51
|
Mehta A, Ghaghada K, Mukundan S. Molecular Imaging of Brain Tumors Using Liposomal Contrast Agents and Nanoparticles. Magn Reson Imaging Clin N Am 2016; 24:751-763. [PMID: 27742115 DOI: 10.1016/j.mric.2016.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The first generation of cross-sectional brain imaging using computed tomography (CT), ultrasonography, and eventually MR imaging focused on determining structural or anatomic changes associated with brain disorders. The current state-of-the-art imaging, functional imaging, uses techniques such as CT and MR perfusion that allow determination of physiologic parameters in vivo. In parallel, tissue-based genomic, transcriptomic, and proteomic profiling of brain tumors has created several novel and exciting possibilities for molecular targeting of brain tumors. The next generation of imaging translates these molecular in vitro techniques to in vivo, noninvasive, targeted reconstruction of tumors and their microenvironments.
Collapse
Affiliation(s)
- Arnav Mehta
- Medical Scientist Training Program, David Geffen School of Medicine at UCLA, 757 Westwood Plaza, Los Angeles, CA 90095, USA; Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Ketan Ghaghada
- Edward B. Singleton Department of Pediatric Radiology, Texas Children's Hospital, 1102 Bates Street, Suite 850, Houston, TX 77030, USA; Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Srinivasan Mukundan
- Division of Neuroradiology, Department of Radiology, Brigham and Woman's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
52
|
Neuroimaging in Alzheimer's disease: preclinical challenges toward clinical efficacy. Transl Res 2016; 175:37-53. [PMID: 27033146 DOI: 10.1016/j.trsl.2016.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/05/2016] [Accepted: 03/06/2016] [Indexed: 12/21/2022]
Abstract
The scope of this review focuses on recent applications in preclinical and clinical magnetic resonance imaging (MRI) toward accomplishing the goals of early detection and responses to therapy in animal models of Alzheimer's disease (AD). Driven by the outstanding efforts of the Alzheimer's Disease Neuroimaging Initiative (ADNI), a truly invaluable resource, the initial use of MRI in AD imaging has been to assess changes in brain anatomy, specifically assessing brain shrinkage and regional changes in white matter tractography using diffusion tensor imaging. However, advances in MRI have led to multiple efforts toward imaging amyloid beta plaques first without and then with the use of MRI contrast agents. These technological advancements have met with limited success and are not yet appropriate for the clinic. Recent developments in molecular imaging inclusive of high-power liposomal-based MRI contrast agents as well as fluorine 19 ((19)F) MRI and manganese enhanced MRI have begun to propel promising advances toward not only plaque imaging but also using MRI to detect perturbations in subcellular processes occurring within the neuron. This review concludes with a discussion about the necessity for the development of novel preclinical models of AD that better recapitulate human AD for the imaging to truly be meaningful and for substantive progress to be made toward understanding and effectively treating AD. Furthermore, the continued support of outstanding programs such as ADNI as well as the development of novel molecular imaging agents and MRI fast scanning sequences will also be requisite to effectively translate preclinical findings to the clinic.
Collapse
|
53
|
Li Z, Ye E, Lakshminarayanan R, Loh XJ. Recent Advances of Using Hybrid Nanocarriers in Remotely Controlled Therapeutic Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4782-4806. [PMID: 27482950 DOI: 10.1002/smll.201601129] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/27/2016] [Indexed: 06/06/2023]
Abstract
The development of hybrid biomaterials has been attracting great attention in the design of materials for biomedicine. The nanosized level of inorganic and organic or even bioactive components can be combined into a single material by this approach, which has created entirely new advanced compositions with truly unique properties for drug delivery. The recent advances in using hybrid nanovehicles as remotely controlled therapeutic delivery carriers are summarized with respect to different nanostructures, including hybrid host-guest nanoconjugates, micelles, nanogels, core-shell nanoparticles, liposomes, mesoporous silica, and hollow nanoconstructions. In addition, the controlled release of guest molecules from these hybrid nanovehicles in response to various remote stimuli such as alternating magnetic field, near infrared, or ultrasound triggers is further summarized to introduce the different mechanisms of remotely triggered release behavior. Through proper chemical functionalization, the hybrid nanovehicle system can be further endowed with many new properties toward specific biomedical applications.
Collapse
Affiliation(s)
- Zibiao Li
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way. Innovis, #08-03, Singapore, 138634, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way. Innovis, #08-03, Singapore, 138634, Singapore
| | | | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way. Innovis, #08-03, Singapore, 138634, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore.
