded with light yellowish halos on cucumber leaves. The concentration that leads to 90% inhibition (IC90) of sporangial germination was estimated to be around 10 μg/ml. The results provide a strong possibility of using the S. padanus PMS-702 strain as a biocontrol agent to control other plant pathogens.
Collapse
Affiliation(s)
- Ya-Ting Fan
- Department of Plant Pathology, National Chung-Hsing University (NCHU), Taichung 40227,
Taiwan
| | - Kuang-Ren Chung
- Department of Plant Pathology, National Chung-Hsing University (NCHU), Taichung 40227,
Taiwan
| | - Jenn-Wen Huang
- Department of Plant Pathology, National Chung-Hsing University (NCHU), Taichung 40227,
Taiwan
- Innovation and Development Center of Sustainable Agriculture (IDCSA), NCHU Taichung 40227,
Taiwan
| |
Collapse
|
64
|
Schleinitz M, Teschner D, Sadowski G, Brandenbusch C. Second osmotic virial coefficients of therapeutic proteins in the presence of excipient-mixtures can be predicted to aid an efficient formulation design. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
65
|
Inada M, Kinoshita M, Sumino A, Oiki S, Matsumori N. A concise method for quantitative analysis of interactions between lipids and membrane proteins. Anal Chim Acta 2019; 1059:103-112. [PMID: 30876624 DOI: 10.1016/j.aca.2019.01.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/31/2023]
Abstract
Although interactions between lipids and membrane proteins (MPs) have been considered crucially important for understanding the functions of lipids, lack of useful and convincing experimental methods has hampered the analysis of the interactions. Here, we developed a surface plasmon resonance (SPR)-based concise method for quantitative analysis of lipid-MP interactions, coating the sensor chip surface with self-assembled monolayer (SAM) with C6-chain. To develop this method, we used bacteriorhodopsin (bR) as an MP, and examined its interaction with various types of lipids. The merits of using C6-SAM-modified sensor chip are as follows: (1) alkyl-chains of SAM confer a better immobilization of MPs because of the efficient preconcentration due to hydrophobic contacts; (2) SAM provides immobilized MPs with a partial membranous environment, which is important for the stabilization of MPs; and (3) a thinner C6-SAM layer (1 nm) compared with MP size forces the MP to bulge outward from the SAM surface, allowing extraneously injected lipids to be accessible to the hydrophobic transmembrane regions. Actually, the amount of bR immobilized on C6-SAM is 10 times higher than that on a hydrophilic CM5 sensor chip, and AFM observations confirmed that bR molecules are exposed on the SAM surface. Of the lipids tested, S-TGA-1, a halobacterium-derived glycolipid, had the highest specificity to bR with a nanomolar dissociation constant. This is consistent with the reported co-crystal structure that indicates the formation of several intermolecular hydrogen bonds. Therefore, we not only reproduced the specific lipid-bR recognition, but also succeeded in its quantitative evaluation, demonstrating the validity and utility of this method.
Collapse
Affiliation(s)
- Masataka Inada
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masanao Kinoshita
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ayumi Sumino
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan; High-speed AFM for Biological Application Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, 920-1192, Japan; Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
66
|
Chlorophylls B formulated in nanostructured colloidal solutions: Interaction, spectroscopic, and photophysical studies. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
67
|
Imamura R, Mori H. Synthesis of Zwitterionic Polymers Containing a Tertiary Sulfonium Group for Protein Stabilization. Biomacromolecules 2018; 20:904-915. [DOI: 10.1021/acs.biomac.8b01542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ryutaro Imamura
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- NOF Corporation, 5-10 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Hideharu Mori
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
68
|
Kasimbeg PNO, Cheong FC, Ruffner DB, Blusewicz JM, Philips LA. Holographic Characterization of Protein Aggregates in the Presence of Silicone Oil and Surfactants. J Pharm Sci 2018; 108:155-161. [PMID: 30315809 DOI: 10.1016/j.xphs.2018.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/07/2018] [Accepted: 10/03/2018] [Indexed: 10/28/2022]
Abstract
Characterizing protein aggregates in the presence of silicone oil is a long standing challenge for the pharmaceutical industry. Silicone oil is often used as a lubricant in devices that deliver and store therapeutic protein products and has been linked to protein aggregation, which can compromise a drug's effectiveness or cause autoimmune responses in patients. Most traditional technologies cannot quantitatively distinguish protein aggregates and silicone oil in their native formulations for sizes less than 5 μm. We use holographic video microscopy to study protein aggregation to demonstrate its capability to quantitatively distinguish protein aggregates and silicone oil in the presence of varying amounts of the surfactants SDS and polysorbate 80 in the size range of 0.5-10 μm without the need for dilution or special sample preparation. We show that SDS denatures proteins and stabilizes silicone oil. We also show that polysorbate 80 may limit protein aggregate formation if it is added to an IgG solution before introducing silicone oil.
