51
|
Pharmaceutical Excipients Enhance Iron-Dependent Photo-Degradation in Pharmaceutical Buffers by near UV and Visible Light: Tyrosine Modification by Reactions of the Antioxidant Methionine in Citrate Buffer. Pharm Res 2021; 38:915-930. [PMID: 33881737 DOI: 10.1007/s11095-021-03042-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE To evaluate the effect of excipients, including sugars and amino acids, on photo-degradation reactions in pharmaceutical buffers induced by near UV and visible light. METHODS Solutions of citrate or acetate buffers, containing 1 or 50 μM Fe3+, the model peptides methionine enkephalin (MEn), leucine enkephalin (LEn) or proctolin peptide (ProP), in the presence of commonly used amino acids or sugars, were photo-irradiated with near UV or visible light. The oxidation products were analyzed by reverse-phase HPLC and HPLC-MS/MS. RESULTS The sugars mannitol, sucrose and trehalose, and the amino acids Arg, Lys, and His significantly promote the oxidation of peptide Met to peptide Met sulfoxide. These excipients do not increase the yields of hydrogen peroxide, suggesting that other oxidants such as peroxyl radicals are responsible for the oxidation of peptide Met. The addition of free Met reduces the oxidation of peptide Met, but, in citrate buffer, causes the addition of Met oxidation products to Tyr residues of the target peptides. CONCLUSIONS Commonly used excipients enhance the light-induced oxidation of amino acids in model peptides.
Collapse
|
52
|
Zhang Y, Han D, Dou Z, Veilleux JC, Shi GH, Collins DS, Vlachos PP, Ardekani AM. The Interface Motion and Hydrodynamic Shear of the Liquid Slosh in Syringes. Pharm Res 2021; 38:257-275. [PMID: 33619639 DOI: 10.1007/s11095-021-02992-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Interface motion and hydrodynamic shear of the liquid slosh during the insertion of syringes upon autoinjector activation may damage the protein drug molecules. Experimentally validated computational fluid dynamics simulations are used in this study to investigate the interfacial motion and hydrodynamic shear due to acceleration and deceleration of syringes. The goal is to explore the role of fluid viscosity, air gap size, syringe acceleration, syringe tilt angle, liquid-wall contact angle, surface tension and fill volume on the interface dynamics caused by autoinjector activation. METHODS A simplified autoinjector platform submerged in water is built to record the syringe and liquid motion without obstruction of view. The syringe kinematics is imported to the simulations based on OpenFOAM InterIsoFoam solver, which is used to study the effects of various physical parameters. RESULTS The simulations agree with experiments on the air-liquid interface profile and interface area. The interfacial area and the volume of fluid subject to high strain rate decrease with the solution viscosity, increase with the air gap height, syringe velocity, tilt angle and syringe wall hydrophobicity, and hardly change with the surface tension and liquid column height. The hydrodynamic shear mainly occurs near the syringe wall and entrained bubbles. CONCLUSION For a given dose of drug solution, the syringe with smaller radius and larger length will generate less liquid slosh. Reducing the air volume and syringe wall hydrophobicity are also helpful to reduce interface area and effective shear. The interface motion is reduced when the syringe axis is aligned with the gravitational direction.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Dingding Han
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Zhongwang Dou
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA
| | | | - Galen H Shi
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | - Pavlos P Vlachos
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Arezoo M Ardekani
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
53
|
Abstract
Monoclonal antibodies are proteinaceous in nature and are subject to instability issues. Stability testing of monoclonal antibodies is a critical regulatory requirement in their development and commercialization as therapeutic biological molecules. This article reviews the numerous drug manufacturing processes such as: upstream processing, downstream purification and aseptic filling along with physical and chemical factors such as protein concentration, structure, pH, temperature, light, agitation, deamidation, oxidation, glycation leading to instabilities in monoclonal antibodies and it spotlights the variety of analytical techniques employed to investigate and generate information on stability studies and henceforth, helps in developing the stability-indicating methods. In addition, this paper aims to discuss the ICH regulatory guideline (s) for the stability assessment of biological products (Drug Substance and Drug Product).
Collapse
Affiliation(s)
- Harleen Kaur
- Analytical Sciences, Aurobindo Biologics, Hyderabad, India
| |
Collapse
|
54
|
Powell T, Knight MJ, Wood A, O'Hara J, Burkitt W. Photoinduced cross-linking of formulation buffer amino acids to monoclonal antibodies. Eur J Pharm Biopharm 2021; 160:35-41. [PMID: 33508437 DOI: 10.1016/j.ejpb.2021.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/22/2020] [Accepted: 01/20/2021] [Indexed: 12/27/2022]
Abstract
The correct choice of formulation buffer is a critical aspect of drug development and is chosen primarily to improve the stability of a protein therapeutic and protect against degradation. Amino acids are frequently incorporated into formulation buffers. In this study we have identified and characterized light induced cross-links between the side chain of histidine residues in an IgG4 monoclonal antibody and different amino acids commonly used in formulation buffers. These reactions have the potential to impact the overall product quality of the drug. The structure of each cross-link identified was elucidated using high performance liquid chromatography (HPLC) hyphenated to tandem mass spectrometry (MS/MS) with higher energy collisional dissociation (HCD). Furthermore, we speculate on the role of amino acids in formulation buffers and their influence on mAb stability. We theorize that whilst the adduction of formulation buffer amino acids could have a negative impact on product quality, it may protect against other pathways of photo-degradation.
Collapse
Affiliation(s)
- Thomas Powell
- Biomolecular Formulation and Characterization Sciences, UCB, Slough SL3WE, UK.
| | - Michael J Knight
- Biomolecular Formulation and Characterization Sciences, UCB, Slough SL3WE, UK
| | - Amanda Wood
- Biomolecular Formulation and Characterization Sciences, UCB, Slough SL3WE, UK
| | - John O'Hara
- Biomolecular Formulation and Characterization Sciences, UCB, Slough SL3WE, UK
| | - William Burkitt
- Biomolecular Formulation and Characterization Sciences, UCB, Slough SL3WE, UK
| |
Collapse
|
55
|
Subelzu N, Schöneich C. Near UV and Visible Light Induce Iron-Dependent Photodegradation Reactions in Pharmaceutical Buffers: Mechanistic and Product Studies. Mol Pharm 2020; 17:4163-4179. [PMID: 32986444 DOI: 10.1021/acs.molpharmaceut.0c00639] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Near UV (λ = 320-400 nm) and visible light (λ = 400-800 nm) can lead to the oxidation of pharmaceutical proteins, which can affect efficiency and promote immunogenicity. However, no concise mechanism has been established for the photo-oxidation of pharmaceutical proteins under near UV and visible light. Here, we show that carboxylic acid buffer-Fe3+ complexes can function as photosensitizers, causing peptide degradation via the formation of various radicals and oxidants. Three pharmaceutical relevant carboxylic acid buffers (citrate, acetate, and succinate) were tested under near UV and visible light. Oxidation reactions were monitored for model peptides containing readily oxidizable amino acids, such as methionine- or leucine-enkephalin and proctolin peptide. Oxidation products were evaluated by RP-HPLC coupled to UV or fluorescent detection and RP-HPLC-MS/MS. Specifically for citrate buffer, the light-induced formation of H2O2, •OH, •CO2-, and formaldehyde was demonstrated. The peptides displayed oxidation of Met, hydroxylation of Tyr and Phe, as well as the formation of novel products from Tyr. Experiments with 18O2 resulted in the incorporation of 18O into various reaction products, consistent with a metal-catalyzed activation of O2 into reactive oxygen species. The addition of EDTA and DTPA did not prevent the oxidation of the peptides and, in some cases, enhanced the oxidation. Our results demonstrate that pharmaceutical buffer-Fe3+ complexes, exposed to UV and visible light, can promote various pathways of oxidation reactions in pharmaceutical formulations.
