51
|
Tambe P, Kumar P, Paknikar KM, Gajbhiye V. Smart triblock dendritic unimolecular micelles as pioneering nanomaterials: Advancement pertaining to architecture and biomedical applications. J Control Release 2019; 299:64-89. [DOI: 10.1016/j.jconrel.2019.02.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 11/08/2022]
|
52
|
Ghosh S, Roy A, Singhania A, Chatterjee S, Swarnakar S, Fujita D, Bandyopadhyay A. In-vivo & in-vitro toxicity test of molecularly engineered PCMS: A potential drug for wireless remote controlled treatment. Toxicol Rep 2018; 5:1044-1052. [PMID: 30406021 PMCID: PMC6214879 DOI: 10.1016/j.toxrep.2018.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 05/08/2018] [Accepted: 10/18/2018] [Indexed: 11/24/2022] Open
Abstract
PC, PCM, PCS, and PCMS are our designed & synthesized ∼8 nm PAMAM dendrimer (P) -based organic supramolecular systems, for example, PCMS has 32 molecular motors (M), 4 pH sensors (S) and 2 multi-level molecular electronic switches (C). We have reported earlier following a preliminary in-vitro test that the synthesized PCMS can selectively target cancer cell nucleotides if triggered wirelessly by an electromagnetic pulse. Here to further verify its drug potential, we have studied the preliminary efficacy, toxicity, and pharmacokinetics of P derivatives (PC, PCM, PCMS) in-vivo and in-vitro. We used ethanol-induced gastric inflammation model and cultured human gastric epithelial cells AGS to examine to the toxicity of PAMAM dendrimers cell permeability and toxicity, in (a) the cultured human gastric epithelium cells (AGS), and in (b) the gastric ulcer mice model. Here we report that the toxicity of PAMAM dendrimer (>G3.5) P can be reduced by adding C, M and S. Gastric ulcer is the primary stage of the manifestation of acute inflammation, even gastric epithelial cancer. Ethanol causes ulceration (ulcer index 30), thus upregulates both pro and active MMP-9. A 50 μl PCMS dose prior to ethanol administration reduces ulceration by ∼80% and downregulates MMP-9 and prevents oxidative damages of gastric tissue by ECM remodeling. Alcohol's inflammation of mouse stomach causes up-regulation of both pro and active MMP-9, resulting in oxidative damages of gastric tissue by ECM remodeling. PCMS in particular dose window reverses & alters ECM remodeling, thus, neutralizing alcohol-induced inflammation & generation of ROS.
Collapse
Key Words
- AGS, human caucasian gastric adenocarcinoma
- CEES, combined excitation emission spectroscopy
- CNDP, critical nanoscale design parameters
- Dendrimer toxicity
- G, generation
- Gastric ulcer
- Inflammation
- Matrix metalloproteinase
- Nonchemical drug
- P, PAMAM
- PAMAM, poly(amido)amine
- PC, PAMAM-controller
- PCM, PAMAM controller-motor
- PCMS, PAMAM-controller-motor-sensor
- ROS, radical oxygen species
Collapse
Affiliation(s)
- Subrata Ghosh
- National Institute for Materials Science (NIMS), Nano Characterization Unit, Advanced Key Technologies Division, 1-2-1 Sengen, Tsukuba, Japan
- CSIR-North East Institute of Science & Technology, Natural Product Chemistry Group, Chemical Science & Technology Division, Jorhat, 785006, Assam, India
| | - Anirban Roy
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kol-700032, West Bengal, India
| | - Anup Singhania
- CSIR-North East Institute of Science & Technology, Natural Product Chemistry Group, Chemical Science & Technology Division, Jorhat, 785006, Assam, India
| | - Somnath Chatterjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kol-700032, West Bengal, India
| | - Snehasikta Swarnakar
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kol-700032, West Bengal, India
| | - Daisuke Fujita
- National Institute for Materials Science (NIMS), Nano Characterization Unit, Advanced Key Technologies Division, 1-2-1 Sengen, Tsukuba, Japan
| | - Anirban Bandyopadhyay
- National Institute for Materials Science (NIMS), Nano Characterization Unit, Advanced Key Technologies Division, 1-2-1 Sengen, Tsukuba, Japan
| |
Collapse
|
53
|
Konopka CJ, Wozniak M, Hedhli J, Ploska A, Schwartz-Duval A, Siekierzycka A, Pan D, Munirathinam G, Dobrucki IT, Kalinowski L, Dobrucki LW. Multimodal imaging of the receptor for advanced glycation end-products with molecularly targeted nanoparticles. Am J Cancer Res 2018; 8:5012-5024. [PMID: 30429883 PMCID: PMC6217059 DOI: 10.7150/thno.24791] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 08/18/2018] [Indexed: 02/07/2023] Open
Abstract
The receptor for advanced glycation end-products (RAGE) is central to multiple disease states, including diabetes-related conditions such as peripheral arterial disease (PAD). Despite RAGE's importance in these pathologies, there remains a need for a molecular imaging agent that can accurately assess RAGE levels in vivo. Therefore, we have developed a multimodal nanoparticle-based imaging agent targeted at RAGE with the well-characterized RAGE ligand, carboxymethyllysine (CML)-modified human serum albumin (HSA). Methods: A multimodal tracer (64Cu-Rho-G4-CML) was developed using a generation-4 (G4) polyamidoamine (PAMAM) dendrimer, conjugated with both rhodamine and copper-64 (64Cu) chelator (NOTA) for optical and PET imaging, respectively. First, 64Cu-Rho-G4-CML and its non-targeted analogue (64Cu-Rho-G4-HSA) were evaluated chemically using techniques such as dynamic light scattering (DLS), electron microscopy and nuclear magnetic resonance (NMR). The tracers' binding capabilities were examined at the cellular level and optimized using live and fixed HUVEC cells grown in 5.5-30 mM glucose, followed by in vivo PET-CT imaging, where the probes' kinetics, biodistribution, and RAGE targeting properties were examined in a murine model of hindlimb ischemia. Finally, histological assessment of RAGE levels in both ischemic and non-ischemic tissues was performed. Conclusions: Our RAGE-targeted probe demonstrated an average size of 450 nm, a Kd of 340-390 nM, rapid blood clearance, and a 3.4 times greater PET uptake in ischemic RAGE-expressing hindlimbs than their non-ischemic counterpart. We successfully demonstrated increased RAGE expression in a murine model of hindlimb ischemia and the feasibility for non-invasive examination of cellular, tissue, and whole-body RAGE levels with a molecularly targeted tracer.