Collapse
Affiliation(s)
| | | | - David B Ruffner
- Spheryx, Inc., 330 East, 38th Street #48J, New York, New York 10016.
| | | | - Laura A Philips
- Spheryx, Inc., 330 East, 38th Street #48J, New York, New York 10016
| |
Collapse
|
69
|
Abstract
Background Dimethyl trisulfide (DMTS) is a highly lipid-soluble cyanide (CN) antidote candidate molecule. In prior studies with various US FDA-approved co-solvents, surfactants, and their combinations, aqueous solutions containing 15% polysorbate 80 (Poly80) were found to effectively solubilize DMTS in formulations for intramuscular administration. However, DMTS formulated in 15% aqueous Poly80 solutions showed gradual losses over time when stored in vials with septum-based seals. Objective The present study tested whether storing DMTS formulations in hermetically sealed glass ampules could mitigate storage losses. Methods Samples consisted of 1-mL aliquots of a 50 mg/ml stock solution of DMTS in 15% aqueous Poly80. The control samples were stored using a vial-within-a-vial system—the inner and outer vials were sealed respectively, with a snap cap, and with a crimped septum. The hermetically sealed test samples were stored in fire-sealed glass ampules. The DMTS content was measured by HPLC–UV analysis at specific time points over a 100-day period. Results While the control samples exhibited systematic DMTS losses, no DMTS losses were observed from the test samples stored in hermetically sealed glass ampules over the 100-day testing period. Conclusion DMTS formulated in 15% aqueous Poly80 solution has excellent stability when stored in fire-sealed glass ampules and thus has the potential to be effectively stored as an intramuscular CN countermeasure for mass casualty scenarios.
Collapse
|
70
|
Arsiccio A, McCarty J, Pisano R, Shea JE. Effect of Surfactants on Surface-Induced Denaturation of Proteins: Evidence of an Orientation-Dependent Mechanism. J Phys Chem B 2018; 122:11390-11399. [DOI: 10.1021/acs.jpcb.8b07368] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Andrea Arsiccio
- Department of Applied Science and Technology, Politecnico di Torino, 24 corso Duca degli Abruzzi, Torino 10129, Italy
| | - James McCarty
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Roberto Pisano
- Department of Applied Science and Technology, Politecnico di Torino, 24 corso Duca degli Abruzzi, Torino 10129, Italy
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Department of Physics, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
71
|
Ogawa C, Yatabe M, Inoue M, Hirose S, Ohashi Y, Yachi Y, Adachi S, Itoh T. Comparison of Chemical Behavior of Original and Generic Docetaxel Formulations as Non-alcoholic Preparations: Discussion about Diluent Solvents for Docetaxel. YAKUGAKU ZASSHI 2018; 138:973-984. [DOI: 10.1248/yakushi.18-00006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Chiaki Ogawa
- Department of Pharmacy, National Hospital Organization Tokyo Medical Center
- Laboratory of Pharmaceutics, Kitasato University School of Pharmacy
| | - Megumi Yatabe
- Department of Pharmacy, National Hospital Organization Tokyo Medical Center
| | | | - Shoko Hirose
- Department of Pharmacy, National Hospital Organization Tokyo Medical Center
| | - Yasukata Ohashi
- Department of Pharmacy, National Hospital Organization Tokyo Medical Center
| | - Yutaka Yachi
- Department of Pharmacy, National Hospital Organization Tokyo Medical Center
| | | | - Tomoo Itoh
- Laboratory of Pharmaceutics, Kitasato University School of Pharmacy
| |
Collapse
|
72
|
Arsiccio A, Pisano R. Surfactants as stabilizers for biopharmaceuticals: An insight into the molecular mechanisms for inhibition of protein aggregation. Eur J Pharm Biopharm 2018; 128:98-106. [DOI: 10.1016/j.ejpb.2018.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022]
|
73
|
Dorey S, Pahl I, Uettwiller I, Priebe P, Hauk A. Theoretical and Practical Considerations When Selecting Solvents for Use in Extractables Studies of Polymeric Contact Materials in Single-Use Systems Applied in the Production of Biopharmaceuticals. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Samuel Dorey
- Sartorius Stedim FMT S.A.S., avenue de Jouques, CS91051, ZI des Paluds, 13781 Aubagne Cedex, France
| | - Ina Pahl
- Sartorius Stedim Biotech GmbH, August Spindler Straße 11, 37079 Göttingen, Germany
| | - Isabelle Uettwiller
- Sartorius Stedim FMT S.A.S., avenue de Jouques, CS91051, ZI des Paluds, 13781 Aubagne Cedex, France
| | - Paul Priebe
