51
|
Kraja I, Bing R, Hiwatashi N, Rousseau B, Nalband D, Kirshenbaum K, Branski RC. Preliminary study of a novel transfection modality for in vivo siRNA delivery to vocal fold fibroblasts. Laryngoscope 2017; 127:E231-E237. [PMID: 27996099 PMCID: PMC5476483 DOI: 10.1002/lary.26432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE An obstacle to clinical use of RNA-based gene suppression is instability and inefficiency of current delivery modalities. Nanoparticle delivery likely holds great promise, but the kinetics and transfection conditions must be optimized prior to in vivo utility. We investigated a RNA nanoparticle complex incorporating a lipitoid transfection reagent in comparison to a commercially available reagent. STUDY DESIGN In vitro. METHODS We investigated which variables influence transfection efficiency of lipitoid oligomers and a commercially available reagent across species, in vitro. These variables included duration, dose, and number of administrations, as well as serum and media conditions. The target gene was Smad3, a signaling protein in the transforming growth factor-β cascade implicated in fibroplasia in the vocal folds and other tissues. RESULTS The two reagents suppressed Smad3 mRNA for up to 96 hours; lipitoid performed favorably and comparably. Both compounds yielded 60% to 80% mRNA knockdown in rat, rabbit, and human vocal fold fibroblasts (P < 0.05 relative to control). Dose and number of administrations played a significant role in gene suppression (P < 0.05). Suppression was more dose-sensitive with lipitoid. At a constant siRNA concentration, a 50% decrease in gene expression was observed in response to a five-fold increase in lipitoid concentration. Increased number of administrations enhanced gene suppression, ∼45% decrease between one and four administrations. Neither serum nor media type altered efficiency. CONCLUSION Lipitoid effectively knocked down Smad3 expression across multiple transfection conditions. These preliminary data are encouraging, and lipitoid warrants further investigation with the goal of clinical utility. LEVEL OF EVIDENCE NA. Laryngoscope, 127:E231-E237, 2017.
Collapse
Affiliation(s)
- Iv Kraja
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, NY
| | - Renjie Bing
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, NY
| | - Nao Hiwatashi
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, NY
| | - Bernard Rousseau
- Bill Wilkerson Center for Otolaryngology and Communication Sciences, Department of Otolaryngology, Hearing and Speech Sciences, and Mechanical Engineering, Vanderbilt University Medical Center, Nashville, TN
| | | | | | - Ryan C. Branski
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, NY
| |
Collapse
|
52
|
Gosangi M, Rapaka H, Ravula V, Patri SV. Evolution of New “Bolaliposomes” using Novel α-Tocopheryl Succinate Based Cationic Lipid and 1,12-Disubstituted Dodecane-Based Bolaamphiphile for Efficient Gene Delivery. Bioconjug Chem 2017; 28:1965-1977. [DOI: 10.1021/acs.bioconjchem.7b00283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Hithavani Rapaka
- National Institute of Technology, Warangal 506004, Telangana, India
| | - Venkatesh Ravula
- National Institute of Technology, Warangal 506004, Telangana, India
| | | |
Collapse
|
53
|
Fisher RK, Mattern-Schain SI, Best MD, Kirkpatrick SS, Freeman MB, Grandas OH, Mountain DJH. Improving the efficacy of liposome-mediated vascular gene therapy via lipid surface modifications. J Surg Res 2017; 219:136-144. [PMID: 29078873 DOI: 10.1016/j.jss.2017.05.111] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/28/2017] [Accepted: 05/25/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND We have previously defined mechanisms of intimal hyperplasia that could be targets for molecular therapeutics aimed at vascular pathology. However, biocompatible nanocarriers are needed for effective delivery. Cationic liposomes (CLPs) have been demonstrated as effective nanocarriers in vitro. However, in vivo success has been hampered by cytotoxicity. Recently, neutral PEGylated liposomes (PLPs) have been modified with cell-penetrating peptides (CPPs) to enhance cellular uptake. We aim to establish CPP-modified neutral liposomes as viable molecular nanocarriers in vascular smooth muscle cells. METHODS CLPs, PLPs, and CPP-modified PLPs (R8-PLPs) were assembled with short interfering RNA (siRNA) via ethanol injection. Characterization studies determined liposomal morphology, size, and charge. siRNA encapsulation efficiency was measured via RiboGreen assay. Vascular smooth muscle cells were exposed to equal lipid/siRNA across all groups. Rhodamine-labeled liposomes were used to quantify cell association via fluorometry, live/dead dual stain was used to measure cytotoxicity, and gene silencing was measured by quantitative polymerase chain reaction. RESULTS R8-PLPs exhibited increased encapsulation efficiency equivalent to CLPs. PLPs and R8-PLP-5 mol% and R8-PLP-10 mol% had no cytotoxic effect. CLPs demonstrated significant cytotoxicity. R8-PLP-5 mol% and R8-PLP-10 mol% exhibited increased cell association versus PLPs. R8-PLP-10 mol% resulted in significant gene silencing, in a manner dependent on lipid-to-siRNA load capacity. CONCLUSIONS The negligible cytotoxicity and enhanced cellular association and gene silencing capacity exhibited by R8-PLPs reveal this class of liposomes as a candidate for future applications. Further modifications for optimizing R8-PLPs are still warranted to improve efficacy, and in vivo studies are needed for translational development. However, this could prove to be an optimal nanocarrier for vascular gene therapeutics.
Collapse
Affiliation(s)
- Richard K Fisher
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | | | - Michael D Best
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Stacy S Kirkpatrick
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | - Michael B Freeman
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | - Oscar H Grandas
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | - Deidra J H Mountain
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee.
| |
Collapse
|
54
|
Gosangi M, Rapaka H, Mujahid TY, Patri SV. Novel 1,2,3-triazolium-based dicationic amphiphiles synthesized using click-chemistry approach for efficient plasmid delivery. MEDCHEMCOMM 2017; 8:989-999. [PMID: 30108814 PMCID: PMC6072356 DOI: 10.1039/c6md00699j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/18/2017] [Indexed: 12/17/2022]
Abstract
Herein, we report the synthesis, characterization and evaluation of the transfection efficiencies of a series of dicationic amphiphiles designed to construct quaternary ammonium ion-based cationic lipids varying in chain length of the hydrophobic back bone connected individually through head group to a 1,2,3-triazolium cation consisting of 2-hydroxy ethyl chain as substitution. Accordingly, three dicationic amphiphiles were synthesized by "click chemistry" approach and formulated to bilayered vesicles using DOPE as a co-lipid. The transfection efficacies of these novel lipid formulations were measured and correlated with the results obtained from various physicochemical techniques. Importantly, the observed gradient in the activity profile, where the transfection potential increased with decreasing chain length of the lipid hydrophobic back bone, highlights the synergistic interplay of the lipid alkyl chain length in coordination with charge delocalization in modulating the transfection potency of these 1,2,3-triazolium-based lipids.
Collapse
Affiliation(s)
| | - Hithavani Rapaka
- National Institute of Technology , Warangal-506004 , Telangana , India
| | - Thasneem Yoosuf Mujahid
- CSIR-Centre for Cellular and Molecular Biology , Uppal Road , Hyderabad-500007 , Telangana , India .
| | | |
Collapse
|
55
|
Recent development of synthetic nonviral systems for sustained gene delivery. Drug Discov Today 2017; 22:1318-1335. [PMID: 28428056 DOI: 10.1016/j.drudis.2017.04.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/02/2017] [Accepted: 04/05/2017] [Indexed: 12/22/2022]
Abstract
Sustained gene delivery is of particular importance today because it circumvents the need for repeated therapeutic administration and provides spatial and temporal control of the release profile. Better understanding of the genetic basis of diseases and advances in gene therapy have propelled significant research on biocompatible gene carriers for therapeutic purposes. Varied biodegradable polymer-based architectures have been used to create new compositions with unique properties suitable for sustained gene delivery. This review presents the most recent advances in various polymeric systems: hydrogels, microspheres, nanospheres and scaffolds, having complex architectures to encapsulate and deliver functional genes. Through the recombination of different existing polymer systems, the multicomplex systems can be further endowed with new properties for better-targeted biomedical applications.
Collapse
|
56
|
An anti-oxidant, α-lipoic acid conjugated oleoyl- sn -phosphatidylcholineas a helper lipid in cationic liposomal formulations. Colloids Surf B Biointerfaces 2017; 152:133-142. [DOI: 10.1016/j.colsurfb.2017.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 11/20/2022]
|
57
|
Martínez-Negro M, Caracciolo G, Palchetti S, Pozzi D, Capriotti AL, Cavaliere C, Laganà A, Ortiz Mellet C, Benito JM, García Fernández JM, Aicart E, Junquera E. Biophysics and protein corona analysis of Janus cyclodextrin-DNA nanocomplexes. Efficient cellular transfection on cancer cells. Biochim Biophys Acta Gen Subj 2017; 1861:1737-1749. [PMID: 28315770 DOI: 10.1016/j.bbagen.2017.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/26/2017] [Accepted: 03/14/2017] [Indexed: 11/18/2022]
Abstract
The self-assembling processes underlining the capabilities of facially differentiated ("Janus") polycationic amphiphilic cyclodextrins (paCDs) as non-viral gene nanocarriers have been investigated by a pluridisciplinary approach. Three representative Janus paCDs bearing a common tetradecahexanoyl multitail domain at the secondary face and differing in the topology of the cluster of amino groups at the primary side were selected for this study. All of them compact pEGFP-C3 plasmid DNA and promote transfection in HeLa and MCF-7 cells, both in absence and in presence of human serum. The electrochemical and structural characteristics of the paCD-pDNA complexes (CDplexes) have been studied by using zeta potential, DLS, SAXS, and cryo-TEM. paCDs and pDNA, when assembled in CDplexes, render effective charges that are lower than the nominal ones. The CDplexes show a self-assembling pattern corresponding to multilamellar lyotropic liquid crystal phases, characterized by a lamellar stacking of bilayers of the CD-based vectors with anionic pDNA sandwiched among them. When exposed to human serum, either in the absence or in the presence of pDNA, the surface of the cationic CD-based vector becomes coated by a protein corona (PC) whose composition has been analyzed by nanoLC-MS/MS. Some of the CDplexes herein studied showed moderate-to-high transfection levels in HeLa and MCF-7 cancer cells combined with moderate-to-high cell viabilities, as determined by FACS and MTT reduction assays. The ensemble of data provides a detail picture of the paCD-pDNA-PC association processes and a rational base to exploit the protein corona for targeted gene delivery on future in vivo applications.
