51
|
Loganathan S, Lehmkuhl EM, Eck RJ, Zarnescu DC. To Be or Not To Be…Toxic-Is RNA Association With TDP-43 Complexes Deleterious or Protective in Neurodegeneration? Front Mol Biosci 2020; 6:154. [PMID: 31998750 PMCID: PMC6965497 DOI: 10.3389/fmolb.2019.00154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
TAR DNA binding protein (TDP-43) is a nucleic acid binding protein associated with insoluble cytoplasmic aggregates in several neurodegenerative disorders, including 97% of the ALS cases. In healthy individuals, TDP-43 is primarily localized to the nucleus; it can shuttle between the nucleus and the cytoplasm, and is involved in several aspects of RNA processing including transcription, splicing, RNA stability, transport, localization, stress granule (SG) formation, and translation. Upon stress, TDP-43 aggregates in the cytoplasm and associates with several types of RNA and protein assemblies, resulting in nuclear depletion of TDP-43. Under conditions of prolonged stress, cytoplasmic TDP-43 undergoes liquid-liquid phase separation (LLPS) and becomes less mobile. Evidence exists to support a scenario in which insoluble TDP-43 complexes sequester RNA and/or proteins causing disturbances in both ribostasis and proteostasis, which in turn contribute to neurodegeneration. However, the relationship between RNA binding and TDP-43 toxicity remains unclear. Recent studies provide conflicting views on the role of RNA in TDP-43 toxicity, with some finding RNA as a toxic factor whereby RNA binding contributes to TDP-43 toxicity, while others find RNA to be a protective factor that inhibits TDP-43 aggregation. Here we review and discuss these recent reports, which ultimately highlight the importance of understanding the heterogeneity of TDP-43 assemblies and collectively point to solubilizing TDP-43 as a potential therapeutic strategy.
Collapse
Affiliation(s)
| | - Erik M Lehmkuhl
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| | - Randall J Eck
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States.,Department of Neuroscience, University of Arizona, Tucson, AZ, United States
| | - Daniela C Zarnescu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States.,Department of Neuroscience, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
52
|
Abstract
PURPOSE OF REVIEW This article reviews the clinical, laboratory, and histopathologic features of sporadic inclusion body myositis (IBM) and explores its pathogenic overlap with inherited myopathies that have IBM-like pathology. RECENT FINDINGS Sporadic IBM is the most common acquired muscle disease in patients older than 50 years of age and is becoming more prevalent because of the increasing age of the population, the emerging development of more inclusive diagnostic criteria, and the advent of a diagnostic autoantibody. No effective therapy is known, and the pathogenic mechanism remains unclear. Some pathogenic insight can be gleaned from other myopathies with pathologic similarities or hereditary inclusion body myopathies. Although clinically distinct from sporadic IBM, preclinical models of hereditary inclusion body myopathy have offered an opportunity to move some therapies toward clinical development. SUMMARY Patients with sporadic IBM experience significant morbidity, and the disease is associated with a large unmet medical need. As therapies are developed, improved diagnosis will be essential. Early diagnosis relies on awareness, clinical history, physical examination, laboratory features, and appropriate muscle biopsy processing. Future research is needed to understand the natural history, identify genetic risk factors, and validate biomarkers to track disease progression. These steps are essential as we move toward therapeutic interventions.
Collapse
|
53
|
Splicing repression is a major function of TDP-43 in motor neurons. Acta Neuropathol 2019; 138:813-826. [PMID: 31332509 DOI: 10.1007/s00401-019-02042-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/07/2019] [Accepted: 07/07/2019] [Indexed: 02/08/2023]
Abstract
Nuclear depletion of TDP-43, an essential RNA binding protein, may underlie neurodegeneration in amyotrophic lateral sclerosis (ALS). As several functions have been ascribed to this protein, the critical role(s) of TDP-43 in motor neurons that may be compromised in ALS remains unknown. We show here that TDP-43 mediated splicing repression, which serves to protect the transcriptome by preventing aberrant splicing, is central to the physiology of motor neurons. Expression in Drosophila TDP-43 knockout models of a chimeric repressor, comprised of the RNA recognition domain of TDP-43 fused to an unrelated splicing repressor, RAVER1, attenuated motor deficits and extended lifespan. Likewise, AAV9-mediated delivery of this chimeric rescue repressor to mice lacking TDP-43 in motor neurons delayed the onset, slowed the progression of motor symptoms, and markedly extended their lifespan. In treated mice lacking TDP-43 in motor neurons, aberrant splicing was significantly decreased and accompanied by amelioration of axon degeneration and motor neuron loss. This AAV9 strategy allowed long-term expression of the chimeric repressor without any adverse effects. Our findings establish that splicing repression is a major function of TDP-43 in motor neurons and strongly support the idea that loss of TDP-43-mediated splicing fidelity represents a key pathogenic mechanism underlying motor neuron loss in ALS.
Collapse
|
54
|
Lynch E, Semrad T, Belsito VS, FitzGibbons C, Reilly M, Hayakawa K, Suzuki M. C9ORF72-related cellular pathology in skeletal myocytes derived from ALS-patient induced pluripotent stem cells. Dis Model Mech 2019; 12:12/8/dmm039552. [PMID: 31439573 PMCID: PMC6737948 DOI: 10.1242/dmm.039552] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/10/2019] [Indexed: 12/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset neuromuscular disease with no cure and limited treatment options. Patients experience a gradual paralysis leading to death from respiratory complications on average only 2-5 years after diagnosis. There is increasing evidence that skeletal muscle is affected early in the disease process, yet the pathological processes occurring in the skeletal muscle of ALS patients are still mostly unknown. Specifically, the most common genetic cause of ALS, a hexanucleotide repeat expansion in the C9ORF72 gene, has yet to be fully characterized in the context of skeletal muscle. In this study, we used the protocol previously developed in our lab to differentiate skeletal myocytes from induced pluripotent stem cells (iPSCs) of C9ORF72 ALS (C9-ALS) patients in order to create an in vitro disease model of C9-ALS skeletal muscle pathology. Of the three C9ORF72 mutation hallmarks, we did not see any evidence of haploinsufficiency, but we did detect RNA foci and dipeptide repeat (DPR) proteins. Additional abnormalities included changes in the expression of mitochondrial genes and a susceptibility to oxidative stress, indicating that mitochondrial dysfunction may be a critical feature of C9-ALS skeletal muscle pathology. Finally, the C9-ALS myocytes had increased expression and aggregation of TDP-43. Together, these data show that skeletal muscle cells experience pathological changes due to the C9ORF72 mutation. Our in vitro model could facilitate further study of cellular and molecular pathology in ALS skeletal muscle in order to discover new therapeutic targets against this devastating disease. This article has an associated First Person interview with the first author of the paper. Summary: Evidence of protein aggregation and mitochondrial dysfunction were found in skeletal myocytes differentiated from ALS-patient induced pluripotent stem cells with the C9ORF72 mutation.
Collapse
Affiliation(s)
- Eileen Lynch
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Theran Semrad
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Vincent S Belsito
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Claire FitzGibbons
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Megan Reilly
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Koji Hayakawa
- Department of Toxicology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA .,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
55
|
CYLD dysregulation in pathogenesis of sporadic inclusion body myositis. Sci Rep 2019; 9:11606. [PMID: 31406156 PMCID: PMC6690995 DOI: 10.1038/s41598-019-48115-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/30/2019] [Indexed: 11/17/2022] Open
Abstract
Sporadic inclusion body myositis (sIBM) is the most commonly acquired myopathy in middle-aged and elderly people. The muscle histology is characterized by both inflammation and degeneration, including sarcoplasmic aggregation of TDP-43. Cylindromatosis (CYLD) is a deubiquitinating enzyme that targets Lys63-linked ubiquitin chains and negatively regulates signal transduction pathways, such as NF-κB signalling pathways. We examined localization of CYLD as well as phosphorylated TDP-43, phosphorylated p62, and Lys63-linked ubiquitin in muscle tissues of sIBM patients and muscle-specific wild-type TDP-43 transgenic (TDP-43 TG) mice. We investigated whether overexpression of CYLD can affect muscle toxicity in the cell models treated by endoplasmic reticulum (ER) stress inducers tunicamycin and thapsigargin. CYLD expressed with phosphorylated TDP-43, phosphorylated p62, and Lys63-linked ubiquitin in the nuclear and perinuclear regions of muscle fibres of wild-type TDP-43 TG mice and the degenerative myofibres of sIBM patients with rimmed vacuoles and endomysial cellular infiltration. Although expression levels of CYLD decreased and cell viability was reduced in cells treated with ER stress inducers, wild-type CYLD, but not the catalytic mutant, substantially improved cell viability based on the deubiquitinase activity. Dysregulation of CYLD may reinforce myodegeneration in the pathophysiology of sIBM by attenuating autophagic clearance of protein aggregates. Regulating CYLD in muscle fibres might serve as a novel therapeutic strategy for sIBM treatment.
Collapse
|
56
|
Huntley ML, Gao J, Termsarasab P, Wang L, Zeng S, Thammongkolchai T, Liu Y, Cohen ML, Wang X. Association between TDP-43 and mitochondria in inclusion body myositis. J Transl Med 2019; 99:1041-1048. [PMID: 30742062 PMCID: PMC6609472 DOI: 10.1038/s41374-019-0233-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/12/2022] Open
Abstract
Inclusion body myositis (IBM) is the most common cause of primary myopathy in individuals aged 50 years and over, and is pathologically characterized by protein aggregates of p62 and mislocalized cytoplasmic TDP-43, as well as mitochondrial abnormalities in affected muscle fibers. Our recent studies have shown the accumulation of TDP-43 in mitochondria in neurons from patients with amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD), and revealed mitochondria as critical mediators of TDP-43 neurotoxicity. In this study, we investigated the association between mitochondria and TDP-43 in biopsied skeletal muscle samples from IBM patients. We found that IBM pathological markers TDP-43, phosphorylated TDP-43, and p62 all coexisted with intensively stained key subunits of mitochondrial oxidative phosphorylation complexes I-V in the same skeletal muscle fibers of patients with IBM. Further immunoblot analysis showed increased levels of TDP-43, truncated TDP-43, phosphorylated TDP-43, and p62, but decreased levels of key subunits of mitochondrial oxidative phosphorylation complexes I and III in IBM patients compared to aged matched control subjects. This is the first demonstration of the close association of TDP-43 accumulation with mitochondria in degenerating muscle fibers in IBM and this association may contribute to the development of mitochondrial dysfunction and pathological protein aggregates.