- Sartorius Stedim Biotech, Johnson Avenue, Bohemia, New York 11716, United States
| | - Armin Hauk
- Sartorius Stedim Biotech GmbH, August Spindler Straße 11, 37079 Göttingen, Germany
| |
Collapse
|
74
|
Duerkop M, Berger E, Dürauer A, Jungbauer A. Impact of Cavitation, High Shear Stress and Air/Liquid Interfaces on Protein Aggregation. Biotechnol J 2018; 13:e1800062. [DOI: 10.1002/biot.201800062] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/28/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Mark Duerkop
- Austrian Centre of Industrial Biotechnology; 1190 Vienna Austria
| | - Eva Berger
- Austrian Centre of Industrial Biotechnology; 1190 Vienna Austria
| | - Astrid Dürauer
- Austrian Centre of Industrial Biotechnology; 1190 Vienna Austria
- University of Natural Resources and Life Sciences; Muthgasse 18 1190 Vienna Austria
| | - Alois Jungbauer
- Austrian Centre of Industrial Biotechnology; 1190 Vienna Austria
- University of Natural Resources and Life Sciences; Muthgasse 18 1190 Vienna Austria
| |
Collapse
|
75
|
Protein Nanoparticles Promote Microparticle Formation in Intravenous Immunoglobulin Solutions During Freeze-Thawing and Agitation Stresses. J Pharm Sci 2018; 107:1852-1857. [PMID: 29601840 DOI: 10.1016/j.xphs.2018.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 11/21/2022]
Abstract
In this study, we investigated the potential roles of nanoparticles (<100 nm) and submicron (100-1000 nm) particles in the formation of microparticles (>1000 nm) in protein formulations under some pharmaceutically relevant stress conditions. Exposure of intravenous immunoglobulin solutions to the interface-associated stresses of freeze-thawing or agitation resulted in relatively large increases in microparticle concentrations, which depended directly on the levels of pre-existing nano- and submicron particles. Thus, agglomeration of nanoparticles and submicron particles appears to play a role in microparticle formation under these stresses. In contrast, increases in microparticle concentrations during quiescent incubation at elevated temperatures were independent of the initial nano- and submicron particle concentrations in solution.
Collapse
|
76
|
Zhang N, Yan F, Liang X, Wu M, Shen Y, Chen M, Xu Y, Zou G, Jiang P, Tang C, Zheng H, Dai Z. Localized delivery of curcumin into brain with polysorbate 80-modified cerasomes by ultrasound-targeted microbubble destruction for improved Parkinson's disease therapy. Am J Cancer Res 2018; 8:2264-2277. [PMID: 29721078 PMCID: PMC5928888 DOI: 10.7150/thno.23734] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/01/2018] [Indexed: 11/08/2022] Open
Abstract
Rationale: Treatment for Parkinson's disease (PD) is challenged by the presence of the blood-brain barrier (BBB) that significantly limits the effective drug concentration in a patient's brain for therapeutic response throughout various stages of PD. Curcumin holds the potential for α-synuclein clearance to treat PD; however, its applications are still limited due to its low bioavailability and poor permeability through the BBB in a free form. Methods: Herein, this paper fabricated curcumin-loaded polysorbate 80-modified cerasome (CPC) nanoparticles (NPs) with a mean diameter of ~110 nm for enhancing the localized curcumin delivery into the targeted brain nuclei via effective BBB opening in combination with ultrasound-targeted microbubble destruction (UTMD). Results: The liposomal nanohybrid cerasome exhibited superior stability towards PS 80 surfactant solubilization and longer circulation lifetime (t1/2 = 6.22 h), much longer than free curcumin (t1/2 = 0.76 h). The permeation was found to be 1.7-fold higher than that of CPC treatment only at 6 h after the systemic administration of CPC NPs. Notably, motor behaviors, dopamine (DA) level and tyrosine hydroxylase (TH) expression all returned to normal, thanks to α-synuclein (AS) removal mediated by efficient curcumin delivery to the striatum. Most importantly, the animal experiment demonstrated that the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice had notably improved behavior disorder and dopamine depletion during two-week post-observation after treatment with CPC NPs (15 mg curcumin/kg) coupled with UTMD. Conclusion: This novel CPC-UTMD formulation approach could be an effective, safe and amenable choice with higher therapeutic relevance and fewer unwanted complications than conventional chemotherapeutics delivery systems for PD treatment in the near future.