Collapse
|
54
|
Liegertová M, Wrobel D, Herma R, Müllerová M, Šťastná LČ, Cuřínová P, Strašák T, Malý M, Čermák J, Smejkal J, Štofik M, Maly J. Evaluation of toxicological and teratogenic effects of carbosilane glucose glycodendrimers in zebrafish embryos and model rodent cell lines. Nanotoxicology 2018; 12:797-818. [DOI: 10.1080/17435390.2018.1475582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Michaela Liegertová
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Dominika Wrobel
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Regina Herma
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Monika Müllerová
- Institute of Chemical Process Fundamentals of the CAS, Prague, Czech Republic
| | | | - Petra Cuřínová
- Institute of Chemical Process Fundamentals of the CAS, Prague, Czech Republic
| | - Tomáš Strašák
- Institute of Chemical Process Fundamentals of the CAS, Prague, Czech Republic
| | - Marek Malý
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Jan Čermák
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
- Institute of Chemical Process Fundamentals of the CAS, Prague, Czech Republic
| | - Jiří Smejkal
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Marcel Štofik
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Jan Maly
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| |
Collapse
|
55
|
Yu L, Martin IJ, Kasi RM, Wei M. Enhanced Intrafibrillar Mineralization of Collagen Fibrils Induced by Brushlike Polymers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28440-28449. [PMID: 30081624 DOI: 10.1021/acsami.8b10234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biomimetic mineralization of collagen fibrils is an essential process because the mineralized collagen fibers constitute the basic building block of natural bone. To overcome the limited availability and high cost of the noncollagenous proteins (NCPs) that regulate the mineralization process of collagen, commercially available analogues were developed to replicate sequestration and templating functions of NCPs. The use of branched polymers in intrafibrillar mineralization applications has never been explored. In this work, two novel carboxyl-rich brushlike polymers, a carboxylated polyethylene glycol terpolymer (PEG-COOH) and a polyethylene glycol/poly(acrylic acid) copolymer (PEG-PAA), were synthesized and modified to mimic the sequestration function of NCPs to induce intrafibrillar mineralization of collagen fibrils. It was found that these synthetic brushlike polymers are able to induce intrafibrillar mineralization by stabilizing the amorphous calcium phosphate (ACP) nanoprecursors and subsequently facilitating the infiltration of ACP into the gap zone of collagen microfibrils. Moreover, the weight ratios of mineral to collagen in the mineralized collagen fibrils in the presence of these brushlike polymers were 2.17 ± 0.07 for PEG-COOH and 2.23 ± 0.03 for PEG-PAA, while it is only 1.81 ± 0.21 for linear PAA. Plausible mineralization mechanisms using brushlike polymers are proposed that offer significant insight into the understanding of collagen mineralization induced by synthetic NCP analogues.
Collapse
|
56
|
Ma P, Sun Y, Chen J, Li H, Zhu H, Gao X, Bi X, Zhang Y. Enhanced anti-hepatocarcinoma efficacy by GLUT1 targeting and cellular microenvironment-responsive PAMAM-camptothecin conjugate. Drug Deliv 2018; 25:153-165. [PMID: 29282992 PMCID: PMC6058575 DOI: 10.1080/10717544.2017.1419511] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The efficient targeting of drugs to tumor cell and subsequent rapid drug release remain primary challenges in the development of nanomedicines for cancer therapy. Here, we constructed a glucose transporter 1 (GLUT1)-targeting and tumor cell microenvironment-sensitive drug release Glucose–PEG–PAMAM-s-s–Camptothecin-Cy7 (GPCC) conjugate to tackle the dilemma. The conjugate was characterized by a small particle size, spherical shape, and glutathione (GSH)-sensitive drug release. In vitro tumor targeting was explored in monolayer (2D) and multilayer tumor spheroid (3D) HepG2 cancer cell models (GLUT1+). The cellular uptake of GPCC was higher than that in the control groups and that in normal L02 cells (GLUT1−), likely due to the conjugated glucose moiety. Moreover, the GPCC conjugate exhibited stronger cytotoxicity, higher S arrest and enhanced apoptosis and necrosis rate in HepG2 cells than control groups but not L02 cells. However, the cytotoxicity of GPCC was lower than that of free CPT, which could be explained by the slower release of CPT from the GPCC compared with free CPT. Additional in vivo tumor targeting experiments demonstrated the superior tumor-targeting ability of the GPCC conjugate, which significantly accumulated in tumor meanwhile minimize in normal tissues compared with control groups. The GPCC conjugate showed better pharmacokinetic properties, enabling a prolonged circulation time and increased camptothecin area under the curve (AUC). These features contributed to better therapeutic efficacy and lower toxicity in H22 hepatocarcinoma tumor-bearing mice. The GLUT1-targeting, GSH-sensitive GPCC conjugate provides an efficient, safe and economic approach for tumor cell targeted drug delivery.
Collapse
Affiliation(s)
- Pengkai Ma
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Yi Sun
- b Institute of Pharmacology & Toxicology , Academy of Military Medical Sciences , Beijing , China
| | - Jianhua Chen
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Hongpin Li
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Hongyu Zhu
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Xing Gao
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Xinning Bi
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Yujie Zhang
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| |
Collapse
|
57
|
Lancelot A, González-Pastor R, Clavería-Gimeno R, Romero P, Abian O, Martín-Duque P, Serrano JL, Sierra T. Cationic poly(ester amide) dendrimers: alluring materials for biomedical applications. J Mater Chem B 2018; 6:3956-3968. [PMID: 32254324 DOI: 10.1039/c8tb00639c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Novel cationic poly(ester amide) dendrimers have been synthesized by copper(i) azide-alkyne cycloaddition (CuAAC) of a tripropargylamine core and azide-terminated dendrons, in turn prepared by iterative amide coupling of the new monomer 2,2'-bis(glycyloxymethyl)propionic acid (bis-GMPA). The alternation of ester and amide groups provided a dendritic scaffold that was totally biocompatible and degradable in aqueous media at physiological and acidic pH. The tripodal dendrimers naturally formed rounded aggregates with a drug that exhibited low water solubility, camptothecin, thus improving its cell viability and anti-Hepatitis C virus (anti-HCV) activity. The presence of numerous peripheral cationic groups enabled these dendrimers to form dendriplexes with both pDNA and siRNA and they showed effective in vitro siRNA transfection in tumoral and non-tumoral cell lines.
Collapse
Affiliation(s)
- Alexandre Lancelot
- Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Spain
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Han H, Chen W, Yang J, Liang X, Wang Y, Li Q, Yang Y, Li K. Inhibition of cell proliferation and migration through nucleobase-modified polyamidoamine-mediated p53 delivery. Int J Nanomedicine 2018; 13:1297-1311. [PMID: 29563788 PMCID: PMC5846749 DOI: 10.2147/ijn.s146917] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction The nucleobase 2-amino-6-chloropurine-modified polyamidoamine (AP-PAMAM) was used as a carrier for p53 gene delivery to achieve the antitumor effects. Methods and materials The condensation of p53 plasmid was studied through gel retardation assay, and the transfection efficiency was evaluated through the transfection assay of pEGFP-N3 and pGL-3 plasmids. Using human cervical carcinoma cell line HeLa as a model, the inhibition of cell proliferation and migration was studied through flow cytometry, wound healing and Transwell migration assays, respectively. The p53 expression level was detected through quantitative polymerase chain reaction and Western blotting analyses. Results The carrier could condense p53 plasmid into stable nanoparticles at N/P ratios of 2.0, and higher transfection efficiency than polyamidoamine (PAMAM) could be obtained at all the N/P ratios studied. AP-PAMAM-mediated p53 delivery could achieve stronger antiproliferative effect than PAMAM/p53. The antiproliferative effect was identified to be triggered by the induction of cell apoptosis (apoptotic ratio of 26.17%) and cell cycle arrest at S phase. Additionally, AP-PAMAM/p53 transfection has been found to suppress the cell migration and invasion of cancer cells. Finally, the enhanced p53 expression level could be detected after p53 transfection at mRNA and protein levels. Conclusion The PAMAM derivative-mediated p53 delivery could be a promising strategy for achieving tumor gene therapy.
