51
|
Ma H, Hostuttler M, Wei H, Rexroad CE, Yao J. Characterization of the rainbow trout egg microRNA transcriptome. PLoS One 2012; 7:e39649. [PMID: 22761856 PMCID: PMC3382587 DOI: 10.1371/journal.pone.0039649] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 05/24/2012] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous small non-coding RNA molecules that regulate post-transcriptional expression of target genes and play important roles in animal development. The objectives of this study were to characterize the egg miRNA transcriptome and identify novel egg-predominant miRNAs in rainbow trout. Small RNAs isolated from mature unfertilized rainbow trout eggs were subjected to deep sequencing using an Illumina Genome Analyzer. The massive sequencing produced 24,621,741 quality reads, among which, 266 known miRNAs were identified and 230 putatively novel miRNAs were predicted. The most abundantly known miRNAs are let-7 and miR-21, accounting for 24.06% and 18.71% of the known miRNAs, respectively. Other known miRNAs which are abundantly present in eggs include miR-24, miR-202, miR-148, miR-30, miR-10, miR-146, miR-25, and miR-143. Real time PCR analysis using cDNAs derived from 10 tissues validated 87 out of 90 selected putative miRNAs and identified three novel miRNAs predominantly expressed in rainbow trout eggs. Each of these novel egg-predominant miRNAs is predicted to target a significant number of genes, most of which are significantly down-regulated in naturally ovulated rainbow trout eggs based on analysis of publicly available microarray data sets. Quantitative real time PCR analysis also demonstrated low expression of a selected number of target genes in eggs relative to liver and muscle tissues. This study represents the first complete survey of miRNAs in fish eggs and provides a starting point for future studies aimed at understanding the roles of miRNAs in controlling egg quality and early embryogenesis in rainbow trout.
Collapse
Affiliation(s)
- Hao Ma
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, United States of America
| | - Mark Hostuttler
- National Center for Cool and Cold Water Aquaculture, Kearneysville, West Virginia, United States of America
| | - Hairong Wei
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, United States of America
| | - Caird E. Rexroad
- National Center for Cool and Cold Water Aquaculture, Kearneysville, West Virginia, United States of America
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
52
|
Morphometric characterization of the first blastomeres of rainbow trout (Oncorhynchus mykiss). ZYGOTE 2012; 20:327-31. [DOI: 10.1017/s0967199411000682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryIn the following investigation the morphometric characteristics of the first two blastomeres of rainbow trout (Oncorhynchus mykiss) were determined. Embryos were incubated at 9°C and then fixed in a Stockard solution every 30 min starting from 8.5 to 12.5 h of incubation post fertilization. Embryonic discs were extracted and microphotographs were taken with Q Capture Pro 5.0 software using a stereomicroscope Olympus SZX7. The average size of the blastodiscs was 941.22 ± 160.42 μm. The first cleavage finished after approximately 12 h of incubation. The first two blastomeres were regularly symmetrical in their morphology. Blastomere 1 had an average length (L) of 942.68 ± 105.56 μm and width (W) of 467.34 ± 64.33 μm. Blastomere 2 had an average length of 887.60 ± 101.65 and width of 454.49 ± 47.25 μm (n = 91). Significant differences were found between the length and width of blastomeres 1 and 2. The proportion between the length of blastomeres 1 and 2 was 0.94 ± 0.07 (n = 91); between the width of blastomeres 1 and 2 it was 0.88 ± 0.11 (n = 91); and the width/length ratio was 0.51 ± 0.09 (n = 182). It was concluded that rainbow trout blastomeres tend to be asymmetrical in length with a higher dispersion of widths.