Collapse
Affiliation(s)
- Mikayla L. Huntley
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Ju Gao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Pichet Termsarasab
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Luwen Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Sophia Zeng
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Ying Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Mark L. Cohen
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA. .,Center for Mitochondrial Diseases, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
57
|
Cryo-EM structures of four polymorphic TDP-43 amyloid cores. Nat Struct Mol Biol 2019; 26:619-627. [PMID: 31235914 PMCID: PMC7047951 DOI: 10.1038/s41594-019-0248-4] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022]
Abstract
The DNA/RNA processing protein TDP-43 undergoes both functional and pathogennic aggregation. Functional TDP-43 aggregates form reversible, transient species such as nuclear bodies, stress granules, and myo-granules. Pathogenic, irreversible TDP-43 aggregates form in amyotrophic lateral sclerosis (ALS) and other neurodegenerative conditions. Here we find the features of TDP-43 fibrils that confer both reversibility and irreversibility by determining structures of two segments reported to be the pathogenic cores of human TDP-43 aggregation: SegA (residues 311–360), which forms three polymorphs, all with dagger-shaped folds; and SegB A315E (residues 286–331 containing the ALS hereditary mutation A315E), which forms R-shaped folds. Energetic analysis suggests that the dagger-shaped polymorphs represent irreversible fibril structures, whereas the SegB polymorph may participate in both reversible and irreversible fibrils. Our structures reveal the polymorphic nature of TDP-43 and suggest how the A315E mutation converts the R-shaped polymorph to an irreversible form which enhances pathology.
Collapse
|
58
|
Ralston SH, Taylor JP. Rare Inherited forms of Paget's Disease and Related Syndromes. Calcif Tissue Int 2019; 104:501-516. [PMID: 30756140 PMCID: PMC6779132 DOI: 10.1007/s00223-019-00520-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022]
Abstract
Several rare inherited disorders have been described that show phenotypic overlap with Paget's disease of bone (PDB) and in which PDB is a component of a multisystem disorder affecting muscle and the central nervous system. These conditions are the subject of this review article. Insertion mutations within exon 1 of the TNFRSF11A gene, encoding the receptor activator of nuclear factor kappa B (RANK), cause severe PDB-like disorders including familial expansile osteolysis, early-onset familial PDB and expansile skeletal hyperphosphatasia. The mutations interfere with normal processing of RANK and cause osteoclast activation through activation of nuclear factor kappa B (NFκB) independent of RANK ligand stimulation. Recessive, loss-of-function mutations in the TNFRSF11B gene, which encodes osteoprotegerin, cause juvenile PDB and here the bone disease is due to unopposed activation of RANK by RANKL. Multisystem proteinopathy is a disorder characterised by myopathy and neurodegeneration in which PDB is often an integral component. It may be caused by mutations in several genes including VCP, HNRNPA1, HNRNPA2B1, SQSTM1, MATR3, and TIA1, some of which are involved in classical PDB. The mechanisms of osteoclast activation in these conditions are less clear but may involve NFκB activation through sequestration of IκB. The evidence base for management of these disorders is somewhat limited due to the fact they are extremely rare. Bisphosphonates have been successfully used to gain control of elevated bone remodelling but as yet, no effective treatment exists for the treatment of the muscle and neurological manifestations of MSP syndromes.
Collapse
Affiliation(s)
- Stuart H Ralston
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK.
| | - J Paul Taylor
- Howard Hughes Medical Institute and Department of Cell and Molecular Biology, St Jude's Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
59
|
Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2019; 12:25. [PMID: 30837838 PMCID: PMC6382748 DOI: 10.3389/fnmol.2019.00025] [Citation(s) in RCA: 502] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a versatile RNA/DNA binding protein involved in RNA-related metabolism. Hyper-phosphorylated and ubiquitinated TDP-43 deposits act as inclusion bodies in the brain and spinal cord of patients with the motor neuron diseases: amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). While the majority of ALS cases (90-95%) are sporadic (sALS), among familial ALS cases 5-10% involve the inheritance of mutations in the TARDBP gene and the remaining (90-95%) are due to mutations in other genes such as: C9ORF72, SOD1, FUS, and NEK1 etc. Strikingly however, the majority of sporadic ALS patients (up to 97%) also contain the TDP-43 protein deposited in the neuronal inclusions, which suggests of its pivotal role in the ALS pathology. Thus, unraveling the molecular mechanisms of the TDP-43 pathology seems central to the ALS therapeutics, hence, we comprehensively review the current understanding of the TDP-43's pathology in ALS. We discuss the roles of TDP-43's mutations, its cytoplasmic mis-localization and aberrant post-translational modifications in ALS. Also, we evaluate TDP-43's amyloid-like in vitro aggregation, its physiological vs. pathological oligomerization in vivo, liquid-liquid phase separation (LLPS), and potential prion-like propagation propensity of the TDP-43 inclusions. Finally, we describe the various evolving TDP-43-induced toxicity mechanisms, such as the impairment of endocytosis and mitotoxicity etc. and also discuss the emerging strategies toward TDP-43 disaggregation and ALS therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Basant K. Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| |
Collapse
|
60
|
Abstract
The most common neurodegenerative diseases are Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, frontotemporal lobar degeneration, and the motor neuron diseases, with AD affecting approximately 6% of people aged 65 years and older, and PD affecting approximately 1% of people aged over 60 years. Specific proteins are associated with these neurodegenerative diseases, as determined by both immunohistochemical studies on post-mortem tissue and genetic screening, where protein misfolding and aggregation are key hallmarks. Many of these proteins are shown to misfold and aggregate into soluble non-native oligomers and large insoluble protein deposits (fibrils and plaques), both of which may exert a toxic gain of function. Proteotoxicity has been examined intensively in cell culture and in in vivo models, and clinical trials of methods to attenuate proteotoxicity are relatively new. Therapies to enhance cellular protein quality control mechanisms such as upregulation of chaperones and clearance/degradation pathways, as well as immunotherapies against toxic protein conformations, are being actively pursued. In this article, we summarize the common pathophysiology of neurodegenerative disease, and review therapies in early-phase clinical trials that target the proteotoxic component of several neurodegenerative diseases.
Collapse
Affiliation(s)
- Luke McAlary
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| | - Steven S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Genome Sciences and Technology Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada.
| | - Neil R Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| |
Collapse
|
61
|
TDP-43 and RNA form amyloid-like myo-granules in regenerating muscle. Nature 2018; 563:508-513. [PMID: 30464263 PMCID: PMC6324568 DOI: 10.1038/s41586-018-0665-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022]
Abstract
A dominant histopathological feature in neuromuscular diseases, including amyotrophic lateral sclerosis and inclusion body myopathy, is cytoplasmic aggregation of the RNA-binding protein TDP-43. Although rare mutations in TARDBP-the gene that encodes TDP-43-that lead to protein misfolding often cause protein aggregation, most patients do not have any mutations in TARDBP. Therefore, aggregates of wild-type TDP-43 arise in most patients by an unknown mechanism. Here we show that TDP-43 is an essential protein for normal skeletal muscle formation that unexpectedly forms cytoplasmic, amyloid-like oligomeric assemblies, which we call myo-granules, during regeneration of skeletal muscle in mice and humans. Myo-granules bind to mRNAs that encode sarcomeric proteins and are cleared as myofibres mature. Although myo-granules occur during normal skeletal-muscle regeneration, myo-granules can seed TDP-43 amyloid fibrils in vitro and are increased in a mouse model of inclusion body myopathy. Therefore, increased assembly or decreased clearance of functionally normal myo-granules could be the source of cytoplasmic TDP-43 aggregates that commonly occur in neuromuscular disease.
Collapse
|
62
|
Naddaf E, Barohn RJ, Dimachkie MM. Inclusion Body Myositis: Update on Pathogenesis and Treatment. Neurotherapeutics 2018; 15:995-1005. [PMID: 30136253 PMCID: PMC6277289 DOI: 10.1007/s13311-018-0658-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inclusion body myositis is the most common acquired myopathy after the age of 50. It is characterized by progressive asymmetric weakness predominantly affecting the quadriceps and/or finger flexors. Loss of ambulation and dysphagia are major complications of the disease. Inclusion body myositis can be associated with cytosolic 5'-nucleotidase 1A antibodies. Muscle biopsy usually shows inflammatory cells surrounding and invading non-necrotic muscle fibers, rimmed vacuoles, congophilic inclusions, and protein aggregates. Disease pathogenesis remains poorly understood and consists of an interplay between inflammatory and degenerative pathways. Antigen-driven, clonally restricted, cytotoxic T cells represent a main feature of the inflammatory component, whereas abnormal protein homeostasis with protein misfolding, aggregation, and dysfunctional protein disposal is the hallmark of the degenerative component. Inclusion body myositis remains refractory to treatment. Better understanding of the disease pathogenesis led to the identification of novel therapeutic targets, addressing both the inflammatory and degenerative pathways.
