51
|
Kato Y, Oyen ML, Burton GJ. Villous Tree Model with Active Contractions for Estimating Blood Flow Conditions in the Human Placenta. Open Biomed Eng J 2017; 11:36-48. [PMID: 28567130 PMCID: PMC5418916 DOI: 10.2174/1874120701711010036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/12/2017] [Accepted: 02/17/2017] [Indexed: 11/30/2022] Open
Abstract
Background: In the human placenta, maternal and fetal bloods exchange substances through the surface of the villous trees: the fetal blood circulates in the villous trees, around which the maternal blood circulates. The blood flows directly influence fetal growth. Stem villi, the main supports of the villous tree, have contractile cells along the axes, whose contractions are expected to influence the blood circulations in the placenta. The displacement is neither measurable nor predictable while non-invasive measurements such as umbilical Doppler waveforms are helpful to predict the histological changes of the villous trees and vascularization in the placenta. Objective: The displacement caused by the contraction of the villous tree is necessary to predict the blood flows in the placenta. Hence, a computational villous tree model, which actively contracts, was developed in this study. Method: The villous tree model was based on the previous reports: shear moduli of the human placenta; branching patterns in the stem villi. The displacement pattern in the placenta was estimated by the computational model when the shear elastic moduli were changed. Results: The results show that the displacement caused by the contraction was influenced by the shear elastic moduli, but kept useful for the blood flows in the placenta. The characteristics agreed with the robustness of the blood flows in the placenta. Conclusion: The villous tree model, which actively contracts, was developed in this study. The combination of this computational model and non-invasive measurements will be useful to evaluate the condition of the placenta.
Collapse
Affiliation(s)
- Yoko Kato
- Faculty of Engineering, Tohoku Gakuin University, Tagajo, Miyagi, Japan
| | - Michelle L Oyen
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Graham J Burton
- Centre for Trophoblast Research and Development Physiology, Department of Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
52
|
Colliez F, Gallez B, Jordan BF. Assessing Tumor Oxygenation for Predicting Outcome in Radiation Oncology: A Review of Studies Correlating Tumor Hypoxic Status and Outcome in the Preclinical and Clinical Settings. Front Oncol 2017; 7:10. [PMID: 28180110 PMCID: PMC5263142 DOI: 10.3389/fonc.2017.00010] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/10/2017] [Indexed: 12/30/2022] Open
Abstract
Tumor hypoxia is recognized as a limiting factor for the efficacy of radiotherapy, because it enhances tumor radioresistance. It is strongly suggested that assessing tumor oxygenation could help to predict the outcome of cancer patients undergoing radiation therapy. Strategies have also been developed to alleviate tumor hypoxia in order to radiosensitize tumors. In addition, oxygen mapping is critically needed for intensity modulated radiation therapy (IMRT), in which the most hypoxic regions require higher radiation doses and the most oxygenated regions require lower radiation doses. However, the assessment of tumor oxygenation is not yet included in day-to-day clinical practice. This is due to the lack of a method for the quantitative and non-invasive mapping of tumor oxygenation. To fully integrate tumor hypoxia parameters into effective improvements of the individually tailored radiation therapy protocols in cancer patients, methods allowing non-invasively repeated, safe, and robust mapping of changes in tissue oxygenation are required. In this review, non-invasive methods dedicated to assessing tumor oxygenation with the ultimate goal of predicting outcome in radiation oncology are presented, including positron emission tomography used with nitroimidazole tracers, magnetic resonance methods using endogenous contrasts (R1 and R2*-based methods), and electron paramagnetic resonance oximetry; the goal is to highlight results of studies establishing correlations between tumor hypoxic status and patients’ outcome in the preclinical and clinical settings.