Collapse
|
53
|
Lingenfelter BM, Tripurani SK, Tejomurtula J, Smith GW, Yao J. Molecular cloning and expression of bovine nucleoplasmin 2 (NPM2): a maternal effect gene regulated by miR-181a. Reprod Biol Endocrinol 2011; 9:40. [PMID: 21447182 PMCID: PMC3072940 DOI: 10.1186/1477-7827-9-40] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 03/29/2011] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Nucleoplasmin 2 (NPM2) is an oocyte-specific nuclear protein essential for nuclear and nucleolar organization and early embryonic development. The aims of this study were to clone the bovine NPM2 gene, determine its temporal expression during oocyte development and early embryogenesis, and evaluate the potential role of miRNA-181a in regulation of its expression. METHODS A 329 bp cDNA fragment was amplified from bovine fetal ovary using primers designed based on the conserved regions of the human and mouse NPM2 cDNA sequences. RACE experiments were performed to obtain the 5' and 3' ends of the bovine NPM2 cDNA. Real time PCR and Western blot analysis were used to examine the expression of bovine NPM2 in oocytes and early embryos. Co-expression of bovine NPM2 and miRNA-181a in Hela cells was performed to determine if expression of bovine NPM2 is regulated by miRNA-181a. RESULTS The bovine NPM2 cDNA is 851 bp in length encoding a protein of 200 amino acids. The protein contains the conserved bipartite nuclear localization sequence and shows 53% and 62% identity with mouse and human NPM2, respectively. Expression of bovine NPM2 mRNA is restricted to ovaries. NPM2 mRNA is abundant in GV and MII stage oocytes, decreases in early cleavage stage embryos, and barely detectable in morula and blastocyst stage embryos. Similarly, expression of NPM2 protein is high in oocytes and early embryos but extremely low in blastocysts. The abundance of NPM2 mRNA is significantly lower in oocytes isolated from persistent versus growing dominant follicles (P < 0.05). A miR-181a binding site in the 3'UTR of the NPM2 transcript was identified. Transfection experiments showed that bovine NPM2 protein expression is reduced in Hela cells expressing miR-181a compared to control cells without miR-181a, indicating that translation of NPM2 is repressed by miR-181a. CONCLUSIONS Our data suggest that expression of bovine NPM2 is temporally regulated during early embryogenesis and miR-181a may play a role in its regulation.
Collapse
Affiliation(s)
- Brandon M Lingenfelter
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
- West Virginia School of Osteopathic Medicine, Lewisburg, WV 24901, USA
| | - Swamy K Tripurani
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Jyothsna Tejomurtula
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - George W Smith
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jianbo Yao
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
54
|
Desvignes T, Fauvel C, Bobe J. The NME gene family in zebrafish oogenesis and early development. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:439-49. [PMID: 21394481 DOI: 10.1007/s00210-011-0619-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/26/2011] [Indexed: 01/31/2023]
Abstract
After the recent report of the expression of several nme genes in the zebrafish gonads, the present study aimed at further analyzing the expression of nme genes in the ovary with special attention for the nme transcripts that are maternally inherited and could thus participate in the determination of oocyte developmental competence. The expression levels of all groups I and II nme genes were characterized by QPCR in a panel of zebrafish tissues. The nme genes exhibiting an ovarian expression were subsequently monitored throughout oogenesis and early development, and their expression sites characterized using in situ hybridization. Here, we show that nme2b1, nme3, nme4, and nme6 are highly expressed in the ovary and present in the zebrafish oocyte throughout oogenesis. While the four transcripts are maternally inherited, nme3 and nme6 display a typical maternal profile and are detected in the zebrafish early embryo. In contrast to nme3, nme6, abundance exhibits a sharp decrease during early embryogenesis. After zygotic genome activation, we observed an increased expression of nme2b1, nme2b2, nme3, and nme6. The present study provides a comprehensive overview of the expression of nme family members during zebrafish oogenesis and early development. In addition, the maternal origin of two nme transcripts in the early embryo is reported here for the first time in any vertebrate species. Together, our observations suggest an important role of the nme family in oocyte and embryo development in vertebrates.
Collapse
Affiliation(s)
- T Desvignes
- INRA, UR1037 SCRIBE, Campus de Beaulieu, 35042, Rennes, France
| | | | | |
Collapse
|
55
|
Kosubek A, Klein-Hitpass L, Rademacher K, Horsthemke B, Ryffel GU. Aging of Xenopus tropicalis eggs leads to deadenylation of a specific set of maternal mRNAs and loss of developmental potential. PLoS One 2010; 5:e13532. [PMID: 21042572 PMCID: PMC2962626 DOI: 10.1371/journal.pone.0013532] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 09/18/2010] [Indexed: 01/19/2023] Open
Abstract
As first shown more than 100 years ago, fertilization of an aged (overripe) egg increases the rate of malformations and embryonic loss in several vertebrates, including possibly humans as well. Since the molecular events in aging eggs may be similar in these species, we established in the frog Xenopus tropicalis a defined protocol for delayed fertilization of eggs. A three-hour delayed fertilization led to a dramatic increase in malformation and mortality. Gene expression profiling revealed that 14% of the polyadenylated maternal transcripts were downregulated upon aging. These transcripts were not degraded, but rather deadenylated as shown for specific maternal mRNAs. The affected transcripts are characterized by a relatively short 3′UTR and a paucity of cytoplasmic polyadenylation elements (CPE) and polyadenylation signals (PAS). Furthermore, maternal mRNAs known to be deadenylated during egg maturation as well as after fertilization were preferentially deadenylated in aged eggs. Taken together our analysis of aging eggs reveals that unfertilized eggs are in a dynamic state that was previously not realized. On the one hand deadenylation of transcripts that are typically deadenylated during egg maturation continues and this implies overripeness of the aged egg in the truest sense of the word. On the other hand transcripts that normally are deadenylated after fertilization loose their poly(A) in the aged egg and this implies that the egg awaiting fertilization starts processes that are normally only observed after fertilization. Based on our novel finding we postulate that the imbalance of the polyadenylated maternal transcripts upon egg aging contributes to the loss of developmental potential. Based on this hypothesis the developmental consequences of downregulation of specific transcripts can be analyzed in future.