Collapse
Affiliation(s)
- Elie Naddaf
- Neuromuscular Medicine Division, Department of Neurology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Richard J Barohn
- Neuromuscular Medicine Division, Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, 66103, USA
| | - Mazen M Dimachkie
- Neuromuscular Medicine Division, Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, 66103, USA.
| |
Collapse
|
63
|
Tawara N, Yamashita S, Kawakami K, Kurashige T, Zhang Z, Tasaki M, Yamamoto Y, Nishikami T, Doki T, Zhang X, Matsuo Y, Kimura E, Tawara A, Maeda Y, Hauschka SD, Maruyama H, Ando Y. Muscle-dominant wild-type TDP-43 expression induces myopathological changes featuring tubular aggregates and TDP-43-positive inclusions. Exp Neurol 2018; 309:169-180. [PMID: 30130494 DOI: 10.1016/j.expneurol.2018.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/30/2018] [Accepted: 08/15/2018] [Indexed: 11/15/2022]
Abstract
Muscle histology of sporadic inclusion body myositis (sIBM) demonstrates inflammatory findings and degenerative features including accumulation of TAR DNA-binding protein of 43 kDa (TDP-43). However, whether sarcoplasmic accumulation of TDP-43 is a primary trigger of muscle degeneration or a secondary event resulting from muscle degeneration in the pathophysiology of sIBM remained unclear. Our study aimed to discover whether muscle-dominant expression of TDP-43 is a primary cause of muscle degeneration. We generated several lines of wild-type TDP-43 transgenic mice driven by a creatine kinase 8 promoter, and analyzed the phenotypes via biochemical, histological, and proteomic techniques. The mice showed increased serum levels of myogenic enzymes. Muscle histology demonstrated myopathic changes including fiber size variation, abundant tubular aggregates, and TDP-43 aggregation with upregulation of endoplasmic reticulum (ER) stress. Proteomic analysis with aggregated materials in degenerative myofibers identified increased sarcoplasmic reticulum (SR)/ER-resident proteins that regulated calcium homeostasis, as well as cytosolic 5'-nucleotidase 1A. Muscle-dominant wild-type TDP-43 expression indeed caused myotoxicity featuring tubular aggregates and TDP-43-positive inclusions. Our observation suggested that TDP-43 aggregates might not be sufficient to trigger the pathogenesis of sIBM although myofiber sarcoplasmic aggregation of TDP-43 led to myofiber degeneration via ER stress and possibly calcium dysregulation, independently of inflammatory process.
Collapse
Affiliation(s)
- Nozomu Tawara
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Satoshi Yamashita
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.
| | - Kensuke Kawakami
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takashi Kurashige
- Department of Neurology, National Hospital Organization Kure Medical Centre, 3-1 Aoyama-cho, Kure, Hiroshima 737-0023, Japan; Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Ziwei Zhang
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Masayoshi Tasaki
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yasuhiro Yamamoto
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Tomo Nishikami
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Tsukasa Doki
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Xiao Zhang
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yoshimasa Matsuo
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - En Kimura
- Translational Medical Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira 187-8551, Japan
| | - Akie Tawara
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yasushi Maeda
- Department of Clinical Research, and Department of Neurology, National Hospital Organization Kumamoto Saishunso National Hospital, 2659 Suya, Koshi, Kumamoto 861-1196, Japan
| | - Stephen D Hauschka
- Department of Biochemistry, University of Washington, 1705 NE Pacific St., Seattle, WA 98195-7350, USA
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
64
|
Jabari D, Vedanarayanan VV, Barohn RJ, Dimachkie MM. Update on Inclusion Body Myositis. Curr Rheumatol Rep 2018; 20:52. [DOI: 10.1007/s11926-018-0755-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
65
|
Purice MD, Taylor JP. Linking hnRNP Function to ALS and FTD Pathology. Front Neurosci 2018; 12:326. [PMID: 29867335 PMCID: PMC5962818 DOI: 10.3389/fnins.2018.00326] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
Following years of rapid progress identifying the genetic underpinnings of amyotrophic lateral sclerosis (ALS) and related diseases such as frontotemporal dementia (FTD), remarkable consistencies have emerged pointing to perturbed biology of heterogeneous nuclear ribonucleoproteins (hnRNPs) as a central driver of pathobiology. To varying extents these RNA-binding proteins are deposited in pathological inclusions in affected tissues in ALS and FTD. Moreover, mutations in hnRNPs account for a significant number of familial cases of ALS and FTD. Here we review the normal function and potential pathogenic contribution of TDP-43, FUS, hnRNP A1, hnRNP A2B1, MATR3, and TIA1 to disease. We highlight recent evidence linking the low complexity sequence domains (LCDs) of these hnRNPs to the formation of membraneless organelles and discuss how alterations in the dynamics of these organelles could contribute to disease. In particular, we discuss the various roles of disease-associated hnRNPs in stress granule assembly and disassembly, and examine the emerging hypothesis that disease-causing mutations in these proteins lead to accumulation of persistent stress granules.
Collapse
Affiliation(s)
- Maria D Purice
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States.,Howard Hughes Medical Institute, Chevy Chase, MD, United States
| |
Collapse
|
66
|
Zhang K, Coyne AN, Lloyd TE. Drosophila models of amyotrophic lateral sclerosis with defects in RNA metabolism. Brain Res 2018; 1693:109-120. [PMID: 29752901 DOI: 10.1016/j.brainres.2018.04.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 12/12/2022]
Abstract
The fruit fly Drosophila Melanogaster has been widely used to study neurodegenerative diseases. The conservation of nervous system biology coupled with the rapid life cycle and powerful genetic tools in the fly have enabled the identification of novel therapeutic targets that have been validated in vertebrate model systems and human patients. A recent example is in the study of the devastating motor neuron degenerative disease amyotrophic lateral sclerosis (ALS). Mutations in genes that regulate RNA metabolism are a major cause of inherited ALS, and functional analysis of these genes in the fly nervous system has shed light on how mutations cause disease. Importantly, unbiased genetic screens have identified key pathways that contribute to ALS pathogenesis such as nucleocytoplasmic transport and stress granule assembly. In this review, we will discuss the utilization of Drosophila models of ALS with defects in RNA metabolism.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alyssa N Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
67
|
Weihl CC, Mammen AL. Sporadic inclusion body myositis - a myodegenerative disease or an inflammatory myopathy. Neuropathol Appl Neurobiol 2018; 43:82-91. [PMID: 28111778 DOI: 10.1111/nan.12384] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/29/2022]
Abstract
Sporadic inclusion body myositis (sIBM) is an insidious late-onset progressive myopathy that typically affects patients over the age of 50. Clinically, patients develop a characteristic pattern of weakness that affects the forearm flexors and knee extensors. Muscle biopsy, often utilized in the diagnosis, demonstrates a chronic myopathy with mixed pathologies harbouring intramyofiber protein inclusions and endomysial inflammation. The co-existence of these pathologic features (that is, inflammation and protein aggregation) has divided the field of sIBM research into two opposing (albeit slowly unifying) camps regarding disease pathogenesis. The present review explores the recent evidence supporting these distinct pathogenic mechanisms. Future therapies that are designed to target both aspects of sIBM pathologies will likely be necessary to treat sIBM.
Collapse
Affiliation(s)
- C C Weihl
- Department of Neurology and Hope Center for Neurological Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - A L Mammen
- Muscle Disease Unit, Laboratory of Muscle Stem Cells and Gene Expression, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
68
|
Endoplasmic Reticulum Stress Induces Myostatin High Molecular Weight Aggregates and Impairs Mature Myostatin Secretion. Mol Neurobiol 2018; 55:8355-8373. [PMID: 29546591 PMCID: PMC6153721 DOI: 10.1007/s12035-018-0997-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/07/2018] [Indexed: 01/08/2023]
Abstract
Sporadic inclusion body myositis (sIBM) is the most prevalent acquired muscle disorder in the elderly with no defined etiology or effective therapy. Endoplasmic reticulum stress and deposition of myostatin, a secreted negative regulator of muscle growth, have been implicated in disease pathology. The myostatin signaling pathway has emerged as a major target for symptomatic treatment of muscle atrophy. Here, we systematically analyzed the maturation and secretion of myostatin precursor MstnPP and its metabolites in a human muscle cell line. We find that increased MsntPP protein levels induce ER stress. MstnPP metabolites were predominantly retained within the endoplasmic reticulum (ER), also evident in sIBM histology. MstnPP cleavage products formed insoluble high molecular weight aggregates, a process that was aggravated by experimental ER stress. Importantly, ER stress also impaired secretion of mature myostatin. Reduced secretion and aggregation of MstnPP metabolites were not simply caused by overexpression, as both events were also observed in wildtype cells under ER stress. It is tempting to speculate that reduced circulating myostatin growth factor could be one explanation for the poor clinical efficacy of drugs targeting the myostatin pathway in sIBM.
Collapse
|
69
|
Abstract
INTRODUCTION Nuclear factor TDP-43 is a ubiquitously expressed RNA binding protein that plays a key causative role in several neurodegenerative diseases, especially in the ALS/FTD spectrum. In addition, its aberrant aggregation and expression has been recently observed in other type of diseases, such as myopathies and Niemann-Pick C, a lysosomal storage disease. Areas covered: This review aims to specifically cover the post-translational modifications (PTMs) that can affect TDP-43 function and cellular status both in health and disease. To this date, these include phosphorylation, formation of C-terminal fragments, disulfide bridge formation, ubiquitination, acetylation, and sumoylation. Recently published articles on these subjects have been reviewed in this manuscript. Expert opinion: Targeting aberrant TDP-43 expression in neurodegenerative diseases is a very challenging task due to the fact that both its overexpression and downregulation are considerably toxic to cells. This characteristic makes it difficult to therapeutically target this protein in a generalized manner. An alternative approach could be the identification of specific aberrant PTMs that promote its aggregation or toxicity, and developing novel therapeutic approaches toward their selective modification.