Collapse
Affiliation(s)
- Florence Colliez
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université Catholique de Louvain , Brussels , Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université Catholique de Louvain , Brussels , Belgium
| | - Bénédicte F Jordan
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université Catholique de Louvain , Brussels , Belgium
| |
Collapse
|
53
|
Sinding M, Peters DA, Frøkjaer JB, Christiansen OB, Petersen A, Uldbjerg N, Sørensen A. Placental magnetic resonance imaging T2* measurements in normal pregnancies and in those complicated by fetal growth restriction. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2016; 47:748-754. [PMID: 26041014 DOI: 10.1002/uog.14917] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/27/2015] [Accepted: 05/31/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVES The magnetic resonance imaging (MRI) variable transverse relaxation time (T2*) depends on multiple factors, one important one being the presence of deoxyhemoglobin. We aimed to describe placental T2* measurements in normal pregnancies and in those with fetal growth restriction (FGR). METHODS We included 24 normal pregnancies at 24-40 weeks' gestation and four FGR cases with an estimated fetal weight below the 1(st) centile. Prior to MRI, an ultrasound examination, including Doppler flow measurements, was performed. The T2* value was calculated using a gradient echo MRI sequence with readout at 16 different echo times. In normal pregnancies, repeat T2* measurements were performed and interobserver reproducibility was assessed in order to estimate the reproducibility of the method. Placental histological examination was performed in the FGR cases. RESULTS The method was robust regarding the technical and interobserver reproducibility. However, some slice-to-slice variation existed owing to the heterogeneous nature of the normal placenta. We therefore based T2* estimations on the average of two slices from each placenta. In normal pregnancies, the placental T2* value decreased significantly with increasing gestational age, with mean ± SD values of 120 ± 17 ms at 24 weeks' gestation, 84 ± 16 ms at 32 weeks and 47 ± 17 ms at 40 weeks. Three FGR cases had abnormal Doppler flow, histological signs of maternal hypoperfusion and a reduced T2* value (Z-score < -3.5). In the fourth FGR case, Doppler flow, placental histology and T2* value (Z-score, -0.34) were normal. CONCLUSIONS The established reference values for placental T2* may be clinically useful, as T2* values were significantly lower in FGR cases with histological signs of maternal hypoperfusion. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- M Sinding
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
| | - D A Peters
- Department of Clinical Engineering, Central Denmark Region, Aarhus, Denmark
| | - J B Frøkjaer
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - O B Christiansen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
| | - A Petersen
- Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | - N Uldbjerg
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
| | - A Sørensen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
54
|
Ingram E, Hawkins L, Morris DM, Myers J, Sibley CP, Johnstone ED, Naish JH. R1 changes in the human placenta at 3 T in response to a maternal oxygen challenge protocol. Placenta 2016; 39:151-3. [DOI: 10.1016/j.placenta.2016.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 11/28/2022]
|
55
|
Avni R, Golani O, Akselrod-Ballin A, Cohen Y, Biton I, Garbow JR, Neeman M. MR Imaging-derived Oxygen-Hemoglobin Dissociation Curves and Fetal-Placental Oxygen-Hemoglobin Affinities. Radiology 2016; 280:68-77. [PMID: 26780539 PMCID: PMC4942994 DOI: 10.1148/radiol.2015150721] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The authors of this study present a noninvasive approach for obtaining MR imaging–based oxygen-hemoglobin dissociation curves and for deriving oxygen tension values at which hemoglobin is 50% saturated and maps for the placenta and fetus in pregnant mice. Purpose To generate magnetic resonance (MR) imaging–derived, oxygen-hemoglobin dissociation curves and to map fetal-placental oxygen-hemoglobin affinity in pregnant mice noninvasively by combining blood oxygen level–dependent (BOLD) T2* and