Collapse
Affiliation(s)
- Anna Kosubek
- Institut für Zellbiologie (Tumorforschung), Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Ludger Klein-Hitpass
- Institut für Zellbiologie (Tumorforschung), Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Katrin Rademacher
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Bernhard Horsthemke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Gerhart U. Ryffel
- Institut für Zellbiologie (Tumorforschung), Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
56
|
Mommens M, Fernandes JM, Bizuayehu TT, Bolla SL, Johnston IA, Babiak I. Maternal gene expression in Atlantic halibut (Hippoglossus hippoglossus L.) and its relation to egg quality. BMC Res Notes 2010; 3:138. [PMID: 20497529 PMCID: PMC2897799 DOI: 10.1186/1756-0500-3-138] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/24/2010] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The commercial production of Atlantic halibut (Hippoglossus hippoglossus L.) suffers from a major bottleneck due to the low success of producing juveniles for on-growing. Atlantic halibut females are routinely hand-stripped and incorrect timing of stripping can result in low quality eggs due to post-ovulatory aging. Post-ovulatory aging leads to compositional changes in eggs that include maternally provided proteins and RNAs. There have been few studies of the maternally provided mRNA transcripts that control early development in commercially important fish species. The present study aimed to study maternal gene expression in Atlantic halibut and its relation to egg quality parameters including blastomere symmetry and hatching success. RESULTS A maternal EST library containing 2341 sequences was constructed by suppressive subtractive hybridisation. Thirty genes were selected for expression studies; 23 novel genes and 7 genes with documented roles in early development. The expressions of twenty-one selected genes were measured by qPCR from fertilization to the 10-somite stage. Three genes were identified as strictly maternal genes that were expressed until the start of gastrulation; askopos (kop), si:dkey-30j22.9 (Tudor family member), and Tudor 5 protein (Tdrd5). The expressions of 18 genes at the 8-cell stage were correlated with egg quality parameters. The majority of genes showed either no or very minor correlations with egg quality parameter. However, two genes correlated positively with hatching success (r> 0.50, HHC00353: r = 0.58, p < 0.01; HHC01517: r = 0.56, p < 0.01) and one gene (HHC00255) was negatively correlated with the percentage of normal blastomeres (r = -0.62, p < 0.05). CONCLUSIONS During this study we have related maternal levels of gene expression to hatching success in fish. Poor hatching success was not correlated with a general decrease in transcript abundance but with low transcript levels of some specific genes. Thus, the molecular mechanisms leading to low Atlantic halibut egg quality cannot be entirely explained by post-ovulatory aging.
Collapse
Affiliation(s)
- Maren Mommens
- Faculty of Biosciences and Aquaculture, Bodø University College, N-8049 Bodø, Norway.
| | | | | | | | | | | |
Collapse
|
57
|
Bobe J, Labbé C. Egg and sperm quality in fish. Gen Comp Endocrinol 2010; 165:535-48. [PMID: 19272390 DOI: 10.1016/j.ygcen.2009.02.011] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 02/16/2009] [Accepted: 02/20/2009] [Indexed: 12/19/2022]
Abstract
Fish egg quality can be defined as the ability of the egg to be fertilized and subsequently develop into a normal embryo. Similarly, sperm quality can be defined as its ability to successfully fertilize an egg and subsequently allow the development of a normal embryo. In the wild or under aquaculture conditions, the quality of fish gametes can be highly variable and is under the influence of a significant number of external factors or broodstock management practices. For these reasons, the topic of gamete quality has received increasing attention. Despite the significant efforts made towards a better understanding of the factors involved in the control of gamete quality, the picture is far from being complete and the control of gamete quality remains an issue in the aquaculture industry. Some of the factors responsible for the observed variability of gamete quality remain largely unknown or poorly understood. In addition very little is known about the cellular and molecular mechanisms involved in the control of egg and sperm quality. In the present review, the molecular and cellular characteristics of fish gametes are presented with a special interest for the mechanisms that could participate in the regulation of gamete quality. Then, after defining egg and sperm quality, and how can it can be accurately estimated or predicted, we provide an overview of the main factors that can impact gamete quality in teleosts.