Collapse
Affiliation(s)
- Haobo Han
- School of Nursing.,Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Wenqi Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Yudi Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Yan Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | | |
Collapse
|
59
|
Yoyen-Ermis D, Ozturk-Atar K, Kursunel MA, Aydin C, Ozkazanc D, Gurbuz MU, Uner A, Tulu M, Calis S, Esendagli G. Tumor-Induced Myeloid Cells Are Reduced by Gemcitabine-Loaded PAMAM Dendrimers Decorated with Anti-Flt1 Antibody. Mol Pharm 2018; 15:1526-1533. [DOI: 10.1021/acs.molpharmaceut.7b01075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Digdem Yoyen-Ermis
- Cancer Institute, Department of Basic Oncology, Hacettepe University, 06100 Ankara, Turkey
| | - Kivilcim Ozturk-Atar
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Hacettepe University, 06230 Ankara, Turkey
| | - M. Alper Kursunel
- Cancer Institute, Department of Basic Oncology, Hacettepe University, 06100 Ankara, Turkey
| | - Cisel Aydin
- Medical Faculty, Department of Pathology, Hacettepe University, 06100 Ankara, Turkey
| | - Didem Ozkazanc
- Cancer Institute, Department of Basic Oncology, Hacettepe University, 06100 Ankara, Turkey
| | - Mustafa Ulvi Gurbuz
- Faculty of Arts and Sciences, Department of Chemistry, Yıldız Technical University, 34349 Istanbul, Turkey
| | - Aysegul Uner
- Medical Faculty, Department of Pathology, Hacettepe University, 06100 Ankara, Turkey
| | - Metin Tulu
- Faculty of Arts and Sciences, Department of Chemistry, Yıldız Technical University, 34349 Istanbul, Turkey
| | - Sema Calis
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Hacettepe University, 06230 Ankara, Turkey
| | - Gunes Esendagli
- Cancer Institute, Department of Basic Oncology, Hacettepe University, 06100 Ankara, Turkey
| |
Collapse
|
60
|
Francoia JP, Vial L. Everything You Always Wanted to Know about Poly-l-lysine Dendrigrafts (But Were Afraid to Ask). Chemistry 2018; 24:2806-2814. [PMID: 29034997 DOI: 10.1002/chem.201704147] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/12/2017] [Indexed: 12/12/2022]
Abstract
Less than a decade ago, dendrigrafts of poly-l-lysine (DGLs) joined the family of polycationic dendritic macromolecules. Resulting from the iterative polycondensation of an N-carboxyanhydride in water, four generations of the dendrigraft can be obtained on a multigram scale and without chromatographic purification. DGLs share features with both dendrimers and hyperbranched polymers, but turned out to have unique biophysical and bioactive properties. The macromolecules-in their native form or functionalized-have been extensively characterized by various analytical and computational methods, and have already found numerous applications in the biomedical field, such as drug and gene delivery, biomaterials, tissue engineering, bioimaging, and biosensing. Despite a growing interest for DGLs, there is still plenty of room for further exciting developments that could result from a better exposure of these macromolecules, which is the ambition of this short review.
Collapse
Affiliation(s)
| | - Laurent Vial
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université de Montpellier-ENSCM, Place Eugène, Bataillon, 34296, Montpellier cedex 5, France.,Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 CNRS-Université Claude Bernard, Lyon 1-CPE Lyon-INSA, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne cedex, France
| |
Collapse
|
61
|
Han H, Chen W, Yang J, Zhang J, Li Q, Yang Y. 2-Amino-6-chloropurine-modified polyamidoamine-mediated p53 gene transfection to achieve anti-tumor efficacy. NEW J CHEM 2018. [DOI: 10.1039/c8nj01870g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The modification of 2-amino-6-chloropurine on polyamidoamine was performed to synthesize a derivative, AP-PAMAM, which was then employed as a carrier for p53 gene delivery to achieve anti-tumor efficacy.
Collapse
Affiliation(s)
- Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Wenqi Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Jiayuan Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Yan Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
62
|
Elkin I, Banquy X, Barrett CJ, Hildgen P. Non-covalent formulation of active principles with dendrimers: Current state-of-the-art and prospects for further development. J Control Release 2017; 264:288-305. [DOI: 10.1016/j.jconrel.2017.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 12/18/2022]
|
63
|
Palmerston Mendes L, Pan J, Torchilin VP. Dendrimers as Nanocarriers for Nucleic Acid and Drug Delivery in Cancer Therapy. Molecules 2017; 22:E1401. [PMID: 28832535 PMCID: PMC5600151 DOI: 10.3390/molecules22091401] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 01/09/2023] Open
Abstract
Dendrimers are highly branched polymers with easily modifiable surfaces. This makes them promising structures for functionalization and also for conjugation with drugs and DNA/RNA. Their architecture, which can be controlled by different synthesis processes, allows the control of characteristics such as shape, size, charge, and solubility. Dendrimers have the ability to increase the solubility and bioavailability of hydrophobic drugs. The drugs can be entrapped in the intramolecular cavity of the dendrimers or conjugated to their functional groups at their surface. Nucleic acids usually form complexes with the positively charged surface of most cationic dendrimers and this approach has been extensively employed. The presence of functional groups in the dendrimer's exterior also permits the addition of other moieties that can actively target certain diseases and improve delivery, for instance, with folate and antibodies, now widely used as tumor targeting strategies. Dendrimers have been investigated extensively in the medical field, and cancer treatment is one of the greatest areas where they have been most used. This review will consider the main types of dendrimer currently being explored and how they can be utilized as drug and gene carriers and functionalized to improve the delivery of cancer therapy.
Collapse
Affiliation(s)
- Livia Palmerston Mendes
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
- CAPES Foundation, Ministry of Education of Brazil, Brasilia 70040-020, Brazil.
| | - Jiayi Pan
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
64
|
Avila-Salas F, Pereira A, Rojas MA, Saavedra-Torres M, Montecinos R, Bonardd S, Quezada C, Saldías S, Díaz Díaz D, Leiva A, Radic D, Saldías C. An experimental and theoretical comparative study of the entrapment and release of dexamethasone from micellar and vesicular aggregates of PAMAM-PCL dendrimers. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
65
|
Chen W, Liu Y, Liang X, Huang Y, Li Q. Chondroitin sulfate-functionalized polyamidoamine as a tumor-targeted carrier for miR-34a delivery. Acta Biomater 2017; 57:238-250. [PMID: 28511876 DOI: 10.1016/j.actbio.2017.05.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 12/22/2022]
Abstract
Chondroitin sulfate (CS) was modified on a polyamidoamine dendrimer (PAMAM) through Michael addition to construct a tumor-targeted carrier CS-PAMAM for miR-34a delivery. The derivative CS-PAMAM was demonstrated to achieve an efficient cellular uptake of miR-34a in a CD44-dependent endocytosis way and further facilitate the endosomal escape of miR-34a after 4h. Through the miR-34a delivery, obvious inhibition of cell proliferation could be detected which was attributed to the enhancement of cell apoptosis and cell cycle arrest, and meanwhile the cell migration and invasion has been observed to be inhibited. Finally, the intravenous injection of CS-PAMAM/miR-34a formulation into mice bearing human lung adenocarcinoma cell A549 xenografts could efficiently inhibit the tumor growth and induce the tumor apoptosis owing to the enhanced accumulation of miR-34a in tumor tissue. Overall, CS-PAMAM is potential to be used as a tumor-targeted oligonucleotide carrier for achieving tumor gene therapy. STATEMENT OF SIGNIFICANCE The cationic dendrimer PAMAM was modified by chondroitin sulfate (CS) through Michael addition to construct a tumor-targeted carrier CS-PAMAM for miR-34a delivery. The introduction of CS could achieve an efficient cellular uptake and intracellular transfection of miR-34a in a CD44-dependent endocytosis manner. The miR-34a delivery could execute the anti-proliferation activity by simultaneously inducing cell apoptosis and cell cycle arrest, and also the anti-migration activity. The CS-PAMAM-mediated systemic delivery of miR-34a showed significant inhibition of tumor growth and induction of tumor apoptosis using a mice model of subcutaneously implanted tumors.