Collapse
Affiliation(s)
- M Martínez-Negro
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - G Caracciolo
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - S Palchetti
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - D Pozzi
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - A L Capriotti
- Department of Chemistry, "La Sapienza" University of Rome, Pzle Aldo Moro 5, 00185 Rome, Italy
| | - C Cavaliere
- Department of Chemistry, "La Sapienza" University of Rome, Pzle Aldo Moro 5, 00185 Rome, Italy
| | - A Laganà
- Department of Chemistry, "La Sapienza" University of Rome, Pzle Aldo Moro 5, 00185 Rome, Italy
| | - C Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, c/ Profesor García González 1, 41012 Sevilla, Spain
| | - J M Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda., Américo Vespucio 49, 41092 Sevilla, Spain
| | - J M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda., Américo Vespucio 49, 41092 Sevilla, Spain
| | - E Aicart
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - E Junquera
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
58
|
Fraga M, de Carvalho TG, Bidone J, Schuh RS, Matte U, Teixeira HF. Factors influencing transfection efficiency of pIDUA/nanoemulsion complexes in a mucopolysaccharidosis type I murine model. Int J Nanomedicine 2017; 12:2061-2067. [PMID: 28352175 PMCID: PMC5358998 DOI: 10.2147/ijn.s121558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is an autosomal disease caused by alpha-l-iduronidase (IDUA) deficiency. This study used IDUA knockout mice as a model to evaluate whether parameters such as dose of plasmid and time of treatment could influence the transfection efficiency of complexes formed with PEGylated cationic nanoemulsions and plasmid (pIDUA), which contains the gene that encodes for IDUA. Formulations were composed of medium chain triglycerides, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(amino[polyethylene glycol]-2000), 1,2-dioleoyl-sn-glycero-3-trimethylammonium propane (DOTAP), glycerol, and water and were prepared by the adsorption or encapsulation of preformed pIDUA–DOTAP complexes by high-pressure homogenization. A progressive increase in IDUA expression was observed with an increase in the dose and time of transfection for mice treated with both complexes (adsorbed and encapsulated), especially in the liver. Regardless of the complex administered, a significant increase in IDUA activity was detected in lungs and liver compared with nontreated MPS I when a dose of 60 μg was administered and IDUA activity was measured 7 days postadministration. Tissue sections of major organs showed no presence of cell necrosis, inflammatory infiltrate, or an increase in apoptosis. Furthermore, immunohistochemistry for CD68 showed no difference in the number of macrophage cells in treated and nontreated animals, indicating the absence of inflammatory reaction caused by the treatment. The data set obtained in this study allowed establishing that factors such as dose and time can influence transfection efficiency in different degrees and that these complexes did not lead to any lethal effect in the MPS I murine model used.
Collapse
Affiliation(s)
- Michelle Fraga
- Pharmaceutical Sciences Graduate Program, Universidade Federal do Rio Grande do Sul; Gene Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre
| | - Talita Giacomet de Carvalho
- Gene Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre; Genetics and Molecular Biology Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Juliana Bidone
- Pharmaceutical Sciences Graduate Program, Universidade Federal do Rio Grande do Sul
| | - Roselena Silvestri Schuh
- Pharmaceutical Sciences Graduate Program, Universidade Federal do Rio Grande do Sul; Gene Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre
| | - Ursula Matte
- Gene Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre; Genetics and Molecular Biology Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | |
Collapse
|
59
|
Lehto T, Vasconcelos L, Margus H, Figueroa R, Pooga M, Hällbrink M, Langel Ü. Saturated Fatty Acid Analogues of Cell-Penetrating Peptide PepFect14: Role of Fatty Acid Modification in Complexation and Delivery of Splice-Correcting Oligonucleotides. Bioconjug Chem 2017; 28:782-792. [PMID: 28209057 DOI: 10.1021/acs.bioconjchem.6b00680] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Modifying cell-penetrating peptides (CPPs) with fatty acids has long been used to improve peptide-mediated nucleic acid delivery. In this study we have revisited this phenomenon with a systematic approach where we developed a structure-activity relationship to describe the role of the acyl chain length in the transfection process. For that we took a well-studied CPP, PepFect14, as the basis and varied its N-terminal acyl chain length from 2 to 22 carbons. To evaluate the delivery efficiency, the peptides were noncovalently complexed with a splice-correcting oligonucleotide (SCO) and tested in HeLa pLuc705 reporter cell line. Our results demonstrate that biological splice-correction activity emerges from acyl chain of 12 carbons and increases linearly with each additional carbon. To assess the underlying factors regarding how the transfection efficacy of these complexes is dependent on hydrophobicity, we used an array of different methods. For the functionally active peptides (C12-22) there was no apparent difference in their physicochemical properties, including complex formation efficiency, hydrodynamic size, and zeta potential. Moreover, membrane activity studies with peptides and their complexes with SCOs confirmed that the toxicity of the complexes at higher molar ratios is mainly caused by the free fraction of the peptide which is not incorporated into the peptide/oligonucleotide complexes. Finally, we show that the increase in splice-correcting activity correlates with the ability of the complexes to associate with the cells. Collectively these studies lay the ground work for how to design highly efficient CPPs and how to optimize their oligonucleotide complexes for lowest toxicity without losing efficiency.
Collapse
Affiliation(s)
- Tõnis Lehto
- Department of Neurochemistry, The Svante Arrhenius Laboratories for Natural Sciences, Stockholm University , Svante Arrhenius väg 16B, 10691 Stockholm, Sweden
| | - Luis Vasconcelos
- Department of Neurochemistry, The Svante Arrhenius Laboratories for Natural Sciences, Stockholm University , Svante Arrhenius väg 16B, 10691 Stockholm, Sweden
| | - Helerin Margus
- Institute of Molecular and Cell Biology, University of Tartu , Riia 23a, 51010 Tartu, Estonia
| | - Ricardo Figueroa
- Department of Neurochemistry, The Svante Arrhenius Laboratories for Natural Sciences, Stockholm University , Svante Arrhenius väg 16B, 10691 Stockholm, Sweden
| | - Margus Pooga
- Institute of Molecular and Cell Biology, University of Tartu , Riia 23a, 51010 Tartu, Estonia
| | - Mattias Hällbrink
- Department of Neurochemistry, The Svante Arrhenius Laboratories for Natural Sciences, Stockholm University , Svante Arrhenius väg 16B, 10691 Stockholm, Sweden
| | - Ülo Langel
- Department of Neurochemistry, The Svante Arrhenius Laboratories for Natural Sciences, Stockholm University , Svante Arrhenius väg 16B, 10691 Stockholm, Sweden.,Institute of Technology, University of Tartu , Nooruse 1, 50411 Tartu, Estonia
| |
Collapse
|
60
|
Kono Y, Iwasaki A, Matsuoka K, Fujita T. Effect of Mechanical Agitation on Cationic Liposome Transport across an Unstirred Water Layer in Caco-2 Cells. Biol Pharm Bull 2017; 39:1293-9. [PMID: 27476939 DOI: 10.1248/bpb.b16-00050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To develop an effective oral delivery system for plasmid DNA (pDNA) using cationic liposomes, it is necessary to clarify the characteristics of uptake and transport of cationic liposome/pDNA complexes into the intestinal epithelium. In particular, evaluation of the involvement of an unstirred water layer (UWL), which is a considerable permeability barrier, in cationic liposome transport is very important. Here, we investigated the effects of a UWL on the transfection efficiency of cationic liposome/pDNA complexes into a Caco-2 cell monolayer. When Caco-2 cells were transfected with cationic liposome/pDNA complexes in shaking cultures to reduce the thickness of the UWL, gene expression was significantly higher in Caco-2 cells compared with static cultures. We also found that this enhancement of gene expression by shaking was not attributable to activation of transcription factors such as activator protein-1 and nuclear factor-kappaB (NF-κB). In addition, the increase in gene expression by mechanical agitation was observed at all charge ratios (1.5, 2.3, 3.1, 4.5) of cationic liposome/pDNA complexes. Transport experiments using Transwells demonstrated that mechanical agitation increased the uptake of cationic liposome/pDNA complexes by Caco-2 cells, whereas transport of the complexes across a Caco-2 cell monolayer did not occurr. Moreover, the augmentation of the gene expression of cationic liposome/pDNA complexes by shaking was observed in Madin-Darby canine kidney cells. These results indicate that a UWL greatly affects the uptake and transfection efficiency of cationic liposome/pDNA complexes into an epithelial monolayer in vitro.
Collapse
Affiliation(s)
- Yusuke Kono
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University
| | | | | | | |
Collapse
|
61
|
Hiwale AA, Voshavar C, Dharmalingam P, Dhayani A, Mukthavaram R, Nadella R, Sunnapu O, Gandhi S, Naidu VGM, Chaudhuri A, Marepally S, Vemula PK. Scaling the effect of hydrophobic chain length on gene transfer properties of di-alkyl, di-hydroxy ethylammonium chloride based cationic amphiphiles. RSC Adv 2017. [DOI: 10.1039/c7ra02271a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Asymmetric hydrocarbon chains influence the efficiency of cationic lipids based liposomes in nucleic acid delivery. A systematic investigation of role of asymmetry in transfection efficiency.