Collapse
Affiliation(s)
- Julien Bobe
- INRA, UR1037 SCRIBE, IFR140, Ouest-Genopole, F-35000 Rennes, France.
| | | |
Collapse
|
58
|
Lubzens E, Young G, Bobe J, Cerdà J. Oogenesis in teleosts: how eggs are formed. Gen Comp Endocrinol 2010; 165:367-89. [PMID: 19505465 DOI: 10.1016/j.ygcen.2009.05.022] [Citation(s) in RCA: 552] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 05/07/2009] [Accepted: 05/29/2009] [Indexed: 11/25/2022]
Abstract
One of the major objectives of the aquaculture industry is the production of a large number of viable eggs with high survival. Major achievements have been made in recent years in improving protocols for higher efficiency of egg production and viability of progeny. Main gaps remain, however, in understanding the dynamic processes associated with oogenesis, the formation of an egg, from the time that germ cells turn into oogonia, until the release of ova during spawning in teleosts. Recent studies on primordial germ-cells, yolk protein precursors and their processing within the developing oocyte, the deposition of vitamins in eggs, structure and function of egg envelopes and oocyte maturation processes, further reveal the complexity of oogenesis. Moreover, numerous circulating endocrine and locally-acting paracrine and autocrine factors regulate the various stages of oocyte development and maturation. Though it is clear that the major regulators during vitellogenesis and oocyte maturation are the pituitary gonadotropins (LH and FSH) and sex steroids, the picture emerging from recent studies is of complex hormonal cross-talk at all stages between the developing oocyte and its surrounding follicle layers to ensure coordination of the various processes that are involved in the production of a fertilizable egg. In this review we aim at highlighting recent advances on teleost fish oocyte differentiation, maturation and ovulation, including those involved in the degeneration and reabsorption of ovarian follicles (atresia). The role of blood-borne and local ovarian factors in the regulation of the key steps of development reveal new aspects associated with egg formation.
Collapse
Affiliation(s)
- Esther Lubzens
- Department of Marine Biology, Israel Oceanographic and Limnological Research, 81080 Haifa, Israel.
| | | | | | | |
Collapse
|
59
|
Molecular Characterization and Functional Commonality of Nucleophosmin/Nucleoplasmin in Two Cyprinid Fish. Biochem Genet 2009; 47:749-62. [DOI: 10.1007/s10528-009-9274-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 05/08/2009] [Indexed: 10/20/2022]
|
60
|
Elis S, Blesbois E, Couty I, Balzergue S, Martin-Magniette ML, Batellier F, Govoroun MS. Identification of germinal disk region derived genes potentially involved in hen fertility. Mol Reprod Dev 2009; 76:1043-55. [DOI: 10.1002/mrd.21062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
61
|
Bobe J, Nguyen T, Fostier A. Ovarian function of the trout preovulatory ovary: new insights from recent gene expression studies. Comp Biochem Physiol A Mol Integr Physiol 2008; 153:63-8. [PMID: 19027867 DOI: 10.1016/j.cbpa.2008.10.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/24/2008] [Accepted: 10/25/2008] [Indexed: 10/21/2022]
Abstract
During the preovulatory period the follicle-enclosed oocyte progressively acquires maturational and developmental competence. In addition, the follicle is also preparing for the release of the oocyte from the follicle at ovulation. Using real-time PCR and cDNA microarrays we have investigated the molecular mechanisms of oocyte competence acquisition and ovulation in rainbow trout (Oncorhynchus mykiss) by monitoring gene expression in the preovulatory ovary. These studies have demonstrated that many molecular events related to maturational competence and developmental competence acquisition, and ovulation occur concomitantly in the preovulatory ovarian follicle. Oocyte maturational competence acquisition is associated with a decrease of estrogen synthesis and signaling capacities. We also observed a differential expression of genes encoding for igfs and related binding protein, members of the TGF beta superfamily, proteins involved in ion and water transport, bone morphogenetic proteins, and cathepsins. In addition, our observation of a strong up-regulation, prior to ovulation, of genes encoding for proteins putatively involved in proteolysis, inflammation, coagulation, vasodilatation, and angiogenesis further supports the hypothesis comparing ovulation with an inflammatory-like reaction. Together, our results suggest that a finely tuned cross-talk exists between oocyte and follicular layers and between the ovulatory process and the oocyte maturational and developmental competence acquisition processes.