Collapse
Affiliation(s)
- Natalia Subelzu
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, United States
| |
Collapse
|
56
|
Jain A, Hu G, Kumar Ratnakaram SS, Johnson DK, Picking WD, Picking WL, Middaugh CR. Preformulation Characterization and the Effect of Ionic Excipients on the Stability of a Novel DB Fusion Protein. J Pharm Sci 2020; 110:108-123. [PMID: 32916136 PMCID: PMC7750262 DOI: 10.1016/j.xphs.2020.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022]
Abstract
Shigella ssp cause bacillary dysentery (shigellosis) which has high global morbidity in young children and the elderly. The virulence of Shigella relies upon a type III secretion system (T3SS) which injects host altering effector proteins into targeted intestinal cells. The Shigella T3SS contains two components, invasion plasmid antigen D (IpaD) and invasion plasmid antigen B (IpaB), that were previously identified as broadly protective antigens. When IpaD and IpaB were co-expressed to give the DB fusion (DBF) protein, vaccine efficacy was further improved. Biophysical characterization under various pH conditions showed that DBF is most stable at pH 7 and 8 and loses its conformational integrity at 48 and 50 °C respectively. Forced degradation studies revealed significant effects on the secondary structure, tertiary structure and conformational stability of DBF. In the presence of phosphate buffers as well as other anionic excipients, DBF demonstrated a concentration dependent conformational stabilization. Molecular docking revealed potential polyanion binding sites in DBF that may interact with phytic acid. These sites can be exploited to stabilize the DBF protein. This work highlights potential destabilizing and stabilizing factors, which not only improves our understanding of the DBF protein but helps in future development of a stable Shigella vaccine.
Collapse
Affiliation(s)
- Akshay Jain
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA; Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, KS 66047, USA
| | - Gang Hu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA; Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, KS 66047, USA
| | | | - David K Johnson
- Computational Chemical Biology Laboratory, University of Kansas, Lawrence, KS 66047, USA
| | - William D Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Wendy L Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA.
| | - Charles Russell Middaugh
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA; Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
57
|
Trabik YA, Moenes EM, Al-Ghobashy MA, Nebsen M, Ayad MF. Analytical comparability study of anti-CD20 monoclonal antibodies rituximab and obinutuzumab using a stability-indicating orthogonal testing protocol: Effect of structural optimization and glycoengineering. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1159:122359. [PMID: 32920338 DOI: 10.1016/j.jchromb.2020.122359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/14/2020] [Accepted: 08/29/2020] [Indexed: 01/01/2023]
Abstract
Glycoengineering and biosimilarity are the key factors for growing, promising and progressive approaches in monoclonal antibodies development. In this study, the physicochemical stability of anti-CD20 rituximab (RTX); originator and biosimilar was compared to its glycoengineered humanized version; obinutuzumab (OBZ). An orthogonal stability-indicating protocol using a set of validated bioanalytical techniques; size exclusion high performance liquid chromatography (SE-HPLC), reversed phase liquid chromatography (RP-HPLC), quantitative gel electrophoresis by TapeStation, receptor binding assay and dynamic light scattering (DLS) was used to investigate the effect of different stress factors on the pattern and kinetics of degradation. SE-HPLC results supported with spectral purity showed similar degradation extent with a different pattern of degradation between RTX and OBZ. A lower tendency to form degraded fragments and a relatively higher favorability for degradation through aggregate formation has been revealed in case of OBZ. Results were in agreement with those of DLS and receptor binding assay which showed specificity to the intact antibodies in the presence of their degradation products. Furthermore, results were additionally confirmed through denaturing quantitative gel electrophoresis which suggested reducible covalent bonds as the mechanism for aggregates formation. RP-HPLC results showed two oxidized forms via excessive oxidation of RTX and OBZ with nearly the same degradation percent. Comparability data of RTX and OBZ using the applied methodologies showed that although glycoengineering; carried out to enhance the therapeutic and biological activity of OBZ altered the pattern of degradation but did not significantly affect the overall stability. Results showed also consistent stability profile between the biosimilar and its originator RTX products.
Collapse
Affiliation(s)
- Yossra A Trabik
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Eman M Moenes
- National Organization for Research and Control of Biologicals, Egypt
| | - Medhat A Al-Ghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt; Bioanalysis Research Group, School of Pharmacy, Newgiza University, Egypt.
| | - Marianne Nebsen
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Miriam F Ayad
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt
| |
Collapse
|
58
|
A Review on Mixing-Induced Protein Particle Formation: The Puzzle of Bottom-Mounted Mixers. J Pharm Sci 2020; 109:2363-2374. [DOI: 10.1016/j.xphs.2020.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
|
59
|
Huang J, Wang L, Yu C, Fu Z, Liu C, Zhang H, Wang K, Guo X, Wang J. Characterization of a reliable cell-based reporter gene assay for measuring bioactivities of therapeutic anti-interleukin-23 monoclonal antibodies. Int Immunopharmacol 2020; 85:106647. [DOI: 10.1016/j.intimp.2020.106647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
|
60
|
Rapid methodology for basal system selection of therapeutic proteins during the early stage biopharmaceutical development. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-019-00461-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
61
|
An Industry Perspective on Forced Degradation Studies of Biopharmaceuticals: Survey Outcome and Recommendations. J Pharm Sci 2020; 109:6-21. [DOI: 10.1016/j.xphs.2019.09.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 11/23/2022]
|
62
|
Le Basle Y, Chennell P, Tokhadze N, Astier A, Sautou V. Physicochemical Stability of Monoclonal Antibodies: A Review. J Pharm Sci 2020; 109:169-190. [DOI: 10.1016/j.xphs.2019.08.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 01/10/2023]
|
63
|
Gambe-Gilbuena A, Shibano Y, Krayukhina E, Torisu T, Uchiyama S. Automatic Identification of the Stress Sources of Protein Aggregates Using Flow Imaging Microscopy Images. J Pharm Sci 2020; 109:614-623. [DOI: 10.1016/j.xphs.2019.10.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 10/25/2022]
|
64
|
Development of a Pharmaceutical Composition and Stablity of Liquid Dosage Forms Based on Monoclonal IgG1 Antibodies. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-02073-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
65
|
Wälchli R, Vermeire PJ, Massant J, Arosio P. Accelerated Aggregation Studies of Monoclonal Antibodies: Considerations for Storage Stability. J Pharm Sci 2019; 109:595-602. [PMID: 31676272 DOI: 10.1016/j.xphs.2019.10.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/06/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Aggregation of mAbs is a crucial concern with respect to their safety and efficacy. Among the various properties of protein aggregates, it is emerging that their size can potentially impact their immunogenicity. Therefore, stability studies of antibody formulations should not only evaluate the rate of monomer loss but also determine the size distribution of the protein aggregates, which in turn depends on the aggregation mechanism. Here, we study the aggregation behavior of different formulations of 2 monoclonal immunoglobulins (IgGs) in the temperature range from 5°C to 50°C over 52 weeks of storage. We show that the aggregation kinetics of both antibodies follow non-Arrhenius behavior and that the aggregation mechanisms change between 40°C and 5°C, leading to different types of aggregates. Specifically, for a given monomer conversion, dimer formation dominates at low temperatures, while larger aggregates are formed at higher temperatures. We further show that the stability ranking of different molecules as well as of different formulations is drastically different at 40°C and 5°C while it correlates better between 30°C and 5°C. Our findings have implications for the level of information provided by accelerated aggregation studies with respect to protein stability under storage conditions.