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore.
| |
Collapse
|
54
|
Wang F, Zhang X, Liu Y, Lin ZYW, Liu B, Liu J. Profiling Metal Oxides with Lipids: Magnetic Liposomal Nanoparticles Displaying DNA and Proteins. Angew Chem Int Ed Engl 2016; 55:12063-7. [DOI: 10.1002/anie.201606603] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Feng Wang
- School of Biological and Medical Engineering; Hefei University of Technology; Hefei, Anhui 230009 China
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| | - Xiaohan Zhang
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| | - Yibo Liu
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| | - Zhi Yuan William Lin
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| | - Biwu Liu
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| | - Juewen Liu
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
55
|
Wang F, Zhang X, Liu Y, Lin ZYW, Liu B, Liu J. Profiling Metal Oxides with Lipids: Magnetic Liposomal Nanoparticles Displaying DNA and Proteins. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Feng Wang
- School of Biological and Medical Engineering; Hefei University of Technology; Hefei, Anhui 230009 China
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| | - Xiaohan Zhang
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| | - Yibo Liu
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| | - Zhi Yuan William Lin
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| | - Biwu Liu
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| | - Juewen Liu
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
56
|
|
57
|
Liang H, Liu B, Yuan Q, Liu J. Magnetic Iron Oxide Nanoparticle Seeded Growth of Nucleotide Coordinated Polymers. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15615-22. [PMID: 27248668 DOI: 10.1021/acsami.6b04038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The introduction of functional molecules to the surface of magnetic iron oxide nanoparticles (NPs) is of critical importance. Most previously reported methods were focused on surface ligand attachment either by physisorption or covalent conjugation, resulting in limited ligand loading capacity. In this work, we report the seeded growth of a nucleotide coordinated polymer shell, which can be considered as a special form of adsorption by forming a complete shell. Among all of the tested metal ions, Fe(3+) is the most efficient for this seeded growth. A diverse range of guest molecules, including small organic dyes, proteins, DNA, and gold NPs, can be encapsulated in the shell. All of these molecules were loaded at a much higher capacity compared to that on the naked iron oxide NP core, confirming the advantage of the coordination polymer (CP) shell. In addition, the CP shell provides better guest protein stability compared to that of simple physisorption while retaining guest activity as confirmed by the entrapped glucose oxidase assay. Use of this system as a peroxidase nanozyme and glucose biosensor was demonstrated, detecting glucose as low as 1.4 μM with excellent stability. This work describes a new way to functionalize inorganic materials with a biocompatible shell.
Collapse
Affiliation(s)
- Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Biwu Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Juewen Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
58
|
Shetty AN, Pautler R, Ghaghada K, Rendon D, Gao H, Starosolski Z, Bhavane R, Patel C, Annapragada A, Yallampalli C, Lee W. A liposomal Gd contrast agent does not cross the mouse placental barrier. Sci Rep 2016; 6:27863. [PMID: 27298076 PMCID: PMC4906290 DOI: 10.1038/srep27863] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/26/2016] [Indexed: 12/26/2022] Open
Abstract
The trans-placental permeability of liposomal Gadolinium (Gd) nanoparticle contrast agents was evaluated in a pregnant mouse model. Pregnant Balb/c mice at 16.5 (±1) days of gestation were imaged using a 3D Spoiled Gradient Echo method at 9.4 T using two contrast agents: a clinically approved Gd chelate, Multihance® (gadobenate dimeglumine), and a novel experimental liposomal Gd agent. A Dynamic Contrast Enhancement (DCE) protocol was used to capture the dynamics of contrast entry and distribution in the placenta, and clearance from circulation. A blinded clinical radiologist evaluated both sets of images. A reference region model was used to measure the placental flow and physiological parameters; volume transfer constant (Ktrans), efflux rate constant (Kep). The Gd content of excised placentae and fetuses was measured, using inductively coupled plasma mass spectrometry (ICP-MS). MRI images of pregnant mice and ICP-MS analyses of placental and fetal tissue demonstrated undetectably low transplacental permeation of the liposomal Gd agent, while the clinical agent (Multihance) avidly permeated the placental barrier. Image interpretation and diagnostic quality was equivalent between the two contrast agents. Additional testing to determine both maternal and fetal safety of liposomal Gd is suggested.
Collapse
Affiliation(s)
- Anil N Shetty
- Department of Obstetrics and Gynecology, Texas Childrens Hospital, 6621 Fannin Street, Houston, TX 77030, USA
| | - Robia Pautler
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Ketan Ghaghada
- Department of Pediatric Radiology, Texas Children's Hospital, Houston, Texas
| | - David Rendon
- Department of Obstetrics and Gynecology, Texas Childrens Hospital, 6621 Fannin Street, Houston, TX 77030, USA
| | - Haijun Gao
- Department of Obstetrics and Gynecology, Texas Childrens Hospital, 6621 Fannin Street, Houston, TX 77030, USA
| | | | - Rohan Bhavane
- Department of Pediatric Radiology, Texas Children's Hospital, Houston, Texas
| | | | - Ananth Annapragada
- Department of Pediatric Radiology, Texas Children's Hospital, Houston, Texas
| | - Chandrasekhar Yallampalli
- Department of Obstetrics and Gynecology, Texas Childrens Hospital, 6621 Fannin Street, Houston, TX 77030, USA
| | - Wesley Lee
- Department of Obstetrics and Gynecology, Texas Childrens Hospital, 6621 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
59
|
Kirui DK, Ferrari M. Intravital Microscopy Imaging Approaches for Image-Guided Drug Delivery Systems. Curr Drug Targets 2016; 16:528-41. [PMID: 25901526 DOI: 10.2174/1389450116666150330114030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/10/2014] [Accepted: 03/13/2015] [Indexed: 12/31/2022]
Abstract
Rapid technical advances in the field of non-linear microscopy have made intravital microscopy a vital pre-clinical tool for research and development of imaging-guided drug delivery systems. The ability to dynamically monitor the fate of macromolecules in live animals provides invaluable information regarding properties of drug carriers (size, charge, and surface coating), physiological, and pathological processes that exist between point-of-injection and the projected of site of delivery, all of which influence delivery and effectiveness of drug delivery systems. In this Review, we highlight how integrating intravital microscopy imaging with experimental designs (in vitro analyses and mathematical modeling) can provide unique information critical in the design of novel disease-relevant drug delivery platforms with improved diagnostic and therapeutic indexes. The Review will provide the reader an overview of the various applications for which intravital microscopy has been used to monitor the delivery of diagnostic and therapeutic agents and discuss some of their potential clinical applications.