oxygen-weighted T1 contrast mechanisms under different respiration challenges. Materials and Methods All procedures were approved by the Weizmann Institutional Animal Care and Use Committee. Pregnant mice were analyzed with MR imaging at 9.4 T on embryonic days 14.5 (eight dams and 58 fetuses; imprinting control region ICR strain) and 17.5 (21 dams and 158 fetuses) under respiration challenges ranging from hyperoxia to hypoxia (10 levels of oxygenation, 100%–10%; total imaging time, 100 minutes). A shorter protocol with normoxia to hyperoxia was also performed (five levels of oxygenation, 20%–100%; total imaging time, 60 minutes). Fast spin-echo anatomic images were obtained, followed by sequential acquisition of three-dimensional gradient-echo T2*- and T1-weighted images. Automated registration was applied to align regions of interest of the entire placenta, fetal liver, and maternal liver. Results were compared by using a two-tailed unpaired Student t test. R1 and R2* values were derived for each tissue. MR imaging–based oxygen-hemoglobin dissociation curves were constructed by nonlinear least square fitting of 1 minus the change in R2*divided by R2*at baseline as a function of R1 to a sigmoid-shaped curve. The apparent P50 (oxygen tension at which hemoglobin is 50% saturated) value was derived from the curves, calculated as the R1 scaled value (x) at which the change in R2* divided by R2*at baseline scaled (y) equals 0.5. Results The apparent P50 values were significantly lower in fetal liver than in maternal liver for both gestation stages (day 14.5: 21% ± 5 [P = .04] and day 17.5: 41% ± 7 [P < .0001]). The placenta showed a reduction of 18% ± 4 in mean apparent P50 values from day 14.5 to day 17.5 (P = .003). Reproduction of the MR imaging–based oxygen-hemoglobin dissociation curves with a shorter protocol that excluded the hypoxic periods was demonstrated. Conclusion MR imaging–based oxygen-hemoglobin dissociation curves and oxygen-hemoglobin affinity information were derived for pregnant mice by using 9.4-T MR imaging, which suggests a potential to overcome the need for direct sampling of fetal or maternal blood. Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Reut Avni
- From the Departments of Biological Regulation (R.A., A.A.B., Y.C., M.N.), Biological Services (O.G.), and Veterinary Resources (I.B.), Weizmann Institute of Science, Rehovot 76100, Israel; and Biomedical Magnetic Resonance Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (J.R.G.)
| | - Ofra Golani
- From the Departments of Biological Regulation (R.A., A.A.B., Y.C., M.N.), Biological Services (O.G.), and Veterinary Resources (I.B.), Weizmann Institute of Science, Rehovot 76100, Israel; and Biomedical Magnetic Resonance Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (J.R.G.)
| | - Ayelet Akselrod-Ballin
- From the Departments of Biological Regulation (R.A., A.A.B., Y.C., M.N.), Biological Services (O.G.), and Veterinary Resources (I.B.), Weizmann Institute of Science, Rehovot 76100, Israel; and Biomedical Magnetic Resonance Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (J.R.G.)
| | - Yonni Cohen
- From the Departments of Biological Regulation (R.A., A.A.B., Y.C., M.N.), Biological Services (O.G.), and Veterinary Resources (I.B.), Weizmann Institute of Science, Rehovot 76100, Israel; and Biomedical Magnetic Resonance Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (J.R.G.)
| | - Inbal Biton
- From the Departments of Biological Regulation (R.A., A.A.B., Y.C., M.N.), Biological Services (O.G.), and Veterinary Resources (I.B.), Weizmann Institute of Science, Rehovot 76100, Israel; and Biomedical Magnetic Resonance Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (J.R.G.)
| | - Joel R Garbow
- From the Departments of Biological Regulation (R.A., A.A.B., Y.C., M.N.), Biological Services (O.G.), and Veterinary Resources (I.B.), Weizmann Institute of Science, Rehovot 76100, Israel; and Biomedical Magnetic Resonance Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (J.R.G.)
| | - Michal Neeman
- From the Departments of Biological Regulation (R.A., A.A.B., Y.C., M.N.), Biological Services (O.G.), and Veterinary Resources (I.B.), Weizmann Institute of Science, Rehovot 76100, Israel; and Biomedical Magnetic Resonance Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (J.R.G.)