Collapse
Affiliation(s)
- Ruben Wälchli
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Pieter-Jan Vermeire
- UCB Pharma, BioTech Sciences, Formulation Development, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - Jan Massant
- UCB Pharma, BioTech Sciences, Formulation Development, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland.
| |
Collapse
|
66
|
Development and Validation of a Reporter-Cell-Line-Based Bioassay for Therapeutic Soluble gp130-Fc. Molecules 2019; 24:molecules24213845. [PMID: 31731431 PMCID: PMC6864625 DOI: 10.3390/molecules24213845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 02/08/2023] Open
Abstract
Soluble glycoprotein 130 kDa (sgp130)-Fc fusion protein, an innovative therapeutic bio-macromolecular drug specifically targeting IL-6 trans-signaling, proved to have good potential for application in the treatment of chronic inflammatory diseases. A simple and quick bioassay for sgp130-Fc was developed in this study. First, a stable reporter cell line was obtained by transfecting CHO-K1 cells with a sis-inducible element (SIE)-driving luciferase reporter gene (CHO/SIE-Luc). Sgp130-Fc could inhibit the expression of luciferase induced by IL-6/sIL-6Rα complex, and the dose–response curve fitted the four-parameter logistic model, with 50% inhibitive concentration (IC50) being about 500 ng/mL and detection range between 40 and 5000 ng/mL. Both the intra-assay and inter-assay coefficient of variation (CV) were below 10.0%, and the accuracy estimates ranged from 94.1% to 106.2%. The assay indicated a good linearity (R² = 0.99) in the range of 50% to 150% of optimized initial concentration. No significant difference was found between the test results of new assay and BAF3/gp130 proliferation assay (unpaired t test, p = 0.4960, n = 6). The dose-response effect and copy number of the luciferase gene was basically unchanged after long-term culture (up to passage 60), demonstrating the stability of CHO/SIE-Luc cells. These results suggested that the new reporter assay was suited to routine potency determination of therapeutic sgp130-Fc.
Collapse
|
67
|
Tomeh MA, Hadianamrei R, Zhao X. Silk Fibroin as a Functional Biomaterial for Drug and Gene Delivery. Pharmaceutics 2019; 11:E494. [PMID: 31561578 PMCID: PMC6835371 DOI: 10.3390/pharmaceutics11100494] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 01/31/2023] Open
Abstract
Silk is a natural polymer with unique physicochemical and mechanical properties which makes it a desirable biomaterial for biomedical and pharmaceutical applications. Silk fibroin (SF) has been widely used for preparation of drug delivery systems due to its biocompatibility, controllable degradability and tunable drug release properties. SF-based drug delivery systems can encapsulate and stabilize various small molecule drugs as well as large biological drugs such as proteins and DNA to enhance their shelf lives and control the release to enhance their circulation time in the blood and thus the duration of action. Understanding the properties of SF and the potential ways of manipulating its structure to modify its physicochemical and mechanical properties allows for preparation of modulated drug delivery systems with desirable efficacies. This review will discuss the properties of SF material and summarize the recent advances of SF-based drug and gene delivery systems. Furthermore, conjugation of the SF to other biomolecules or polymers for tissue-specific drug delivery will also be discussed.
Collapse
Affiliation(s)
- Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| | - Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
68
|
Agarwal S, Sahni N, Hickey JM, Robertson GA, Sitrin R, Cryz S, Joshi SB, Volkin DB. Characterizing and Minimizing Aggregation and Particle Formation of Three Recombinant Fusion-Protein Bulk Antigens for Use in a Candidate Trivalent Rotavirus Vaccine. J Pharm Sci 2019; 109:394-406. [PMID: 31400346 PMCID: PMC6941221 DOI: 10.1016/j.xphs.2019.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022]
Abstract
In a companion paper, the structural integrity, conformational stability, and degradation mechanisms of 3 recombinant fusion-protein antigens comprising a non-replicating rotavirus (NRRV) vaccine candidate (currently being evaluated in early-stage clinical trials) are described. In this work, we focus on the aggregation propensity of the 3 NRRV antigens coupled to formulation development studies to identify common frozen bulk candidate formulations. The P2-VP8-P[8] antigen was most susceptible to shaking and freeze-thaw-induced aggregation and particle formation. Each NRRV antigen formed aggregates with structurally altered protein (with exposed apolar regions and intermolecular β-sheet) and dimers containing a non-native disulfide bond. From excipient screening studies with P2-VP8-P[8], sugars or polyols (e.g., sucrose, trehalose, mannitol, sorbitol) and various detergents (e.g., Pluronic F-68, polysorbate 20 and 80, PEG-3350) were identified as stabilizers against aggregation. By combining promising additives, candidate bulk formulations were optimized to not only minimize agitation-induced aggregation, but also particle formation due to freeze-thaw stress of P2-VP8-P[8] antigen. Owing to limited material availability, stabilization of the P2-VP8-P[4] and P2-VP8-P[6] was confirmed with the lead candidate P2-VP8-P[8] formulations. The optimization of these bulk NRRV candidate formulations is discussed in the context of subsequent drug product formulations in the presence of aluminum adjuvants.