Collapse
Affiliation(s)
| | - Mauro Ferrari
- Houston Methodist Research Institute, Department of NanoMedicine, 6670 Bertner Avenue, MS R8-460, Houston, TX 77030, USA.
| |
Collapse
|
60
|
Kavanaugh TE, Werfel TA, Cho H, Hasty KA, Duvall CL. Particle-based technologies for osteoarthritis detection and therapy. Drug Deliv Transl Res 2016; 6:132-47. [PMID: 25990835 PMCID: PMC4654703 DOI: 10.1007/s13346-015-0234-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Osteoarthritis (OA) is a disease characterized by degradation of joints with the development of painful osteophytes in the surrounding tissues. Currently, there are a limited number of treatments for this disease, and many of these only provide temporary, palliative relief. In this review, we discuss particle-based drug delivery systems that can provide targeted and sustained delivery of imaging and therapeutic agents to OA-affected sites. We focus on technologies such as polymeric micelles and nano-/microparticles, liposomes, and dendrimers for their potential treatment and/or diagnosis of OA. Several promising studies are highlighted, motivating the continued development of delivery technologies to improve treatments for OA.
Collapse
Affiliation(s)
- Taylor E Kavanaugh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Thomas A Werfel
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Hongsik Cho
- University of Tennessee Health Science Center, Memphis, TN, USA
| | - Karen A Hasty
- University of Tennessee Health Science Center, Memphis, TN, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
61
|
Garello F, Vibhute S, Gündüz S, Logothetis NK, Terreno E, Angelovski G. Innovative Design of Ca-Sensitive Paramagnetic Liposomes Results in an Unprecedented Increase in Longitudinal Relaxivity. Biomacromolecules 2016; 17:1303-11. [PMID: 26956911 DOI: 10.1021/acs.biomac.5b01668] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bioresponsive MRI contrast agents sensitive to Ca(II) fluctuations may play a critical role in the development of functional molecular imaging methods to study brain physiology or abnormalities in muscle contraction. A great challenge in their chemistry is the preparation of probes capable of inducing a strong signal variation that could be detected in a robust way. To this end, the incorporation of small molecular weight bioresponsive agents into nanocarriers can improve the overall properties in a few ways: (i) the agent can be delivered into the tissue of interest, increasing the local concentration; (ii) its biokinetic properties and retention time will improve; (iii) the high molecular weight and size of the nanocarrier may cause additional changes in the MRI signal and raise the chances for their detection in functional experiments. In this work, we report the preparation of the new class of liposome-based, Ca-sensitive MRI agents. We synthesized a novel amphiphilic ligand which was incorporated into the liposome bilayer. A remarkable increase of ∼420% in longitudinal relaxivity r1, from 7.3 mM(-1) s(-1) to 38.1 mM(-1) s(-1) at 25 °C and 21.5 MHz in the absence and presence of Ca(II), respectively, was achieved by the most active liposomal formulation. To the best of our knowledge, this is the highest change in r1 observed for Ca-sensitive agents at physiological pH and can be explained by simultaneous Ca-triggered increase in hydration and reduction of local motion of Gd(III) complex, which can be followed at low magnetic fields.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino , Via Nizza 52, 10126 Torino, Italy
| | - Sandip Vibhute
- Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics , 72076 Tübingen, Germany
| | - Serhat Gündüz
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics , Spemannstrasse 41, 72076 Tübingen, Germany
| | - Nikos K Logothetis
- Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics , 72076 Tübingen, Germany.,Department of Imaging Science and Biomedical Engineering, University of Manchester , Manchester M13 9PT, United Kingdom
| | - Enzo Terreno
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino , Via Nizza 52, 10126 Torino, Italy
| | - Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics , Spemannstrasse 41, 72076 Tübingen, Germany
| |
Collapse
|
62
|
Design of Magnetic Nanoparticles for MRI-Based Theranostics. ADVANCES IN NANOTHERANOSTICS II 2016. [DOI: 10.1007/978-981-10-0063-8_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
63
|
Ozdemir A, Ekiz MS, Dilli A, Guler MO, Tekinay AB. Amphiphilic peptide coated superparamagnetic iron oxide nanoparticles for in vivo MR tumor imaging. RSC Adv 2016. [DOI: 10.1039/c6ra07380h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The co-assembled SPION/PA system with its biocompatible and biodegradable properties can be considered as effective nanocomposite system for MR imaging.