Collapse
Affiliation(s)
- Emanuele Buratti
- a Department of Molecular Pathology , International Centre for Genetic Engineering and Biotechnology (ICGEB) , Trieste , Italy
| |
Collapse
|
70
|
Lee Y, Jonson PH, Sarparanta J, Palmio J, Sarkar M, Vihola A, Evilä A, Suominen T, Penttilä S, Savarese M, Johari M, Minot MC, Hilton-Jones D, Maddison P, Chinnery P, Reimann J, Kornblum C, Kraya T, Zierz S, Sue C, Goebel H, Azfer A, Ralston SH, Hackman P, Bucelli RC, Taylor JP, Weihl CC, Udd B. TIA1 variant drives myodegeneration in multisystem proteinopathy with SQSTM1 mutations. J Clin Invest 2018; 128:1164-1177. [PMID: 29457785 DOI: 10.1172/jci97103] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022] Open
Abstract
Multisystem proteinopathy (MSP) involves disturbances of stress granule (SG) dynamics and autophagic protein degradation that underlie the pathogenesis of a spectrum of degenerative diseases that affect muscle, brain, and bone. Specifically, identical mutations in the autophagic adaptor SQSTM1 can cause varied penetrance of 4 distinct phenotypes: amyotrophic lateral sclerosis (ALS), frontotemporal dementia, Paget's disease of the bone, and distal myopathy. It has been hypothesized that clinical pleiotropy relates to additional genetic determinants, but thus far, evidence has been lacking. Here, we provide evidence that a TIA1 (p.N357S) variant dictates a myodegenerative phenotype when inherited, along with a pathogenic SQSTM1 mutation. Experimentally, the TIA1-N357S variant significantly enhances liquid-liquid-phase separation in vitro and impairs SG dynamics in living cells. Depletion of SQSTM1 or the introduction of a mutant version of SQSTM1 similarly impairs SG dynamics. TIA1-N357S-persistent SGs have increased association with SQSTM1, accumulation of ubiquitin conjugates, and additional aggregated proteins. Synergistic expression of the TIA1-N357S variant and a SQSTM1-A390X mutation in myoblasts leads to impaired SG clearance and myotoxicity relative to control myoblasts. These findings demonstrate a pathogenic connection between SG homeostasis and ubiquitin-mediated autophagic degradation that drives the penetrance of an MSP phenotype.
Collapse
Affiliation(s)
- YouJin Lee
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Per Harald Jonson
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Jaakko Sarparanta
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Johanna Palmio
- Neuromuscular Research Center, Tampere University Hospital and University of Tampere, Tampere, Finland
| | - Mohona Sarkar
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anna Vihola
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Anni Evilä
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Tiina Suominen
- Neuromuscular Research Center, Tampere University Hospital and University of Tampere, Tampere, Finland
| | - Sini Penttilä
- Neuromuscular Research Center, Tampere University Hospital and University of Tampere, Tampere, Finland
| | - Marco Savarese
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Mridul Johari
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Marie-Christine Minot
- Neuromuscular Competence Center, Centre Hospitalier Universitaire (CHU) de Rennes, Rennes, France
| | - David Hilton-Jones
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Paul Maddison
- Department of Neurology, University of Nottingham, Nottingham, United Kingdom
| | - Patrick Chinnery
- MRC-Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Jens Reimann
- Department of Neurology, University Hospital of Bonn, Bonn, Germany
| | - Cornelia Kornblum
- Department of Neurology, University Hospital of Bonn, Bonn, Germany.,Centre for Rare Diseases Bonn (ZSEB), Department of Neurology, University Hospital of Bonn, Bonn, Germany
| | - Torsten Kraya
- Department of Neurology, Martin-Luther-Universität Halle-Wittenberg, Halle/Saale, Germany
| | - Stephan Zierz
- Department of Neurology, Martin-Luther-Universität Halle-Wittenberg, Halle/Saale, Germany
| | - Carolyn Sue
- Department of Neurogenetics, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St Leonard's, New South Wales, Australia
| | - Hans Goebel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Asim Azfer
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital Edinburgh, United Kingdom
| | - Stuart H Ralston
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital Edinburgh, United Kingdom
| | - Peter Hackman
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Robert C Bucelli
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Conrad C Weihl
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bjarne Udd
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland.,Neuromuscular Research Center, Tampere University Hospital and University of Tampere, Tampere, Finland.,Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
71
|
Wang P, Wander CM, Yuan CX, Bereman MS, Cohen TJ. Acetylation-induced TDP-43 pathology is suppressed by an HSF1-dependent chaperone program. Nat Commun 2017; 8:82. [PMID: 28724966 PMCID: PMC5517419 DOI: 10.1038/s41467-017-00088-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/31/2017] [Indexed: 12/12/2022] Open
Abstract
TDP-43 pathology marks a spectrum of multisystem proteinopathies including amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and sporadic inclusion body myositis. Surprisingly, it has been challenging to recapitulate this pathology, highlighting an incomplete understanding of TDP-43 regulatory mechanisms. Here we provide evidence supporting TDP-43 acetylation as a trigger for disease pathology. Using cultured cells and mouse skeletal muscle, we show that TDP-43 acetylation-mimics promote TDP-43 phosphorylation and ubiquitination, perturb mitochondria, and initiate degenerative inflammatory responses that resemble sporadic inclusion body myositis pathology. Analysis of functionally linked amyotrophic lateral sclerosis proteins revealed recruitment of p62, ubiquilin-2, and optineurin to TDP-43 aggregates. We demonstrate that TDP-43 acetylation-mimic pathology is potently suppressed by an HSF1-dependent mechanism that disaggregates TDP-43. Our study illustrates bidirectional TDP-43 processing in which TDP-43 aggregation is targeted by a coordinated chaperone response. Thus, activation or restoration of refolding mechanisms may alleviate TDP-43 aggregation in tissues that are uniquely susceptible to TDP-43 proteinopathies.TDP-43 aggregation is linked to various diseases including amyotrophic lateral sclerosis. Here the authors show that acetylation of the protein triggers TDP-43 pathology in cultured cells and mouse skeletal muscle, which can be cleared through an HSF1-dependent chaperone mechanism that disaggregates the protein.
Collapse
Affiliation(s)
- Ping Wang
- Department of Neurology, UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Connor M Wander
- Department of Neurology, UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | - Michael S Bereman
- Department of Biological Sciences and Department of Chemistry, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
| | - Todd J Cohen
- Department of Neurology, UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
72
|
Needham M, Mastaglia F. Advances in inclusion body myositis: genetics, pathogenesis and clinical aspects. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1318056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
73
|
RNA-binding proteins with prion-like domains in health and disease. Biochem J 2017; 474:1417-1438. [PMID: 28389532 DOI: 10.1042/bcj20160499] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 02/07/2023]
Abstract
Approximately 70 human RNA-binding proteins (RBPs) contain a prion-like domain (PrLD). PrLDs are low-complexity domains that possess a similar amino acid composition to prion domains in yeast, which enable several proteins, including Sup35 and Rnq1, to form infectious conformers, termed prions. In humans, PrLDs contribute to RBP function and enable RBPs to undergo liquid-liquid phase transitions that underlie the biogenesis of various membraneless organelles. However, this activity appears to render RBPs prone to misfolding and aggregation connected to neurodegenerative disease. Indeed, numerous RBPs with PrLDs, including TDP-43 (transactivation response element DNA-binding protein 43), FUS (fused in sarcoma), TAF15 (TATA-binding protein-associated factor 15), EWSR1 (Ewing sarcoma breakpoint region 1), and heterogeneous nuclear ribonucleoproteins A1 and A2 (hnRNPA1 and hnRNPA2), have now been connected via pathology and genetics to the etiology of several neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Here, we review the physiological and pathological roles of the most prominent RBPs with PrLDs. We also highlight the potential of protein disaggregases, including Hsp104, as a therapeutic strategy to combat the aberrant phase transitions of RBPs with PrLDs that likely underpin neurodegeneration.
Collapse
|
74
|
Nakano S, Oki M, Kusaka H. The role of p62/SQSTM1 in sporadic inclusion body myositis. Neuromuscul Disord 2017; 27:363-369. [DOI: 10.1016/j.nmd.2016.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 11/22/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
|
75
|
Lloyd TE, Pinal-Fernandez I, Michelle EH, Christopher-Stine L, Pak K, Sacktor N, Mammen AL. Overlapping features of polymyositis and inclusion body myositis in HIV-infected patients. Neurology 2017; 88:1454-1460. [PMID: 28283597 DOI: 10.1212/wnl.0000000000003821] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/18/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To characterize patients with myositis with HIV infection. METHODS All HIV-positive patients with myositis seen at the Johns Hopkins Myositis Center from 2003 to 2013 were included in this case series. Muscle biopsy features, weakness pattern, serum creatine kinase (CK) level, and anti-nucleotidase 1A (NT5C1A) status of HIV-positive patients with myositis were assessed. RESULTS Eleven of 1,562 (0.7%) patients with myositis were HIV-positive. Myositis was the presenting feature of HIV infection in 3 patients. Eight of 11 patients had weakness onset at age 45 years or less. The mean time from the onset of weakness to the diagnosis of myositis was 3.6 years (SD 3.2 years). The mean of the highest measured CK levels was 2,796 IU/L (SD 1,592 IU/L). On muscle biopsy, 9 of 10 (90%) had endomysial inflammation, 7 of 10 (70%) had rimmed vacuoles, and none had perifascicular atrophy. Seven of 11 (64%) patients were anti-NT5C1A-positive. Upon presentation, all had proximal and distal weakness. Five of 6 (83%) patients followed 1 year or longer on immunosuppressive therapy had improved proximal muscle strength. However, each eventually developed weakness primarily affecting wrist flexors, finger flexors, knee extensors, or ankle dorsiflexors. CONCLUSIONS HIV-positive patients with myositis may present with some characteristic polymyositis features including young age at onset, very high CK levels, or proximal weakness that improves with treatment. However, all HIV-positive patients with myositis eventually develop features most consistent with inclusion body myositis, including finger and wrist flexor weakness, rimmed vacuoles on biopsy, or anti-NT5C1A autoantibodies.