Collapse
Affiliation(s)
- Sanjeev Agarwal
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Neha Sahni
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - John M Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - George A Robertson
- The Center for Vaccine Innovation and Access, PATH, 455 Massachusetts Avenue NW Suite 1000, Washington, District of Columbia 20001
| | - Robert Sitrin
- The Center for Vaccine Innovation and Access, PATH, 455 Massachusetts Avenue NW Suite 1000, Washington, District of Columbia 20001
| | - Stanley Cryz
- The Center for Vaccine Innovation and Access, PATH, 455 Massachusetts Avenue NW Suite 1000, Washington, District of Columbia 20001
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047.
| |
Collapse
|
69
|
Dyck YFK, Rehm D, Joseph JF, Winkler K, Sandig V, Jabs W, Parr MK. Forced Degradation Testing as Complementary Tool for Biosimilarity Assessment. Bioengineering (Basel) 2019; 6:bioengineering6030062. [PMID: 31330921 PMCID: PMC6783961 DOI: 10.3390/bioengineering6030062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/25/2022] Open
Abstract
Oxidation of monoclonal antibodies (mAbs) can impact their efficacy and may therefore represent critical quality attributes (CQA) that require evaluation. To complement classical CQA, bevacizumab and infliximab were subjected to oxidative stress by H2O2 for 24, 48, or 72 h to probe their oxidation susceptibility. For investigation, a middle-up approach was used utilizing liquid chromatography hyphenated with mass spectrometry (LC-QTOF-MS). In both mAbs, the Fc/2 subunit was completely oxidized. Additional oxidations were found in the light chain (LC) and in the Fd’ subunit of infliximab, but not in bevacizumab. By direct comparison of methionine positions, the oxidized residues in infliximab were assigned to M55 in LC and M18 in Fd’. The forced oxidation approach was further exploited for comparison of respective biosimilar products. Both for bevacizumab and infliximab, comparison of posttranslational modification profiles demonstrated high similarity of the unstressed reference product (RP) and the biosimilar (BS). However, for bevacizumab, comparison after forced oxidation revealed a higher susceptibility of the BS compared to the RP. It may thus be considered a useful tool for biopharmaceutical engineering, biosimilarity assessment, as well as for quality control of protein drugs.
Collapse
Affiliation(s)
- Yan Felix Karl Dyck
- Department of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
- Department of Life Sciences & Technology, Beuth Hochschule für Technik Berlin, Seestraße 64, 13347 Berlin, Germany
| | - Daniel Rehm
- Department of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
- ProBioGen AG, Goethestraße 54, 13086 Berlin, Germany
| | - Jan Felix Joseph
- Department of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
- Core Facility BioSupraMol, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | | | - Volker Sandig
- ProBioGen AG, Goethestraße 54, 13086 Berlin, Germany
| | - Wolfgang Jabs
- Department of Life Sciences & Technology, Beuth Hochschule für Technik Berlin, Seestraße 64, 13347 Berlin, Germany
| | - Maria Kristina Parr
- Department of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany.
| |
Collapse
|
70
|
Wang W, Ohtake S. Science and art of protein formulation development. Int J Pharm 2019; 568:118505. [PMID: 31306712 DOI: 10.1016/j.ijpharm.2019.118505] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023]
Abstract
Protein pharmaceuticals have become a significant class of marketed drug products and are expected to grow steadily over the next decade. Development of a commercial protein product is, however, a rather complex process. A critical step in this process is formulation development, enabling the final product configuration. A number of challenges still exist in the formulation development process. This review is intended to discuss these challenges, to illustrate the basic formulation development processes, and to compare the options and strategies in practical formulation development.
Collapse
Affiliation(s)
- Wei Wang
- Biological Development, Bayer USA, LLC, 800 Dwight Way, Berkeley, CA 94710, United States.
| | - Satoshi Ohtake
- Pharmaceutical Research and Development, Pfizer Biotherapeutics Pharmaceutical Sciences, Chesterfield, MO 63017, United States
| |
Collapse
|
71
|
Falconer RJ. Advances in liquid formulations of parenteral therapeutic proteins. Biotechnol Adv 2019; 37:107412. [PMID: 31254660 DOI: 10.1016/j.biotechadv.2019.06.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/25/2019] [Accepted: 06/24/2019] [Indexed: 01/01/2023]
Abstract
Liquid formulation of therapeutic proteins is a maturing technology. Demand for products that are easy to use in the clinic or that are amenable to self-administration make a ready to use liquid formulation desirable. Most modern liquid formulations have a simple composition; comprising a buffer, a tonicity modifier, a surfactant, sometimes a stabiliser, the therapeutic protein and water. Recent formulations of monoclonal antibodies often use histidine or acetate as the buffer, sucrose or trehalose as the tonicity modifier and polysorbate 20 or 80 as the surfactant with a pH of 5.7 +/- 0.4. The mechanisms for the behaviour of excipients is still debated by academics so formulation design is still a black art. Fortunately, a statistical approach like design of experiment is suitable for formulation development and has been successful when combined with accelerated stability experimentation. The development of prefilled syringes and pens has added low viscosity and shear resistance to the quality attributes for a successful formulation. To achieve patient compliance for self-administration, formulations that cause minimal pain and tissue damage is also desirable.
Collapse
Affiliation(s)
- Robert J Falconer
- Department of Chemical Engineering & Advanced Materials, University of Adelaide, South Australia 5005, Australia.
| |
Collapse
|
72
|
Therapeutic protein purity and fragmented species characterization by capillary electrophoresis sodium dodecyl sulfate using systematic hybrid cleavage and forced degradation. Anal Bioanal Chem 2019; 411:5617-5629. [DOI: 10.1007/s00216-019-01942-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
|
73
|
Evans AR, Capaldi MT, Goparaju G, Colter D, Shi FF, Aubert S, Li LC, Mo J, Lewis MJ, Hu P, Alfonso P, Mehndiratta P. Using bispecific antibodies in forced degradation studies to analyze the structure-function relationships of symmetrically and asymmetrically modified antibodies. MAbs 2019; 11:1101-1112. [PMID: 31161859 PMCID: PMC6748611 DOI: 10.1080/19420862.2019.1618675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Forced degradation experiments of monoclonal antibodies (mAbs) aid in the identification of critical quality attributes (CQAs) by studying the impact of post-translational modifications (PTMs), such as oxidation, deamidation, glycation, and isomerization, on biological functions. Structure-function characterization of mAbs can be used to identify the PTM CQAs and develop appropriate analytical and process controls. However, the interpretation of forced degradation results can be complicated because samples may contain mixtures of asymmetrically and symmetrically modified mAbs with one or two modified chains. We present a process to selectively create symmetrically and asymmetrically modified antibodies for structure-function characterization using the bispecific DuoBody® platform. Parental molecules mAb1 and mAb2 were first stressed with peracetic acid to induce methionine oxidation. Bispecific antibodies were then prepared from a mixture of oxidized or unoxidized parental mAbs by a controlled Fab-arm exchange process. This process was used to systematically prepare four bispecific mAb products: symmetrically unoxidized, symmetrically oxidized, and both combinations of asymmetrically oxidized bispecific mAbs. Results of this study demonstrated chain-independent, 1:2 stoichiometric binding of the mAb Fc region to both FcRn receptor and to Protein A. The approach was also applied to create asymmetrically deamidated mAbs at the asparagine 330 residue. Results of this study support the proposed 1:1 stoichiometric binding relationship between the FcγRIIIa receptor and the mAb Fc. This approach should be generally applicable to study the potential impact of any modification on biological function.