Collapse
Affiliation(s)
- Ankita A. Hiwale
- Institute for Stem Cell Biology and Regenerative Medicine (inStem)
- Bengaluru 560065
- India
| | | | - Priya Dharmalingam
- Centre for Stem Cell Research
- Christian Medical College Campus
- Vellore 632002
- India
| | - Ashish Dhayani
- Institute for Stem Cell Biology and Regenerative Medicine (inStem)
- Bengaluru 560065
- India
| | - Rajesh Mukthavaram
- Translational Neuro-oncology Laboratories
- Moores Cancer Center
- University of California San Diego
- La Jolla
- USA
| | - Rasajna Nadella
- Centre for Stem Cell Research
- Christian Medical College Campus
- Vellore 632002
- India
| | - Omprakash Sunnapu
- National Institute for Pharmaceutical Education and Research
- Hyderabad 500018
- India
| | - Sivaraman Gandhi
- Institute for Stem Cell Biology and Regenerative Medicine (inStem)
- Bengaluru 560065
- India
| | - V. G. M. Naidu
- National Institute for Pharmaceutical Education and Research
- Hyderabad 500018
- India
| | - Arabinda Chaudhuri
- Biomaterials Group
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
| | - Srujan Marepally
- Institute for Stem Cell Biology and Regenerative Medicine (inStem)
- Bengaluru 560065
- India
- Centre for Stem Cell Research
- Christian Medical College Campus
| | - Praveen Kumar Vemula
- Institute for Stem Cell Biology and Regenerative Medicine (inStem)
- Bengaluru 560065
- India
| |
Collapse
|
62
|
Vieira DB, Gamarra LF. Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier. Int J Nanomedicine 2016; 11:5381-5414. [PMID: 27799765 PMCID: PMC5077137 DOI: 10.2147/ijn.s117210] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review summarizes articles that have been reported in literature on liposome-based strategies for effective drug delivery across the blood–brain barrier. Due to their unique physicochemical characteristics, liposomes have been widely investigated for their application in drug delivery and in vivo bioimaging for the treatment and/or diagnosis of neurological diseases, such as Alzheimer’s, Parkinson’s, stroke, and glioma. Several strategies have been used to deliver drug and/or imaging agents to the brain. Covalent ligation of such macromolecules as peptides, antibodies, and RNA aptamers is an effective method for receptor-targeting liposomes, which allows their blood–brain barrier penetration and/or the delivery of their therapeutic molecule specifically to the disease site. Additionally, methods have been employed for the development of liposomes that can respond to external stimuli. It can be concluded that the development of liposomes for brain delivery is still in its infancy, although these systems have the potential to revolutionize the ways in which medicine is administered.
Collapse
Affiliation(s)
| | - Lionel F Gamarra
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| |
Collapse
|
63
|
He C, Wang S, Liu M, Zhao C, Xiang S, Zeng Y. Design, synthesis and in vitro evaluation of d-glucose-based cationic glycolipids for gene delivery. Org Biomol Chem 2016; 14:1611-22. [PMID: 26670704 DOI: 10.1039/c5ob02107c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cationic lipid consists of a hydrophilic headgroup, backbone and hydrophobic tails which have an immense influence on the transfection efficiency of the lipid. In this paper, two novel series of cationic cyclic glycolipids with a quaternary ammonium headgroup and different-length hydrophobic tails (dodecyl, tetradecyl, hexadecyl) have been designed and synthesized for gene delivery. One contains lipids 1-3 with two hydrophobic alkyl chains linked to the glucose ring directly via an ether link. The other contains lipids 4-6 with two hydrophobic chains on the positively charged nitrogen atoms. All of the lipids were characterized for their ability to bind to DNA, size, ζ-potential, and toxicity. Atomic force microscopy showed that the lipids and DNA-lipid complexes were sphere-like forms. The lipids were used to transfer enhanced green fluorescent protein (EGFP-C3) to HEK293 cells without a helper lipid, the results indicated that lipids 4-6 have better transfection efficiency, in particular lipids 5-6 have similar or better efficiency, compared with the commercial transfection reagent lipofectamine 2000.
Collapse
Affiliation(s)
- Chengxi He
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| | - Shang Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Meiyan Liu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| | - Chunyan Zhao
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Youlin Zeng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| |
Collapse
|
64
|
Liu J, Feng M, Liang D, Yang J, Tang X. Vitamin E-Labeled Polyethylenimine for in vitro and in vivo Gene Delivery. Biomacromolecules 2016; 17:3153-3161. [DOI: 10.1021/acs.biomac.6b00776] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinxing Liu
- State Key Laboratory of Natural
and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics
and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road Beijing, 100191, China
| | - Mengke Feng
- State Key Laboratory of Natural
and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics
and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road Beijing, 100191, China
| | - Duanwei Liang
- State Key Laboratory of Natural
and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics
and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road Beijing, 100191, China
| | - Jiali Yang
- State Key Laboratory of Natural
and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics
and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road Beijing, 100191, China
| | - Xinjing Tang
- State Key Laboratory of Natural
and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics
and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road Beijing, 100191, China
| |
Collapse
|
65
|
Martínez-Negro M, Kumar K, Barrán-Berdón AL, Datta S, Kondaiah P, Junquera E, Bhattacharya S, Aicart E. Efficient Cellular Knockdown Mediated by siRNA Nanovectors of Gemini Cationic Lipids Having Delocalizable Headgroups and Oligo-Oxyethylene Spacers. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22113-22126. [PMID: 27508330 DOI: 10.1021/acsami.6b08823] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The use of small interfering RNAs (siRNAs) to silence specific genes is one of the most promising approaches in gene therapy, but it requires efficient nanovectors for successful cellular delivery. Recently, we reported liposomal gene carriers derived from a gemini cationic lipid (GCL) of the 1,2-bis(hexadecyl dimethyl imidazolium) oligo-oxyethylene series ((C16Im)2(C2H4O)nC2H4 with n = 1, 2, or 3) and 1,2-dioleyol phosphatidylethanolamine as highly efficient cytofectins for pDNA. On the basis of the satisfactory outcomes of the previous study, the present work focuses on the utility of coliposomes of these gemini lipids with the biocompatible neutral lipid mono oleoyl glycerol (MOG) as highly potent vectors for siRNA cellular transport in the presence of serum. The (C16Im)2(C2H4O)nC2H4/MOG-siRNA lipoplexes were characterized through (i) a physicochemical study (zeta potential, cryo-transmission electron microscopy, small-angle X-ray scattering, and fluorescence anisotropy) to establish the relationship between size, structure, fluidity, and the interaction between siRNA and the GCL/MOG gene vectors and (ii) a biological analysis (flow cytometry, fluorescence microscopy, and cell viability) to report the anti-GFP siRNA transfections in HEK 293T, HeLa, and H1299 cancer cell lines. The in vitro biological analysis confirms the cellular uptake and indicates that a short spacer, a very low molar fraction of GCL in the mixed lipid, and a moderate effective charge ratio of the lipoplex yielded maximum silencing efficacy. At these experimental conditions, the siRNA used in this work is compacted by the GCL/MOG nanovectors by forming two cubic structures (Ia3d and Pm3n) that are correlated with excellent silencing activity. These liposomal nanocarriers possess high silencing activity with a negligible cytotoxicity, which strongly supports their practical use for in vivo knockdown studies.
Collapse
Affiliation(s)
- María Martínez-Negro
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid , 28040 Madrid, Spain
| | | | - Ana L Barrán-Berdón
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid , 28040 Madrid, Spain
| | | | | | - Elena Junquera
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid , 28040 Madrid, Spain
| | | | - Emilio Aicart
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid , 28040 Madrid, Spain
| |
Collapse
|
66
|
Junquera E, Aicart E. Recent progress in gene therapy to deliver nucleic acids with multivalent cationic vectors. Adv Colloid Interface Sci 2016; 233:161-175. [PMID: 26265376 DOI: 10.1016/j.cis.2015.07.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/10/2015] [Accepted: 07/12/2015] [Indexed: 12/16/2022]
Abstract
Due to the potential use as transfecting agents of nucleic acids (DNA or RNA), multivalent cationic non-viral vectors have received special attention in the last decade. Much effort has been addressed to synthesize more efficient and biocompatible gene vectors able to transport nucleic acids into the cells without provoking an immune response. Among them, the mostly explored to compact and transfect nucleic acids are: (a) gemini and multivalent cationic lipids, mixed with a helper lipid, by forming lipoplexes; and (b) cationic polymers, polycations, and polyrotaxanes, by forming polyplexes. This review is focused on the progress and recent advances experimented in this area, mainly during the present decade, devoting special attention to the lipoplexes and polyplexes, as follows: (a) to its biophysical characterization (mainly electrostatics, structure, size and morphology) using a wide variety of experimental methods; and (b) to its biological activity (transfection efficacy and cytotoxicity) addressed to confirm the optimum formulations and viability of these complexes as very promising gene vectors of nucleic acids in nanomedicine.