Collapse
|
66
|
Kurokawa Y, Sone H, Win-Shwe TT, Zeng Y, Kimura H, Koyama Y, Yagi Y, Matsui Y, Yamazaki M, Hirano S. Aggregation is a critical cause of poor transfer into the brain tissue of intravenously administered cationic PAMAM dendrimer nanoparticles. Int J Nanomedicine 2017; 12:3967-3975. [PMID: 28579780 PMCID: PMC5449168 DOI: 10.2147/ijn.s125808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Dendrimers have been expected as excellent nanodevices for brain medication. An amine-terminated polyamidoamine dendrimer (PD), an unmodified plain type of PD, has the obvious disadvantage of cytotoxicity, but still serves as an attractive molecule because it easily adheres to the cell surface, facilitating easy cellular uptake. Single-photon emission computed tomographic imaging of a mouse following intravenous injection of a radiolabeled PD failed to reveal any signal in the intracranial region. Furthermore, examination of the permeability of PD particles across the blood–brain barrier (BBB) in vitro using a commercially available kit revealed poor permeability of the nanoparticles, which was suppressed by an inhibitor of caveolae-mediated endocytosis, but not by an inhibitor of macropinocytosis. Physicochemical analysis of the PD revealed that cationic PDs are likely to aggregate promptly upon mixing with body fluids and that this prompt aggregation is probably driven by non-Derjaguin–Landau– Verwey–Overbeek attractive forces originating from the surrounding divalent ions. Atomic force microscopy observation of a freshly cleaved mica plate soaked in dendrimer suspension (culture media) confirmed prompt aggregation. Our study revealed poor transfer of intravenously administered cationic PDs into the intracranial nervous tissue, and the results of our analysis suggested that this was largely attributable to the reduced BBB permeability arising from the propensity of the particles to promptly aggregate upon mixing with body fluids.
Collapse
Affiliation(s)
- Yoshika Kurokawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki
| | - Hideko Sone
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki
| | - Tin-Tin Win-Shwe
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki
| | - Yang Zeng
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki
| | - Hiroyuki Kimura
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University
| | - Yosuke Koyama
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki
| | - Yusuke Yagi
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University
| | - Yasuto Matsui
- Department of Environmental Engineering, Kyoto University Graduate School of Engineering, Kyoto
| | - Masashi Yamazaki
- TIA Center Office, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Seishiro Hirano
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki
| |
Collapse
|
67
|
Uram Ł, Szuster M, Misiorek M, Filipowicz A, Wołowiec S, Wałajtys-Rode E. The effect of G3 PAMAM dendrimer conjugated with B-group vitamins on cell morphology, motility and ATP level in normal and cancer cells. Eur J Pharm Sci 2017; 102:275-283. [PMID: 28323116 DOI: 10.1016/j.ejps.2017.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 10/20/2022]
Abstract
In a search for the safe vitamin carrier the PAMAM G3 dendrimer covalently substituted with 9 and 10 molecules of vitamin B7 (biotin) and B6 (pyridoxal), respectively (BC-PAMAM) was investigated. Dendrimer substitution with B-group vitamins significantly alters its biological properties as compared to native form. Observed effects on investigated cell parameters including morphology, adhesion, migration and ATP level were different for normal human fibroblasts (BJ) and squamous cell carcinoma (SCC-15) cell lines. BC-PAMAM revealed significantly less pronounced effects on investigated parameters, particularly at higher concentrations (5-50μM), which is relevant with its lower positive surface charge, as compared with native form. The bioconjugate, up to 50μM concentration, appeared to be a safe vitamin carrier to normal fibroblasts, without significant effect on their adhesion, shape and migration as well as on intracellular ATP level. In SCC-15 cells BC-PAMAM, at low concentrations (0.1-0.5μM), altered the cell shape and increase adhesion, whereas at higher concentrations opposite effects were seen. Measurements of cellular level of ATP showed that higher resistance of cancer cells to toxic effects of native PAMAM dendrimers may be due to higher energy supply of cancer cells.
Collapse
Affiliation(s)
- Łukasz Uram
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland.
| | - Magdalena Szuster
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland
| | - Maria Misiorek
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland
| | - Aleksandra Filipowicz
- Faculty of Medical Sciences, Rzeszów University of Information Technology and Management, 2 Sucharskiego Str, 35-225 Rzeszów, Poland
| | - Stanisław Wołowiec
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszów, Warzywna 1a, 35-310 Rzeszów, Poland
| | - Elżbieta Wałajtys-Rode
- Department of Drug Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology,75 Koszykowa Str,00-664 Warsaw, Poland
| |
Collapse
|
68
|
Buczkowski A, Urbaniak P, Piekarski H, Palecz B. Spectroscopic and calorimetric studies on the interaction between PAMAM G4-OH and 5-fluorouracil in aqueous solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 171:401-405. [PMID: 27569773 DOI: 10.1016/j.saa.2016.08.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/08/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
The results of spectroscopic measurements (an increase in solubility, equilibrium dialysis, 1H NMR titration) and calorimetric measurements (isothermal titration ITC) indicate spontaneous (ΔG<0) binding of 5-fluorouracil molecules by PAMAM G4-OH dendrimer with terminal hydroxyl groups in an aqueous solution. PAMAM G4-OH dendrimer bonds about n=8±1 molecules of the drug with an equilibrium constant of K=70±10. The process of saturating the dendrimer active sites by the drug molecules is exothermal (ΔH<0) and is accompanied by an advantageous change in entropy (ΔS>0). The parameters of binding 5-fluorouracil by PAMAM G4-OH dendrimer were compared with those of binding this drug by the macromolecules of PAMAM G3-OH and G5-OH.
Collapse
Affiliation(s)
- Adam Buczkowski
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, Lodz 90-236, Poland.
| | - Pawel Urbaniak
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| | - Henryk Piekarski
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, Lodz 90-236, Poland
| | - Bartlomiej Palecz
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, Lodz 90-236, Poland.
| |
Collapse
|
69
|
Yadav AK, Dey N, Chattopadhyay S, Ganguli M, Fernandes M. Dendrimeric amide- and carbamate-linked lysine-based efficient molecular transporters. Org Biomol Chem 2017; 15:9579-9584. [DOI: 10.1039/c7ob02552a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbamate- and amide-linked lysine-based generation-2 dendrimeric oligomers transport pDNA into cells very efficiently when complexed by incubation overnight.
Collapse
Affiliation(s)
- Amit Kumar Yadav
- Organic Chemistry Division
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Pune 411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Namit Dey
- CSIR-Institute of Genomics and Integrative Biology
- New Delhi 110020
- India
| | | | - Munia Ganguli
- Academy of Scientific and Innovative Research (AcSIR)
- Pune
- India
- CSIR-Institute of Genomics and Integrative Biology
- New Delhi 110020
| | - Moneesha Fernandes
- Organic Chemistry Division
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Pune 411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
70
|
Lee J, Jackman JG, Kwun J, Manook M, Moreno A, Elster EA, Kirk AD, Leong KW, Sullenger BA. Nucleic acid scavenging microfiber mesh inhibits trauma-induced inflammation and thrombosis. Biomaterials 2016; 120:94-102. [PMID: 28049065 DOI: 10.1016/j.biomaterials.2016.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/21/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022]
Abstract
Trauma patients produce a host of danger signals and high levels of damage-associated molecular patterns (DAMPs) after cellular injury and tissue damage. These DAMPs are directly and indirectly involved in the pathogenesis of various inflammatory and thrombotic complications in patients with severe injuries. No effective therapeutic agents for the removal of DAMPs from blood or tissue fluid have been developed. Herein, we demonstrated that nucleic acid binding polymers, e.g., polyethylenimine (PEI) and polyamidoamine dendrimers, immobilized onto electrospun microfiber mesh can effectively capture various DAMPs, such as extracellular DNAs and high mobility group box 1 (HMGB1). Furthermore, treatment with PEI-immobilized microfiber mesh abrogated the ability of DAMPs, released from dead and dying cells in culture or found in patients following traumatic injury, to activate innate immune responses and coagulation in vitro and in vivo. Nucleic acid scavenging microfiber meshes represent an effective strategy to combat inflammation and thrombosis in trauma.