Collapse
Affiliation(s)
- Adam R Evans
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Michael T Capaldi
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Geetha Goparaju
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - David Colter
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Frank F Shi
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Sarah Aubert
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Lian-Chao Li
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Jingjie Mo
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Michael J Lewis
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Ping Hu
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Pedro Alfonso
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Promod Mehndiratta
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA.,b Analytical Development, Biologics Research and Development, Celgene Corporation , Summit , NJ , USA
| |
Collapse
|
74
|
Kip Ç, Liu S, Fu X, Tuncel A, Lämmerhofer M. In-situ photopolymerized C4-functionalized organosilicon monoliths for reversed-phase protein separation in nano-liquid chromatography. Talanta 2019; 198:330-336. [DOI: 10.1016/j.talanta.2019.01.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/25/2022]
|
75
|
Wong NA, Uchida NV, Dissanayake TU, Patel M, Iqbal M, Woehl TJ. Detection and Sizing of Submicron Particles in Biologics With Interferometric Scattering Microscopy. J Pharm Sci 2019; 109:881-890. [PMID: 31160046 DOI: 10.1016/j.xphs.2019.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/17/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022]
Abstract
We demonstrate the application of interferometric scattering microscopy (IFS) for characterizing submicron particles in stir-stressed monoclonal antibody. IFS uses a layered silicon sensor and modified optical microscope to rapidly visualize and determine the particle size distribution (PSD) of submicron particles based on their scattering intensity, which is directly proportional to particle mass. Limits for particle size and optimal solution concentration were established for IFS characterization of submicron particles. We critically compare IFS data with dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) and find IFS is superior to NTA and DLS for determining the realistic shape of the number-based PSD, whereas NTA and DLS provide superior information about absolute particle size. Together, IFS, NTA, and DLS provide complementary information on submicron particles and enable quantitative characterization of the PSD of submicron aggregates. Finally, we explore quantifying particle size with IFS by developing a calibration curve for particle scattering intensity based on correlative scanning electron microscopy imaging. We found that only a subset of isotropic-shaped particles followed the expected proportionality between IFS intensity and particle mass. Overall, this study demonstrates IFS is a simple approach for detecting and quantifying submicron aggregate PSD in protein-based therapeutics.
Collapse
Affiliation(s)
- Nathan A Wong
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742
| | - Nina V Uchida
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742
| | - Thilini U Dissanayake
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742
| | - Mehulkumar Patel
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - Maira Iqbal
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742.
| |
Collapse
|
76
|
A Cell-Based Strategy for Bioactivity Determination of Long-Acting Fc-Fusion Recombinant Human Growth Hormone. Molecules 2019; 24:molecules24071389. [PMID: 30970583 PMCID: PMC6479951 DOI: 10.3390/molecules24071389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022] Open
Abstract
The long-acting growth hormone (LAGH) is a promising alternative biopharmaceutical to treat growth hormone (GH) deficiency in children, and it was developed using a variety of technologies by several pharmaceutical companies. Most LAGH preparations, such as Fc fusion protein, are currently undergoing preclinical study and clinical trials. Accurate determination of bioactivity is critical for the efficacy of quality control systems of LAGH. The current in vivo rat weight gain assays used to determine the bioactivity of recombinant human GH (rhGH) in pharmacopoeias are time-consuming, expensive, and imprecise, and there are no recommended bioassays for LAGH bioactivity in pharmacopoeias. Therefore, we developed a cell-based bioassay for bioactivity determination of therapeutic long-acting Fc-fusion recombinant human growth hormone (rhGH-Fc) based on the luciferase reporter gene system, which is involved in the full-length human GH receptor (hGHR) and the SG (SIE and GAS) response element. The established bioassay was comprehensively validated according to the International Council for Harmonization (ICH) Q2 (R1) guidelines and the Chinese Pharmacopoeia, and is highly precise, time-saving, simple, and robust. The validated bioassay could be qualified for bioactivity determination during the research, development, and manufacture of rhGH-Fc, and other LAGH formulations.
Collapse
|
77
|
Biotherapeutic Antibody Subunit LC-MS and Peptide Mapping LC-MS Measurements to Study Possible Biotransformation and Critical Quality Attributes In Vivo. J Pharm Sci 2019; 108:1415-1422. [DOI: 10.1016/j.xphs.2018.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022]
|
78
|
Farjami A, Akbarzadehlaleh P, Molavi O, Siahi-Shadbad M. Stability-Indicating Size Exclusion Chromatography Method for the Analysis of IgG mAb-Cetuximab. Chromatographia 2019. [DOI: 10.1007/s10337-019-03703-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
79
|
Bioactivity Determination of a Therapeutic Recombinant Human Keratinocyte Growth Factor by a Validated Cell-based Bioassay. Molecules 2019; 24:molecules24040699. [PMID: 30769959 PMCID: PMC6412437 DOI: 10.3390/molecules24040699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 01/21/2023] Open
Abstract
The therapeutic recombinant human keratinocyte growth factor 1 (rhKGF-1) was approved by the FDA for oral mucositis resulting from hematopoietic stem cell transplantation for hematological malignancies in 2004. However, no recommended bioassay for rhKGF-1 bioactivity has been recorded in the U.S. Pharmacopoeia. In this study, we developed an rhKGF-1-dependent bioassay for determining rhKGF-1 bioactivity based on HEK293 and HaCat cell lines that stably expressed the luciferase reporter driven by the serum response element (SRE) and human fibroblast growth factor receptor (FGFR2) IIIb. A good responsiveness to rhKGF-1 and rhKGF-2 shared by target HEK293/HaCat cell lines was demonstrated. Our stringent validation was completely focused on specificity, linearity, accuracy, precision, and robustness according to the International Council for Harmonization (ICH) Q2 (R1) guidelines, AAPS/FDA Bioanalytical Workshop and the Chinese Pharmacopoeia. We confirmed the reliability of the method in determining rhKGF bioactivity. The validated method is highly timesaving, sensitive, and simple, and is especially valuable for providing information for quality control during the manufacture, research, and development of therapeutic rhKGF.