Collapse
Affiliation(s)
- Elena Junquera
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Emilio Aicart
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
67
|
Al-Dulaymi MA, Chitanda JM, Mohammed-Saeid W, Araghi HY, Verrall RE, Grochulski P, Badea I. Di-Peptide-Modified Gemini Surfactants as Gene Delivery Vectors: Exploring the Role of the Alkyl Tail in Their Physicochemical Behavior and Biological Activity. AAPS JOURNAL 2016; 18:1168-1181. [PMID: 27184577 DOI: 10.1208/s12248-016-9906-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/13/2016] [Indexed: 12/29/2022]
Abstract
The aim of this work was to elucidate the structure-activity relationship of new peptide-modified gemini surfactant-based carriers. Glycyl-lysine modified gemini surfactants that differ in the length and degree of unsaturation of their alkyl tail were used to engineer DNA nano-assemblies. To probe the optimal nitrogen to phosphate (N/P) ratio in the presence of helper lipid, in vitro gene expression and cell toxicity measurements were carried out. Characterization of the nano-assemblies was accomplished by measuring the particle size and surface charge. Morphological characteristics and lipid organization were studied by small angle X-ray scattering technique. Lipid monolayers were studied using a Langmuir-Blodgett trough. The highest activity of glycyl-lysine modified gemini surfactants was observed with the 16-carbon tail compound at 2.5 N/P ratio, showing a 5- to 10-fold increase in the level of reporter protein compared to the 12 and 18:1 carbon tail compounds. This ratio is significantly lower compared to the previously studied gemini surfactants with alkyl or amino- spacers. In addition, the 16-carbon tail compound exhibited the highest cell viability (85%). This high efficiency is attributed to the lowest critical micelle concentration of the 16-tail gemini surfactant and a balanced packing of the nanoparticles by mixing a saturated and unsaturated lipid together. At the optimal N/P ratio, all nanoparticles exhibited an inverted hexagonal lipid assembly. The results show that the length and nature of the tail of the gemini surfactants play an important role in determining the transgene efficiency of the delivery system. We demonstrated here that the interplay between the headgroup and the nature of tail is specific to each series, thus in the process of rational design, the contribution of the latter should be assessed in the appropriate context.
Collapse
Affiliation(s)
- Mays A Al-Dulaymi
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jackson M Chitanda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Waleed Mohammed-Saeid
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Ronald E Verrall
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Pawel Grochulski
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Canadian Light Source, Saskatoon, Saskatchewan, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
68
|
Teagle AR, Birchall JC, Hargest R. Gene Therapy for Pyoderma Gangrenosum: Optimal Transfection Conditions and Effect of Drugs on Gene Delivery in the HaCaT Cell Line Using Cationic Liposomes. Skin Pharmacol Physiol 2016; 29:119-29. [DOI: 10.1159/000444859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/19/2016] [Indexed: 11/19/2022]
|
69
|
Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv 2016; 23:3319-3329. [PMID: 27145899 DOI: 10.1080/10717544.2016.1177136] [Citation(s) in RCA: 369] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Liposomes were the first nanoscale drug to be approved for clinical use in 1995. Since then, the technology has grown considerably, and pioneering recent work in liposome-based delivery systems has brought about remarkable developments with significant clinical implications. This includes long-circulating liposomes, stimuli-responsive liposomes, nebulized liposomes, elastic liposomes for topical, oral and transdermal delivery and covalent lipid-drug complexes for improved drug plasma membrane crossing and targeting to specific organelles. While the regulatory bodies' opinion on liposomes is well-documented, current guidance that address new delivery systems are not. This review describes, in depth, the current state-of-the-art of these new liposomal delivery systems and provides a critical overview of the current regulatory landscape surrounding commercialization efforts of higher-level complexity systems, the expected requirements and the hurdles faced by companies seeking to bring novel liposome-based systems for clinical use to market.
Collapse
|
70
|
Jeong HS, Hwang H, Oh PS, Kim EM, Lee TK, Kim M, Kim HS, Lim ST, Sohn MH, Jeong HJ. Effect of High-Intensity Focused Ultrasound on Drug Release from Doxorubicin-Loaded PEGylated Liposomes and Therapeutic Effect in Colorectal Cancer Murine Models. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:947-955. [PMID: 26795498 DOI: 10.1016/j.ultrasmedbio.2015.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
The goal of the study described here was to evaluate the use of high-intensity focused ultrasound (HIFU) in drug release and its application in cancer therapy. HIFU was set to minimize hyperthermia, particularly non-specific hyperthermia, of exposed areas. An in vitro temperature-sensitive hydrogel phantom model determined the parameters of HIFU under mild condition settings (spatial average temporal average intensity [ISATA] = 83.35 W/cm(2)). PEGylated liposomal indocyanine green (LCLP-ICG) and PEGylated liposomal doxorubicin (LCLP-Dox) were prepared with the same mole ratio to allow direct comparison of drug release in vitro and in vivo. We induced drug release with HIFU treatment using LCLP-ICG coupled with optical imaging in vitro and in vivo. The size distribution changes in LCLP-ICG in vitro and fluorescence intensity changes in ICG after intra-tumoral injection of LCLP-ICG into CT26 solid tumors in vivo followed by HIFU confirmed the feasibility of the system. We validated the therapeutic effect of HIFU treatment of the CT26 mouse tumor model. The tumor growth rate was significantly reduced (p < 0.05) only in the group administered LCLP-Dox followed by cycles of HIFU treatment, and the chemotherapy of the CT26 solid tumors was found to be highly efficient.
Collapse
Affiliation(s)
- Hwan-Seok Jeong
- Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Cyclotron Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Institute for Medical Sciences, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Hyosook Hwang
- Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Cyclotron Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Institute for Medical Sciences, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Phil-Sun Oh
- Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Cyclotron Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Institute for Medical Sciences, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Eun-Mi Kim
- Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Cyclotron Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Institute for Medical Sciences, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Tai Kyoung Lee
- Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Cyclotron Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Institute for Medical Sciences, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Minjoo Kim
- Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Cyclotron Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Institute for Medical Sciences, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Hyeon Soo Kim
- Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Cyclotron Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Institute for Medical Sciences, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Seok Tae Lim
- Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Cyclotron Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Institute for Medical Sciences, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Myung-Hee Sohn
- Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Cyclotron Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Institute for Medical Sciences, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Hwan-Jeong Jeong
- Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Cyclotron Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Institute for Medical Sciences, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea; Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea.
| |
Collapse
|
71
|
Ojeda E, Puras G, Agirre M, Zarate J, Grijalvo S, Eritja R, DiGiacomo L, Caracciolo G, Pedraz JL. The role of helper lipids in the intracellular disposition and transfection efficiency of niosome formulations for gene delivery to retinal pigment epithelial cells. Int J Pharm 2016; 503:115-26. [PMID: 26956159 DOI: 10.1016/j.ijpharm.2016.02.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 11/26/2022]
Abstract
In this work, we carried out a comparative study of four different niosome formulations based on the same cationic lipid and non-ionic tensoactive. The niosomes prepared by oil-in-water emulsion technique (o/w) only differed in the helper lipid composition: squalene, cholesterol, squalane or no helper lipid. Niosomes and nioplexes elaborated upon the addition of pCMS-EGFP reporter plasmid were characterized in terms of size, zeta potential and polydispersity index. The capacity of the niosomes to condense, release and protect the DNA against enzymatic degradation was evaluated by agarose gel electrophoresis. In vitro experiments were carried out to evaluate transfection efficiency and cell viability in retinal pigment epithelial cells. Moreover, uptake and intracellular trafficking studies were performed to further understand the role of the helper lipids in the transfection process. Interestingly, among all tested formulations, niosomes elaborated with squalene as helper lipid were the most efficient transfecting cells. Such transfection efficiency could be attributed to their higher cellular uptake and the particular entry pathways used, where macropinocytosis pathway and lysosomal release played an important role. Therefore, these results suggest that helper lipid composition is a crucial step to be considered in the design of niosome formulation for retinal gene delivery applications since clearly modulates the cellular uptake, internalization mechanism and consequently, the final transfection efficiency.
Collapse
Affiliation(s)
- Edilberto Ojeda
- NanoBioCel Group, University of Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- NanoBioCel Group, University of Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Mireia Agirre
- NanoBioCel Group, University of Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Jon Zarate
- NanoBioCel Group, University of Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Santiago Grijalvo
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Ramon Eritja
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Luca DiGiacomo
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Jose-Luis Pedraz
- NanoBioCel Group, University of Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
72
|
Kepczynski M, Róg T. Functionalized lipids and surfactants for specific applications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2362-2379. [PMID: 26946243 DOI: 10.1016/j.bbamem.2016.02.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/17/2022]
Abstract
Synthetic lipids and surfactants that do not exist in biological systems have been used for the last few decades in both basic and applied science. The most notable applications for synthetic lipids and surfactants are drug delivery, gene transfection, as reporting molecules, and as support for structural lipid biology. In this review, we describe the potential of the synergistic combination of computational and experimental methodologies to study the behavior of synthetic lipids and surfactants embedded in lipid membranes and liposomes. We focused on select cases in which molecular dynamics simulations were used to complement experimental studies aiming to understand the structure and properties of new compounds at the atomistic level. We also describe cases in which molecular dynamics simulations were used to design new synthetic lipids and surfactants, as well as emerging fields for the application of these compounds. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Mariusz Kepczynski
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland.
| | - Tomasz Róg
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101, Tampere, Finland; Department of Physics, Helsinki University, P.O. Box 64, FI 00014 Helsinki, Finland.
| |
Collapse
|
73
|
Cai Y, Xu Y, Chan HF, Fang X, He C, Chen M. Glycyrrhetinic Acid Mediated Drug Delivery Carriers for Hepatocellular Carcinoma Therapy. Mol Pharm 2016; 13:699-709. [PMID: 26808002 DOI: 10.1021/acs.molpharmaceut.5b00677] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glycyrrhetinic acid (GA), the main hydrolysate of glycyrrhizic acid extracted from the root of licorice, has been used in hepatocellular carcinoma (HCC) therapy. Particularly, GA as a ligand in HCC therapy has been widely explored in different drug delivery systems, including liposomes, micelles, and nanoparticles. There is considerable interest worldwide with respect to the development of GA-modified drug delivery systems due to the extensive presence of GA receptors on the surface of hepatocyte. Up until now, much work has been focused on developing GA-modified drug delivery systems which bear good liver- or hepatocyte-targeted efficiency both in vitro and in vivo. Owing to its contribution in overcoming the limitations of low lipophilicity and poor bioavailability as well as its ability to promote receptor-mediated endocytosis, GA-modified drug delivery systems play an important role in enhancing liver-targeting efficacy and thus are focused on the treatment of HCC. Moreover, since GA-modified delivery systems present more favorable pharmacokinetic properties and hepatocyte-targeting effects, they may be a promising formulation for GA in the treatment of HCC. In this review, we will give an overview of GA-modified novel drug delivery systems, paying attention to their efficacy in treating HCC and discussing their mechanism and the treatment effects.