Collapse
Affiliation(s)
- Ayse Ozdemir
- Institute of Materials Science and Nanotechnology
- National Nanotechnology Research Center (UNAM)
- Bilkent University
- Turkey
| | - Melis Sardan Ekiz
- Institute of Materials Science and Nanotechnology
- National Nanotechnology Research Center (UNAM)
- Bilkent University
- Turkey
| | - Alper Dilli
- Diskapi Yildirim Beyazit Training and Research Hospital
- Turkey
| | - Mustafa O. Guler
- Institute of Materials Science and Nanotechnology
- National Nanotechnology Research Center (UNAM)
- Bilkent University
- Turkey
| | - Ayse B. Tekinay
- Institute of Materials Science and Nanotechnology
- National Nanotechnology Research Center (UNAM)
- Bilkent University
- Turkey
| |
Collapse
|
64
|
Mustafa R, Zhou B, Yang J, Zheng L, Zhang G, Shi X. Dendrimer-functionalized LAPONITE® nanodisks loaded with gadolinium for T1-weighted MR imaging applications. RSC Adv 2016. [DOI: 10.1039/c6ra18718h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dendrimer-functionalized LAPONITE® nanodisks loaded with gadolinium can be used as an efficient contrast agent for different MR imaging applications.
Collapse
Affiliation(s)
- Rania Mustafa
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Benqing Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Jia Yang
- Department of Radiology
- Shanghai General Hospital
- School of Medicine
- Shanghai Jiaotong University
- Shanghai 200080
| | - Linfeng Zheng
- Department of Radiology
- Shanghai General Hospital
- School of Medicine
- Shanghai Jiaotong University
- Shanghai 200080
| | - Guixiang Zhang
- Department of Radiology
- Shanghai General Hospital
- School of Medicine
- Shanghai Jiaotong University
- Shanghai 200080
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| |
Collapse
|
65
|
HPLC analysis as a tool for assessing targeted liposome composition. Int J Pharm 2016; 497:293-300. [DOI: 10.1016/j.ijpharm.2015.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/06/2015] [Accepted: 11/08/2015] [Indexed: 12/23/2022]
|
66
|
|
67
|
Controlled Synthesis and Surface Modification of Magnetic Nanoparticles with High Performance for Cancer Theranostics Combining Targeted MR Imaging and Hyperthermia. ADVANCES IN NANOTHERANOSTICS II 2016. [DOI: 10.1007/978-981-10-0063-8_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
68
|
Pitchaimani A, Thanh Nguyen TD, Wang H, Bossmann SH, Aryal S. Design and characterization of gadolinium infused theranostic liposomes. RSC Adv 2016. [DOI: 10.1039/c6ra00552g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multifunctional theranostic gadolinium infused liposomes containing the chemotherapeutic drug, doxorubicin (DOX), in its core are designed as potential candidates for diagnosis and therapy of various cancers.
Collapse
Affiliation(s)
- Arunkumar Pitchaimani
- Department of Chemistry
- Kansas State University
- Manhattan
- USA
- Nanotechnology Innovation Center of Kansas State (NICKS)
| | - Tuyen Duong Thanh Nguyen
- Department of Chemistry
- Kansas State University
- Manhattan
- USA
- Nanotechnology Innovation Center of Kansas State (NICKS)
| | - Hongwang Wang
- Department of Chemistry
- Kansas State University
- Manhattan
- USA
| | | | - Santosh Aryal
- Department of Chemistry
- Kansas State University
- Manhattan
- USA
- Nanotechnology Innovation Center of Kansas State (NICKS)
| |
Collapse
|
69
|
Bohara RA, Thorat ND, Pawar SH. Role of functionalization: strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra02129h] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Strategies to bridge the gap between magnetic nanoparticles for their nano bio applications.
Collapse
Affiliation(s)
| | | | - Shivaji H. Pawar
- Centre for Interdisciplinary Research
- D. Y. Patil University
- Kolhapur
- India
| |
Collapse
|
70
|
Ashton JR, West JL, Badea CT. In vivo small animal micro-CT using nanoparticle contrast agents. Front Pharmacol 2015; 6:256. [PMID: 26581654 PMCID: PMC4631946 DOI: 10.3389/fphar.2015.00256] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022] Open
Abstract
Computed tomography (CT) is one of the most valuable modalities for in vivo imaging because it is fast, high-resolution, cost-effective, and non-invasive. Moreover, CT is heavily used not only in the clinic (for both diagnostics and treatment planning) but also in preclinical research as micro-CT. Although CT is inherently effective for lung and bone imaging, soft tissue imaging requires the use of contrast agents. For small animal micro-CT, nanoparticle contrast agents are used in order to avoid rapid renal clearance. A variety of nanoparticles have been used for micro-CT imaging, but the majority of research has focused on the use of iodine-containing nanoparticles and gold nanoparticles. Both nanoparticle types can act as highly effective blood pool contrast agents or can be targeted using a wide variety of targeting mechanisms. CT imaging can be further enhanced by adding spectral capabilities to separate multiple co-injected nanoparticles in vivo. Spectral CT, using both energy-integrating and energy-resolving detectors, has been used with multiple contrast agents to enable functional and molecular imaging. This review focuses on new developments for in vivo small animal micro-CT using novel nanoparticle probes applied in preclinical research.