Collapse
|
77
|
Awad TS, Asker D, Romsted LS. Evidence of coexisting microemulsion droplets in oil-in-water emulsions revealed by 2D DOSY 1H NMR. J Colloid Interface Sci 2018; 514:83-92. [DOI: 10.1016/j.jcis.2017.12.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 12/16/2022]
|
78
|
Agarkhed M, O’Dell C, Hsieh MC, Zhang J, Goldstein J, Srivastava A. Effect of Surfactants on Mechanical, Thermal, and Photostability of a Monoclonal Antibody. AAPS PharmSciTech 2018; 19:79-92. [PMID: 28770529 DOI: 10.1208/s12249-017-0845-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/07/2017] [Indexed: 11/30/2022] Open
Abstract
The purpose of this work was to evaluate the effect of commonly used surfactants (at 0.01% w/v concentration) on mechanical, thermal, and photostability of a monoclonal antibody (MAb1) of IgG1 sub-class and to evaluate the minimum concentration of surfactant (Polysorbate 80) required in protecting MAb1 from mechanical stress. Surfactants evaluated were non-ionic surfactants, Polysorbate 80, Polysorbate 20, Pluronic F-68 (polyoxyethylene-polyoxypropylene block polymer), Brij 35 (polyoxyethylene lauryl ether), Triton X-100, and an anionic surfactant, Caprylic acid (1-Heptanecarboxylic acid). After evaluating effect of surfactants and determining stabilizing effect of Polysorbate 80 against mechanical stress without compromising thermal and photostability of MAb1, the minimum concentration of Polysorbate 80 required for mechanical stability was further examined. Polysorbate 80 concentration was varied from 0 to 0.02%. Mechanical stability was evaluated by agitation of MAb1 at 300 rotations per minute at room temperature for 72 h. Samples were analyzed for purity by SEC-HPLC, turbidity by absorbance at 350 nm, visible particles by visual inspection, and sub-visible particles by light obscuration technique on a particle analyzer. All non-ionic surfactants tested showed a similar effect in protecting against mechanical stress and did not exhibit any significant negative effect on thermal and photostability. However, Caprylic acid had a slightly negative effect on mechanical and photostability when compared to the non-ionic surfactants or sample without surfactant. This work demonstrated that polysorbate 80 is better than other surfactants tested and that a concentration of at least 0.005% (w/v) Polysorbate 80 is needed to protect MAb1 against mechanical stress.
Collapse
|
79
|
|
80
|
Faghihi H, Najafabadi AR, Vatanara A. Optimization and characterization of spray-dried IgG formulations: a design of experiment approach. ACTA ACUST UNITED AC 2017; 25:22. [PMID: 29065930 PMCID: PMC5678550 DOI: 10.1186/s40199-017-0187-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/02/2017] [Indexed: 12/18/2022]
Abstract
Background The purpose of the present study is to optimize a spray-dried formulation as a model antibody regarding stability and aerodynamic property for further aerosol therapy of this group of macromolecules. Method A three-factor, three-level, Box-Behnken design was employed milligrams of Cysteine (X1), Trehalose (X2), and Tween 20 (X3) as independent variables. The dependent variables were quantified and the optimized formulation was prepared accordingly. SEC-HPLC and FTIR-spectroscopy were conducted to evaluate the molecular and structural status of spray-dried preparations. Particle characterization of optimized sample was performed with the aid of DSC, SEM, and TSI examinations. Results Experimental responses of a total of 17 formulations resulted in yield values, (Y1), ranging from 21.1 ± 0.2 to 40.2 ± 0.1 (%); beta-sheet content, (Y2), from 66.22 ± 0.19 to 73.78 ± 0.26 (%); amount of aggregation following process, (Y3), ranging from 0.11 ± 0.03 to 0.95 ± 0.03 (%); and amount of aggregation upon storage, (Y4), from 0.81 ± 0.01 to 3.13 ± 0.64 (%) as dependent variables. Results—except for those of the beta sheet content—were fitted to quadratic models describing the inherent relationship between main factors. Conclusion Co-application of Cysteine and Tween 20 preserved antibody molecules from molecular degradation and improved immediate and accelerated stability of spry-dried antibodies. Validation of the optimization study indicated high degree of prognostic ability of response surface methodology in preparation of stable spray-dried IgG. Graphical abstract
Collapse
Affiliation(s)
- Homa Faghihi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Vatanara
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
81
|
Li R, Zhang Y, Chang Y, Wu Z, Wang Y, Chen X, Wang T. Role of foam drainage in producing protein aggregates in foam fractionation. Colloids Surf B Biointerfaces 2017; 158:562-568. [DOI: 10.1016/j.colsurfb.2017.07.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/11/2017] [Accepted: 07/16/2017] [Indexed: 11/28/2022]
|
82
|
Wang Z, Lehtinen M, Liu G. Universal Janus Filters for the Rapid Separation of Oil from Emulsions Stabilized by Ionic or Nonionic Surfactants. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zijie Wang