Collapse
Affiliation(s)
- Yuee Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau 999078, China
| | - Yingqi Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau 999078, China
| | - Hon Fai Chan
- Department of Biomedical Engineering, Columbia University , New York 10027, United States
| | - Xiaobin Fang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau 999078, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau 999078, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau 999078, China
| |
Collapse
|
74
|
Ojeda E, Agirre M, Villate-Beitia I, Mashal M, Puras G, Zarate J, Pedraz JL. Elaboration and Physicochemical Characterization of Niosome-Based Nioplexes for Gene Delivery Purposes. Methods Mol Biol 2016; 1445:63-75. [PMID: 27436313 DOI: 10.1007/978-1-4939-3718-9_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Niosome formulations for gene delivery purposes are based on nonionic surfactants, helper lipids, and cationic lipids that interact electrostatically with negatively charged DNA molecules to form the so-called nioplexes. Niosomes are elaborated by different techniques, such as solvent emulsion-evaporation, thin film hydration, hand-shaking, dissolvent injection, and microfluidization method, among many others. In this chapter, we have described some protocols for the elaboration of niosomes and nioplexes and their physicochemical characterization that guarantees the quality criteria of the formulation in terms of size, morphology, ζ-potential, and stability.
Collapse
Affiliation(s)
- Edilberto Ojeda
- NanoBioCel Group, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Mireia Agirre
- NanoBioCel Group, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Ilia Villate-Beitia
- NanoBioCel Group, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Mohamed Mashal
- NanoBioCel Group, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- NanoBioCel Group, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Jon Zarate
- NanoBioCel Group, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Jose L Pedraz
- NanoBioCel Group, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain. .,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain. .,Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, 01006, Vitoria-Gasteiz, Spain.
| |
Collapse
|
75
|
Gosangi M, Mujahid TY, Gopal V, Patri SV. Effects of heterocyclic-based head group modifications on the structure–activity relationship of tocopherol-based lipids for non-viral gene delivery. Org Biomol Chem 2016; 14:6857-70. [DOI: 10.1039/c6ob00974c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gene therapy, a promising strategy for the delivery of therapeutic nucleic acids, is greatly dependent on the development of efficient vectors.
Collapse
Affiliation(s)
| | | | - Vijaya Gopal
- CSIR-Centre for Cellular and Molecular Biology
- Hyderabad-500007
- India
| | | |
Collapse
|
76
|
Meka RR, Godeshala S, Marepally S, Thorat K, Reddy Rachamalla HK, Dhayani A, Hiwale A, Banerjee R, Chaudhuri A, Vemula PK. Asymmetric cationic lipid based non-viral vectors for an efficient nucleic acid delivery. RSC Adv 2016. [DOI: 10.1039/c6ra07256a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cationic lipids have been extensively studied for their ability to complex with nucleic acids to condense and consequently deliver them into the cells.
Collapse
Affiliation(s)
- Rakeshchandra R. Meka
- Biomaterials Group
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
| | - Sudhakar Godeshala
- Biomaterials Group
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
| | - Srujan Marepally
- Institute for Stem Cell Biology and Regenerative Medicine (inStem)
- Bangalore 560065
- India
| | - Ketan Thorat
- Institute for Stem Cell Biology and Regenerative Medicine (inStem)
- Bangalore 560065
- India
- Manipal University
- Manipal
| | | | - Ashish Dhayani
- Institute for Stem Cell Biology and Regenerative Medicine (inStem)
- Bangalore 560065
- India
- SASTRA University
- Thanjavur-613401
| | - Ankita Hiwale
- Institute for Stem Cell Biology and Regenerative Medicine (inStem)
- Bangalore 560065
- India
| | - Rajkumar Banerjee
- Biomaterials Group
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
| | - Arabinda Chaudhuri
- Biomaterials Group
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
| | - Praveen Kumar Vemula
- Institute for Stem Cell Biology and Regenerative Medicine (inStem)
- Bangalore 560065
- India
- Ramalingaswami Re-Entry Fellow
- Dept of Biotechnology
| |
Collapse
|
77
|
Moku G, Gulla SK, Nimmu NV, Khalid S, Chaudhuri A. Delivering anti-cancer drugs with endosomal pH-sensitive anti-cancer liposomes. Biomater Sci 2016; 4:627-38. [DOI: 10.1039/c5bm00479a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Numerous prior studies have been reported on the use of pH-sensitive drug carriers such as micelles, liposomes, peptides, polymers, nanoparticles,etc. that are sensitive to the acidic (pH = ∼6.5) microenvironments of tumor tissues.
Collapse
Affiliation(s)
- Gopikrishna Moku
- Biomaterials Group
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500 007
- India
- Academy of Scientific and Innovative Research
| | - Suresh Kumar Gulla
- Biomaterials Group
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500 007
- India
- Academy of Scientific and Innovative Research
| | - Narendra Varma Nimmu
- D216
- Discovery Lab
- Analytical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500 007
| | - Sara Khalid
- D216
- Discovery Lab
- Analytical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500 007
| | - Arabinda Chaudhuri
- Biomaterials Group
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500 007
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
78
|
Altınoglu S, Wang M, Xu Q. Combinatorial library strategies for synthesis of cationic lipid-like nanoparticles and their potential medical applications. Nanomedicine (Lond) 2015; 10:643-57. [PMID: 25723096 DOI: 10.2217/nnm.14.192] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The past two decades have witnessed the high efficiency and efficacy of cationic lipids and liposomal formations for drug delivery. The tedious synthesis of conventional lipids and the inefficiency in studying structure-activity relationships, however, have hindered the clinical translation of lipid nanoparticle delivery systems. Combinatorial synthesis of lipid-like nanoparticles ('lipidoids') has recently emerged as an approach to accelerate the development of these delivery platforms. Utilizing a high-throughput screening strategy, the libraries of lipidoids are sorted and prime candidates for the delivery in the intended application can be identified and optimized for the next generation. In this review, we outline methods used for combinatorial lipidoid synthesis, the application of high-throughput screening, and the current medical applications of candidate lipidoids.
Collapse
Affiliation(s)
- Sarah Altınoglu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | | | | |
Collapse
|
79
|
Ojeda E, Puras G, Agirre M, Zarate J, Grijalvo S, Eritja R, Martinez-Navarrete G, Soto-Sánchez C, Diaz-Tahoces A, Aviles-Trigueros M, Fernández E, Pedraz JL. The influence of the polar head-group of synthetic cationic lipids on the transfection efficiency mediated by niosomes in rat retina and brain. Biomaterials 2015; 77:267-79. [PMID: 26610076 DOI: 10.1016/j.biomaterials.2015.11.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 01/28/2023]
Abstract
The development of novel non-viral delivery vehicles is essential in the search of more efficient strategies for retina and brain diseases. Herein, optimized niosome formulations prepared by oil-in water (o/w) and film-hydration techniques were characterized in terms of size, PDI, zeta potential, morphology and stability. Three ionizable glycerol-based cationic lipids containing a primary amine group (lipid 1), a triglycine group (lipid 2) and a dimethylamino ethyl pendent group (lipid 3) as polar head-groups were part of such niosomes. Upon the addition of pCMS-EGFP plasmid, nioplexes were obtained at different cationic lipid/DNA ratios (w/w). The resultant nioplexes were further physicochemically characterized and evaluated to condense, release and protect the DNA against enzymatic digestion. In vitro experiments were performed to evaluate transfection efficiency and cell viability in HEK-293, ARPE-19 and PECC cells. Interestingly, niosome formulations based on lipid 3 showed better transfection efficiencies in ARPE-19 and PECC cells than the rest of cationic lipids showed in this study. In vivo experiments in rat retina after intravitreal and subretinal injections together with in rat brain after cerebral cortex administration showed promising transfection efficiencies when niosome formulations based on lipid 3 were used. These results provide new insights for the development of non-viral vectors based on cationic lipids and their applications for efficient delivery of genetic material to the retina and brain.