Collapse
Affiliation(s)
- Jeffrey R Ashton
- Department of Biomedical Engineering, Duke University, Durham NC, USA ; Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham NC, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Cristian T Badea
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham NC, USA
| |
Collapse
|
71
|
Abstract
Nanoparticle imaging agents for vascular pathologies are in development, and some agents are already in clinical trials. Untargeted agents, with long circulation, are excellent blood-pool agents, but molecularly targeted agents have significant advantages due to the signal enhancement possible with nanoparticle presentation of the contrast agent molecules. Molecular targets that are accessible directly from the vasculature are optimal for such agents. Targets that are removed from the vasculature, such as those on tumor cell surfaces, have limited accessibility owing to the enhanced permeation and retention effect. Yet, efforts at molecular targeting have tested small molecules, peptides, antibodies, and most recently aptamers as possible targeting ligands. The future is bright for nanoparticle-based imaging of vascular pathologies.
Collapse
Affiliation(s)
- Ananth Annapragada
- The Singleton Department of Pediatric Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas 77030;
| |
Collapse
|
72
|
Fontes A, Karimi S, Helm L, Ferreira PM, André JP. PEGylated DOTA‐AHA‐Based Gd
III
Chelates: A Relaxometric Study. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- André Fontes
- Centro de Química, Campus de Gualtar, Universidade do Minho, 4710‐057 Braga, Portugal http://www.quimica.uminho.pt/
| | - Shima Karimi
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland http://www.gcib.epfl.ch/helm
| | - Lothar Helm
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland http://www.gcib.epfl.ch/helm
| | - Paula M. Ferreira
- Centro de Química, Campus de Gualtar, Universidade do Minho, 4710‐057 Braga, Portugal http://www.quimica.uminho.pt/
| | - João P. André
- Centro de Química, Campus de Gualtar, Universidade do Minho, 4710‐057 Braga, Portugal http://www.quimica.uminho.pt/
| |
Collapse
|
73
|
MRI for Crohn's Disease: Present and Future. BIOMED RESEARCH INTERNATIONAL 2015; 2015:786802. [PMID: 26413543 PMCID: PMC4564596 DOI: 10.1155/2015/786802] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/09/2014] [Accepted: 12/11/2014] [Indexed: 12/18/2022]
Abstract
Crohn's disease (CD) is a chronic inflammatory condition with relapsing-remitting behavior, often causing strictures or penetrating bowel damage. Its lifelong clinical course necessitates frequent assessment of disease activity and complications. Computed tomography (CT) enterography has been used as primary imaging modality; however, the concern for radiation hazard limits its use especially in younger population. Magnetic resonance (MR) imaging has advantages of avoiding radiation exposure, lower incidence of adverse events, ability to obtain dynamic information, and good soft-tissue resolution. MR enterography (MRE) with oral contrast agent has been used as primary MR imaging modality of CD with high sensitivity, specificity, and interobserver agreement. The extent of inflammation as well as transmural ulcers and fibrostenotic diseases can be detected with MRE. Novel MR techniques such as diffusion-weighted MRI (DWI), motility study, PET-MRI, and molecular imaging are currently investigated for further improvement of diagnosis and management of CD. MR spectroscopy is a remarkable molecular imaging tool to analyze metabolic profile of CD with human samples such as plasma, urine, or feces, as well as colonic mucosa itself.
Collapse
|
74
|
Fluorophore-tagged superparamagnetic iron oxide nanoparticles as bimodal contrast agents for MR/optical imaging. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2015. [DOI: 10.1007/s13738-015-0715-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
75
|
Gu MJ, Li KF, Zhang LX, Wang H, Liu LS, Zheng ZZ, Han NY, Yang ZJ, Fan TY. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging. Int J Nanomedicine 2015; 10:5187-204. [PMID: 26316749 PMCID: PMC4544817 DOI: 10.2147/ijn.s84351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Novel gadolinium-loaded liposomes guided by GBI-10 aptamer were developed and evaluated in vitro to enhance magnetic resonance imaging (MRI) diagnosis of tumor. Nontargeted gadolinium-loaded liposomes were achieved by incorporating amphipathic material, Gd (III) [N,N-bis-stearylamidomethyl-N'-amidomethyl] diethylenetriamine tetraacetic acid, into the liposome membrane using lipid film hydration method. GBI-10, as the targeting ligand, was then conjugated onto the liposome surface to get GBI-10-targeted gadolinium-loaded liposomes (GTLs). Both nontargeted gadolinium-loaded liposomes and GTLs displayed good dispersion stability, optimal size, and zeta potential for tumor targeting, as well as favorable imaging properties with enhanced relaxivity compared with a commercial MRI contrast agent (CA), gadopentetate dimeglumine. The use of GBI-10 aptamer in this liposomal system was intended to result in increased accumulation of gadolinium at the periphery of C6 glioma cells, where the targeting extracellular matrix protein tenascin-C is overexpressed. Increased cellular binding of GTLs to C6 cells was confirmed by confocal microscopy, flow cytometry, and MRI, demonstrating the promise of this novel delivery system as a carrier of MRI contrast agent for the diagnosis of tumor. These studies provide a new strategy furthering the development of nanomedicine for both diagnosis and therapy of tumor.