| |
Collapse
|
56
|
Schabel MC, Roberts VHJ, Lo JO, Platt S, Grant KA, Frias AE, Kroenke CD. Functional imaging of the nonhuman primate Placenta with endogenous blood oxygen level-dependent contrast. Magn Reson Med 2015; 76:1551-1562. [PMID: 26599502 DOI: 10.1002/mrm.26052] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 02/05/2023]
Abstract
PURPOSE To characterize spatial patterns of T2* in the placenta of the rhesus macaque (Macaca mulatta), to correlate these patterns with placental perfusion determined using dynamic contrast-enhanced MRI (DCE-MRI), and to evaluate the potential for using the blood oxygen level-dependent effect to quantify placental perfusion without the use of exogenous contrast reagent. METHODS MRI was performed on three pregnant rhesus macaques at gestational day 110. Multiecho spoiled gradient echo measurements were used to compute maps of T2*. Spatial maxima in these maps were compared with foci of early enhancement determined by DCE-MRI. RESULTS Local maxima in T2* maps were strongly correlated with spiral arteries identified by DCE-MRI, with mean spatial separations ranging from 2.34 to 6.11 mm in the three animals studied. Spatial patterns of R2* ( = 1/ T2*) within individual placental lobules can be quantitatively analyzed using a simple model to estimate fetal arterial oxyhemoglobin concentration [Hbo,f] and a parameter viPS/Φ, reflecting oxygen transport to the fetus. Estimated mean values of [Hbo,f] ranged from 4.25 mM to 4.46 mM, whereas viPS/Φ ranged from 2.80 × 105 cm-3 to 1.61 × 106 cm-3 . CONCLUSIONS Maternal spiral arteries show strong spatial correlation with foci of extended T2* observed in the primate placenta. A simple model of oxygen transport accurately describes the spatial dependence of R2* within placental lobules and enables assessment of placental function and oxygenation without requiring administration of an exogenous contrast reagent. Magn Reson Med 76:1551-1562, 2016. © 2015 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- M C Schabel
- Advanced Imaging Research Center, Oregon Health & Science University.,Utah Center for Advanced Imaging Research, University of Utah
| | - V H J Roberts
- Division of Diabetes, Obesity & Metabolism, Oregon Health & Science University
| | - J O Lo
- Division of Diabetes, Obesity & Metabolism, Oregon Health & Science University
| | - S Platt
- Division of Neuroscience, Oregon National Primate Research Center
| | - K A Grant
- Division of Neuroscience, Oregon National Primate Research Center.,Department of Behavioral Neuroscience, Oregon Health & Science University
| | - A E Frias
- Division of Diabetes, Obesity & Metabolism, Oregon Health & Science University.,Division of Developmental & Reproductive Sciences, Oregon National Primate Research Center.,Department of Obstetrics & Gynecology, Oregon Health & Science University
| | - C D Kroenke
- Advanced Imaging Research Center, Oregon Health & Science University.,Division of Neuroscience, Oregon National Primate Research Center.,Department of Behavioral Neuroscience, Oregon Health & Science University
| |
Collapse
|
57
|
Serov AS, Salafia C, Grebenkov DS, Filoche M. The role of morphology in mathematical models of placental gas exchange. J Appl Physiol (1985) 2015; 120:17-28. [PMID: 26494446 DOI: 10.1152/japplphysiol.00543.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023] Open
Abstract
The performance of the placenta as a gas exchanger has a direct impact on the future health of the newborn. To provide accurate estimates of respiratory gas exchange rates, placenta models need to account for both the physiology of exchange and the organ morphology. While the former has been extensively studied, accounting for the latter is still a challenge. The geometrical complexity of placental structure requires use of carefully crafted approximations. We present here the state of the art of respiratory gas exchange placenta modeling and demonstrate the influence of the morphology description on model predictions. Advantages and shortcomings of various classes of models are discussed, and experimental techniques that may be used for model validation are summarized. Several directions for future development are suggested.