Collapse
Affiliation(s)
- E Ojeda
- NanoBioCel Group, University of Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - G Puras
- NanoBioCel Group, University of Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - M Agirre
- NanoBioCel Group, University of Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - J Zarate
- NanoBioCel Group, University of Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - S Grijalvo
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - R Eritja
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - G Martinez-Navarrete
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, Spain
| | - C Soto-Sánchez
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, Spain
| | - A Diaz-Tahoces
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, Spain
| | - M Aviles-Trigueros
- Laboratory of Experimental Ophthalmology, Faculty of Medicine, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - E Fernández
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, Spain
| | - J L Pedraz
- NanoBioCel Group, University of Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
80
|
Sivaramakrishna D, Swamy MJ. Self-Assembly, Supramolecular Organization, and Phase Behavior of L-Alanine Alkyl Esters (n = 9-18) and Characterization of Equimolar L-Alanine Lauryl Ester/Lauryl Sulfate Catanionic Complex. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9546-9556. [PMID: 26291838 DOI: 10.1021/acs.langmuir.5b02475] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A homologous series of l-alanine alkyl ester hydrochlorides (AEs) bearing 9-18 C atoms in the alkyl chain have been synthesized and characterized with respect to self-assembly, supramolecular structure, and phase transitions. The CMCs of AEs bearing 11-18 C atoms were found to range between 0.1 and 10 mM. Differential scanning calorimetric (DSC) studies showed that the transition temperatures (Tt), enthalpies (ΔHt) and entropies (ΔSt) of AEs in the dry state exhibit odd-even alternation, with the odd-chain-length compounds having higher Tt values, but the even-chain-length homologues showing higher values of ΔHt and ΔSt. In DSC measurements on hydrated samples, carried out at pH 5.0 and pH 10.0 (where they exist in cationic and neutral forms, respectively), compounds with 13-18 C atoms in the alkyl chain showed sharp gel-to-liquid crystalline phase transitions, and odd-even alternation was not seen in the thermodynamic parameters. The molecular structure, packing properties, and intermolecular interactions of AEs with 9 and 10 C atoms in the alkyl chain were determined by single crystal X-ray diffraction, which showed that the alkyl chains are packed in a tilted interdigitated bilayer format. d-Spacings obtained from powder X-ray diffraction studies exhibited a linear dependence on the alkyl chain length, suggesting that the other AEs also adopt an interdigitated bilayer structure. Turbidimetric, fluorescence spectroscopic, and isothermal titration calorimetric (ITC) studies established that in aqueous dispersions l-alanine lauryl ester hydrochloride (ALE·HCl) and sodium dodecyl sulfate (SDS) form an equimolar complex. Transmission electron microscopic and DSC studies indicate that the complex exists as unilamellar liposomes, which exhibit a sharp phase transition at ∼39 °C. The aggregates were disrupted at high pH, suggesting that the catanionic complex would be useful to develop a base-labile drug delivery system. ITC studies indicated that ALE·HCl forms a strong complex with DNA, suggesting that the AEs may find use in DNA therapeutics as well.
Collapse
Affiliation(s)
- D Sivaramakrishna
- School of Chemistry, University of Hyderabad , Hyderabad-500 046, India
| | - Musti J Swamy
- School of Chemistry, University of Hyderabad , Hyderabad-500 046, India
| |
Collapse
|
81
|
Ma D, Green AM, Willsey GG, Marshall JS, Wargo MJ, Wu J. Effects of acoustic streaming from moderate-intensity pulsed ultrasound for enhancing biofilm mitigation effectiveness of drug-loaded liposomes. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:1043-1051. [PMID: 26328720 DOI: 10.1121/1.4927413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Because biofilms have resistance to antibiotics, their control using minimum amounts of chemicals and energy becomes a critical issue particularly for resource-constrained long-term space and deep-sea explorations. This preliminary study investigates how ultrasound promoting penetration of antibiotic-loaded liposomes into alginate-based bacterial biofilms, resulting in enhanced bacterial (Ralstonia insidiosa) killing. Nano-sized liposomes are used as a delivery vehicle for the antibiotic gentamicin. Alginate-based synthetic biofilms, which are widely acknowledged as biofilm phantoms, filled with liposome solution are formed at the bottoms of six-well Petri dishes and exposed to ultrasound (frequency = 2.25 MHz, 10% duty cycle, and spatially and temporally averaged intensity ISAPA = 4.4 W/cm(2)). Gentamicin is released from liposomes after they are lysed using detergent solution (0.05% sodium dodecyl sulfate, 1.0% Triton X-100) and incubated for 20 min. The alginate biofilm is dissolved and diluted, counting of colony-forming units shows about 80% of the bacteria are killed. It has also been shown the liposome-capture density by the alginate film increases linearly with the ultrasound intensity up to ISAPA = 6.2 W/cm(2) reaching approximately threefold that without ultrasound. Measurement by using particle-image velocimetry has demonstrated the acoustic streaming with modification by thermal convection controls the enhancement of the liposome capture rate.
Collapse
Affiliation(s)
- Dong Ma
- Department of Physics, University of Vermont, Burlington, Vermont 05405, USA
| | - Adam M Green
- School of Engineering, University of Vermont, Burlington, Vermont 05405, USA
| | - Graham G Willsey
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
| | - Jeffrey S Marshall
- School of Engineering, University of Vermont, Burlington, Vermont 05405, USA
| | - Matthew J Wargo
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
| | - Junru Wu
- Department of Physics, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
82
|
Garu A, Moku G, Gulla SK, Pramanik D, Majeti BK, Karmali PP, Shaik H, Sreedhar B, Chaudhuri A. Examples of Tumor Growth Inhibition Properties of Liposomal Formulations of pH-Sensitive Histidinylated Cationic Amphiphiles. ACS Biomater Sci Eng 2015; 1:646-655. [PMID: 33435088 DOI: 10.1021/acsbiomaterials.5b00025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Herein we report on the unexpected cancer cell selective cytotoxicities of the liposomal formulations of aspartic and glutamic acid backbone-based four novel lipids with endosomal pH-sensitive head-groups and aliphatic n-hexadecyl & n-octadecyl hydrophobic tails. Surprisingly, although the formulations killed cancer cells efficiently, they were significantly less cytotoxic in non-cancerous healthy cells. Importantly, intratumoral administration of the liposomal formulations efficiently inhibited growth of melanoma in a syngeneic C57BL/6J mouse tumor model. Western Blotting experiments with the lysates of liposomes treated cancer cells revealed that liposomes of lipids 1-4 induce apoptosis selectively in cancer cells presumably by releasing cytochrome c from depolarized mitochondria and subsequent activation of caspases 3 & 9, upregulation of Bax and down regulation of Bcl-2. In summary, the present report describes for the first time tumor growth inhibition properties of the liposomal formulations of endosomal pH-sensitive histidinylated cationic lipids under both in vitro and systemic settings.
Collapse
Affiliation(s)
| | - Gopikrishna Moku
- Academy of Scientific and Innovative Research, Taramani, Chennai 600 113, India
| | - Suresh Kumar Gulla
- Academy of Scientific and Innovative Research, Taramani, Chennai 600 113, India
| | | | | | | | | | | | - Arabinda Chaudhuri
- Academy of Scientific and Innovative Research, Taramani, Chennai 600 113, India
| |
Collapse
|
83
|
Synthesis and validation of novel cholesterol-based fluorescent lipids designed to observe the cellular trafficking of cationic liposomes. Bioorg Med Chem Lett 2015; 25:3893-6. [PMID: 26243368 DOI: 10.1016/j.bmcl.2015.07.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 07/02/2015] [Accepted: 07/18/2015] [Indexed: 11/23/2022]
Abstract
Cholesterol-based fluorescent lipids with ether linker were synthesized using NBD (Chol-E-NBD) or Rhodamine B (Chol-E-Rh), and the usefulnesses as fluorescent probes for tracing cholesterol-based liposomes were validated. The fluorescent intensities of liposomes containing these modified lipids were measured and observed under a microscope. Neither compound interfered with the expression of GFP plasmid, and live cell images were obtained without interferences. Changes in the fluorescent intensity of liposomes containing Chol-E-NBD were followed by flow cytometry for up to 24h. These fluorescent lipids could be useful probes for trafficking of cationic liposome-mediated gene delivery.
Collapse
|
84
|
Barrán-Berdón AL, Yélamos B, García-Río L, Domènech Ò, Aicart E, Junquera E. Polycationic Macrocyclic Scaffolds as Potential Non-Viral Vectors of DNA: A Multidisciplinary Study. ACS APPLIED MATERIALS & INTERFACES 2015; 7:14404-14414. [PMID: 26067709 DOI: 10.1021/acsami.5b03231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The potential of lipoplexes constituted by the DNA pEGFP-C3 (encoding green fluorescent protein), polycationic calixarene-based macrocyclic vector (CxCL) with a lipidic matrix (herein named TMAC4), and zwitterionic lipid 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) as nontoxic DNA vectors has been analyzed from both biophysical and biochemical perspectives. For that purpose, several experimental methods, such as zeta potential (PALS methodology), agarose gel electrophoresis, small-angle X-ray scattering (SAXS), transmission electronic cryo-microscopy (cryo-TEM), atomic force microscopy (AFM), fluorescence microscopy, and cytotoxicity assays have been used. The electrochemical study shows that TMAC4 has 100% of its nominal charge available, whereas pDNA presents an effective negative charge that is only 10% that of its nominal one. PALS studies indicate the presence of three populations of nanoaggregates in TMAC4/DOPE lipid mixtures, with sizes of approximately 100, 17, and 6 nm, compatible with liposomes, oblate micelles, and spherical micelles, respectively, the first two also being detected by cryo-TEM. However, in the presence of pDNA, this mixture is organized in Lα multilamellar structures at all compositions. In fact, cryo-TEM micrographs show two types of multilamellar aggregation patterns: cluster-type at low and moderate CxCL molar fractions in the TMAC4/DOPE lipid mixture (α = 0.2 and 0.5), and fingerprint-type (FP), which are only present at low CxCL molar fraction (α = 0.2). This structural scenario has also been observed in SAXS diffractograms, including the coexistence of two different phases when DOPE dominates in the mixture. AFM experiments at α = 0.2 provide evidence that pDNA makes the lipid bilayer more deformable, thus promoting a potential enhancement in the capability of penetrating the cells. In fact, the best transfection perfomances of these TMAC4/DOPE-pDNA lipoplexes have been obtained at low CxCL molar fractions (α = 0.2) and a moderate-to-high effective charge ratio (ρeff = 20). Presumably, the coexistence of two lamellar phases is responsible for the better TE performance at low α.