Collapse
Affiliation(s)
- Meng-Jie Gu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Kun-Feng Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Lan-Xin Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Huan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Li-Si Liu
- Department of Radiology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Zhuo-Zhao Zheng
- Department of Radiology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Nan-Yin Han
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Zhen-Jun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Tian-Yuan Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| |
Collapse
|
76
|
Filippi M, Patrucco D, Martinelli J, Botta M, Castro-Hartmann P, Tei L, Terreno E. Novel stable dendrimersome formulation for safe bioimaging applications. NANOSCALE 2015; 7:12943-12954. [PMID: 26167654 DOI: 10.1039/c5nr02695d] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Dendrimersomes are nanosized vesicles constituted by amphiphilic Janus dendrimers (JDs), which have been recently proposed as innovative nanocarriers for biomedical applications. Recently, we have demonstrated that dendrimersomes self-assembled from (3,5)12G1-PE-BMPA-G2-(OH)8 dendrimers can be successfully loaded with hydrophilic and amphiphilic imaging contrast agents. Here, we present two newly synthesized low generation isomeric JDs: JDG0G1(3,5) and JDG0G1(3,4). Though less branched than the above-cited dendrimers, they retain the ability to form self-assembled, almost monodisperse vesicular nanoparticles. This contribution reports on the characterization of such nanovesicles loaded with the clinically approved MRI probe Gadoteridol and the comparison with the related nanoparticles assembled from more branched dendrimers. Special emphasis was given to the in vitro stability test of the systems in biologically relevant media, complemented by preliminary in vivo data about blood circulation lifetime collected from healthy mice. The results point to very promising safety and stability profiles of the nanovesicles, in particular for those made of JDG0G1(3,5), whose spontaneous self-organization in water gives rise to a homogeneous suspension. Importantly, the blood lifetimes of these systems are comparable to those of standard liposomes. By virtue of the reported results, the herein presented nanovesicles augur well for future use in a variety of biomedical applications.
Collapse
Affiliation(s)
- M Filippi
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Centro di Imaging Molecolare e Preclinico, Università degli Studi di Torino, Via Nizza 52, Torino, 10126, Italy.
| | | | | | | | | | | | | |
Collapse
|
77
|
Bakermans AJ, Abdurrachim D, Moonen RPM, Motaal AG, Prompers JJ, Strijkers GJ, Vandoorne K, Nicolay K. Small animal cardiovascular MR imaging and spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 88-89:1-47. [PMID: 26282195 DOI: 10.1016/j.pnmrs.2015.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
The use of MR imaging and spectroscopy for studying cardiovascular disease processes in small animals has increased tremendously over the past decade. This is the result of the remarkable advances in MR technologies and the increased availability of genetically modified mice. MR techniques provide a window on the entire timeline of cardiovascular disease development, ranging from subtle early changes in myocardial metabolism that often mark disease onset to severe myocardial dysfunction associated with end-stage heart failure. MR imaging and spectroscopy techniques play an important role in basic cardiovascular research and in cardiovascular disease diagnosis and therapy follow-up. This is due to the broad range of functional, structural and metabolic parameters that can be quantified by MR under in vivo conditions non-invasively. This review describes the spectrum of MR techniques that are employed in small animal cardiovascular disease research and how the technological challenges resulting from the small dimensions of heart and blood vessels as well as high heart and respiratory rates, particularly in mice, are tackled.