Collapse
Affiliation(s)
- Julien Bobe
- Institut National de la Recherche Agronomique, UR1037 SCRIBE, IFR140, Genopole Ouest, Rennes, France.
| | | | | |
Collapse
|
62
|
Cerdà J, Bobe J, Babin PJ, Admon A, Lubzens E. Functional Genomics and Proteomic Approaches for the Study of Gamete Formation and Viability in Farmed Finfish. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10641260802324685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
63
|
Elis S, Batellier F, Couty I, Balzergue S, Martin-Magniette ML, Monget P, Blesbois E, Govoroun MS. Search for the genes involved in oocyte maturation and early embryo development in the hen. BMC Genomics 2008; 9:110. [PMID: 18312645 PMCID: PMC2322995 DOI: 10.1186/1471-2164-9-110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 02/29/2008] [Indexed: 01/01/2023] Open
Abstract
Background The initial stages of development depend on mRNA and proteins accumulated in the oocyte, and during these stages, certain genes are essential for fertilization, first cleavage and embryonic genome activation. The aim of this study was first to search for avian oocyte-specific genes using an in silico and a microarray approaches, then to investigate the temporal and spatial dynamics of the expression of some of these genes during follicular maturation and early embryogenesis. Results The in silico approach allowed us to identify 18 chicken homologs of mouse potential oocyte genes found by digital differential display. Using the chicken Affymetrix microarray, we identified 461 genes overexpressed in granulosa cells (GCs) and 250 genes overexpressed in the germinal disc (GD) of the hen oocyte. Six genes were identified using both in silico and microarray approaches. Based on GO annotations, GC and GD genes were differentially involved in biological processes, reflecting different physiological destinations of these two cell layers. Finally we studied the spatial and temporal dynamics of the expression of 21 chicken genes. According to their expression patterns all these genes are involved in different stages of final follicular maturation and/or early embryogenesis in the chicken. Among them, 8 genes (btg4, chkmos, wee, zpA, dazL, cvh, zar1 and ktfn) were preferentially expressed in the maturing occyte and cvh, zar1 and ktfn were also highly expressed in the early embryo. Conclusion We showed that in silico and Affymetrix microarray approaches were relevant and complementary in order to find new avian genes potentially involved in oocyte maturation and/or early embryo development, and allowed the discovery of new potential chicken mature oocyte and chicken granulosa cell markers for future studies. Moreover, detailed study of the expression of some of these genes revealed promising candidates for maternal effect genes in the chicken. Finally, the finding concerning the different state of rRNA compared to that of mRNA during the postovulatory period shed light on some mechanisms through which oocyte to embryo transition occurs in the hen.
Collapse
Affiliation(s)
- Sebastien Elis
- Physiologie de Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université F, Rabelais de Tours, Haras Nationaux, 37380 Nouzilly, France.
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Luckenbach JA, Iliev DB, Goetz FW, Swanson P. Identification of differentially expressed ovarian genes during primary and early secondary oocyte growth in coho salmon, Oncorhynchus kisutch. Reprod Biol Endocrinol 2008; 6:2. [PMID: 18205936 PMCID: PMC2262088 DOI: 10.1186/1477-7827-6-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 01/18/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to identify differentially expressed ovarian genes during primary and early secondary oocyte growth in coho salmon, a semelparous teleost that exhibits synchronous follicle development. METHODS Reciprocal suppression subtractive hybridization (SSH) libraries were generated from ovaries with perinucleolus (P) or cortical alveolus (CA) stage follicles and selected genes were assessed with quantitative PCR (qPCR). An assessment of changes in RNA composition during oocyte growth and its relationship to transcript levels was also conducted. RESULTS SSH revealed several differentially expressed genes during early oogenesis, some which will not likely be utilized until 1-3 years later in salmon. Zona pellucida glycoprotein (zp) genes, vitellogenin receptor (vldlr) isoforms, cathepsin B (ctsba), cyclin E (ccne), a DnaJ transcript (dnaja2), and a ferritin subunit (fth3) were significantly elevated at the P stage, while a C-type lectin, retinol dehydrogenase (rdh1), and a coatomer protein subunit (cope) were upregulated at the CA stage. Putative follicle cell transcripts such as anti-Müllerian hormone (amh), lipoprotein lipase (lpl), apolipoprotein E (apoe), gonadal soma-derived growth factor (gsdf) and follicle-stimulating hormone receptor (fshr) also increased significantly at the CA stage. The analysis of RNA composition during oocyte growth showed that the total RNA yield and proportion of messenger RNA relative to non-polyadenylated RNAs declined as oogenesis progressed. This influenced apparent transcript levels depending on the type of RNA template used and normalization method. CONCLUSION In coho salmon, which exhibit a dramatic change in oocyte size and RNA composition during oogenesis, use of messenger RNA as template and normalization of qPCR data to a housekeeping gene, ef1a, yielded results that best reflected transcript abundance within the ovarian follicle. Synthesis of zp transcripts and proteins involved in yolk incorporation and processing occurred during primary growth, while increased expression of a CA component and genes related to lipid incorporation occurred concomitant with the appearance of CA, but prior to lipid accumulation. Significant increases in transcripts for fshr, gsdf, and amh at the CA stage suggest a role of FSH and TGFbeta peptides in previtellogenic oocyte growth and puberty onset in female salmon.