Collapse
Affiliation(s)
| | | | - Luis García-Río
- ⊥Departamento de Química Física, Centro de Investigación en Química Biológica y Materiales Moleculares, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Òscar Domènech
- §Departamento de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | | |
Collapse
|
85
|
PEGylated cationic nanoemulsions can efficiently bind and transfect pIDUA in a mucopolysaccharidosis type I murine model. J Control Release 2015; 209:37-46. [PMID: 25886705 DOI: 10.1016/j.jconrel.2015.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 03/24/2015] [Accepted: 04/11/2015] [Indexed: 11/23/2022]
Abstract
Mucopolysaccharidosis type I (MPS I) is an autosomal disease caused by alpha-L-iduronidase deficiency. This study proposed the use of cationic nanoemulsions as non-viral vectors for a plasmid (pIDUA) containing the gene that codes for alpha-L-iduronidase. Nanoemulsions composed of medium chain triglycerides (MCT)/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)/1,2-dioleoyl-sn-glycero-3-trimethylammonium propane (DOTAP)/1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG) were prepared by high pressure homogenization. Formulations were prepared by the adsorption or encapsulation of preformed pIDUA-DOTAP complexes into the oil core of nanoemulsions at different charge ratios. pIDUA complexed was protected from enzymatic degradation by DNase I. The physicochemical characteristics of complexes in protein-containing medium were mainly influenced by the presence of DSPE-PEG. Bragg reflections corresponding to a lamellar organization were identified for blank formulations by energy dispersive X-ray diffraction, which could not be detected after pIDUA complexation. The intravenous injection of these formulations in MPS I knockout mice led to a significant increase in IDUA activity (fluorescence assay) and expression (RT-qPCR) in different organs, especially the lungs and liver. These findings were more significant for formulations prepared at higher charge ratios (+4/-), suggesting a correlation between charge ratio and transfection efficiency. The present preclinical results demonstrated that these nanocomplexes represent a potential therapeutic option for the treatment of MPS I.
Collapse
|
86
|
de Jesus MB, Zuhorn IS. Solid lipid nanoparticles as nucleic acid delivery system: Properties and molecular mechanisms. J Control Release 2015; 201:1-13. [DOI: 10.1016/j.jconrel.2015.01.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 01/19/2023]
|
87
|
Shao D, Li J, Pan Y, Zhang X, Zheng X, Wang Z, Zhang M, Zhang H, Chen L. Noninvasive theranostic imaging of HSV-TK/GCV suicide gene therapy in liver cancer by folate-targeted quantum dot-based liposomes. Biomater Sci 2015. [DOI: 10.1039/c5bm00077g] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have successfully developed folate-targeting liposomes for effective and safe HSV-TK suicide gene theranostics.
Collapse
Affiliation(s)
- Dan Shao
- Department of Pharmacology
- Nanomedicine Engineering Laboratory of Jilin Province
- College of Basic Medical Sciences
- Jilin University
- Changchun 130021
| | - Jing Li
- Department of Pharmacology
- Nanomedicine Engineering Laboratory of Jilin Province
- College of Basic Medical Sciences
- Jilin University
- Changchun 130021
| | - Yue Pan
- Department of Pharmacology
- Nanomedicine Engineering Laboratory of Jilin Province
- College of Basic Medical Sciences
- Jilin University
- Changchun 130021
| | - Xin Zhang
- Department of Pharmacology
- Nanomedicine Engineering Laboratory of Jilin Province
- College of Basic Medical Sciences
- Jilin University
- Changchun 130021
| | - Xiao Zheng
- Department of Pharmacology
- Nanomedicine Engineering Laboratory of Jilin Province
- College of Basic Medical Sciences
- Jilin University
- Changchun 130021
| | - Zheng Wang
- Department of Pharmacology
- Nanomedicine Engineering Laboratory of Jilin Province
- College of Basic Medical Sciences
- Jilin University
- Changchun 130021
| | - Ming Zhang
- Department of Pharmacology
- Nanomedicine Engineering Laboratory of Jilin Province
- College of Basic Medical Sciences
- Jilin University
- Changchun 130021
| | - Hong Zhang
- Van't Hoff Institute for Molecular Sciences
- University of Amsterdam
- 1098 XH Amsterdam
- The Netherlands
| | - Li Chen
- Department of Pharmacology
- Nanomedicine Engineering Laboratory of Jilin Province
- College of Basic Medical Sciences
- Jilin University
- Changchun 130021
| |
Collapse
|
88
|
Yang Y, Wang J, Li X, Lin L, Yue X. A near infrared fluorescent/ultrasonic bimodal contrast agent for imaging guided pDNA delivery via ultrasound targeted microbubble destruction. RSC Adv 2015. [DOI: 10.1039/c4ra15066j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
MBs@QDs@PEI/pDNA was prepared to operate as a NIR/Ultrasound bimodal imaging guided platform for targeting delivery of pDNA by UTMD.
Collapse
Affiliation(s)
- Yongbo Yang
- School of Life Science and Technology
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Jinrui Wang
- Department of Ultrasonography
- Peking University Third Hospital
- Beijing 100083
- China
| | - Xiaoda Li
- School of Life Science and Technology
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Li Lin
- School of Life Science and Technology
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Xiuli Yue
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| |
Collapse
|
89
|
Kumar K, Maiti B, Kondaiah P, Bhattacharya S. α-Tocopherol derived lipid dimers as efficient gene transfection agents. Mechanistic insights into lipoplex internalization and therapeutic induction of apoptotic activity. Org Biomol Chem 2015; 13:2444-52. [DOI: 10.1039/c4ob02063d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dimeric cationic tocopheryl lipids for efficacious therapeutic pDNA delivery in cancer cell lines.
Collapse
Affiliation(s)
- Krishan Kumar
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore
- India
| | - Bappa Maiti
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore
- India
| | - Paturu Kondaiah
- Department of Molecular Reproduction Development and Genetics
- Indian Institute of Science
- Bangalore
- India
| | | |
Collapse
|
90
|
Self-Amplifying mRNA Vaccines. NONVIRAL VECTORS FOR GENE THERAPY - PHYSICAL METHODS AND MEDICAL TRANSLATION 2015; 89:179-233. [DOI: 10.1016/bs.adgen.2014.10.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
91
|
Hosseinkhani H, Abedini F, Ou KL, Domb AJ. Polymers in gene therapy technology. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3432] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hossein Hosseinkhani
- Graduate Institute of Biomedical Engineering; National Taiwan University of Science and Technology (Taiwan Tech); Taipei 10607 Taiwan
- Center of Excellence in Nanomedicine; National Taiwan University of Science and Technology (Taiwan Tech); Taipei 10607 Taiwan
- Research Center for Biomedical Devices and Prototyping Production, Research Center for Biomedical Implants and Microsurgery Devices, Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Department of Dentistry; Taipei Medical University-Shuang Ho Hospital; Taipei 235 Taiwan
| | - Fatemeh Abedini
- Razi Vaccine and Serum Research Institute; Karaj Alborz IRAN
| | - Keng-Liang Ou
- Research Center for Biomedical Devices and Prototyping Production, Research Center for Biomedical Implants and Microsurgery Devices, Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Department of Dentistry; Taipei Medical University-Shuang Ho Hospital; Taipei 235 Taiwan
| | - Abraham J. Domb
- Institute of Drug Research, The Center for Nanoscience and Nanotechnology, School of Pharmacy-Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem 91120 Israel
| |
Collapse
|
92
|
Ojeda E, Puras G, Agirre M, Zárate J, Grijalvo S, Pons R, Eritja R, Martinez-Navarrete G, Soto-Sanchez C, Fernández E, Pedraz JL. Niosomes based on synthetic cationic lipids for gene delivery: the influence of polar head-groups on the transfection efficiency in HEK-293, ARPE-19 and MSC-D1 cells. Org Biomol Chem 2014; 13:1068-81. [PMID: 25412820 DOI: 10.1039/c4ob02087a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We designed niosomes based on three lipids that differed only in the polar-head group to analyze their influence on the transfection efficiency. These lipids were characterized by small-angle X-ray scattering before being incorporated into the niosomes which were characterized in terms of pKa, size, zeta potential, morphology and physical stability. Nioplexes were obtained upon the addition of a plasmid. Different ratios (w/w) were selected to analyze the influence of this parameter on size, charge and the ability to condense, release and protect the DNA. In vitro transfection experiments were performed in HEK-293, ARPE-19 and MSC-D1 cells. Our results show that the chemical composition of the cationic head-group clearly affects the physicochemical parameters of the niosomes and especially the transfection efficiency. Only niosomes based on cationic lipids with a dimethyl amino head group (lipid 3) showed a transfection capacity when compared with their counterparts amino (lipid 1) and tripeptide head-groups (lipid 2). Regarding cell viability, we clearly observed that nioplexes based on the cationic lipid 3 had a more deleterious effect than their counterparts, especially in ARPE-19 cells at 20/1 and 30/1 ratios. Similar studies could be extended to other series of cationic lipids in order to progress in the research on safe and efficient non-viral vectors for gene delivery purposes.
Collapse
Affiliation(s)
- E Ojeda
- NanoBioCel Group, University of Basque Country, Vitoria, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Sudhakar G, Bathula SR, Banerjee R. Development of new estradiol-cationic lipid hybrids: Ten-carbon twin chain cationic lipid is a more suitable partner for estradiol to elicit better anticancer activity. Eur J Med Chem 2014; 86:653-63. [DOI: 10.1016/j.ejmech.2014.09.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 08/22/2014] [Accepted: 09/08/2014] [Indexed: 02/09/2023]
|
94
|
Bao FF, Xu XX, Zhou W, Pang CY, Li Z, Gu ZG. Enantioselective DNA condensation induced by heptameric lanthanum helical supramolecular enantiomers. J Inorg Biochem 2014; 138:73-80. [DOI: 10.1016/j.jinorgbio.2014.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 10/25/2022]
|
95
|
Jin S, Li S, Wang C, Liu J, Yang X, Wang PC, Zhang X, Liang XJ. Biosafe nanoscale pharmaceutical adjuvant materials. J Biomed Nanotechnol 2014; 10:2393-419. [PMID: 25429253 PMCID: PMC4242152 DOI: 10.1166/jbn.2014.1898] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thanks to developments in the field of nanotechnology over the past decades, more and more biosafe nanoscale materials have become available for use as pharmaceutical adjuvants in medical research. Nanomaterials possess unique properties which could be employed to develop drug carriers with longer circulation time, higher loading capacity, better stability in physiological conditions, controlled drug release, and targeted drug delivery. In this review article, we will review recent progress in the application of representative organic, inorganic and hybrid biosafe nanoscale materials in pharmaceutical research, especially focusing on nanomaterial-based novel drug delivery systems. In addition, we briefly discuss the advantages and notable functions that make these nanomaterials suitable for the design of new medicines; the biosafety of each material discussed in this article is also highlighted to provide a comprehensive understanding of their adjuvant attributes.