Collapse
Affiliation(s)
- Thomas E Lloyd
- From the Johns Hopkins University School of Medicine (T.E.L., E.H.M., L.C.-S., N.S., A.L.M.), Baltimore; and the National Institute of Arthritis and Musculoskeletal and Skin Diseases (I.P.-F., K.P., A.L.M.), National Institutes of Health, Bethesda, MD
| | - Iago Pinal-Fernandez
- From the Johns Hopkins University School of Medicine (T.E.L., E.H.M., L.C.-S., N.S., A.L.M.), Baltimore; and the National Institute of Arthritis and Musculoskeletal and Skin Diseases (I.P.-F., K.P., A.L.M.), National Institutes of Health, Bethesda, MD
| | - E Harlan Michelle
- From the Johns Hopkins University School of Medicine (T.E.L., E.H.M., L.C.-S., N.S., A.L.M.), Baltimore; and the National Institute of Arthritis and Musculoskeletal and Skin Diseases (I.P.-F., K.P., A.L.M.), National Institutes of Health, Bethesda, MD
| | - Lisa Christopher-Stine
- From the Johns Hopkins University School of Medicine (T.E.L., E.H.M., L.C.-S., N.S., A.L.M.), Baltimore; and the National Institute of Arthritis and Musculoskeletal and Skin Diseases (I.P.-F., K.P., A.L.M.), National Institutes of Health, Bethesda, MD
| | - Katherine Pak
- From the Johns Hopkins University School of Medicine (T.E.L., E.H.M., L.C.-S., N.S., A.L.M.), Baltimore; and the National Institute of Arthritis and Musculoskeletal and Skin Diseases (I.P.-F., K.P., A.L.M.), National Institutes of Health, Bethesda, MD
| | - Ned Sacktor
- From the Johns Hopkins University School of Medicine (T.E.L., E.H.M., L.C.-S., N.S., A.L.M.), Baltimore; and the National Institute of Arthritis and Musculoskeletal and Skin Diseases (I.P.-F., K.P., A.L.M.), National Institutes of Health, Bethesda, MD
| | - Andrew L Mammen
- From the Johns Hopkins University School of Medicine (T.E.L., E.H.M., L.C.-S., N.S., A.L.M.), Baltimore; and the National Institute of Arthritis and Musculoskeletal and Skin Diseases (I.P.-F., K.P., A.L.M.), National Institutes of Health, Bethesda, MD.
| |
Collapse
|
76
|
Sabatelli M, Marangi G, Conte A, Tasca G, Zollino M, Lattante S. New ALS-Related Genes Expand the Spectrum Paradigm of Amyotrophic Lateral Sclerosis. Brain Pathol 2016; 26:266-75. [PMID: 26780671 DOI: 10.1111/bpa.12354] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is characterized by the degeneration of upper and lower motor neurons. Clinical heterogeneity is a well-recognized feature of the disease as age of onset, site of onset and the duration of the disease can vary greatly among patients. A number of genes have been identified and associated to familial and sporadic forms of ALS but the majority of cases remains still unexplained. Recent breakthrough discoveries have demonstrated that clinical manifestations associated with ALS-related genes are not circumscribed to motor neurons involvement. In this view, ALS appears to be linked to different conditions over a continuum or spectrum in which overlapping phenotypes may be identified. In this review, we aim to examine the increasing number of spectra, including ALS/Frontotemporal Dementia and ALS/Myopathies spectra. Considering all these neurodegenerative disorders as different phenotypes of the same spectrum can help to identify common pathological pathways and consequently new therapeutic targets in these incurable diseases.
Collapse
Affiliation(s)
- Mario Sabatelli
- Department of Geriatrics, Neurosciences and Orthopedics, Clinic Center NEMO-Roma. Institute of Neurology
| | - Giuseppe Marangi
- Institute of Medical Genetics, Catholic University School of Medicine, Rome, Italy
| | - Amelia Conte
- Department of Geriatrics, Neurosciences and Orthopedics, Clinic Center NEMO-Roma. Institute of Neurology
| | | | - Marcella Zollino
- Institute of Medical Genetics, Catholic University School of Medicine, Rome, Italy
| | - Serena Lattante
- Institute of Medical Genetics, Catholic University School of Medicine, Rome, Italy
| |
Collapse
|
77
|
Lee KH, Zhang P, Kim HJ, Mitrea DM, Sarkar M, Freibaum BD, Cika J, Coughlin M, Messing J, Molliex A, Maxwell BA, Kim NC, Temirov J, Moore J, Kolaitis RM, Shaw TI, Bai B, Peng J, Kriwacki RW, Taylor JP. C9orf72 Dipeptide Repeats Impair the Assembly, Dynamics, and Function of Membrane-Less Organelles. Cell 2016; 167:774-788.e17. [PMID: 27768896 PMCID: PMC5079111 DOI: 10.1016/j.cell.2016.10.002] [Citation(s) in RCA: 532] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/03/2016] [Accepted: 09/30/2016] [Indexed: 12/13/2022]
Abstract
Expansion of a hexanucleotide repeat GGGGCC (G4C2) in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Transcripts carrying (G4C2) expansions undergo unconventional, non-ATG-dependent translation, generating toxic dipeptide repeat (DPR) proteins thought to contribute to disease. Here, we identify the interactome of all DPRs and find that arginine-containing DPRs, polyGly-Arg (GR) and polyPro-Arg (PR), interact with RNA-binding proteins and proteins with low complexity sequence domains (LCDs) that often mediate the assembly of membrane-less organelles. Indeed, most GR/PR interactors are components of membrane-less organelles such as nucleoli, the nuclear pore complex and stress granules. Genetic analysis in Drosophila demonstrated the functional relevance of these interactions to DPR toxicity. Furthermore, we show that GR and PR altered phase separation of LCD-containing proteins, insinuating into their liquid assemblies and changing their material properties, resulting in perturbed dynamics and/or functions of multiple membrane-less organelles.
Collapse
Affiliation(s)
- Kyung-Ha Lee
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peipei Zhang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Diana M Mitrea
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mohona Sarkar
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brian D Freibaum
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jaclyn Cika
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Maura Coughlin
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - James Messing
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Amandine Molliex
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brian A Maxwell
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nam Chul Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jamshid Temirov
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jennifer Moore
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Regina-Maria Kolaitis
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Howard Hughes Medical Institute, Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Timothy I Shaw
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bing Bai
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN 38105, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Howard Hughes Medical Institute, Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
78
|
Taylor JP, Brown RH, Cleveland DW. Decoding ALS: from genes to mechanism. Nature 2016; 539:197-206. [PMID: 27830784 DOI: 10.1038/nature20413] [Citation(s) in RCA: 1460] [Impact Index Per Article: 162.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/13/2016] [Indexed: 02/08/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and uniformly fatal neurodegenerative disease. A plethora of genetic factors have been identified that drive the degeneration of motor neurons in ALS, increase susceptibility to the disease or influence the rate of its progression. Emerging themes include dysfunction in RNA metabolism and protein homeostasis, with specific defects in nucleocytoplasmic trafficking, the induction of stress at the endoplasmic reticulum and impaired dynamics of ribonucleoprotein bodies such as RNA granules that assemble through liquid-liquid phase separation. Extraordinary progress in understanding the biology of ALS provides new reasons for optimism that meaningful therapies will be identified.
Collapse
Affiliation(s)
- J Paul Taylor
- Howard Hughes Medical Institute and the Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California 92093, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
79
|
Abstract
PURPOSE OF REVIEW Inclusion body myositis (IBM) is an enigmatic progressive disease of skeletal muscle. This review provides a summary of the clinical and pathophysiologic aspects of IBM. RECENT FINDINGS The development of diagnostic blood testing for IBM followed from the discovery of a B-cell pathway in IBM muscle and circulating autoantibodies against NT5C1A, further establishing IBM's status as an autoimmune disease. The key role of cytotoxic T cells in IBM is further supported by the identification of a link between IBM and T-cell large granular lymphocytic leukemia. The testing of research diagnostic criteria in patients is improving its accuracy. Increases in estimated prevalences may be due to a combination of true increases and improved recognition of disease. SUMMARY IBM has high unmet medical need. Advances in the mechanistic understanding of IBM as an autoimmune disease will drive effective therapeutic approaches. The identification of a B-cell pathway has resulted in the first identification of an IBM autoantigen and emphasized its status as an autoimmune disease. The recognition that large granular lymphocyte CD8+ T-cell expansions are present in both blood and muscle provides additional biomarkers for IBM and suggests a mechanistic relationship to the neoplastic disease T-cell large granular lymphocytic leukemia.
Collapse
|
80
|
Guerrero EN, Wang H, Mitra J, Hegde PM, Stowell SE, Liachko NF, Kraemer BC, Garruto RM, Rao KS, Hegde ML. TDP-43/FUS in motor neuron disease: Complexity and challenges. Prog Neurobiol 2016; 145-146:78-97. [PMID: 27693252 PMCID: PMC5101148 DOI: 10.1016/j.pneurobio.2016.09.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/19/2016] [Accepted: 09/20/2016] [Indexed: 01/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS), a common motor neuron disease affecting two per 100,000 people worldwide, encompasses at least five distinct pathological subtypes, including, ALS-SOD1, ALS-C9orf72, ALS-TDP-43, ALS-FUS and Guam-ALS. The etiology of a major subset of ALS involves toxicity of the TAR DNA-binding protein-43 (TDP-43). A second RNA/DNA binding protein, fused in sarcoma/translocated in liposarcoma (FUS/TLS) has been subsequently associated with about 1% of ALS patients. While mutations in TDP-43 and FUS have been linked to ALS, the key contributing molecular mechanism(s) leading to cell death are still unclear. One unique feature of TDP-43 and FUS pathogenesis in ALS is their nuclear clearance and simultaneous cytoplasmic aggregation in affected motor neurons. Since the discoveries in the last decade implicating TDP-43 and FUS toxicity in ALS, a majority of studies have focused on their cytoplasmic aggregation and disruption of their RNA-binding functions. However, TDP-43 and FUS also bind to DNA, although the significance of their DNA binding in disease-affected neurons has been less investigated. A recent observation of accumulated genomic damage in TDP-43 and FUS-linked ALS and association of FUS with neuronal DNA damage repair pathways indicate a possible role of deregulated DNA binding function of TDP-43 and FUS in ALS. In this review, we discuss the different ALS disease subtypes, crosstalk of etiopathologies in disease progression, available animal models and their limitations, and recent advances in understanding the specific involvement of RNA/DNA binding proteins, TDP-43 and FUS, in motor neuron diseases.