Collapse
Affiliation(s)
- Adrianus J Bakermans
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Desiree Abdurrachim
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rik P M Moonen
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Abdallah G Motaal
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katrien Vandoorne
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
78
|
Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T. Noninvasive Imaging of Nanomedicines and Nanotheranostics: Principles, Progress, and Prospects. Chem Rev 2015; 115:10907-37. [PMID: 26166537 DOI: 10.1021/cr500314d] [Citation(s) in RCA: 305] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sijumon Kunjachan
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging (ExMI), University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Josef Ehling
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging (ExMI), University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Gert Storm
- Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University , Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Fabian Kiessling
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging (ExMI), University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging (ExMI), University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstrasse 30, 52074 Aachen, Germany.,Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University , Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
79
|
Juenet M, Varna M, Aid-Launais R, Chauvierre C, Letourneur D. Nanomedicine for the molecular diagnosis of cardiovascular pathologies. Biochem Biophys Res Commun 2015; 468:476-84. [PMID: 26129770 DOI: 10.1016/j.bbrc.2015.06.138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/20/2015] [Indexed: 11/15/2022]
Abstract
Predicting acute clinical events caused by atherosclerotic plaque rupture remains a clinical challenge. Anatomic mapping of the vascular tree provided by standard imaging technologies is not always sufficient for a robust diagnosis. Yet biological mechanisms leading to unstable plaques have been identified and corresponding biomarkers have been described. Nanosystems charged with contrast agents and targeted towards these specific biomarkers have been developed for several types of imaging modalities. The first systems that have reached the clinic are ultrasmall superparamagnetic iron oxides for Magnetic Resonance Imaging. Their potential relies on their passive accumulation by predominant physiological mechanisms in rupture-prone plaques. Active targeting strategies are under development to improve their specificity and set up other types of nanoplatforms. Preclinical results show a huge potential of nanomedicine for cardiovascular diagnosis, as long as the safety of these nanosystems in the body is studied in depth.
Collapse
Affiliation(s)
- Maya Juenet
- Inserm, U1148, Cardiovascular Bio-Engineering, X. Bichat Hospital, 75018, Paris, France; Université Paris 13, Institut Galilée, Sorbonne Paris Cité, 75018, Paris, France
| | - Mariana Varna
- Inserm, U1148, Cardiovascular Bio-Engineering, X. Bichat Hospital, 75018, Paris, France; Université Paris 13, Institut Galilée, Sorbonne Paris Cité, 75018, Paris, France
| | - Rachida Aid-Launais
- Inserm, U1148, Cardiovascular Bio-Engineering, X. Bichat Hospital, 75018, Paris, France; Université Paris 13, Institut Galilée, Sorbonne Paris Cité, 75018, Paris, France
| | - Cédric Chauvierre
- Inserm, U1148, Cardiovascular Bio-Engineering, X. Bichat Hospital, 75018, Paris, France; Université Paris 13, Institut Galilée, Sorbonne Paris Cité, 75018, Paris, France.
| | - Didier Letourneur
- Inserm, U1148, Cardiovascular Bio-Engineering, X. Bichat Hospital, 75018, Paris, France; Université Paris 13, Institut Galilée, Sorbonne Paris Cité, 75018, Paris, France
| |
Collapse
|
80
|
Hirschbiel AF, Schmidt BVKJ, Krolla-Sidenstein P, Blinco JP, Barner-Kowollik C. Photochemical Design of Stimuli-Responsive Nanoparticles Prepared by Supramolecular Host–Guest Chemistry. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00923] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Astrid F. Hirschbiel
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
| | | | | | - James P. Blinco
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George St., 4001 Brisbane, Queensland, Australia
| | - Christopher Barner-Kowollik
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George St., 4001 Brisbane, Queensland, Australia
| |
Collapse
|
81
|
Gargam N, Darrasse L, Raynaud JS, Ginefri JC, Robert P, Poirier-Quinot M. Experimental system to detect a labeled cell monolayer in a microfluidic environment. J Magn Reson Imaging 2015; 42:1100-5. [DOI: 10.1002/jmri.24893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/23/2015] [Indexed: 01/17/2023] Open
|
82
|
Carney CE, Lenov IL, Baker CJ, MacRenaris KW, Eckermann AL, Sligar SG, Meade TJ. Nanodiscs as a Modular Platform for Multimodal MR-Optical Imaging. Bioconjug Chem 2015; 26:899-905. [PMID: 25830565 DOI: 10.1021/acs.bioconjchem.5b00107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanodiscs are monodisperse, self-assembled discoidal particles that consist of a lipid bilayer encircled by membrane scaffold proteins (MSP). Nanodiscs have been used to solubilize membrane proteins for structural and functional studies and deliver therapeutic phospholipids. Herein, we report on tetramethylrhodamine (TMR) tagged nanodiscs that solubilize lipophilic MR contrast agents for generation of multimodal nanoparticles for cellular imaging. We incorporate both multimeric and monomeric Gd(III)-based contrast agents into nanodiscs and show that particles containing the monomeric agent (ND2) label cells with high efficiency and generate significant image contrast at 7 T compared to nanodiscs containing the multimeric agent (ND1) and Prohance, a clinically approved contrast agent.