Collapse
Affiliation(s)
- A S Serov
- Physique de la Matière Condensée, Centre National de la Recherche Scientifique, Ecole Polytechnique, Palaiseau, France; and
| | - C Salafia
- Placental Analytics, LLC, Larchmont, New York
| | - D S Grebenkov
- Physique de la Matière Condensée, Centre National de la Recherche Scientifique, Ecole Polytechnique, Palaiseau, France; and
| | - M Filoche
- Physique de la Matière Condensée, Centre National de la Recherche Scientifique, Ecole Polytechnique, Palaiseau, France; and
| |
Collapse
|
58
|
Siauve N, Chalouhi GE, Deloison B, Alison M, Clement O, Ville Y, Salomon LJ. Functional imaging of the human placenta with magnetic resonance. Am J Obstet Gynecol 2015; 213:S103-14. [PMID: 26428488 DOI: 10.1016/j.ajog.2015.06.045] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 11/29/2022]
Abstract
Abnormal placentation is responsible for most failures in pregnancy; however, an understanding of placental functions remains largely concealed from noninvasive, in vivo investigations. Magnetic resonance imaging (MRI) is safe in pregnancy for magnetic fields of up to 3 Tesla and is being used increasingly to improve the accuracy of prenatal imaging. Functional MRI (fMRI) of the placenta has not yet been validated in a clinical setting, and most data are derived from animal studies. FMRI could be used to further explore placental functions that are related to vascularization, oxygenation, and metabolism in human pregnancies by the use of various enhancement processes. Dynamic contrast-enhanced MRI is best able to quantify placental perfusion, permeability, and blood volume fractions. However, the transplacental passage of Gadolinium-based contrast agents represents a significant safety concern for this procedure in humans. There are alternative contrast agents that may be safer in pregnancy or that do not cross the placenta. Arterial spin labeling MRI relies on magnetically labeled water to quantify the blood flows within the placenta. A disadvantage of this technique is a poorer signal-to-noise ratio. Based on arterial spin labeling, placental perfusion in normal pregnancy is 176 ± 91 mL × min(-1) × 100 g(-1) and decreases in cases with intrauterine growth restriction. Blood oxygen level-dependent and oxygen-enhanced MRIs do not assess perfusion but measure the response of the placenta to changes in oxygen levels with the use of hemoglobin as an endogenous contrast agent. Diffusion-weighted imaging and intravoxel incoherent motion MRI do not require exogenous contrast agents, instead they use the movement of water molecules within tissues. The apparent diffusion coefficient and perfusion fraction are significantly lower in placentas of growth-restricted fetuses when compared with normal pregnancies. Magnetic resonance spectroscopy has the ability to extract information regarding metabolites from the placenta noninvasively and in vivo. There are marked differences in all 3 metabolites N-acetyl aspartate/choline levels, inositol/choline ratio between small, and adequately grown fetuses. Current research is focused on the ability of each fMRI technique to make a timely diagnosis of abnormal placentation that would allow for appropriate planning of follow-up examinations and optimal scheduling of delivery. These research programs will benefit from the use of well-defined sequences, standardized imaging protocols, and robust computational methods.
Collapse
Affiliation(s)
- Nathalie Siauve
- INSERM, U970, Sorbonne Paris Cite, Paris Cardiovascular Research Center-PARCC, Paris, France; EA FETUS and LUMIERE Unit, Université Paris-Descartes, Paris, France; Hôpital Européen Georges Pompidou, Paris, France
| | - Gihad E Chalouhi
- INSERM, U970, Sorbonne Paris Cite, Paris Cardiovascular Research Center-PARCC, Paris, France; EA FETUS and LUMIERE Unit, Université Paris-Descartes, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | - Benjamin Deloison
- INSERM, U970, Sorbonne Paris Cite, Paris Cardiovascular Research Center-PARCC, Paris, France; EA FETUS and LUMIERE Unit, Université Paris-Descartes, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | - Marianne Alison
- INSERM, U970, Sorbonne Paris Cite, Paris Cardiovascular Research Center-PARCC, Paris, France
| | - Olivier Clement
- INSERM, U970, Sorbonne Paris Cite, Paris Cardiovascular Research Center-PARCC, Paris, France; Hôpital Européen Georges Pompidou, Paris, France
| | - Yves Ville
- EA FETUS and LUMIERE Unit, Université Paris-Descartes, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | - Laurent J Salomon
- INSERM, U970, Sorbonne Paris Cite, Paris Cardiovascular Research Center-PARCC, Paris, France; EA FETUS and LUMIERE Unit, Université Paris-Descartes, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France.