Collapse
Affiliation(s)
- Erika N. Guerrero
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Centre for Neuroscience, Institute for Scientific Research and Technology Services (INDICASAT-AIP), City of Knowledge, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Pavana M. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Sara E. Stowell
- Department of Anthropology, Binghamton University, State University of New York, Binghamton, New York
| | - Nicole F Liachko
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Brian C. Kraemer
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Ralph M. Garruto
- Department of Anthropology, Binghamton University, State University of New York, Binghamton, New York
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, New York
| | - K. S. Rao
- Centre for Neuroscience, Institute for Scientific Research and Technology Services (INDICASAT-AIP), City of Knowledge, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Houston Methodist Neurological Institute, Houston, Texas 77030 USA
- Weill Medical College of Cornell University, New York
| |
Collapse
|
81
|
The Myoblast C2C12 Transfected with Mutant Valosin-Containing Protein Exhibits Delayed Stress Granule Resolution on Oxidative Stress. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1623-34. [PMID: 27106764 DOI: 10.1016/j.ajpath.2016.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 01/20/2016] [Accepted: 02/16/2016] [Indexed: 12/12/2022]
Abstract
Valosin-containing protein (VCP) mutations cause inclusion body myopathy with Paget disease and frontotemporal dementia. However, the mechanisms by which mutant VCP triggers degeneration remain unknown. Here, we investigated the role of VCP in cellular stress and found that the oxidative stressor arsenite and heat shock-activated stress responses evident by T-intracellular antigen-1-positive granules in C2C12 myoblasts. Granules also contained phosphorylated transactive response DNA-binding protein 43, ubiquitin, microtubule-associated protein 1A/1B light chains 3, and lysosome-associated membrane protein 2. Mutant VCP produced more T-intracellular antigen-1-positive granules than wild-type in the postarsenite exposure period. Similar results were observed for other granule components, indicating that mutant VCP delayed clearance of stress granules. Furthermore, stress granule resolution was impaired on differentiated C2C12 cells expressing mutant VCP. To address whether mutant VCP triggers dysregulation of the stress granule pathway in vivo, we analyzed skeletal muscle of aged VCPR155H-knockin mice. We found significant increments in oxidated proteins but observed the stress granule markers RasGAP SH3-binding protein and phosphorylated eukaryotic translation initiation factor 2α unchanged. The mixed results indicate that mutant VCP together with aging lead to higher oxidative stress in skeletal muscle but were insufficient to disrupt the stress granule pathway. Our findings support that deficiencies in recovery from stressors may result in attenuated tolerance to stress that could trigger muscle degeneration.
Collapse
|
82
|
Ahmed M, Machado PM, Miller A, Spicer C, Herbelin L, He J, Noel J, Wang Y, McVey AL, Pasnoor M, Gallagher P, Statland J, Lu CH, Kalmar B, Brady S, Sethi H, Samandouras G, Parton M, Holton JL, Weston A, Collinson L, Taylor JP, Schiavo G, Hanna MG, Barohn RJ, Dimachkie MM, Greensmith L. Targeting protein homeostasis in sporadic inclusion body myositis. Sci Transl Med 2016; 8:331ra41. [PMID: 27009270 PMCID: PMC5043094 DOI: 10.1126/scitranslmed.aad4583] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/04/2016] [Indexed: 11/02/2022]
Abstract
Sporadic inclusion body myositis (sIBM) is the commonest severe myopathy in patients more than 50 years of age. Previous therapeutic trials have targeted the inflammatory features of sIBM but all have failed. Because protein dyshomeostasis may also play a role in sIBM, we tested the effects of targeting this feature of the disease. Using rat myoblast cultures, we found that up-regulation of the heat shock response with arimoclomol reduced key pathological markers of sIBM in vitro. Furthermore, in mutant valosin-containing protein (VCP) mice, which develop an inclusion body myopathy, treatment with arimoclomol ameliorated disease pathology and improved muscle function. We therefore evaluated arimoclomol in an investigator-led, randomized, double-blind, placebo-controlled, proof-of-concept trial in sIBM patients and showed that arimoclomol was safe and well tolerated. Although arimoclomol improved some IBM-like pathology in the mutant VCP mouse, we did not see statistically significant evidence of efficacy in the proof-of-concept patient trial.
Collapse
Affiliation(s)
- Mhoriam Ahmed
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK. Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Pedro M Machado
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Adrian Miller
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK. Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Charlotte Spicer
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK. Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Laura Herbelin
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA
| | - Jianghua He
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Janelle Noel
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yunxia Wang
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA
| | - April L McVey
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA
| | - Mamatha Pasnoor
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA
| | - Philip Gallagher
- Department of Health, Sport, and Exercise Science, The University of Kansas, Lawrence, KS 66045-7567, USA
| | - Jeffrey Statland
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA
| | - Ching-Hua Lu
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK. Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Bernadett Kalmar
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK. Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Stefen Brady
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Huma Sethi
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, UCL Hospitals, Queen Square, London WC1N 3BG, UK
| | - George Samandouras
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, UCL Hospitals, Queen Square, London WC1N 3BG, UK
| | - Matt Parton
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Janice L Holton
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Anne Weston
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Lucy Collinson
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - J Paul Taylor
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Giampietro Schiavo
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK. Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Michael G Hanna
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Richard J Barohn
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA
| | - Mazen M Dimachkie
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA.
| | - Linda Greensmith
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK. Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
83
|
|
84
|
Needham M, Mastaglia FL. Sporadic inclusion body myositis: A review of recent clinical advances and current approaches to diagnosis and treatment. Clin Neurophysiol 2015; 127:1764-73. [PMID: 26778717 DOI: 10.1016/j.clinph.2015.12.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/08/2015] [Accepted: 12/13/2015] [Indexed: 01/01/2023]
Abstract
Sporadic inclusion body myositis is the most frequent acquired myopathy of middle and later life and is distinguished from other inflammatory myopathies by its selective pattern of muscle involvement and slowly progressive course, and by the combination of inflammatory and degenerative muscle pathology and multi-protein deposits in muscle tissue. This review summarises the findings of recent studies that provide a more complete picture of the clinical phenotype and natural history of the disease and its global prevalence and genetic predisposition. Current diagnostic criteria, including the role of electrophysiological and muscle imaging studies and the recently identified anti-5'-nucleotidase (anti-cN1A) antibody in diagnosis are also discussed as well as current trends in the treatment of the disease.
Collapse
Affiliation(s)
- Merrilee Needham
- Institute for Immunology and Infectious Diseases, Murdoch University, Western Australia, Australia; Fiona Stanley Hospital, Murdoch, Western Australia, Australia; Notre Dame University, Fremantle, Western Australia, Australia.
| | - Frank L Mastaglia
- Institute for Immunology and Infectious Diseases, Murdoch University, Western Australia, Australia
| |
Collapse
|
85
|
Bengoechea R, Pittman SK, Tuck EP, True HL, Weihl CC. Myofibrillar disruption and RNA-binding protein aggregation in a mouse model of limb-girdle muscular dystrophy 1D. Hum Mol Genet 2015; 24:6588-602. [PMID: 26362252 PMCID: PMC4634370 DOI: 10.1093/hmg/ddv363] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/15/2022] Open
Abstract
Limb-girdle muscular dystrophy type 1D (LGMD1D) is caused by dominantly inherited missense mutations in DNAJB6, an Hsp40 co-chaperone. LGMD1D muscle has rimmed vacuoles and inclusion bodies containing DNAJB6, Z-disc proteins and TDP-43. DNAJB6 is expressed as two isoforms; DNAJB6a and DNAJB6b. Both isoforms contain LGMD1D mutant residues and are expressed in human muscle. To identify which mutant isoform confers disease pathogenesis and generate a mouse model of LGMD1D, we evaluated DNAJB6 expression and localization in skeletal muscle as well as generating DNAJB6 isoform specific expressing transgenic mice. DNAJB6a localized to myonuclei while DNAJB6b was sarcoplasmic. LGMD1D mutations in DNAJB6a or DNAJB6b did not alter this localization in mouse muscle. Transgenic mice expressing the LGMD1D mutant, F93L, in DNAJB6b under a muscle-specific promoter became weak, had early lethality and developed muscle pathology consistent with myopathy after 2 months; whereas mice expressing the same F93L mutation in DNAJB6a or overexpressing DNAJB6a or DNAJB6b wild-type transgenes remained unaffected after 1 year. DNAJB6b localized to the Z-disc and DNAJB6b-F93L expressing mouse muscle had myofibrillar disorganization and desmin inclusions. Consistent with DNAJB6 dysfunction, keratin 8/18, a DNAJB6 client also accumulated in DNAJB6b-F93L expressing mouse muscle. The RNA-binding proteins hnRNPA1 and hnRNPA2/B1 accumulated and co-localized with DNAJB6 at sarcoplasmic stress granules suggesting that these proteins maybe novel DNAJB6b clients. Similarly, hnRNPA1 and hnRNPA2/B1 formed sarcoplasmic aggregates in patients with LGMD1D. Our data support that LGMD1D mutations in DNAJB6 disrupt its sarcoplasmic function suggesting a role for DNAJB6b in Z-disc organization and stress granule kinetics.