Collapse
Affiliation(s)
- Jaewoo Lee
- Department of Surgery, Duke University, Durham, NC, 27710, USA.
| | - Jennifer G Jackman
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA
| | - Jean Kwun
- Department of Surgery, Duke University, Durham, NC, 27710, USA; Duke Transplant Center, Department of Surgery, Duke University, Durham, NC, 27710, USA
| | - Miriam Manook
- Department of Surgery, Duke University, Durham, NC, 27710, USA; Duke Transplant Center, Department of Surgery, Duke University, Durham, NC, 27710, USA
| | - Angelo Moreno
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, 27710, USA
| | - Eric A Elster
- Department of Surgery, Uniformed Services University of Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
| | - Allan D Kirk
- Department of Surgery, Duke University, Durham, NC, 27710, USA; Duke Transplant Center, Department of Surgery, Duke University, Durham, NC, 27710, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA; Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Bruce A Sullenger
- Department of Surgery, Duke University, Durham, NC, 27710, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
71
|
Maleki A, Hayati B, Najafi F, Gharibi F, Joo SW. Heavy metal adsorption from industrial wastewater by PAMAM/TiO2 nanohybrid: Preparation, characterization and adsorption studies. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.09.060] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
72
|
Hayati B, Maleki A, Najafi F, Daraei H, Gharibi F, McKay G. Synthesis and characterization of PAMAM/CNT nanocomposite as a super-capacity adsorbent for heavy metal (Ni2+, Zn2+, As3+, Co2+) removal from wastewater. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.10.053] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
73
|
Jemnitz K, Bátai-Konczos A, Szabó M, Ioja E, Kolacsek O, Orbán TI, Török G, Homolya L, Kovács E, Jablonkai I, Veres Z. A transgenic rat hepatocyte - Kupffer cell co-culture model for evaluation of direct and macrophage-related effect of poly(amidoamine) dendrimers. Toxicol In Vitro 2016; 38:159-169. [PMID: 27717685 DOI: 10.1016/j.tiv.2016.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/07/2016] [Accepted: 09/16/2016] [Indexed: 12/12/2022]
Abstract
Increasing number of papers demonstrate that Kupffer cells (KCs) play a role in the development of drug induced liver injury (DILI). Furthermore, elevated intracellular Ca2+ level of hepatocytes is considered as a common marker of DILI. Here we applied an in vitro model based on hepatocyte mono- and hepatocyte/KC co-cultures (H/KC) isolated from transgenic rats stably expressing the GCaMP2 fluorescent Ca2+ sensor protein to investigate the effects of polycationic (G5), polyanionic (G4.5) and polyethylene-glycol coated neutral (G5 Peg) dendrimers known to accumulate in the liver, primarily in KCs. Following dendrimer exposure, hepatocyte homeostasis was measured by MTT cytotoxicity assay and by Ca2+ imaging, while hepatocyte functions were studied by CYP2B1/2 inducibility, and bilirubin and taurocholate transport. G5 was significantly more cytotoxic than G4.5 for hepatocytes and induced Ca2+ oscillation and sustained Ca2+ signals at 1μM and10 μM, respectively both in hepatocytes and KCs. Dendrimer-induced Ca2+ signals in hepatocytes were attenuated by macrophages. Activation of KCs by lipopolysaccharide and G5 decreased the inducibility of CYP2B1/2, which was restored by depleting the KCs with gadolinium-chloride and pentoxyphylline, suggesting a role of macrophages in the hindrance of CYP2B1/2 induction by G5 and lipopolysaccharide. In the H/KC, but not in the hepatocyte mono-culture, G5 reduced the canalicular efflux of bilirubin and stimulated the uptake and canalicular efflux of taurocholate. In conclusion, H/KC provides a good model for the prediction of hepatotoxic potential of drugs, especially of nanomaterials known to be trapped by macrophages, activation of which presumably contributes to DILI.
Collapse
Affiliation(s)
- Katalin Jemnitz
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Attila Bátai-Konczos
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Mónika Szabó
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Enikő Ioja
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Orsolya Kolacsek
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamás I Orbán
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - György Török
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - István Jablonkai
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsuzsa Veres
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
74
|
Bodewein L, Schmelter F, Di Fiore S, Hollert H, Fischer R, Fenske M. Differences in toxicity of anionic and cationic PAMAM and PPI dendrimers in zebrafish embryos and cancer cell lines. Toxicol Appl Pharmacol 2016; 305:83-92. [DOI: 10.1016/j.taap.2016.06.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/12/2022]
|
75
|
Reversal of multidrug resistance in breast cancer MCF-7/ADR cells by h-R3-siMDR1-PAMAM complexes. Int J Pharm 2016; 511:436-445. [PMID: 27444552 DOI: 10.1016/j.ijpharm.2016.07.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/04/2016] [Accepted: 07/18/2016] [Indexed: 12/21/2022]
Abstract
Multidrug resistance (MDR) among breast cancer cells is the paramount obstacle for the successful chemotherapy. In this study, anti-EGFR antibody h-R3 was designed to self-assembled h-R3-siRNA-PAMAM-complexes (HSPCs) via electrostatic interactions for siRNA delivery. The physicochemical characterization, cell uptake, MDR1 silencing efficiency, cell migration, cell growth and cell apoptosis were investigated. The HSPCs presented lower cytotoxicity, higher cellular uptake and enhanced endosomal escape ability. Also, HSPCs encapsulating siMDR1 knockdowned 99.4% MDR1 gene with up to ∼6 times of enhancement compared to naked siMDR1, increased the doxorubicin accumulation, down-regulated P-glycoprotein (P-gp) expression and suppressed cellular migration in breast cancer MCF-7/ADR cells. Moreover, the combination of anticancer drug paclitaxel (PTX) and siMDR1 loaded HSPCs showed synergistic effect on overcoming MDR, which inhibited cell growth and induced cell apoptosis. This h-R3-mediated siMDR1 delivery system could be a promising vector for effective siRNA therapy of drug resistant breast cancer.
Collapse
|
76
|
In vivo proinflammatory activity of generations 0-3 (G0-G3) polyamidoamine (PAMAM) nanoparticles. Inflamm Res 2016; 65:745-55. [PMID: 27338943 DOI: 10.1007/s00011-016-0959-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE AND DESIGN The aim of this study was to determine whether different generations (G) polyamidoamine (PAMAM) dendrimers possess proinflammatory activities in vivo. MATERIAL OR SUBJECTS Several hundred female CD-1 mice were used to test four different PAMAM dendrimers using the murine air pouch model. TREATMENT Mice received appropriate negative and positive controls or G0-G3 PAMAM nanoparticles at 100 and 500 µg/ml into air pouches. METHODS Exudates were harvested after 3, 6, 24 and 48 h. Cell pellets and supernatants were used to determine the number of total leukocytes and neutrophils and to detect the production of several analytes by an antibody array approach, respectively. One-way analysis of variance was used for statistical analysis. RESULTS PAMAM dendrimers rapidly increased a leukocyte influx after 3 h, the vast majority of cells being neutrophils. This was also observed after 6 and 24 h, and resolution of inflammation was noted after 48 h. In general, the increased production of a greater number of analytes detected in the exudates after 6 h correlated with the number of dendrimer generations (G3 > G2 > G1 > G0). CONCLUSIONS PAMAM dendrimers devoid of any delivering molecules possess proinflammatory activities in vivo by themselves, probably via the production of different chemokines released by air pouch lining cells.