- Department of Chemistry; Queen's University; 90 Bader Lane Kingston Ontario K7L 3N6 Canada
| | - Morgan Lehtinen
- Department of Chemistry; Queen's University; 90 Bader Lane Kingston Ontario K7L 3N6 Canada
| | - Guojun Liu
- Department of Chemistry; Queen's University; 90 Bader Lane Kingston Ontario K7L 3N6 Canada
| |
Collapse
|
83
|
Wang Z, Lehtinen M, Liu G. Universal Janus Filters for the Rapid Separation of Oil from Emulsions Stabilized by Ionic or Nonionic Surfactants. Angew Chem Int Ed Engl 2017; 56:12892-12897. [DOI: 10.1002/anie.201706158] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/14/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Zijie Wang
- Department of Chemistry; Queen's University; 90 Bader Lane Kingston Ontario K7L 3N6 Canada
| | - Morgan Lehtinen
- Department of Chemistry; Queen's University; 90 Bader Lane Kingston Ontario K7L 3N6 Canada
| | - Guojun Liu
- Department of Chemistry; Queen's University; 90 Bader Lane Kingston Ontario K7L 3N6 Canada
| |
Collapse
|
84
|
Singh SM, Bandi S, Jones DNM, Mallela KMG. Effect of Polysorbate 20 and Polysorbate 80 on the Higher-Order Structure of a Monoclonal Antibody and Its Fab and Fc Fragments Probed Using 2D Nuclear Magnetic Resonance Spectroscopy. J Pharm Sci 2017; 106:3486-3498. [PMID: 28843351 DOI: 10.1016/j.xphs.2017.08.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 10/19/2022]
Abstract
We examined how polysorbate 20 (PS20; Tween 20) and polysorbate 80 (PS80; Tween 80) affect the higher-order structure of a monoclonal antibody (mAb) and its antigen-binding (Fab) and crystallizable (Fc) fragments, using near-UV circular dichroism and 2D nuclear magnetic resonance (NMR). Both polysorbates bind to the mAb with submillimolar affinity. Binding causes significant changes in the tertiary structure of mAb with no changes in its secondary structure. 2D 13C-1H methyl NMR indicates that with increasing concentration of polysorbates, the Fab region showed a decrease in crosspeak volumes. In addition to volume changes, PS20 caused significant changes in the chemical shifts compared to no changes in the case of PS80. No such changes in crosspeak volumes or chemical shifts were observed in the case of Fc region, indicating that polysorbates predominantly affect the Fab region compared to the Fc region. This differential effect of polysorbates on the Fab and Fc regions was because of the lesser thermodynamic stability of the Fab compared to the Fc. These results further indicate that PS80 is the preferred polysorbate for this mAb formulation, because it offers higher protection against aggregation, causes lesser structural perturbation, and has weaker binding affinity with fewer binding sites compared to PS20.
Collapse
Affiliation(s)
- Surinder M Singh
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Swati Bandi
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - David N M Jones
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045; Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Krishna M G Mallela
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045; Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045.
| |
Collapse
|
85
|
Paolini M, Poul L, Berjaud C, Germain M, Darmon A, Bergère M, Pottier A, Levy L, Vibert E. Nano-sized cytochrome P450 3A4 inhibitors to block hepatic metabolism of docetaxel. Int J Nanomedicine 2017; 12:5537-5556. [PMID: 28814868 PMCID: PMC5546780 DOI: 10.2147/ijn.s141145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most drugs are metabolized by hepatic cytochrome P450 3A4 (CYP3A4), resulting in their reduced bioavailability. In this study, we present the design and evaluation of bio-compatible nanocarriers trapping a natural CYP3A4-inhibiting compound. Our aim in using nanocarriers was to target the natural CYP3A4-inhibiting agent to hepatic CYP3A4 and leave drug-metabolizing enzymes in other organs undisturbed. In the design of such nanocarriers, we took advantage of the nonspecific accumulation of small nanoparticles in the liver. Specific targeting functionalization was added to direct nanocarriers toward hepatocytes. Nanocarriers were evaluated in vitro for their CYP3A4 inhibition capacity and in vivo for their biodistribution, and finally injected 24 hours prior to the drug docetaxel, for their ability to improve the efficiency of the drug docetaxel. Nanoparticles of poly(lactic-co-glycolic) acid (PLGA) with a hydrodynamic diameter of 63 nm, functionalized with galactosamine, showed efficient in vitro CYP3A4 inhibition and the highest accumulation in hepatocytes. When compared to docetaxel alone, in nude mice bearing the human breast cancer, MDA-MB-231 model, they significantly improved the delay in tumor growth (treated group versus docetaxel alone, percent treated versus control ratio [%T/C] of 32%) and demonstrated a major improvement in overall survival (survival rate of 67% versus 0% at day 55).