Collapse
Affiliation(s)
| | | | | | - Heather L True
- Department of Cell Biology and Physiology and and The Hope Center for Neurological Diseases, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Conrad C Weihl
- Department of Neurology, The Hope Center for Neurological Diseases, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
86
|
Catalán-García M, Garrabou G, Morén C, Guitart-Mampel M, Gonzalez-Casacuberta I, Hernando A, Gallego-Escuredo JM, Yubero D, Villarroya F, Montero R, O-Callaghan AS, Cardellach F, Grau JM. BACE-1, PS-1 and sAPPβ Levels Are Increased in Plasma from Sporadic Inclusion Body Myositis Patients: Surrogate Biomarkers among Inflammatory Myopathies. Mol Med 2015; 21:817-823. [PMID: 26552061 DOI: 10.2119/molmed.2015.00168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/27/2015] [Indexed: 12/26/2022] Open
Abstract
Sporadic inclusion body myositis (sIBM) is a rare disease that is difficult to diagnose. Muscle biopsy provides three prominent pathological findings: inflammation, mitochondrial abnormalities and fibber degeneration, represented by the accumulation of protein depots constituted by β-amyloid peptide, among others. We aim to perform a screening in plasma of circulating molecules related to the putative etiopathogenesis of sIBM to determine potential surrogate biomarkers for diagnosis. Plasma from 21 sIBM patients and 20 age- and gender-paired healthy controls were collected and stored at -80°C. An additional population of patients with non-sIBM inflammatory myopathies was also included (nine patients with dermatomyositis and five with polymyositis). Circulating levels of inflammatory cytokines (interleukin [IL]-6 and tumor necrosis factor [TNF]-α), mitochondrial-related molecules (free plasmatic mitochondrial DNA [mtDNA], fibroblast growth factor-21 [FGF-21] and coenzyme-Q10 [CoQ]) and amyloidogenic-related molecules (beta-secretase-1 [BACE-1], presenilin-1 [PS-1], and soluble Aβ precursor protein [sAPPβ]) were assessed with magnetic bead-based assays, real-time polymerase chain reaction, enzyme-linked immunosorbent assay (ELISA) and high-pressure liquid chromatography (HPLC). Despite remarkable trends toward altered plasmatic expression of inflammatory and mitochondrial molecules (increased IL-6, TNF-α, circulating mtDNA and FGF-21 levels and decreased content in CoQ), only amyloidogenic degenerative markers including BACE-1, PS-1 and sAPPβ levels were significantly increased in plasma from sIBM patients compared with controls and other patients with non-sIBM inflammatory myopathies (p < 0.05). Inflammatory, mitochondrial and amyloidogenic degeneration markers are altered in plasma of sIBM patients confirming their etiopathological implication in the disease. Sensitivity and specificity analysis show that BACE-1, PS-1 and sAPPβ represent a good predictive noninvasive tool for the diagnosis of sIBM, especially in distinguishing this disease from polymyositis.
Collapse
Affiliation(s)
- Marc Catalán-García
- Laboratory of Muscle Research and Mitochondrial Function, Cellex-IDIBAPS, Faculty of Medicine, University of Barcelona, Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Glòria Garrabou
- Laboratory of Muscle Research and Mitochondrial Function, Cellex-IDIBAPS, Faculty of Medicine, University of Barcelona, Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Constanza Morén
- Laboratory of Muscle Research and Mitochondrial Function, Cellex-IDIBAPS, Faculty of Medicine, University of Barcelona, Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Mariona Guitart-Mampel
- Laboratory of Muscle Research and Mitochondrial Function, Cellex-IDIBAPS, Faculty of Medicine, University of Barcelona, Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Ingrid Gonzalez-Casacuberta
- Laboratory of Muscle Research and Mitochondrial Function, Cellex-IDIBAPS, Faculty of Medicine, University of Barcelona, Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Adriana Hernando
- Laboratory of Muscle Research and Mitochondrial Function, Cellex-IDIBAPS, Faculty of Medicine, University of Barcelona, Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Jose Miquel Gallego-Escuredo
- Department of Biochemistry and Molecular Biology, Institute of Biomedicine (University of Barcelona), University of Barcelona, and CIBEROBN, Barcelona, Spain
| | - Dèlia Yubero
- Clinical Biochemistry Department, Hospital Sant Joan de Déu, Barcelona, Spain, and CIBERER, Valencia, Spain
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biology, Institute of Biomedicine (University of Barcelona), University of Barcelona, and CIBEROBN, Barcelona, Spain
| | - Raquel Montero
- Clinical Biochemistry Department, Hospital Sant Joan de Déu, Barcelona, Spain, and CIBERER, Valencia, Spain
| | | | - Francesc Cardellach
- Laboratory of Muscle Research and Mitochondrial Function, Cellex-IDIBAPS, Faculty of Medicine, University of Barcelona, Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Josep Maria Grau
- Laboratory of Muscle Research and Mitochondrial Function, Cellex-IDIBAPS, Faculty of Medicine, University of Barcelona, Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain
| |
Collapse
|
87
|
Lourenco GF, Janitz M, Huang Y, Halliday GM. Long noncoding RNAs in TDP-43 and FUS/TLS-related frontotemporal lobar degeneration (FTLD). Neurobiol Dis 2015. [DOI: 10.1016/j.nbd.2015.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
88
|
Haq SA, Tournadre A. Idiopathic inflammatory myopathies: from immunopathogenesis to new therapeutic targets. Int J Rheum Dis 2015; 18:818-25. [PMID: 26385431 DOI: 10.1111/1756-185x.12736] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pathogenesis of idiopathic inflammatory myositis (IIM) involves strong interactions between dendritic cells (DCs), activated Th1 and Th17 cells, B cells, muscle cells, genes and environment. Local maturation of DCs permit the activation and polarization of CD4+ T cells into T(H)1 and T(H)17 that play a key role in maintaining chronic muscle inflammation. T-cell mediated myocytotoxicity promotes the liberation of specific muscle autoantigens from regenerating muscle cells with production of myositis-specific autoantibodies. Type I interferon signature is a key characteristic of IIM. Type I IFN that can be induced by immune complexes containing myositis-specific autoantibodies is produced by scattered plasmacytoid DCs but also by muscle cells particularly regenerating muscle cells. These immature muscle precursors appear to be critical in the pathogenesis of IIM as they up-regulate muscle autoantigens, type I IFN, HLA class I antigens and TLR3-7, all together involved in maintaining chronic muscle inflammation. In addition to the role of immune and muscle cells, genome-wide association studies have confirmed the importance of several MHC and non-MHC genes in IIM. Environmental factors can contribute to the pathogenesis of IIM. In sIBM, distinct features suggest both degenerative and inflammatory processes. In addition to our better understanding of the pathogenesis, identify molecular pathway leads to consider new targeted therapies including cytokine inhibition, B-cell and T-cell costimulation blockade, type I IFN neutralization or inhibition of the ubiquitin proteasome pathway.
Collapse
Affiliation(s)
- Syed A Haq
- BSM Medical University, Dhaka, Bangladesh
| | - Anne Tournadre
- Rheumatology department CHU Clermont-Ferrand and UMR 1019 INRA/ University of Auvergne, Clermont-Ferrand, France
| |
Collapse
|
89
|
|
90
|
Abstract
PURPOSE OF THE REVIEW To describe new insights and developments in the pathogenesis, diagnosis and treatment of sporadic inclusion body myositis (IBM). RECENT FINDINGS Various hypothesis about the pathogenesis of IBM continue to be investigated, including autoimmune factors, mitochondrial dysfunction, protein dyshomeostasis, altered nucleic acid metabolism, myonuclear degeneration and the role of the myostatin pathway. Serum autoantibodies against cytosolic 5'-nucleotidase 1A have been identified in IBM showing moderate diagnostic performance. The differential diagnostic value of histopathological features, including different protein aggregates, continues to be evaluated. MRI may also be of monitoring value in IBM. New therapeutic strategies are being tested in IBM patients, namely the upregulation of the heat shock response and the antagonism of myostatin. SUMMARY Recent important advances have occurred in IBM. These advances, including recent and ongoing clinical trials, may lead to earlier diagnosis and improved understanding and treatment of the disease. Despite improved knowledge, IBM continues to be a puzzling disease and the pathogenesis remains to be clarified. An interdisciplinary, bench to bedside translational research approach is crucial for the successful identification of novel treatments for this debilitating, currently untreatable disorder.
Collapse
|
91
|
Benveniste O, Stenzel W, Hilton-Jones D, Sandri M, Boyer O, van Engelen BGM. Amyloid deposits and inflammatory infiltrates in sporadic inclusion body myositis: the inflammatory egg comes before the degenerative chicken. Acta Neuropathol 2015; 129:611-24. [PMID: 25579751 PMCID: PMC4405277 DOI: 10.1007/s00401-015-1384-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 11/27/2022]
Abstract
Sporadic inclusion body myositis (sIBM) is the most frequently acquired myopathy in patients over 50 years of age. It is imperative that neurologists and rheumatologists recognize this disorder which may, through clinical and pathological similarities, mimic other myopathies, especially polymyositis. Whereas polymyositis responds to immunosuppressant drug therapy, sIBM responds poorly, if at all. Controversy reigns as to whether sIBM is primarily an inflammatory or a degenerative myopathy, the distinction being vitally important in terms of directing research for effective specific therapies. We review here the pros and the cons for the respective hypotheses. A possible scenario, which our experience leads us to favour, is that sIBM may start with inflammation within muscle. The rush of leukocytes attracted by chemokines and cytokines may induce fibre injury and HLA-I overexpression. If the protein degradation systems are overloaded (possibly due to genetic predisposition, particular HLA-I subtypes or ageing), amyloid and other protein deposits may appear within muscle fibres, reinforcing the myopathic process in a vicious circle.