Collapse
|
77
|
Geszke-Moritz M, Moritz M. Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:982-994. [PMID: 27524099 DOI: 10.1016/j.msec.2016.05.119] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 04/24/2016] [Accepted: 05/27/2016] [Indexed: 12/22/2022]
Abstract
This work briefly reviews up-to-date developments in solid lipid nanoparticles (SLNs) as effective nanocolloidal system for drug delivery. It summarizes SLNs in terms of their preparation, surface modification and properties. The application of SLNs as a carrier system enables to improve the therapeutic efficacy of drugs from various therapeutic groups. Present uses of SLNs include cancer therapy, dermatology, bacterial infections, brain targeting and eye disorders among others. The usage of SLNs provides enhanced pharmacokinetic properties and modulated release of drugs. SLN ubiquitous application results from their specific features such as possibility of surface modification, increased permeation through biological barriers, resistance to chemical degradation, possibility of co-delivery of various therapeutic agents or stimuli-responsiveness. This paper will be useful to the scientists working in the domain of SLN-based drug delivery systems.
Collapse
Affiliation(s)
| | - Michał Moritz
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznań, Poland.
| |
Collapse
|
78
|
Hsu H, Bugno J, Lee S, Hong S. Dendrimer‐based nanocarriers: a versatile platform for drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [DOI: 10.1002/wnan.1409] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Hao‐Jui Hsu
- Department of Biopharmaceutical Sciences, College of PharmacyUniversity of IllinoisChicagoILUSA
| | - Jason Bugno
- Department of Biopharmaceutical Sciences, College of PharmacyUniversity of IllinoisChicagoILUSA
| | - Seung‐ri Lee
- Department of Biopharmaceutical Sciences, College of PharmacyUniversity of IllinoisChicagoILUSA
| | - Seungpyo Hong
- Department of Biopharmaceutical Sciences, College of PharmacyUniversity of IllinoisChicagoILUSA
- Department of Integrated OMICs for Biomedical Science and Underwood International CollegeYonsei UniversitySeoulKorea
| |
Collapse
|
79
|
Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Res 2016; 44:6518-48. [PMID: 27084936 PMCID: PMC5001581 DOI: 10.1093/nar/gkw236] [Citation(s) in RCA: 587] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/28/2016] [Indexed: 12/14/2022] Open
Abstract
The oligonucleotide therapeutics field has seen remarkable progress over the last few years with the approval of the first antisense drug and with promising developments in late stage clinical trials using siRNA or splice switching oligonucleotides. However, effective delivery of oligonucleotides to their intracellular sites of action remains a major issue. This review will describe the biological basis of oligonucleotide delivery including the nature of various tissue barriers and the mechanisms of cellular uptake and intracellular trafficking of oligonucleotides. It will then examine a variety of current approaches for enhancing the delivery of oligonucleotides. This includes molecular scale targeted ligand-oligonucleotide conjugates, lipid- and polymer-based nanoparticles, antibody conjugates and small molecules that improve oligonucleotide delivery. The merits and liabilities of these approaches will be discussed in the context of the underlying basic biology.
Collapse
Affiliation(s)
- Rudolph L Juliano
- UNC Eshelman School of Pharmacy and UNC School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
80
|
In Silico Characterization of the Binding Affinity of Dendrimers to Penicillin-Binding Proteins (PBPs): Can PBPs be Potential Targets for Antibacterial Dendrimers? Appl Biochem Biotechnol 2016; 178:1546-66. [DOI: 10.1007/s12010-015-1967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
|
81
|
Akhtar S, El-Hashim AZ, Chandrasekhar B, Attur S, Benter IF. Naked Polyamidoamine Polymers Intrinsically Inhibit Angiotensin II-Mediated EGFR and ErbB2 Transactivation in a Dendrimer Generation- and Surface Chemistry-Dependent Manner. Mol Pharm 2016; 13:1575-86. [DOI: 10.1021/acs.molpharmaceut.6b00045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | | | | | | | - Ibrahim F. Benter
- Faculty
of Medicine, Eastern Mediterranean University, Famagusta, North Cyprus
| |
Collapse
|
82
|
Akhtar S, Al-Zaid B, El-Hashim AZ, Chandrasekhar B, Attur S, Benter IF. Impact of PAMAM delivery systems on signal transduction pathways in vivo: Modulation of ERK1/2 and p38 MAP kinase signaling in the normal and diabetic kidney. Int J Pharm 2016; 514:353-363. [PMID: 27032566 DOI: 10.1016/j.ijpharm.2016.03.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/20/2016] [Accepted: 03/22/2016] [Indexed: 11/16/2022]
Abstract
The in vivo impact of two generation 6 cationic polyamidoamine (PAMAM) dendrimers on cellular signaling via extracellular-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (p38 MAPK), as well as their relationship to epidermal growth factor receptor (EGFR), were studied in the normal and/or diabetic rat kidney. A single 10mg/kg/i.p administration of Polyfect (PF; with an intact branching architecture) or Superfect (SF; with a fragmented branching architecture) modulated renal ERK1/2 and p38 MAPK phosphorylation in a dendrimer-specific and animal model-dependent manner. AG1478 treatment (a selective EGFR inhibitor) confirmed that renal ERK1/2 and p38 MAPK signaling was downstream of EGFR. Surprisingly, both PAMAMs induced hyperphosphorylation of ERK1/2 and p38 MAPK (at 1 or 5mg/kg) despite inhibiting EGFR phosphorylation in the diabetic kidney. PAMAMs did not alter renal morphology but their effects on p38 MAPK and EGFR phosphorylation were reversed by ex vivo treatment of kidneys with the anti-oxidant, Tempol. Thus, PAMAMs can intrinsically modulate signaling of mitogen-activated protein kinases (MAPKs) depending on the type of dendrimer (fragmented vs intact branching architecture) and animal model (normal vs diabetic) used and likely occurs via an EGFR-independent and oxidative-stress dependent mechanism. These findings might have important toxicological implications for PAMAM-based delivery systems.
Collapse
Affiliation(s)
- Saghir Akhtar
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait.
| | - Bashayer Al-Zaid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| | - Ahmed Z El-Hashim
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| | - Bindu Chandrasekhar
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| | - Sreeja Attur
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| | - Ibrahim F Benter
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| |
Collapse
|
83
|
Mlynarczyk DT, Lijewski S, Falkowski M, Piskorz J, Szczolko W, Sobotta L, Stolarska M, Popenda L, Jurga S, Konopka K, Düzgüneş N, Mielcarek J, Goslinski T. Dendrimeric Sulfanyl Porphyrazines: Synthesis, Physico-Chemical Characterization, and Biological Activity for Potential Applications in Photodynamic Therapy. Chempluschem 2016; 81:460-470. [PMID: 31968780 DOI: 10.1002/cplu.201600051] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 11/07/2022]
Abstract
Sulfanyl porphyrazines substituted at their periphery with different dendrimeric moieties up to their first generation were synthesized and characterized by photochemical and biological methods. The presence of a dendrimeric periphery enhanced the spectral properties of the porphyrazines studied. The singlet-oxygen-generation quantum yield of the obtained macrocycles ranged from 0.02 to 0.20 and was strongly dependent on the symmetry of the compounds and the terminal groups of the dendritic outer shell. The in vitro biological effects of three most promising tribenzoporphyrazines were examined; the results indicated their potential as photosensitizers for photodynamic therapy (PDT) against two oral squamous cell carcinoma cell lines derived from the tongue. The highest photocytotoxicity was found for sulfanyl tribenzoporphyrazine that possessed 4-[3,5-di(hydroxymethyl)phenoxy]butyl substituents with nanomolar IC50 values at 10 and 42 nm against CAL 27 and HSC-3 cell lines, respectively.