Collapse
Affiliation(s)
- Marion Paolini
- Nanobiotix, Paris.,UMR-S 1193 INSERM/Paris-Sud University, Centre Hépato-Biliaire, Hôpital Paul Brousse, Villejuif, France
| | | | | | | | | | | | | | | | - Eric Vibert
- UMR-S 1193 INSERM/Paris-Sud University, Centre Hépato-Biliaire, Hôpital Paul Brousse, Villejuif, France
| |
Collapse
|
86
|
Paolini M, Poul L, Darmon A, Germain M, Pottier A, Levy L, Vibert E. A new opportunity for nanomedicines: Micellar cytochrome P450 inhibitors to improve drug efficacy in a cancer therapy model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1715-1723. [DOI: 10.1016/j.nano.2017.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/17/2017] [Accepted: 03/17/2017] [Indexed: 12/25/2022]
|
87
|
Song JG, Lee SH, Han HK. The stabilization of biopharmaceuticals: current understanding and future perspectives. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0341-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
88
|
Wang S, Wu G, Zhang X, Tian Z, Zhang N, Hu T, Dai W, Qian F. Stabilizing two IgG1 monoclonal antibodies by surfactants: Balance between aggregation prevention and structure perturbation. Eur J Pharm Biopharm 2017; 114:263-277. [DOI: 10.1016/j.ejpb.2017.01.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
|
89
|
Fleischman ML, Chung J, Paul EP, Lewus RA. Shipping-Induced Aggregation in Therapeutic Antibodies: Utilization of a Scale-Down Model to Assess Degradation in Monoclonal Antibodies. J Pharm Sci 2017; 106:994-1000. [DOI: 10.1016/j.xphs.2016.11.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/09/2016] [Accepted: 11/29/2016] [Indexed: 11/16/2022]
|
90
|
Smith C, Li Z, Holman R, Pan F, Campbell RA, Campana M, Li P, Webster JRP, Bishop S, Narwal R, Uddin S, van der Walle CF, Lu JR. Antibody adsorption on the surface of water studied by neutron reflection. MAbs 2017; 9:466-475. [PMID: 28353420 DOI: 10.1080/19420862.2016.1276141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Surface and interfacial adsorption of antibody molecules could cause structural unfolding and desorbed molecules could trigger solution aggregation, resulting in the compromise of physical stability. Although antibody adsorption is important and its relevance to many mechanistic processes has been proposed, few techniques can offer direct structural information about antibody adsorption under different conditions. The main aim of this study was to demonstrate the power of neutron reflection to unravel the amount and structural conformation of the adsorbed antibody layers at the air/water interface with and without surfactant, using a monoclonal antibody 'COE-3' as the model. By selecting isotopic contrasts from different ratios of H2O and D2O, the adsorbed amount, thickness and extent of the immersion of the antibody layer could be determined unambiguously. Upon mixing with the commonly-used non-ionic surfactant Polysorbate 80 (Tween 80), the surfactant in the mixed layer could be distinguished from antibody by using both hydrogenated and deuterated surfactants. Neutron reflection measurements from the co-adsorbed layers in null reflecting water revealed that, although the surfactant started to remove antibody from the surface at 1/100 critical micelle concentration (CMC) of the surfactant, complete removal was not achieved until above 1/10 CMC. The neutron study also revealed that antibody molecules retained their globular structure when either adsorbed by themselves or co-adsorbed with the surfactant under the conditions studied.
Collapse
Affiliation(s)
- Charles Smith
- a Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Manchester , UK
| | - Zongyi Li
- a Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Manchester , UK
| | - Robert Holman
- a Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Manchester , UK
| | - Fang Pan
- a Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Manchester , UK
| | | | - Mario Campana
- c ISIS Neutron Facility, STFC , Chilton, Didcot , UK
| | - Peixun Li
- c ISIS Neutron Facility, STFC , Chilton, Didcot , UK
| | | | - Steven Bishop
- d Formulation Sciences, MedImmune LLC , Gaithersburg , MD , USA
| | | | - Shahid Uddin
- e Formulation Sciences , MedImmune Ltd , Cambridge , UK
| | | | - Jian R Lu
- a Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Manchester , UK
| |
Collapse
|
91
|
Liang R, Chen L, Yokoyama W, Williams PA, Zhong F. Niosomes Consisting of Tween-60 and Cholesterol Improve the Chemical Stability and Antioxidant Activity of (-)-Epigallocatechin Gallate under Intestinal Tract Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9180-9188. [PMID: 27933988 DOI: 10.1021/acs.jafc.6b04147] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In order to improve the chemical stability and antioxidant activity of (-)-epigallocatechin gallate (EGCG) in the gastrointestinal tract, niosomes composed of Tween-60 and cholesterol were developed to encapsulate EGCG in this investigation. EGCG loaded niosomes with encapsulation efficiency around 76% exhibited a small Z-average diameter about 60 nm. Compared to free EGCG, the EGCG remaining in dialysis tubes was significantly improved for niosomes at pH 2 and 7.4. Meanwhile, the residual EGCG for niosomes increased from 3% to 49% after 2 h incubation in simulated intestinal fluid (SIF). Pancreatin was found to impact the stability of niosomes in SIF mainly. Furthermore, the results from ferric reducing antioxidant power and cellular antioxidant activity tests indicated that EGCG loaded niosomes exhibited stronger antioxidant ability than free EGCG during intestinal digestion. Thus, we can infer that niosomal encapsulation might be a promising approach to improve the oral bioavailability of EGCG in the body.