| |
Collapse
|
59
|
Higgins LE, Rey de Castro N, Addo N, Wareing M, Greenwood SL, Jones RL, Sibley CP, Johnstone ED, Heazell AEP. Placental Features of Late-Onset Adverse Pregnancy Outcome. PLoS One 2015; 10:e0129117. [PMID: 26120838 PMCID: PMC4488264 DOI: 10.1371/journal.pone.0129117] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022] Open
Abstract
Objective Currently, no investigations reliably identify placental dysfunction in late pregnancy. To facilitate the development of such investigations we aimed to identify placental features that differ between normal and adverse outcome in late pregnancy in a group of pregnancies with reduced fetal movement. Methods Following third trimester presentation with reduced fetal movement (N = 100), placental structure ex vivo was measured. Placental function was then assessed in terms of (i) chorionic plate artery agonist responses and length-tension characteristics using wire myography and (ii) production and release of placentally derived hormones (by quantitative polymerase chain reaction and enzyme linked immunosorbant assay of villous tissue and explant conditioned culture medium). Results Placentas from pregnancies ending in adverse outcome (N = 23) were ~25% smaller in weight, volume, length, width and disc area (all p<0.0001) compared with those from normal outcome pregnancies. Villous and trophoblast areas were unchanged, but villous vascularity was reduced (median (interquartile range): adverse outcome 10 (10–12) vessels/mm2 vs. normal outcome 13 (12–15), p = 0.002). Adverse outcome pregnancy placental arteries were relatively insensitive to nitric oxide donated by sodium nitroprusside compared to normal outcome pregnancy placental arteries (50% Effective Concentration 30 (19–50) nM vs. 12 (6–24), p = 0.02). Adverse outcome pregnancy placental tissue contained less human chorionic gonadotrophin (20 (11–50) vs. 55 (24–102) mIU/mg, p = 0.007) and human placental lactogen (11 (6–14) vs. 27 (9–50) mg/mg, p = 0.006) and released more soluble fms-like tyrosine kinase-1 (21 (13–29) vs. 5 (2–15) ng/mg, p = 0.01) compared with normal outcome pregnancy placental tissue. Conclusion These data provide a description of the placental phenotype of adverse outcome in late pregnancy. Antenatal tests that accurately reflect elements of this phenotype may improve its prediction.
Collapse
Affiliation(s)
- Lucy E. Higgins
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, M13 9WL, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
- * E-mail:
| | - Nicolas Rey de Castro
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, M13 9WL, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
| | - Naa Addo
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, M13 9WL, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
| | - Mark Wareing
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, M13 9WL, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
| | - Susan L. Greenwood
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, M13 9WL, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
| | - Rebecca L. Jones
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, M13 9WL, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
| | - Colin P. Sibley
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, M13 9WL, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
| | - Edward D. Johnstone
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, M13 9WL, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
| | - Alexander E. P. Heazell
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, M13 9WL, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
| |
Collapse
|
60
|
Avni R, Neeman M, Garbow JR. Functional MRI of the placenta--From rodents to humans. Placenta 2015; 36:615-22. [PMID: 25916594 PMCID: PMC4452090 DOI: 10.1016/j.placenta.2015.04.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/30/2015] [Accepted: 04/04/2015] [Indexed: 01/26/2023]
Abstract
The placenta performs a wide range of physiological functions; insufficiencies in these functions may result in a variety of severe prenatal and postnatal syndromes with long-term negative impacts on human adult health. Recent advances in magnetic resonance imaging (MRI) studies of placental function, in both animal models and humans, have contributed significantly to our understanding of placental structure, blood flow, oxygenation status, and metabolic profile, and have provided important insights into pregnancy complications.