Collapse
Affiliation(s)
- Dariusz T Mlynarczyk
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznan, Poland
| | - Sebastian Lijewski
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznan, Poland
| | - Michal Falkowski
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznan, Poland
| | - Jaroslaw Piskorz
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznan, Poland
| | - Wojciech Szczolko
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznan, Poland
| | - Lukasz Sobotta
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznan, Poland
| | - Magdalena Stolarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznan, Poland.,Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 61-780, Poznan, Poland
| | - Lukasz Popenda
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Umultowska 85, 61-614, Poznan, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Umultowska 85, 61-614, Poznan, Poland.,Faculty of Physics, Adam Mickiewicz University in Poznan, Umultowska 85, 61-614, Poznan, Poland
| | - Krystyna Konopka
- Department of Biomedical Sciences, University of the Pacific, 155 Fifth Street, San Francisco, CA, 94103, USA
| | - Nejat Düzgüneş
- Department of Biomedical Sciences, University of the Pacific, 155 Fifth Street, San Francisco, CA, 94103, USA
| | - Jadwiga Mielcarek
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznan, Poland
| | - Tomasz Goslinski
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznan, Poland
| |
Collapse
|
84
|
Sonawane SJ, Kalhapure RS, Rambharose S, Mocktar C, Vepuri SB, Soliman M, Govender T. Ultra-small lipid-dendrimer hybrid nanoparticles as a promising strategy for antibiotic delivery: In vitro and in silico studies. Int J Pharm 2016; 504:1-10. [PMID: 26992817 DOI: 10.1016/j.ijpharm.2016.03.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/13/2016] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to explore the preparation of a new lipid-dendrimer hybrid nanoparticle (LDHN) system to effectively deliver vancomycin against methicillin-resistant Staphylococcus aureus (MRSA) infections. Spherical LDHNs with particle size, polydispersity index and zeta potential of 52.21±0.22 nm, 0.105±0.01, and -14.2±1.49 mV respectively were prepared by hot stirring and ultrasonication using Compritol 888 ATO, G4 PAMAM- succinamic acid dendrimer, and Kolliphor RH-40. Vancomycin encapsulation efficiency (%) in LDHNs was almost 4.5-fold greater than in lipid-polymer hybrid nanoparticles formulated using Eudragit RS 100. Differential scanning calorimetry and Fourier transform-infrared studies confirmed the formation of LDHNs. The interactions between the drug-dendrimer complex and lipid molecules using in silico modeling revealed the molecular mechanism behind the enhanced encapsulation and stability. Vancomycin was released from LDHNs over the period of 72 h with zero order kinetics and super case II transport mechanism. The minimum inhibitory concentration (MIC) against S. aureus and MRSA were 15.62 μg/ml and 7.81 μg/ml respectively. Formulation showed sustained activity with MIC of 62.5 μg/ml against S. aureus and 500 μg/ml against MRSA at the end of 72 and 54 h period respectively. The results suggest that the LDHN system can be an effective strategy to combat resistant infections.
Collapse
Affiliation(s)
- Sandeep J Sonawane
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001 Durban, 4000, South Africa
| | - Rahul S Kalhapure
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001 Durban, 4000, South Africa.
| | - Sanjeev Rambharose
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001 Durban, 4000, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001 Durban, 4000, South Africa
| | - Suresh B Vepuri
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001 Durban, 4000, South Africa
| | - Mahmoud Soliman
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001 Durban, 4000, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001 Durban, 4000, South Africa.
| |
Collapse
|
85
|
Xiong Z, Wang Y, Zhu J, He Y, Qu J, Effenberg C, Xia J, Appelhans D, Shi X. Gd-Chelated poly(propylene imine) dendrimers with densely organized maltose shells for enhanced MR imaging applications. Biomater Sci 2016; 4:1622-1629. [PMID: 27722500 DOI: 10.1039/c6bm00532b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gd-Chelated fourth generation poly(propylene imine) dendrimers with densely organized maltose shells can be designed for enhanced MR imaging applications.
Collapse
Affiliation(s)
- Zhijuan Xiong
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Yue Wang
- Department of Radiology
- Shanghai Songjiang District Central Hospital
- Shanghai 201600
- People's Republic of China
| | - Jingyi Zhu
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Yao He
- Department of Radiology
- Shanghai Songjiang District Central Hospital
- Shanghai 201600
- People's Republic of China
| | - Jiao Qu
- Department of Radiology
- Shanghai Songjiang District Central Hospital
- Shanghai 201600
- People's Republic of China
| | | | - Jindong Xia
- Department of Radiology
- Shanghai Songjiang District Central Hospital
- Shanghai 201600
- People's Republic of China
| | | | - Xiangyang Shi
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| |
Collapse
|
86
|
Tomaz VA, Rubira AF, Silva R. Solid-state polymerization of EDTA and ethylenediamine as one-step approach to monodisperse hyperbranched polyamides. RSC Adv 2016. [DOI: 10.1039/c6ra01023g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hyperbranched polyamides (HBPAs), a special class of polymers with extended use in colloidal systems, is synthesized by an innovative method taking advantage of the ordered aggregation of positive and negative molecular ions in solid-state.
Collapse
Affiliation(s)
- V. A. Tomaz
- Department of Chemistry
- State University of Maringá (UEM)
- 87020 – Maringá
- Brazil
- Grupo de Materiais Poliméricos e Compósitos
| | - A. F. Rubira
- Department of Chemistry
- State University of Maringá (UEM)
- 87020 – Maringá
- Brazil
- Grupo de Materiais Poliméricos e Compósitos
| | - R. Silva
- Department of Chemistry
- State University of Maringá (UEM)
- 87020 – Maringá
- Brazil
| |
Collapse
|
87
|
Yan JY, Liu CY, Wu ZW, Chien CT, Chiu WC, Lin SY. Designed nucleus penetrating thymine-capped dendrimers: a potential vehicle for intramuscular gene transfection. J Mater Chem B 2015; 3:9060-9066. [PMID: 32263037 DOI: 10.1039/c5tb01435b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A nucleus penetrating vehicle is indispensible when seeking to deliver plasmid DNA for gene transfection. In this study, dendrimers with terminal thymine groups were synthesized to meet this objective. Through modifications of the hydrophilic and neutral thymine moieties on hyperbranched peripheries, these dendrimers can achieve biosafety, efficient endosomal escape ability, cytosolic accessibility, and eventually, nuclear entry for the purposes of gene transfection. After optimization of the thymine coverages, better gene expression can only be achieved while replacing ∼50% of the amine groups of a dendrimer with thymine moieties. Presumably, a specific dendrimer comprising thymine and primary amines might possess a synergistic effect to promote pDNA condensation via the cooperation of electrostatic interaction and hydrogen bonding. In comparison, a dendrimer entirely capped by thymine can lose external amines, decreasing pDNA complexity and stability, which would cause poor gene transfection. The utility of specific thymine-capped dendrimers in vivo level was demonstrated to successfully and efficiently deliver plasmid DNA at a low complex ratio into mouse muscle by intramuscular injection. Upon the easy accessibility of intramuscular administration, the capability of thymine-capped dendrimers might be potentially used in immunotherapeutic gene transfection in the future.