Collapse
|
80
|
Pavon JA, Xiao L, Li X, Zhao J, Aldredge D, Dank E, Fridman A, Liu YH. Selective Tryptophan Oxidation of Monoclonal Antibodies: Oxidative Stress and Modeling Prediction. Anal Chem 2019; 91:2192-2200. [DOI: 10.1021/acs.analchem.8b04768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jorge Alexander Pavon
- Process Research & Development, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Li Xiao
- Modeling and Informatics, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Xiaojuan Li
- Process Research & Development, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Jia Zhao
- Process Research & Development, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Danielle Aldredge
- Process Research & Development, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Eugene Dank
- Process Research & Development, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Alex Fridman
- Process Research & Development, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Yan-Hui Liu
- Process Research & Development, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
81
|
Patel A, Gupta V, Hickey J, Nightlinger NS, Rogers RS, Siska C, Joshi SB, Seaman MS, Volkin DB, Kerwin BA. Coformulation of Broadly Neutralizing Antibodies 3BNC117 and PGT121: Analytical Challenges During Preformulation Characterization and Storage Stability Studies. J Pharm Sci 2018; 107:3032-3046. [PMID: 30176252 PMCID: PMC6269598 DOI: 10.1016/j.xphs.2018.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/20/2018] [Accepted: 08/14/2018] [Indexed: 01/16/2023]
Abstract
In this study, we investigated analytical challenges associated with the formulation of 2 anti-HIV broadly neutralizing antibodies (bnAbs), 3BNC117 and PGT121, both separately at 100 mg/mL and together at 50 mg/mL each. The bnAb formulations were characterized for relative solubility and conformational stability followed by accelerated and real-time stability studies. Although the bnAbs were stable during 4°C storage, incubation at 40°C differentiated their stability profiles. Specific concentration-dependent aggregation rates at 30°C and 40°C were measured by size exclusion chromatography for the individual bnAbs with the mixture showing intermediate behavior. Interestingly, although the relative ratio of the 2 bnAbs remained constant at 4°C, the ratio of 3BNC117 to PGT121 increased in the dimer that formed during storage at 40°C. A mass spectrometry-based multiattribute method, identified and quantified differences in modifications of the Fab regions for each bnAb within the mixture including clipping, oxidation, deamidation, and isomerization sites. Each bnAb showed slight differences in the levels and sites of lysine residue glycations. Together, these data demonstrate the ability to differentiate degradation products from individual antibodies within the bnAb mixture, and that degradation rates are influenced not only by the individual bnAb concentrations but also by the mixture concentration.
Collapse
Affiliation(s)
- Ashaben Patel
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Vineet Gupta
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - John Hickey
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Nancy S Nightlinger
- Just Biotherapeutics Inc., 401 Terry Avenue North, Seattle, Washington 98109
| | - Richard S Rogers
- Just Biotherapeutics Inc., 401 Terry Avenue North, Seattle, Washington 98109
| | - Christine Siska
- Just Biotherapeutics Inc., 401 Terry Avenue North, Seattle, Washington 98109
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047.
| | - Bruce A Kerwin
- Just Biotherapeutics Inc., 401 Terry Avenue North, Seattle, Washington 98109.
| |
Collapse
|
82
|
Shi Y, Hong X, Fan H, Wu Z, Liu A. Characterizing Novel Modifications of a Therapeutic Protein Using Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry, Sedimentation Velocity Analytical Ultracentrifugation, and Structural Modeling. Anal Chem 2018; 90:12870-12877. [PMID: 30295031 DOI: 10.1021/acs.analchem.8b03459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterogeneity of biopharmaceutical products is common due to various co- and post-translational modifications and degradation events that occur during the biological production process and throughout the shelf life. Product-related variants resulting from these modifications potentially affect a product's biological activity and safety, and thus, their detailed structure characterization is of great importance for successful development of protein therapeutics. Specifically, in this study, two novel low-level product variants in a recombinant therapeutic protein were characterized via chromatographic enrichment followed by proteolytic digestion and analysis using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). One of the variants was identified to be the therapeutic protein missing a 61-amino-acid fragment from its N-terminus. Consequently, the other variant was found to be the therapeutic protein carrying the 61-amino-acid long peptide. Furthermore, detailed structure at the modification site of the latter variant was determined as that amino group from the protein's N-terminus linked to side chain carbonyl carbon at Asp 61 residue of the peptide, based on the complementary information from collision induced dissociation and electron transfer dissociation MS/MS analysis. Results from sedimentation velocity analytical ultracentrifugation and computational structural modeling supported the hypothesis that formation of these two variants was a result of protein self-association. In dimeric state, the head-to-toe stacking conformation of two therapeutic protein molecules allowed spatial closeness between the N-terminus of one molecule and the 61st amino acid of the other molecule, resulting in a novel peptide transfer between the two protein molecules.
Collapse
|
83
|
Effect of Peroxide- Versus Alkoxyl-Induced Chemical Oxidation on the Structure, Stability, Aggregation, and Function of a Therapeutic Monoclonal Antibody. J Pharm Sci 2018; 107:2789-2803. [DOI: 10.1016/j.xphs.2018.07.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/25/2018] [Accepted: 07/24/2018] [Indexed: 11/22/2022]
|
84
|
Study of aggregation in therapeutic monoclonal antibodies subjected to stress and long-term stability tests by analyzing size exclusion liquid chromatographic profiles. Int J Biol Macromol 2018; 118:511-524. [DOI: 10.1016/j.ijbiomac.2018.06.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 01/15/2023]
|
85
|
Martínez-Ortega A, Herrera A, Salmerón-García A, Cabeza J, Cuadros-Rodríguez L, Navas N. Validated reverse phase HPLC diode array method for the quantification of intact bevacizumab, infliximab and trastuzumab for long-term stability study. Int J Biol Macromol 2018; 116:993-1003. [DOI: 10.1016/j.ijbiomac.2018.05.142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 10/16/2022]
|
86
|
Qian J, Yearley E, Tian S, Jing L, Balsaraf A, Lo Surdo P, Huang Y, Chandramouli S, Bottomley MJ, Moniotte N, Wang Z. Non-Enzymatic and Site-Specific Glycan Shedding: A Novel Protein Degradation Pathway Observed in a Stabilized Form of RSV Prefusion F Protein. Anal Chem 2018; 90:10897-10902. [DOI: 10.1021/acs.analchem.8b02402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiang Qian
- Analytical R&D, Slaoui Center for Vaccines Research, GSK Vaccines, 14200 Shady Grove Road, Rockville, Maryland 20850, United States
| | - Eric Yearley
- Analytical R&D, Slaoui Center for Vaccines Research, GSK Vaccines, 14200 Shady Grove Road, Rockville, Maryland 20850, United States
| | - Sai Tian
- Preclinical R&D, Slaoui Center for Vaccines Research, GSK Vaccines, 14200 Shady Grove Road, Rockville, Maryland 20850, United States
| | - Li Jing
- Drug Substance R&D, Slaoui Center for Vaccines Research, GSK Vaccines, 14200 Shady Grove Road, Rockville, Maryland 20850, United States
| | - Ankita Balsaraf
- Preclinical R&D, Slaoui Center for Vaccines Research, GSK Vaccines, 14200 Shady Grove Road, Rockville, Maryland 20850, United States
| | - Paola Lo Surdo
- Drug Substance R&D, Slaoui Center for Vaccines Research, GSK Vaccines, 14200 Shady Grove Road, Rockville, Maryland 20850, United States
| | - Ying Huang
- Preclinical R&D, Slaoui Center for Vaccines Research, GSK Vaccines, 14200 Shady Grove Road, Rockville, Maryland 20850, United States
| | - Sumana Chandramouli
- Preclinical R&D, Slaoui Center for Vaccines Research, GSK Vaccines, 14200 Shady Grove Road, Rockville, Maryland 20850, United States
| | - Matthew J. Bottomley
- Preclinical R&D, Slaoui Center for Vaccines Research, GSK Vaccines, 14200 Shady Grove Road, Rockville, Maryland 20850, United States
| | - Nicolas Moniotte
- Analytical R&D, Slaoui Center for Vaccines Research, GSK Vaccines, 14200 Shady Grove Road, Rockville, Maryland 20850, United States
| | - Zihao Wang
- Analytical R&D, Slaoui Center for Vaccines Research, GSK Vaccines, 14200 Shady Grove Road, Rockville, Maryland 20850, United States
| |
Collapse
|
87
|
Biophysical virus particle specific characterization to sharpen the definition of virus stability. Eur J Pharm Biopharm 2018; 132:62-69. [PMID: 30118752 DOI: 10.1016/j.ejpb.2018.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022]
Abstract
Vaccine thermostability is key to successful global immunization programs as it may have a significant impact on the continuous cold-chain maintenance logistics, as well as affect vaccine potency. Modern biological and biophysical techniques were combined to in-depth characterize the thermostability of a formulated rabies virus (RABV) in terms of antigenic and genomic titer, virus particle count and aggregation state. Tunable resistive pulse sensing (TRPS) and nanoparticle tracking analysis (NTA) were used to count virus particles while simultaneously determining their size distribution. RABV antigenicity was assessed by NTA using a monoclonal antibody that recognize a rabies glycoprotein (G protein) conformational epitope, enabling to specifically count antigenic rabies viruses. Agreement between antigenicity results from NTA and conventional method, as ELISA, was demonstrated. Additionally, NTA and ELISA showed mirrored loss of RABV antigenicity during forced degradation studies performed between 5 °C and 45 °C temperature exposure for one month. Concomitant with decreased antigenicity, emergence of RABV particle populations larger than those expected for rabies family viruses was observed, suggesting RABV aggregation induced by thermal stress. Finally, using a kinetic-based modeling approach to explore forced degradation antigenicity data (NTA, ELISA), a two-step model accurately describing antigenicity loss was identified. This model predicted a RABV shelf-life of more than 3 years at 5 °C; significant loss of antigenicity was predicted for samples maintained several months at ambient temperature. This thorough characterization of RABV forced degradation study originally provided a time-temperature mapping of RABV stability.