Collapse
Affiliation(s)
- R Avni
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - M Neeman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - J R Garbow
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, United States.
| |
Collapse
|
61
|
Heazell AEP, Worton SA, Higgins LE, Ingram E, Johnstone ED, Jones RL, Sibley CP. IFPA Gábor Than Award Lecture: Recognition of placental failure is key to saving babies' lives. Placenta 2015; 36 Suppl 1:S20-8. [PMID: 25582276 DOI: 10.1016/j.placenta.2014.12.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/04/2014] [Accepted: 12/17/2014] [Indexed: 11/21/2022]
Abstract
In high-income countries, placental failure is implicated in up to 65% of cases of stillbirth. Placental failure describes the situation where the placenta cannot meet the fetus' needs and may be the end-result of a variety of underlying pathological processes evident in the placental disc, membranes and umbilical cord. These include lesions with genetic, environmental, infectious, inflammatory, mechanical, metabolic, traumatic or vascular origin. Investigation of placental tissue from stillbirths and from pregnancies at an increased risk of stillbirth has demonstrated changes in macroscopic and microscopic structure which are themselves related to abnormal placental function. A better understanding and identification of placental failure may improve the management of pregnancy complications and of pregnancies after stillbirth (which have a 5-fold increased risk of stillbirth). The majority of current antenatal tests focus on the fetus and its response to the intrauterine environment; few of these investigations reduce stillbirths in low-risk pregnancies. However, some currently used investigations reflect placental development, structure and vascular function, while other investigations employed in clinical research settings such as the evaluation of placental structure and shape have a good predictive value for adverse fetal outcome. In addition, recent studies suggest that biomarkers of placental inflammation and deteriorating placental function can be detected in maternal blood suggesting that holistic evaluation of placental structure and function is possible. We anticipate that development of reliable tests of placental structure and function, coupled to assessment of fetal wellbeing offer a new opportunity to identify pregnancies at risk of stillbirth and to direct novel therapeutic strategies to prevent it.
Collapse
Affiliation(s)
- A E P Heazell
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, UK; St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK.
| | - S A Worton
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, UK; St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - L E Higgins
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, UK; St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - E Ingram
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, UK; St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - E D Johnstone
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, UK; St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - R L Jones
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, UK; St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - C P Sibley
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, UK; St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| |
Collapse
|
62
|
Andescavage NN, DuPlessis A, Limperopoulos C. Advanced MR imaging of the placenta: Exploring the in utero placenta-brain connection. Semin Perinatol 2015; 39:113-23. [PMID: 25765905 PMCID: PMC4409865 DOI: 10.1053/j.semperi.2015.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The placenta is a vital organ necessary for the healthy neurodevelopment of the fetus. Despite the known associations between placental dysfunction and neurologic impairment, there is a paucity of tools available to reliably assess in vivo placental health and function. Existing clinical tools for placental assessment remain insensitive in predicting and evaluating placental well-being. Advanced MRI techniques hold significant promise for the dynamic, non-invasive, real-time assessment of placental health and identification of early placental-based disorders. In this review, we summarize the available clinical tools for placental assessment, including ultrasound, Doppler, and conventional MRI. We then explore the emerging role of advanced placental MR imaging techniques for supporting the developing fetus and appraise the strengths and limitations of quantitative MRI in identifying early markers of placental dysfunction for improved pregnancy monitoring and fetal outcomes.