Collapse
Affiliation(s)
- Rong Liang
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi 214122, P. R. China
| | - Ling Chen
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Food Science and Technology, Jiangnan University , Wuxi 214122, P. R. China
| | - Wallace Yokoyama
- Western Regional Research Center, ARS, USDA , Albany, California 94710, United States
| | - Peter A Williams
- Centre for Water-Soluble Polymers, North East Wales Institute , Plas Coch, Mold Road, Wrexham LL11 2AW, U.K
| | - Fang Zhong
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Food Science and Technology, Jiangnan University , Wuxi 214122, P. R. China
| |
Collapse
|
92
|
Lu Q, Tang Q, Xiong Y, Qing G, Sun T. Protein/Peptide Aggregation and Amyloidosis on Biointerfaces. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E740. [PMID: 28773858 PMCID: PMC5457079 DOI: 10.3390/ma9090740] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 08/12/2016] [Accepted: 08/25/2016] [Indexed: 12/27/2022]
Abstract
Recently, studies of protein/peptide aggregation, particularly the amyloidosis, have attracted considerable attention in discussions of the pathological mechanisms of most neurodegenerative diseases. The protein/peptide aggregation processes often occur at the membrane-cytochylema interface in vivo and behave differently from those occurring in bulk solution, which raises great interest to investigate how the interfacial properties of artificial biomaterials impact on protein aggregation. From the perspective of bionics, current progress in this field has been obtained mainly from four aspects: (1) hydrophobic-hydrophilic interfaces; (2) charged surface; (3) chiral surface; and (4) biomolecule-related interfaces. The specific physical and chemical environment provided by these interfaces is reported to strongly affect the adsorption of proteins, transition of protein conformation, and diffusion of proteins on the biointerface, all of which are ultimately related to protein assembly. Meanwhile, these compelling results of in vitro experiments can greatly promote the development of early diagnostics and therapeutics for the relevant neurodegenerative diseases. This paper presents a brief review of these appealing studies, and particular interests are placed on weak interactions (i.e., hydrogen bonding and stereoselective interactions) that are also non-negligible in driving amyloid aggregation at the interfaces. Moreover, this paper also proposes the future perspectives, including the great opportunities and challenges in this field as well.
Collapse
Affiliation(s)
- Qi Lu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Qiuhan Tang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Yuting Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Guangyan Qing
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
93
|
Aggregation and Particle Formation of Therapeutic Proteins in Contact With a Novel Fluoropolymer Surface Versus Siliconized Surfaces: Effects of Agitation in Vials and in Prefilled Syringes. J Pharm Sci 2016; 105:2053-65. [DOI: 10.1016/j.xphs.2016.04.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 12/18/2022]
|
94
|
Katz JS, Tan Y, Kuppannan K, Song Y, Brennan DJ, Young T, Yao L, Jordan S. Amino-Acid-Incorporating Nonionic Surfactants for Stabilization of Protein Pharmaceuticals. ACS Biomater Sci Eng 2016; 2:1093-1096. [DOI: 10.1021/acsbiomaterials.6b00245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Joshua S. Katz
- Formulation Science, Core R&D, The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania 19426, United States
| | - Yujing Tan
- Analytical Sciences, Core R&D, The Dow Chemical Company, 1897 Building, Midland, Michigan 48674, United States
| | - Krishna Kuppannan
- Analytical Sciences, Core R&D, The Dow Chemical Company, 1897 Building, Midland, Michigan 48674, United States
| | - Yang Song
- Department
of Chemistry, University of Illinois at Urbana−Champaign, 405 North Matthews Avenue, Urbana, Illinois 61801, United States
- Formulation Science, Core R&D, The Dow Chemical Company, 1712 Building, Midland, Michigan 48674, United States
| | - David J. Brennan
- Formulation Science, Core R&D, The Dow Chemical Company, 1712 Building, Midland, Michigan 48674, United States
| | - Timothy Young
- Formulation Science, Core R&D, The Dow Chemical Company, 1712 Building, Midland, Michigan 48674, United States
| | - Lu Yao
- Formulation Science, Core R&D, The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania 19426, United States
| | - Susan Jordan
- Formulation Science, Core R&D, The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
95
|
Brückl L, Schröder T, Scheler S, Hahn R, Sonderegger C. The Effect of Shear on the Structural Conformation of rhGH and IgG1 in Free Solution. J Pharm Sci 2016; 105:1810-1818. [DOI: 10.1016/j.xphs.2016.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/10/2016] [Accepted: 03/15/2016] [Indexed: 10/21/2022]