Collapse
|
88
|
Háda V, Bagdi A, Bihari Z, Timári SB, Fizil Á, Szántay C. Recent advancements, challenges, and practical considerations in the mass spectrometry-based analytics of protein biotherapeutics: A viewpoint from the biosimilar industry. J Pharm Biomed Anal 2018; 161:214-238. [PMID: 30205300 DOI: 10.1016/j.jpba.2018.08.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/22/2023]
Abstract
The extensive analytical characterization of protein biotherapeutics, especially of biosimilars, is a critical part of the product development and registration. High-resolution mass spectrometry became the primary analytical tool used for the structural characterization of biotherapeutics. Its high instrumental sensitivity and methodological versatility made it possible to use this technique to characterize both the primary and higher-order structure of these proteins. However, even by using high-end instrumentation, analysts face several challenges with regard to how to cope with industrial and regulatory requirements, that is, how to obtain accurate and reliable analytical data in a time- and cost-efficient way. New sample preparation approaches, measurement techniques and data evaluation strategies are available to meet those requirements. The practical considerations of these methods are discussed in the present review article focusing on hot topics, such as reliable and efficient sequencing strategies, minimization of artefact formation during sample preparation, quantitative peptide mapping, the potential of multi-attribute methodology, the increasing role of mass spectrometry in higher-order structure characterization and the challenges of MS-based identification of host cell proteins. On the basis of the opportunities in new instrumental techniques, methodological advancements and software-driven data evaluation approaches, for the future one can envision an even wider application area for mass spectrometry in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Viktor Háda
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary.
| | - Attila Bagdi
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Zsolt Bihari
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | | | - Ádám Fizil
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Csaba Szántay
- Spectroscopic Research Department, Gedeon Richter Plc, Hungary.
| |
Collapse
|
89
|
Effect of photo-degradation on the structure, stability, aggregation, and function of an IgG1 monoclonal antibody. Int J Pharm 2018; 547:438-449. [DOI: 10.1016/j.ijpharm.2018.06.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 11/18/2022]
|
90
|
Clarkson BR, Chaudhuri R, Schön A, Cooper JW, Kueltzo L, Freire E. Long term stability of a HIV-1 neutralizing monoclonal antibody using isothermal calorimetry. Anal Biochem 2018; 554:61-69. [DOI: 10.1016/j.ab.2018.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
|
91
|
Bhirde AA, Chiang MJ, Venna R, Beaucage S, Brorson K. High-Throughput In-Use and Stress Size Stability Screening of Protein Therapeutics Using Algorithm-Driven Dynamic Light Scattering. J Pharm Sci 2018; 107:2055-2062. [DOI: 10.1016/j.xphs.2018.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
|
92
|
Kopp MR, Arosio P. Microfluidic Approaches for the Characterization of Therapeutic Proteins. J Pharm Sci 2018; 107:1228-1236. [DOI: 10.1016/j.xphs.2018.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 12/01/2017] [Accepted: 01/03/2018] [Indexed: 01/31/2023]
|
93
|
Kim S, Cui ZK, Kim PJ, Jung LY, Lee M. Design of hydrogels to stabilize and enhance bone morphogenetic protein activity by heparin mimetics. Acta Biomater 2018; 72:45-54. [PMID: 29597024 DOI: 10.1016/j.actbio.2018.03.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
Although bone morphogenetic protein-2 (BMP-2) is known to be the most potent stimulator available for bone formation, a major barrier to widespread clinical use is its inherent instability and absence of an adequate delivery system. Heparin is being widely used in controlled release systems due to its strong binding ability and protective effect for many growth factor proteins. In this work, we developed a hydrogel surface that can mimic heparin to stabilize BMP-2 and to enhance osteogenesis by introducing heparin-mimicking sulfonated molecules such as poly-vinylsulfonic acid (PVSA) or poly-4-styrenesulfonic acid (PSS), into photo-crosslinkable hydrogel. Bioactivity of BMP-2 was well preserved in the presence of polysulfonates during exposure to various therapeutically relevant stressors. The heparin-mimicking sulfonated hydrogels were effective to bind BMP-2 compared to unmodified MeGC hydrogel and significantly enhanced osteogenic differentiation of encapsulated bone marrow stromal cells (BMSCs) without the addition of exogenous BMP-2. The sulfonated hydrogels were effective in delivering exogenous BMP-2 with reduced initial burst and increased BMSCs osteogenesis induced by BMP-2. These findings suggest a novel hydrogel platform for sequestering and stabilizing BMP-2 to enhance osteoinductive activity in bone tissue engineering. STATEMENT OF SIGNIFICANCE Although bone morphogenetic protein-2 (BMP-2) is believed to be the most potent cytokine for bone regeneration, its clinical applications require supraphysiological BMP dosage due to its intrinsic instability and fast enzymatic degradation, leading to worrisome side effects. This study demonstrates a novel hydrogel platform that mimics a natural protector of BMPs, heparin, to sequester and stabilize BMP-2 for increased osteoinductive signaling. This study will achieve the stabilization of BMPs with prolonged bioactivity by a synthetic heparin mimic that has not been examined previously. Moreover, the heparin mimetic hydrogel surface can augment endogenous BMP activity by sequestering and localizing the cell-produced BMPs. The additional knowledge gained from this study may suggest basis for future development of material-based therapeutics for tissue engineering.