Collapse
Affiliation(s)
- John A Luckenbach
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195, USA
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration-National Marine Fisheries Service, Seattle, Washington 98112, USA
| | - Dimitar B Iliev
- Great Lakes WATER Institute, University of Wisconsin, Milwaukee, Wisconsin 53204, USA
| | - Frederick W Goetz
- Great Lakes WATER Institute, University of Wisconsin, Milwaukee, Wisconsin 53204, USA
| | - Penny Swanson
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration-National Marine Fisheries Service, Seattle, Washington 98112, USA
- Center of Reproductive Biology, Washington State University, Pullman, Washington 98164, USA
| |
Collapse
|
65
|
Yang KT, Lin CY, Huang HL, Liou JS, Chien CY, Wu CP, Huang CW, Ou BR, Chen CF, Lee YP, Lin EC, Tang PC, Lee WC, Ding ST, Cheng WTK, Huang MC. Expressed transcripts associated with high rates of egg production in chicken ovarian follicles. Mol Cell Probes 2007; 22:47-54. [PMID: 17692502 DOI: 10.1016/j.mcp.2007.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 04/06/2007] [Accepted: 06/12/2007] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to characterize differentially expressed transcripts associated with varying rates of egg production in Taiwan country chickens. Ovarian follicles were isolated from two strains of chicken which showed low (B) or high (L2) rates of egg production, then processed for RNA extraction and cDNA library construction. Three thousand and eight forty clones were randomly selected from the cDNA library and amplified by PCR, then used in microarray analysis. Differentially expressed transcripts (P<0.05, log(2)> or = 1.75) were sequenced, and aligned using GenBank. This analysis revealed 20 non-redundant sequences which corresponded to known transcripts. Eight transcripts were expressed at a higher level in ovarian tissue prepared from chicken strain B, and 12 transcripts were expressed at a higher level in L2 birds. These differential patterns of expression were confirmed by semi-quantitative RT-PCR. We show that transcripts of cyclin B2 (cycB2), ferritin heavy polypeptide 1 (FTH1), Gag-Pol polyprotein, thymosin beta4 (TB4) and elongation factor 1 alpha1 (EEF1A1) were enriched in B strain ovarian follicles. In contrast, thioredoxin (TXN), acetyl-CoA dehydrogenase long chain (ACADL), inhibitor of growth family member 4 (ING4) and annexin II (ANXA2) were expressed in at higher levels in the L2 strain. We suggest that our approach may lead to the isolation of effective molecular markers that can be used in selection programs in Taiwan country chickens.
Collapse
Affiliation(s)
- K T Yang
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Betthauser JM, Pfister-Genskow M, Xu H, Golueke PJ, Lacson JC, Koppang RW, Myers C, Liu B, Hoeschele I, Eilertsen KJ, Leno GH. Nucleoplasmin facilitates reprogramming and in vivo development of bovine nuclear transfer embryos. Mol Reprod Dev 2007; 73:977-86. [PMID: 16604516 DOI: 10.1002/mrd.20493] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Successful cloning by somatic cell nuclear transfer (NT) involves an oocyte-driven transition in gene expression from an inherited somatic pattern, to an embryonic form, during early development. This reprogramming of gene expression is thought to require the remodeling of somatic chromatin and as such, faulty and/or incomplete chromatin remodeling may contribute to the aberrant gene expression and abnormal development observed in NT embryos. We used a novel approach to supplement the oocyte with chromatin remodeling factors and determined the impact of these molecules on gene expression and development of bovine NT embryos. Nucleoplasmin (NPL) or polyglutamic acid (PGA) was injected into bovine oocytes at different concentrations, either before (pre-NT) or after (post-NT) NT. Pre-implantation embryos were then transferred to bovine recipients to assess in vivo development. Microinjection of remodeling factors resulted in apparent differences in the rate of blastocyst development and in pregnancy initiation rates in both NPL- and PGA-injected embryos, and these differences were dependent on factor concentration and/or the time of injection. Post-NT NPL-injected embryos that produced the highest rate of pregnancy also demonstrated differentially expressed genes relative to pre-NT NPL embryos and control NT embryos, both of which had lower pregnancy rates. Over 200 genes were upregulated following post-NT NPL injection. Several of these genes were previously shown to be downregulated in NT embryos when compared to bovine IVF embryos. These data suggest that addition of chromatin remodeling factors to the oocyte may improve development of NT embryos by facilitating reprogramming of the somatic nucleus.