|
96
|
Yang B, Xu L, Wang Q, Li S. Modulation of the wettability of excipients by surfactant and its impacts on the disintegration and release of tablets. Drug Dev Ind Pharm 2016; 42:1945-1955. [DOI: 10.1080/03639045.2016.1185436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Baixue Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Qiuxiao Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Sanming Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
97
|
Wong JJH, Wright SK, Ghozalli I, Mehra R, Furuya K, Katayama DS. Simultaneous High-Throughput Conformational and Colloidal Stability Screening Using a Fluorescent Molecular Rotor Dye, 4-(4-(Dimethylamino)styryl)-N-Methylpyridinium Iodide (DASPMI). ACTA ACUST UNITED AC 2016; 21:842-50. [PMID: 27138878 DOI: 10.1177/1087057116646553] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/03/2016] [Indexed: 11/16/2022]
Abstract
Technologies to improve the throughput for screening protein formulations are continuously evolving. The purpose of this article is to highlight novel applications of a molecular rotor dye, 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (DASPMI) in screening for the conformational stability, colloidal stability, and subtle pretransition dynamics of protein structures during early formulation development. The measurement of the apparent unfolding temperature (Tm) for a monoclonal antibody in the presence of Tween 80 was conducted and data were compared to the results of differential scanning calorimetry (DSC) measurements. Additionally, measuring the fluorescence intensity of DASPMI as a function of protein concentration shows consistent correlation to the diffusion interaction parameter (kD) for two distinct monoclonal antibody formulations measured by DLS. Lastly, due to the sensitivity of the molecular rotor dye to changes in microviscosity (ηmicro), subtle pretransition dynamics were discernable for two monoclonal antibody formulations that correlate with findings by red-edge excitation shift (REES) experiments. This novel application of molecular rotor dyes offers a valuable and promising approach for streamlining the early formulation development process due to low material consumption and rapid analysis time in a 96-well plate format.
Collapse
Affiliation(s)
- Jensen J H Wong
- Analytical Science Department, Analytical and Formulation Development, Boehringer Ingelheim, Fremont, CA, USA
| | - Sara K Wright
- Analytical Science Department, Analytical and Formulation Development, Boehringer Ingelheim, Fremont, CA, USA
| | - Irene Ghozalli
- Analytical Science Department, Analytical and Formulation Development, Boehringer Ingelheim, Fremont, CA, USA
| | - Rajni Mehra
- Analytical Science Department, Analytical and Formulation Development, Boehringer Ingelheim, Fremont, CA, USA
| | - Kenji Furuya
- Analytical Science Department, Analytical and Formulation Development, Boehringer Ingelheim, Fremont, CA, USA
| | - Derrick S Katayama
- Analytical Science Department, Analytical and Formulation Development, Boehringer Ingelheim, Fremont, CA, USA
| |
Collapse
|
98
|
Li R, Fu N, Wu Z, Wang Y, Liu W, Wang Y. Enhancing protein self-association at the gas–liquid interface for foam fractionation of bovine serum albumin from its highly diluted solution. Chem Eng Res Des 2016. [DOI: 10.1016/j.cherd.2016.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
99
|
Dixit N, Salamat-Miller N, Salinas PA, Taylor KD, Basu SK. Residual Host Cell Protein Promotes Polysorbate 20 Degradation in a Sulfatase Drug Product Leading to Free Fatty Acid Particles. J Pharm Sci 2016; 105:1657-1666. [DOI: 10.1016/j.xphs.2016.02.029] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 11/16/2022]
|
100
|
Li R, Wu Z, Wang Y, Ding L, Liu W. Prevention of irreversible aggregation of whey soy proteins in their foam fractionation from soy whey wastewater. ASIA-PAC J CHEM ENG 2016. [DOI: 10.1002/apj.1994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Rui Li
- School of Chemical Engineering and Technology; Hebei University of Technology; No.8 Guangrong Road, Dingzi Gu, Hongqiao District Tianjin 300130 China
| | - Zhaoliang Wu
- School of Chemical Engineering and Technology; Hebei University of Technology; No.8 Guangrong Road, Dingzi Gu, Hongqiao District Tianjin 300130 China
| | - Yanji Wang
- Key Lab of Green Chemical Technology and High Efficient Energy Saving; Hebei University of Technology; No.8 Guangrong Road, Dingzi Gu, Hongqiao District Tianjin 300130 China
| | - Linlin Ding
- School of Chemical Engineering and Technology; Hebei University of Technology; No.8 Guangrong Road, Dingzi Gu, Hongqiao District Tianjin 300130 China
| | - Wei Liu
- School of Chemical Engineering and Technology; Hebei University of Technology; No.8 Guangrong Road, Dingzi Gu, Hongqiao District Tianjin 300130 China
| |
Collapse
|