Collapse
|
94
|
Kopp MRG, Villois A, Capasso Palmiero U, Arosio P. Microfluidic Diffusion Analysis of the Size Distribution and Microrheological Properties of Antibody Solutions at High Concentrations. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00666] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marie R. G. Kopp
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, Zurich, 8093, Switzerland
| | - Alessia Villois
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, Zurich, 8093, Switzerland
| | - Umberto Capasso Palmiero
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, Zurich, 8093, Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, Zurich, 8093, Switzerland
| |
Collapse
|
95
|
Protein Nanoparticles Promote Microparticle Formation in Intravenous Immunoglobulin Solutions During Freeze-Thawing and Agitation Stresses. J Pharm Sci 2018; 107:1852-1857. [PMID: 29601840 DOI: 10.1016/j.xphs.2018.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 11/21/2022]
Abstract
In this study, we investigated the potential roles of nanoparticles (<100 nm) and submicron (100-1000 nm) particles in the formation of microparticles (>1000 nm) in protein formulations under some pharmaceutically relevant stress conditions. Exposure of intravenous immunoglobulin solutions to the interface-associated stresses of freeze-thawing or agitation resulted in relatively large increases in microparticle concentrations, which depended directly on the levels of pre-existing nano- and submicron particles. Thus, agglomeration of nanoparticles and submicron particles appears to play a role in microparticle formation under these stresses. In contrast, increases in microparticle concentrations during quiescent incubation at elevated temperatures were independent of the initial nano- and submicron particle concentrations in solution.
Collapse
|
96
|
Tokhadze N, Chennell P, Le Basle Y, Sautou V. Stability of infliximab solutions in different temperature and dilution conditions. J Pharm Biomed Anal 2018; 150:386-395. [DOI: 10.1016/j.jpba.2017.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 01/09/2023]
|
97
|
Understanding the Increased Aggregation Propensity of a Light-Exposed IgG1 Monoclonal Antibody Using Hydrogen Exchange Mass Spectrometry, Biophysical Characterization, and Structural Analysis. J Pharm Sci 2018; 107:1498-1511. [PMID: 29408480 DOI: 10.1016/j.xphs.2018.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/06/2017] [Accepted: 01/17/2018] [Indexed: 12/18/2022]
Abstract
This work compares the conformational stability, backbone flexibility, and aggregation propensity of monomer and dimer fractions of an IgG1 monoclonal antibody (mAb) generated on UVA light exposure for up to 72 h collected by preparative size-exclusion chromatography, compared with unstressed control. UVA light exposure induced covalent aggregation, and fragmentation as measured by size-exclusion chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis, and extensive oxidation of specific methionine residues (Met 257, Met 433, and Met 109) in both size fractions identified by reverse phase chromatography coupled to mass spectrometry. Compared with unstressed mAb, both the monomer and dimer fractionated from 72 h UVA light-exposed mAb had decreased thermal melting temperatures (Tm1) by 1.4°C as measured by differential scanning calorimetry, minor changes in tertiary structure as measured by near-UV CD, increased monomer loss, and aggregation on accelerated storage at 35°C. Hydrogen/deuterium exchange mass spectrometry identified local segments with increased flexibility in CH2 and CH3 domains of both size fractions, and decreased flexibility in few segments of Fab and CH1 domains in the dimer fraction. Segment 247-256 in heavy chain, an established aggregation hotspot in IgG1 mAbs had large increase in flexibility in both size fractions compared with unstressed mAb.
Collapse
|
98
|
Yu S, Wu Y, Xu P, Wang S, Zhangsun D, Luo S. Effects of serum, enzyme, thiol, and forced degradation on the stabilities of αO-Conotoxin GeXIVA[1,2] and GeXIVA [1,4]. Chem Biol Drug Des 2018; 91:1030-1041. [DOI: 10.1111/cbdd.13167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/22/2017] [Accepted: 12/17/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Shurun Yu
- Key Laboratory of Tropical Biological Resources, Ministry of Education; Hainan University; Haikou China
- Key Laboratory for Marine Drugs of Haikou; Hainan University; Haikou China
- Institute of Tropical Agriculture and Forestry; Hainan University; Haikou China
| | - Yong Wu
- Key Laboratory of Tropical Biological Resources, Ministry of Education; Hainan University; Haikou China
- Key Laboratory for Marine Drugs of Haikou; Hainan University; Haikou China
| | - Pan Xu
- Key Laboratory of Tropical Biological Resources, Ministry of Education; Hainan University; Haikou China
- Key Laboratory for Marine Drugs of Haikou; Hainan University; Haikou China
- Institute of Tropical Agriculture and Forestry; Hainan University; Haikou China
| | - Shuai Wang
- Key Laboratory of Tropical Biological Resources, Ministry of Education; Hainan University; Haikou China
- Key Laboratory for Marine Drugs of Haikou; Hainan University; Haikou China
- Institute of Tropical Agriculture and Forestry; Hainan University; Haikou China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education; Hainan University; Haikou China
- Key Laboratory for Marine Drugs of Haikou; Hainan University; Haikou China
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources, Ministry of Education; Hainan University; Haikou China
- Key Laboratory for Marine Drugs of Haikou; Hainan University; Haikou China
| |
Collapse
|
99
|
Isothermal chemical denaturation as a complementary tool to overcome limitations of thermal differential scanning fluorimetry in predicting physical stability of protein formulations. Eur J Pharm Biopharm 2018; 125:106-113. [PMID: 29329817 DOI: 10.1016/j.ejpb.2018.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 12/18/2022]
Abstract
Various stability indicating techniques find application in the early stage development of novel therapeutic protein candidates. Some of these techniques are used to select formulation conditions that provide high protein physical stability. Such approach is highly dependent on the reliability of the stability indicating technique used. In this work, we present a formulation case study in which we evaluate the ability of differential scanning fluorimetry (DSF) and isothermal chemical denaturation (ICD) to predict the physical stability of a model monoclonal antibody during accelerated stability studies. First, we show that a thermal denaturation technique like DSF can provide misleading physical stability rankings due to buffer specific pH shifts during heating. Next, we demonstrate how isothermal chemical denaturation can be used to tackle the above-mentioned challenge. Subsequently, we show that the concentration dependence of the Gibbs free energy of unfolding determined by ICD provides better predictions for the protein physical stability in comparison to the often-used Tm (melting temperature of the protein determined with DSF) and Cm (concentration of denaturant needed to unfold 50% of the protein determined with ICD). Finally, we give a suggestion for a rational approach which includes a combination of DSF and ICD to obtain accurate and reliable protein physical stability ranking in different formulations.
Collapse
|
100
|
Manning MC, Liu J, Li T, Holcomb RE. Rational Design of Liquid Formulations of Proteins. THERAPEUTIC PROTEINS AND PEPTIDES 2018; 112:1-59. [DOI: 10.1016/bs.apcsb.2018.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|