Collapse
Affiliation(s)
- Shubin Jin
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Shengliang Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Department of Neurobiology and Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Chongxi Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Juan Liu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Xiaolong Yang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Paul C. Wang
- Laboratory of Molecular Imaging, Department of Radiology, Howard University, Washington DC 20060, USA
| | - Xin Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| |
Collapse
|
96
|
Recent trends of polymer mediated liposomal gene delivery system. BIOMED RESEARCH INTERNATIONAL 2014; 2014:934605. [PMID: 25250340 PMCID: PMC4163454 DOI: 10.1155/2014/934605] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/15/2014] [Accepted: 07/15/2014] [Indexed: 11/17/2022]
Abstract
Advancement in the gene delivery system have resulted in clinical successes in gene therapy for patients with several genetic diseases, such as immunodeficiency diseases, X-linked adrenoleukodystrophy (X-ALD) blindness, thalassemia, and many more. Among various delivery systems, liposomal mediated gene delivery route is offering great promises for gene therapy. This review is an attempt to depict a portrait about the polymer based liposomal gene delivery systems and their future applications. Herein, we have discussed in detail the characteristics of liposome, importance of polymer for liposome formulation, gene delivery, and future direction of liposome based gene delivery as a whole.
Collapse
|
97
|
Darshan DV, Chandar BGN, Srujan M, Chaudhuri A, Prabhakar S. Electrospray ionization tandem mass spectrometry study of six isomeric cationic amphiphiles with ester/amide linker. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1209-1214. [PMID: 24760561 DOI: 10.1002/rcm.6892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE Isomeric cationic amphiphiles differing only in the orientation of the linker group have been demonstrated to possess dramatically changed gene transfer efficacies. Studies aimed at understanding structure-stability correlations of such isomeric cationic amphiphiles at the molecular level are yet to be undertaken. Such studies may throw significant new insights into the mechanistic origin on their contrasting bioactivities. METHODS Electrospray ionization mass spectrometry (ESI-MS) and multi-stage tandem mass spectrometric (MS(n)) experiments were performed on a LCQ ion trap mass spectrometer. The decomposition pathway was confirmed by high-resolution mass spectrometry data from a quadrupole time-of-flight (Q-TOF) mass spectrometer. Dissociation curves were drawn based on the intensities of precursor and product ions. RESULTS The collision-induced dissociation (CID) spectra of the M(+) ion of each isomeric pair showed distinct product ions (3 pairs). Normal esters (1 and 3) showed abundant product ions with a neighboring group participation (NGP) reaction and reverse esters (lipid 2 and 4) showed McLafferty rearrangement product ions. The spectra of a normal amide (5) and a reverse amide (6) are similar to that found in the corresponding ester, except for the absence of the McLafferty rearrangement in 6. Dissociation curves revealed that normal esters/amide decompose at lower energy than those of corresponding reverse esters/amide. CONCLUSIONS The lipids which easily decompose (flexible) show dramatically enhanced gene delivery capabilities and the lipids which decompose at higher collision energy (CE) values (rigid) are transfection incompetent.
Collapse
Affiliation(s)
- D Vijay Darshan
- National Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | | | | | | | | |
Collapse
|
98
|
Zhao YN, Qureshi F, Zhang SB, Cui SH, Wang B, Chen HY, Lv HT, Zhang SF, Huang L. Novel gemini cationic lipids with carbamate groups for gene delivery. J Mater Chem B 2014; 2:2920-2928. [PMID: 25045521 PMCID: PMC4100725 DOI: 10.1039/c3tb21506g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To obtain efficient non-viral vectors, a series of Gemini cationic lipids with carbamate linkers between headgroups and hydrophobic tails were synthesized. They have the hydrocarbon chains of 12, 14, 16 and 18 carbon atoms as tails, designated as G12, G14, G16 and G18, respectively. These Gemini cationic lipids were prepared into cationic liposomes for the study of the physicochemical properties and gene delivery. The DNA-bonding ability of these Gemini cationic liposomes was much better than their mono-head counterparts (designated as M12, M14, M16 and M18, respectively). In the same series of liposomes, bonding ability declined with an increase in tail length. They were tested for their gene-transferring capabilities in Hep-2 and A549 cells. They showed higher transfection efficiency than their mono-head counterparts and were comparable or superior in transfection efficiency and cytotoxicity to the commercial liposomes, DOTAP and Lipofectamine 2000. Our results convincingly demonstrate that the gene-transferring capabilities of these cationic lipids depended on hydrocarbon chain length. Gene transfection efficiency was maximal at a chain length of 14, as G14 can silence about 80 % of luciferase in A549 cells. Cell uptake results indicate that Gemini lipid delivery systems could be internalised by cells very efficiently. Thus, the Gemini cationic lipids could be used as synthetic non-viral gene delivery carriers for further study.
Collapse
Affiliation(s)
- Yi-Nan Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116021, Liaoning, China
- SEAC-ME Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, Liaoning, China
| | - Farooq Qureshi
- Pharmaceutical and Analytical R&D, Roche, New Jersey 07110, USA
| | - Shu-Biao Zhang
- SEAC-ME Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, Liaoning, China
| | - Shao-Hui Cui
- SEAC-ME Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, Liaoning, China
| | - Bing Wang
- SEAC-ME Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, Liaoning, China
| | - Hui-Ying Chen
- SEAC-ME Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, Liaoning, China
| | - Hong-Tao Lv
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116012, Liaoning, China
| | - Shu-Fen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116021, Liaoning, China
| | - Leaf Huang
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill
| |
Collapse
|
99
|
Gomes-da-Silva LC, Simões S, Moreira JN. Challenging the future of siRNA therapeutics against cancer: the crucial role of nanotechnology. Cell Mol Life Sci 2014; 71:1417-38. [PMID: 24221135 PMCID: PMC11113222 DOI: 10.1007/s00018-013-1502-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/12/2013] [Accepted: 10/15/2013] [Indexed: 11/27/2022]
Abstract
The identification of numerous deregulated signaling pathways on cancer cells and supportive stromal cells has revealed several molecular targets whose downregulation can elicit significant benefits for cancer treatment. In this respect, gene downregulation can be efficiently achieved by exploiting the RNA interference mechanism, particularly by the delivery of chemical synthesized small-interfering RNAs (siRNAs), which have the ability to mediate, in a specific manner, the degradation of any mRNA with complementary nucleotide sequence. However, several concerns regarding off-target effects and immune stimulation have been raised. Depending on their sequence, siRNAs can trigger an innate immune response, which might mediate undesirable side effects that ultimately compromise their clinical utility. This is a very relevant effect that will be discussed in the present manuscript. Moreover, the major drawback in the translation of siRNAs into the clinical practice is undoubtedly their inability to accumulate in tumor sites, particularly in organs other than the liver. In fact, upon systemic administration, owing to siRNAs physico-chemical features, they are rapidly cleared from the blood stream. Therefore, the development of a proper drug delivery system is of utmost importance. In this review, some of the latest advances on different nanotechnological platforms for siRNA delivery under clinical evaluation will be discussed. Along with this, targeting approaches towards cancer and/or endothelial cells will also be addressed, as these are some of the most promising strategies to enhance specific tumor accumulation while avoiding healthy tissues. Finally, clinical information on ongoing studies in patients with advanced solid tumors will be also provided.
Collapse
Affiliation(s)
- Lígia Catarina Gomes-da-Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- FFUC - Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Sérgio Simões
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- FFUC - Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - João Nuno Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- FFUC - Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
100
|
Costa D, Valente AJM, Miguel MG, Queiroz J. Plasmid DNA hydrogels for biomedical applications. Adv Colloid Interface Sci 2014; 205:257-64. [PMID: 24011472 DOI: 10.1016/j.cis.2013.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/05/2013] [Accepted: 08/05/2013] [Indexed: 01/05/2023]
Abstract
In the last few years, our research group has focused on the design and development of plasmid DNA (pDNA) based systems as devices to be used therapeutically in the biomedical field. Biocompatible macro and micro plasmid DNA gels were prepared by a cross-linking reaction. For the first time, the pDNA gels have been investigated with respect to their swelling in aqueous solution containing different additives. Furthermore, we clarified the fundamental and basic aspects of the solute release mechanism from pDNA hydrogels and the significance of this information is enormous as a basic tool for the formulation of pDNA carriers for drug/gene delivery applications. The co-delivery of a specific gene and anticancer drugs, combining chemical and gene therapies in the treatment of cancer was the main challenge of our research. Significant progresses have been made with a new p53 encoding pDNA microgel that is suitable for the loading and release of pDNA and doxorubicin. This represents a strong valuable finding in the strategic development of systems to improve cancer cure through the synergetic effect of chemical and gene therapy.
Collapse
Affiliation(s)
- Diana Costa
- CICS - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal.
| | | | - M Graça Miguel
- Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - João Queiroz
- CICS - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|