Collapse
Affiliation(s)
- Olivier Benveniste
- Département de Médecine Interne et Immunologie Clinique, Assistance Publique-Hôpitaux de Paris, GH Pitié-Salpêtrière, Université Pierre et Marie Curie, Inserm, U974, DHU I2B, Paris, France,
| | | | | | | | | | | |
Collapse
|
92
|
|
93
|
VEMULAPALLI SRIKANTH, SHARER LEROYR, HSU VIVIENM. Inclusion Body Myositis in a Patient with RNA Polymerase III Antibody-positive Systemic Sclerosis. J Rheumatol 2015; 42:730-2. [DOI: 10.3899/jrheum.141206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
94
|
Inclusion body myositis and sarcoid myopathy: coincidental occurrence or associated diseases. Neuromuscul Disord 2014; 25:297-300. [PMID: 25599912 DOI: 10.1016/j.nmd.2014.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 11/28/2014] [Accepted: 12/11/2014] [Indexed: 11/23/2022]
Abstract
Inclusion body myositis (IBM) is a slowly progressive inflammatory myopathy characterized by selective weakness of finger flexors and quadriceps muscles commonly refractory to treatment. Another chronic inflammatory disorder, sarcoidosis, commonly involves muscle. The comorbidity of inclusion body myositis and sarcoid myopathy is rare. We describe clinical and muscle biopsy findings of a patient with sarcoidosis and inclusion body myositis. A 66-year-old man presented with a 6-year history of progressive, asymmetrical and selective weakness of the quadriceps, biceps and finger flexor muscles; he had a remote history of pulmonary sarcoidosis. A quadriceps muscle biopsy revealed a chronic inflammatory myopathy with ubiquitinated inclusion bodies, rimmed vacuoles, expression of major histocompatibility complex class I, numerous COX-negative fibers and TDP-43 cytoplasmic aggregates (features of IBM) and multiple non-necrotizing granulomata (feature of sarcoidosis). Clinical and histopathologic features of the current illness suggested the patient had sarcoidosis with inclusion body myositis overlap. This patient may represent the coincidental occurrence of both idiopathic inflammatory disorders. Alternatively, sarcoidoisis may promote the development of inclusion body myositis by a similar immune-mediated pathophysiologic process.
Collapse
|
95
|
Machado PM, Ahmed M, Brady S, Gang Q, Healy E, Morrow JM, Wallace AC, Dewar L, Ramdharry G, Parton M, Holton JL, Houlden H, Greensmith L, Hanna MG. Ongoing developments in sporadic inclusion body myositis. Curr Rheumatol Rep 2014; 16:477. [PMID: 25399751 PMCID: PMC4233319 DOI: 10.1007/s11926-014-0477-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sporadic inclusion body myositis (IBM) is an acquired muscle disorder associated with ageing, for which there is no effective treatment. Ongoing developments include: genetic studies that may provide insights regarding the pathogenesis of IBM, improved histopathological markers, the description of a new IBM autoantibody, scrutiny of the diagnostic utility of clinical features and biomarkers, the refinement of diagnostic criteria, the emerging use of MRI as a diagnostic and monitoring tool, and new pathogenic insights that have led to novel therapeutic approaches being trialled for IBM, including treatments with the objective of restoring protein homeostasis and myostatin blockers. The effect of exercise in IBM continues to be investigated. However, despite these ongoing developments, the aetiopathogenesis of IBM remains uncertain. A translational and multidisciplinary collaborative approach is critical to improve the diagnosis, treatment, and care of patients with IBM.
Collapse
Affiliation(s)
- Pedro M. Machado
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
| | - Mhoriam Ahmed
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Stefen Brady
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
| | - Qiang Gang
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
| | - Estelle Healy
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
| | - Jasper M. Morrow
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
| | - Amanda C. Wallace
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
| | - Liz Dewar
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
| | - Gita Ramdharry
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
| | - Matthew Parton
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
| | - Janice L. Holton
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
| | - Linda Greensmith
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Michael G. Hanna
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
| |
Collapse
|
96
|
Kitajima Y, Tashiro Y, Suzuki N, Warita H, Kato M, Tateyama M, Ando R, Izumi R, Yamazaki M, Abe M, Sakimura K, Ito H, Urushitani M, Nagatomi R, Takahashi R, Aoki M. Proteasome dysfunction induces muscle growth defects and protein aggregation. J Cell Sci 2014; 127:5204-17. [PMID: 25380823 PMCID: PMC4265737 DOI: 10.1242/jcs.150961] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The ubiquitin–proteasome and autophagy–lysosome pathways are the two major routes of protein and organelle clearance. The role of the proteasome pathway in mammalian muscle has not been examined in vivo. In this study, we report that the muscle-specific deletion of a crucial proteasomal gene, Rpt3 (also known as Psmc4), resulted in profound muscle growth defects and a decrease in force production in mice. Specifically, developing muscles in conditional Rpt3-knockout animals showed dysregulated proteasomal activity. The autophagy pathway was upregulated, but the process of autophagosome formation was impaired. A microscopic analysis revealed the accumulation of basophilic inclusions and disorganization of the sarcomeres in young adult mice. Our results suggest that appropriate proteasomal activity is important for muscle growth and for maintaining myofiber integrity in collaboration with autophagy pathways. The deletion of a component of the proteasome complex contributed to myofiber degeneration and weakness in muscle disorders that are characterized by the accumulation of abnormal inclusions.
Collapse
Affiliation(s)
- Yasuo Kitajima
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Yoshitaka Tashiro
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Masaaki Kato
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Maki Tateyama
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Risa Ando
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Rumiko Izumi
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Maya Yamazaki
- Niigata University, Department of Cellular Neurobiology Brain Research Institute, Niigata 951-8510, Japan
| | - Manabu Abe
- Niigata University, Department of Cellular Neurobiology Brain Research Institute, Niigata 951-8510, Japan
| | - Kenji Sakimura
- Niigata University, Department of Cellular Neurobiology Brain Research Institute, Niigata 951-8510, Japan
| | - Hidefumi Ito
- Department of Neurology, Wakayama Medical University Graduate School of Medicine, Wakayama 641-8510, Japan
| | - Makoto Urushitani
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| |
Collapse
|
97
|
|
98
|
Broccolini A, Mirabella M. Hereditary inclusion-body myopathies. Biochim Biophys Acta Mol Basis Dis 2014; 1852:644-50. [PMID: 25149037 DOI: 10.1016/j.bbadis.2014.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/29/2014] [Accepted: 08/14/2014] [Indexed: 12/19/2022]
Abstract
The term hereditary inclusion-body myopathies (HIBMs) defines a group of rare muscle disorders with autosomal recessive or dominant inheritance and presence of muscle fibers with rimmed vacuoles and collection of cytoplasmic or nuclear 15-21 nm diameter tubulofilaments as revealed by muscle biopsy. The most common form of HIBM is due to mutations of the GNE gene that codes for a rate-limiting enzyme in the sialic acid biosynthetic pathway. This results in abnormal sialylation of glycoproteins that possibly leads to muscle fiber degeneration. Mutations of the valosin containing protein are instead responsible for hereditary inclusion-body myopathy with Paget's disease of the bone and frontotemporal dementia (IBMPFD), with these three phenotypic features having a variable penetrance. IBMPFD probably represents a disorder of abnormal cellular trafficking of proteins and maturation of the autophagosome. HIBM with congenital joint contractures and external ophthalmoplegia is due to mutations of the Myosin Heavy Chain IIa gene that exerts a pathogenic effect through interference with filament assembly or functional defects in ATPase activity. This review illustrates the clinical and pathologic characteristics of HIBMs and the main clues available to date concerning the possible pathogenic mechanisms and therapeutic perspectives of these disorders. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- Aldobrando Broccolini
- Institute of Neurology, Department of Geriatrics, Neurosciences and Orthopedics, Catholic University School of Medicine, L.go A. Gemelli 8, 00168 Rome, Italy.
| | - Massimiliano Mirabella
- Institute of Neurology, Department of Geriatrics, Neurosciences and Orthopedics, Catholic University School of Medicine, L.go A. Gemelli 8, 00168 Rome, Italy.
| |
Collapse
|
99
|
Pinkus JL, Amato AA, Taylor JP, Greenberg SA. Abnormal distribution of heterogeneous nuclear ribonucleoproteins in sporadic inclusion body myositis. Neuromuscul Disord 2014; 24:611-6. [DOI: 10.1016/j.nmd.2014.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/08/2014] [Accepted: 04/26/2014] [Indexed: 01/01/2023]
|
100
|
Gang Q, Bettencourt C, Machado P, Hanna MG, Houlden H. Sporadic inclusion body myositis: the genetic contributions to the pathogenesis. Orphanet J Rare Dis 2014; 9:88. [PMID: 24948216 PMCID: PMC4071018 DOI: 10.1186/1750-1172-9-88] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/12/2014] [Indexed: 11/10/2022] Open
Abstract
Sporadic inclusion body myositis (sIBM) is the commonest idiopathic inflammatory muscle disease in people over 50 years old. It is characterized by slowly progressive muscle weakness and atrophy, with typical pathological changes of inflammation, degeneration and mitochondrial abnormality in affected muscle fibres. The cause(s) of sIBM are still unknown, but are considered complex, with the contribution of multiple factors such as environmental triggers, ageing and genetic susceptibility. This review summarizes the current understanding of the genetic contributions to sIBM and provides some insights for future research in this mysterious disease with the advantage of the rapid development of advanced genetic technology. An international sIBM genetic study is ongoing and whole-exome sequencing will be applied in a large cohort of sIBM patients with the aim of unravelling important genetic risk factors for sIBM.
Collapse
Affiliation(s)
- Qiang Gang
- Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| | | | | | | | | |
Collapse
|