Collapse
Affiliation(s)
- Jia-Ying Yan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road Zhunan, Miaoli 35053, Taiwan.
| | | | | | | | | | | |
Collapse
|
88
|
Zielińska P, Staniszewska M, Bondaryk M, Koronkiewicz M, Urbańczyk-Lipkowska Z. Design and studies of multiple mechanism of anti-Candida activity of a new potent Trp-rich peptide dendrimers. Eur J Med Chem 2015; 105:106-19. [PMID: 26479030 DOI: 10.1016/j.ejmech.2015.10.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE Eight peptide dendrimers were designed as structural mimics of natural cationic amphiphilic peptides with antifungal activity and evaluated for their anti-Candida potential against the wild type strains and mutants. METHODS Dendrimer 14 containing four Trp residues and dodecyl tail and a slightly smaller dendrimer 9 decorated with four N-methylated Trp that displayed 100 and 99.7% of growth inhibition at 16 μg/mL respectively, were selected for evaluation against the Candida albicans mutants with disabled biosynthesis of aspartic proteases responsible for host tissue colonization and morphogenesis during biofilm formation (sessile model). Flow cytometry method was employed to detect apoptotic cells with membrane alterations (phosphatidylserine translocation), and differentiation of apoptotic from necrotic cells was also performed. Simultaneous staining of cell surface phosphatidylserine with Annexin-V-Fluorescein and necrotic cells with propidium iodide was conducted. RESULTS 14 at 16 μg/mL caused C. albicans cells to undergo cellular apoptosis but its increasing concentrations induced necrosis. 14 influenced C. albicans biofilm viability as well as hyphal and cell wall morphology. Confocal microscopy and cell wall staining with calcofluor white revealed that in epithelial model the cell surface structure was perturbed at MIC of peptide dendrimer. It appears that tryptophan or 1-methyltryptophan groups displayed at the surface and positive charges hidden in the dendrimer tree along with hydrocarbon tail located at C-terminus are important for the anti-Candida activity since dendrimers containing tryptamine at C-terminus showed only a moderate activity. CONCLUSIONS Our results suggest that membranolytic dendrimer 14, targeting cellular apoptotic pathway and impairing the cell wall formation in mature biofilm, may be a potential multifunctional antifungal lead compound for the control of C. albicans infections.
Collapse
Affiliation(s)
| | - Monika Staniszewska
- National Institute of Public Health - National Institute of Hygiene, 00-791, Warsaw, Poland.
| | - Małgorzata Bondaryk
- National Institute of Public Health - National Institute of Hygiene, 00-791, Warsaw, Poland
| | | | | |
Collapse
|
89
|
Sharma A, Kakkar A. Designing Dendrimer and Miktoarm Polymer Based Multi-Tasking Nanocarriers for Efficient Medical Therapy. Molecules 2015; 20:16987-7015. [PMID: 26393546 PMCID: PMC6332070 DOI: 10.3390/molecules200916987] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 11/28/2022] Open
Abstract
To address current complex health problems, there has been an increasing demand for smart nanocarriers that could perform multiple complimentary biological tasks with high efficacy. This has provoked the design of tailor made nanocarriers, and the scientific community has made tremendous effort in meeting daunting challenges associated with synthetically articulating multiple functions into a single scaffold. Branched and hyper-branched macromolecular architectures have offered opportunities in enabling carriers with capabilities including location, delivery, imaging etc. Development of simple and versatile synthetic methodologies for these nanomaterials has been the key in diversifying macromolecule based medical therapy and treatment. This review highlights the advancement from conventional "only one function" to multifunctional nanomedicine. It is achieved by synthetic elaboration of multivalent platforms in miktoarm polymers and dendrimers by physical encapsulation, covalent linking and combinations thereof.
Collapse
Affiliation(s)
- Anjali Sharma
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada.
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada.
| |
Collapse
|
90
|
Akhtar S, Al-Zaid B, El-Hashim AZ, Chandrasekhar B, Attur S, Yousif MHM, Benter IF. Cationic Polyamidoamine Dendrimers as Modulators of EGFR Signaling In Vitro and In Vivo. PLoS One 2015; 10:e0132215. [PMID: 26167903 PMCID: PMC4500564 DOI: 10.1371/journal.pone.0132215] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/11/2015] [Indexed: 11/18/2022] Open
Abstract
Cationic polyamidoamine (PAMAM) dendrimers are branch-like spherical polymers being investigated for a variety of applications in nanomedicine including nucleic acid drug delivery. Emerging evidence suggests they exhibit intrinsic biological and toxicological effects but little is known of their interactions with signal transduction pathways. We previously showed that the activated (fragmented) generation (G) 6 PAMAM dendrimer, Superfect (SF), stimulated epidermal growth factor receptor (EGFR) tyrosine kinase signaling-an important signaling cascade that regulates cell growth, survival and apoptosis- in cultured human embryonic kidney (HEK 293) cells. Here, we firstly studied the in vitro effects of Polyfect (PF), a non-activated (intact) G6 PAMAM dendrimer, on EGFR tyrosine kinase signaling via extracellular-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) in cultured HEK 293 cells and then compared the in vivo effects of a single administration (10mg/kg i.p) of PF or SF on EGFR signaling in the kidneys of normal and diabetic male Wistar rats. Polyfect exhibited a dose- and time-dependent inhibition of EGFR, ERK1/2 and p38 MAPK phosphorylation in HEK-293 cells similar to AG1478, a selective EGFR inhibitor. Administration of dendrimers to non-diabetic or diabetic animals for 24h showed that PF inhibited whereas SF stimulated EGFR phosphorylation in the kidneys of both sets of animals. PF-mediated inhibition of EGFR phosphorylation as well as SF or PF-mediated apoptosis in HEK 293 cells could be significantly reversed by co-treatment with antioxidants such as tempol implying that both these effects involved an oxidative stress-dependent mechanism. These results show for the first time that SF and PF PAMAM dendrimers can differentially modulate the important EGFR signal transduction pathway in vivo and may represent a novel class of EGFR modulators. These findings could have important clinical implications for the use of PAMAM dendrimers in nanomedicine.
Collapse
Affiliation(s)
- Saghir Akhtar
- Department of Pharmacology and Toxicology, Faculty of Medicine Kuwait University, Safat 13110, Jabriya, Kuwait
- * E-mail:
| | - Bashayer Al-Zaid
- Department of Pharmacology and Toxicology, Faculty of Medicine Kuwait University, Safat 13110, Jabriya, Kuwait
| | - Ahmed Z. El-Hashim
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Jabriya, Kuwait
| | - Bindu Chandrasekhar
- Department of Pharmacology and Toxicology, Faculty of Medicine Kuwait University, Safat 13110, Jabriya, Kuwait
| | - Sreeja Attur
- Department of Pharmacology and Toxicology, Faculty of Medicine Kuwait University, Safat 13110, Jabriya, Kuwait
| | - Mariam H. M. Yousif
- Department of Pharmacology and Toxicology, Faculty of Medicine Kuwait University, Safat 13110, Jabriya, Kuwait
| | - Ibrahim F. Benter
- Department of Pharmacology and Toxicology, Faculty of Medicine Kuwait University, Safat 13110, Jabriya, Kuwait
- Faculty of Medicine, Eastern Mediterranean University, Famagusta, North Cyprus
| |
Collapse
|
91
|
Tang Y, Han Y, Liu L, Shen W, Zhang H, Wang Y, Cui X, Wang Y, Liu G, Qi R. Protective effects and mechanisms of G5 PAMAM dendrimers against acute pancreatitis induced by caerulein in mice. Biomacromolecules 2014; 16:174-82. [PMID: 25479110 DOI: 10.1021/bm501390d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, generation 5 (G5) polyamidoamine (PAMAM) dendrimers with two different surface groups, G4.5-COOH and G5-OH, were investigated for their protective effects on pancreas injury in a caerulein-induced acute pancreatitis (AP) mouse model. Both dendrimers significantly decreased pathological changes in the pancreas and reduced the inflammatory infiltration of macrophages in pancreatic tissues. In addition, the expression of pro-inflammatory cytokines was significantly inhibited by the two dendrimers, not only in pancreatic tissues from AP mice but also in vitro in mouse peritoneal macrophages with LPS-induced inflammation. G4.5-COOH, which had better in vivo protective effects for AP than G5-OH, led to a significant reduction in the total number of plasma white blood cells (WBCs) and monocytes in AP mice, and its anti-inflammatory mechanism was related to inhibition of the nuclear translocation of NF-κB in macrophages.
Collapse
Affiliation(s)
- Yin Tang
- Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center , Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|