Collapse
|
67
|
Bonnet E, Fostier A, Bobe J. Characterization of rainbow trout egg quality: A case study using four different breeding protocols, with emphasis on the incidence of embryonic malformations. Theriogenology 2007; 67:786-94. [PMID: 17118435 DOI: 10.1016/j.theriogenology.2006.10.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 09/07/2006] [Accepted: 10/13/2006] [Indexed: 10/23/2022]
Abstract
The aim of this study was to set up a methodology to accurately evaluate the effects of various husbandry practices on a fish broodstock based on the developmental potential of the egg. For that purpose, long-short photoperiod manipulations (tested twice, PM1 and PM2 groups), spawning induction by injection of a GnRH analog (SI group), and a 16-day post-ovulatory ageing of eggs (POA group) were used in rainbow trout (Oncorhynchus mykiss). Females without any treatment were used as a control group. Survival at eying (E) and yolk-sac resorption (YSR) were recorded and malformations at YSR were monitored according to a detailed typology that included cyclopia, torsion, incomplete YSR, prognathia, and others. Egg weight was also monitored. A deleterious effect of photoperiod manipulation was observed on egg quality in both PM1 and PM2 groups. Incomplete YSR appeared as the predominant malformation while cyclopia type was nearly absent. In the SI group, a limited effect on egg quality was observed in comparison to the other experimental groups, although the percentage of normal alevins at YSR was significantly lower than in the control group. Finally, the most important effects on egg quality were observed in the POA group. The percentage of normal alevins was only 14+/-6% (mean+/-95% confidence interval) while the percentage of malformed embryos reached 49+/-11%. The proportion of cyclopia was significantly higher than in the control group. In conclusion, the type of egg quality alteration is extremely dependent on the applied breeding protocols, and the proposed methodology is able to discriminate those experimental conditions even when the impact on egg quality is limited.
Collapse
Affiliation(s)
- Emilie Bonnet
- Institut National de la Recherche Agronomique, INRA SCRIBE, IFR 140, Campus Beaulieu, 35000 Rennes Cedex, France
| | | | | |
Collapse
|
68
|
Microarray-based analysis of fish egg quality after natural or controlled ovulation. BMC Genomics 2007; 8:55. [PMID: 17313677 PMCID: PMC1808064 DOI: 10.1186/1471-2164-8-55] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Accepted: 02/21/2007] [Indexed: 11/20/2022] Open
Abstract
Background The preservation of fish egg quality after ovulation-control protocols is a major issue for the development of specific biotechnological processes (e.g. nuclear transfer). Depending on the species, it is often necessary to control the timing of ovulation or induce the ovulatory process. The hormonal or photoperiodic control of ovulation can induce specific egg quality defects that have been thoroughly studied. In contrast, the impact on the egg transcriptome as a result of these manipulations has received far less attention. Furthermore, the relationship between the mRNA abundance of maternally-inherited mRNAs and the developmental potential of the egg has never benefited from genome-wide studies. Thus, the present study aimed at studying the rainbow trout (Oncorhynchus mykiss) egg transcriptome after natural or controlled ovulation using 9152-cDNA microarrays. Results The analysis of egg transcriptome after natural or controlled ovulation led to the identification of 26 genes. The expression patterns of 17 of those genes were monitored by real-time PCR. We observed that the control of ovulation by both hormonal induction and photoperiod manipulation induced significant changes in the egg mRNA abundance of specific genes. A dramatic increase of Apolipoprotein C1 (APOC1) and tyrosine protein kinase HCK was observed in the eggs when a hormonal induction of ovulation was performed. In addition, both microarray and real-time PCR analyses showed that prohibitin 2 (PHB2) egg mRNA abundance was negatively correlated with developmental success. Conclusion First, we showed, for the first time in fish, that the control of ovulation using either a hormonal induction or a manipulated photoperiod can induce differences in the egg mRNA abundance of specific genes. While the impact of these modifications on subsequent embryonic development is unknown, our observations clearly show that the egg transcriptome is affected by an artificial induction of ovulation. Second, we showed that the egg mRNA abundance of prohibitin 2 was reflective of the developmental potential of the egg. Finally, the identity and ontology of identified genes provided significant hints that could result in a better understanding of the mechanisms associated with each type of ovulation control (i.e. hormonal, photoperiodic), and in the identification of conserved mechanisms triggering the loss of egg developmental potential.