Collapse
Affiliation(s)
- Nickie Niforatos Andescavage
- Division of Neonatology, Children’s National Health System, 111
Michigan Ave. NW, Washington, DC 20010,Fetal & Transitional Medicine, Children’s National Health
System, 111 Michigan Ave. NW, Washington, DC 20010,Department of Pediatrics, George Washington University School of Medicine,
2300 Eye St. NW, Washington, DC 20037
| | - Adre DuPlessis
- Fetal & Transitional Medicine, Children’s National Health
System, 111 Michigan Ave. NW, Washington, DC 20010,Diagnostic Imaging & Radiology, Children’s National Health
System, 111 Michigan Ave. NW, Washington, DC 20010,Department of Pediatrics, George Washington University School of Medicine,
2300 Eye St. NW, Washington, DC 20037
| | - Catherine Limperopoulos
- Division of Neonatology, Children's National Health System, 111 Michigan Ave. NW, Washington, DC 20010; Division of Fetal and Transitional Medicine, Children's National Health System, 111 Michigan Ave. NW, Washington, DC 20010; Department of Pediatrics, George Washington University School of Medicine, 2300 Eye St. NW, Washington, DC 20037; Division of Diagnostic Imaging and Radiology, Children's National Health System, 111 Michigan Ave. NW, Washington, DC 20010; Division of Radiology, George Washington University School of Medicine, 2300 Eye St. NW, Washington, DC 20037.
| |
Collapse
|
63
|
UNDERSTANDING THE PLACENTAL AETIOLOGY OF FETAL GROWTH RESTRICTION; COULD THIS LEAD TO PERSONALIZED MANAGEMENT STRATEGIES? ACTA ACUST UNITED AC 2014. [DOI: 10.1017/s0965539514000114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fetal growth restriction (FGR) is defined as the failure of a fetus to attain its full genetic growth potential. It is a leading cause of stillbirth, prematurity, cerebral palsy and perinatal mortality. Small size at birth increases surviving infants’ lifelong risk of adverse health outcomes associated with the metabolic syndrome. The pathophysiology of abnormal fetal growth is extremely complex and incompletely understood, with a plethora of genetic, signalling and metabolic candidates under investigation, many of which may result in abnormal structure and function of the placenta. In contrast to, or maybe because of, the underlying complexities of FGR, the strategies clinicians have for identifying and managing this outcome are conspicuously limited. Current clinical practice is restricted to identifying pregnancies at risk of FGR, and when FGR is detected, using intensive monitoring to guide the timing of delivery to optimise fetal outcomes. Abnormal Doppler indices in the umbilical artery are strongly associated with poor perinatal outcomes and are currently the “gold standard” for clinical surveillance of the growth-restricted fetus.
Collapse
|
64
|
Huen I, Morris DM, Wright C, Sibley CP, Naish JH, Johnstone ED. Absence ofPo2change in fetal brain despitePo2increase in placenta in response to maternal oxygen challenge. BJOG 2014; 121:1588-94. [PMID: 24816043 DOI: 10.1111/1471-0528.12804] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2013] [Indexed: 12/31/2022]
Affiliation(s)
- I Huen
- Centre for Imaging Sciences, University of Manchester, Manchester, UK; The University of Manchester Biomedical Imaging Institute, University of Manchester, Manchester, UK
| | | | | | | | | | | |
Collapse
|
65
|
Abstract
Reduced fetal movement (RFM) is commonly defined as any reduction in maternal perception of fetal activity. Perceived fetal activity may be movement of limbs, trunk or head movement, but excludes fetal hiccoughs (as this is involuntary movement). The perception of fetal movement by an expectant mother is the first, and ongoing, non-sonographic indicator of fetal viability. The “normal” pattern of fetal movements varies from pregnancy to pregnancy, and often does not become established until 28 weeks’ gestation. Many babies have particularly active periods of the day, usually corresponding to periods of maternal rest and inactivity (which may in itself reflect increased maternal awareness of fetal movement). A variable percentage of sonographically observed fetal movements are perceived by prospective mothers (commonly 30–40%, although some studies report rates as high as 80%).
Collapse
|