Collapse
|
69
|
Stoddard JW, Parsons JE, Nagler JJ. Early onset of embryonic mortality in sub-fertile families of rainbow trout (Oncorhynchus mykiss). Reprod Fertil Dev 2006; 17:785-90. [PMID: 16476205 DOI: 10.1071/rd05087] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 09/30/2005] [Indexed: 11/23/2022] Open
Abstract
Survival during early embryonic development is highly variable in oviparous fishes and appears to be related to events associated with the female at the time of ovulation and spawning. The goal of this study was to identify critical periods of mortality associated with early embryonic development in egg batches from female rainbow trout (Oncorhynchus mykiss) that were checked for ovulation every 5-7 days. The experiment was designed to specifically remove post-ovulatory ageing and reduce paternal variability. Embryo viability in 269 single-pair-mated families was systematically tracked at the following five stages: second cleavage (0.5 days post fertilisation (dpf)), elevated blastula (2.5 dpf), embryonic shield (6 dpf), embryonic keel (9 dpf), and retinal pigmentation (19 dpf). At each of the five stages families with embryo viability assessments of <80% were classed as sub-fertile, whereas those with >80% embryo viability were classed as fertile. Embryo viability in sub-fertile families was distinctly reduced at 0.5 dpf, in contrast to fertile families, but remained constant from that point through to 19 dpf. These results suggest that the critical period of early embryonic mortality in sub-fertile families of rainbow trout parallels events that occur at or shortly after fertilisation and is independent of post-ovulatory aging.
Collapse
Affiliation(s)
- J W Stoddard
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID 83844-3051, USA
| | | | | |
Collapse
|
70
|
Knoll-Gellida A, André M, Gattegno T, Forgue J, Admon A, Babin PJ. Molecular phenotype of zebrafish ovarian follicle by serial analysis of gene expression and proteomic profiling, and comparison with the transcriptomes of other animals. BMC Genomics 2006; 7:46. [PMID: 16526958 PMCID: PMC1488847 DOI: 10.1186/1471-2164-7-46] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 03/09/2006] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The ability of an oocyte to develop into a viable embryo depends on the accumulation of specific maternal information and molecules, such as RNAs and proteins. A serial analysis of gene expression (SAGE) was carried out in parallel with proteomic analysis on fully-grown ovarian follicles from zebrafish (Danio rerio). The data obtained were compared with ovary/follicle/egg molecular phenotypes of other animals, published or available in public sequence databases. RESULTS Sequencing of 27,486 SAGE tags identified 11,399 different ones, including 3,329 tags with an occurrence superior to one. Fifty-eight genes were expressed at over 0.15% of the total population and represented 17.34% of the mRNA population identified. The three most expressed transcripts were a rhamnose-binding lectin, beta-actin 2, and a transcribed locus similar to the H2B histone family. Comparison with the large-scale expressed sequence tags sequencing approach revealed highly expressed transcripts that were not previously known to be expressed at high levels in fish ovaries, like the short-sized polarized metallothionein 2 transcript. A higher sensitivity for the detection of transcripts with a characterized maternal genetic contribution was also demonstrated compared to large-scale sequencing of cDNA libraries. Ferritin heavy polypeptide 1, heat shock protein 90-beta, lactate dehydrogenase B4, beta-actin isoforms, tubulin beta 2, ATP synthase subunit 9, together with 40 S ribosomal protein S27a, were common highly-expressed transcripts of vertebrate ovary/unfertilized egg. Comparison of transcriptome and proteome data revealed that transcript levels provide little predictive value with respect to the extent of protein abundance. All the proteins identified by proteomic analysis of fully-grown zebrafish follicles had at least one transcript counterpart, with two exceptions: eosinophil chemotactic cytokine and nothepsin. CONCLUSION This study provides a complete sequence data set of maternal mRNA stored in zebrafish germ cells at the end of oogenesis. This catalogue contains highly-expressed transcripts that are part of a vertebrate ovarian expressed gene signature. Comparison of transcriptome and proteome data identified downregulated transcripts or proteins potentially incorporated in the oocyte by endocytosis. The molecular phenotype described provides groundwork for future experimental approaches aimed at identifying functionally important stored maternal transcripts and proteins involved in oogenesis and early stages of embryo development.
Collapse
Affiliation(s)
- Anja Knoll-Gellida
- Génomique et Physiologie des Poissons, UMR NUAGE, Université Bordeaux 1, 33405 Talence cedex, France
| | - Michèle André
- Génomique et Physiologie des Poissons, UMR NUAGE, Université Bordeaux 1, 33405 Talence cedex, France
| | - Tamar Gattegno
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Jean Forgue
- Génomique et Physiologie des Poissons, UMR NUAGE, Université Bordeaux 1, 33405 Talence cedex, France
| | - Arie Admon
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Patrick J Babin
- Génomique et Physiologie des Poissons, UMR NUAGE, Université Bordeaux 1, 33405 Talence cedex, France
| |
Collapse
|