Collapse
Affiliation(s)
- Christiane E Carney
- †Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ivan L Lenov
- ‡Department of Biochemistry, 505 South Goodwin Avenue, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Catherine J Baker
- ‡Department of Biochemistry, 505 South Goodwin Avenue, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Keith W MacRenaris
- †Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Amanda L Eckermann
- †Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Stephen G Sligar
- ‡Department of Biochemistry, 505 South Goodwin Avenue, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Thomas J Meade
- †Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
83
|
Fabrication and Characterization of Gd-DTPA-Loaded Chitosan-Poly(Acrylic Acid) Nanoparticles for Magnetic Resonance Imaging. Macromol Biosci 2015; 15:1105-14. [DOI: 10.1002/mabi.201500034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/11/2015] [Indexed: 11/07/2022]
|
84
|
Sigward E, Corvis Y, Doan BT, Kindsiko K, Seguin J, Scherman D, Brossard D, Mignet N, Espeau P, Crauste-Manciet S. Preparation and Evaluation of Multiple Nanoemulsions Containing Gadolinium (III) Chelate as a Potential Magnetic Resonance Imaging (MRI) Contrast Agent. Pharm Res 2015; 32:2983-94. [PMID: 25805598 DOI: 10.1007/s11095-015-1680-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/18/2015] [Indexed: 02/06/2023]
Abstract
PURPOSE The objective was to develop, characterize and assess the potentiality of W1/O/W2 self-emulsifying multiple nanoemulsions to enhance signal/noise ratio for Magnetic Resonance Imaging (MRI). METHODS For this purpose, a new formulation, was designed for encapsulation efficiency and stability. Various methods were used to characterize encapsulation efficiency ,in particular calorimetric methods (Differential Scanning Calorimetry (DSC), thermogravimetry analysis) and ultrafiltration. MRI in vitro relaxivities were assessed on loaded DTPA-Gd multiple nanoemulsions. RESULTS Characterization of the formulation, in particular of encapsulation efficiency was a challenge due to interactions found with ultrafiltration method. Thanks to the specifically developed DSC protocol, we were able to confirm the formation of multiple nanoemulsions, differentiate loaded from unloaded nanoemulsions and measure the encapsulation efficiency which was found to be quite high with a 68% of drug loaded. Relaxivity studies showed that the self-emulsifying W/O/W nanoemulsions were positive contrast agents, exhibiting higher relaxivities than those of the DTPA-Gd solution taken as a reference. CONCLUSION New self-emulsifying multiple nanoemulsions that were able to load satisfactory amounts of contrasting agent were successfully developed as potential MRI contrasting agents. A specific DSC protocol was needed to be developed to characterize these complex systems as it would be useful to develop these self-formation formulations.
Collapse
Affiliation(s)
- Estelle Sigward
- U1022 INSERM, UMR8258 CNRS, Unité de Technologies Chimiques et Biologiques pour la Santé, Chimie ParisTech, Faculty of Pharmacy, Paris Descartes University, Sorbone Paris Cité, 75006, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Sattarahmady N, Zare T, Mehdizadeh AR, Azarpira N, Heidari M, Lotfi M, Heli H. Dextrin-coated zinc substituted cobalt-ferrite nanoparticles as an MRI contrast agent: In vitro and in vivo imaging studies. Colloids Surf B Biointerfaces 2015; 129:15-20. [PMID: 25819361 DOI: 10.1016/j.colsurfb.2015.03.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/03/2015] [Accepted: 03/06/2015] [Indexed: 11/15/2022]
Abstract
Application of superparamagnetic iron oxide nanoparticles (NPs) as a negative contrast agent in magnetic resonance imaging (MRI) has been of widespread interest. These particles can enhance contrast of images by altering the relaxation times of the water protons. In this study, dextrin-coated zinc substituted cobalt-ferrite (Zn0.5Co0.5Fe2O4) NPs were synthesized by a co-precipitation method, and the morphology, size, structure and magnetic properties of the NPs were investigated. These NPs had superparamagnetic behavior with an average size of 3.9 (±0.9, n=200)nm measured by transmission electron microscopy. Measurements on the relaxivities (r2 and r2(*)) of the NPs were performed in vitro by agarose phantom. In addition, after subcutaneous injection of the NPs into C540 cell line in C-57 inbred mice, the relaxivities were measured in vivo by a 1.5T MRI system. These NPs could effectively increase the image contrast in both T2-and T2(*)-weighted samples.
Collapse
Affiliation(s)
- N Sattarahmady
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - T Zare
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A R Mehdizadeh
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Heidari
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Lotfi
- Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - H Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Nanomedicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
86
|
Nejadnik H, Ye D, Lenkov OD, Donig J, Martin JE, Castillo R, Derugin N, Sennino B, Rao J, Daldrup-Link HE. Magnetic resonance imaging of stem cell apoptosis in arthritic joints with a caspase activatable contrast agent. ACS NANO 2015; 9:1150-60. [PMID: 25597243 PMCID: PMC4441518 DOI: 10.1021/nn504494c] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
About 43 million individuals in the U.S. encounter cartilage injuries due to trauma or osteoarthritis, leading to joint pain and functional disability. Matrix-associated stem cell implants (MASI) represent a promising approach for repair of cartilage defects. However, limited survival of MASI creates a significant bottleneck for successful cartilage regeneration outcomes and functional reconstitution. We report an approach for noninvasive detection of stem cell apoptosis with magnetic resonance imaging (MRI), based on a caspase-3-sensitive nanoaggregation MRI probe (C-SNAM). C-SNAM self-assembles into nanoparticles after hydrolysis by caspase-3, leading to 90% amplification of (1)H MR signal and prolonged in vivo retention. Following intra-articular injection, C-SNAM causes significant MR signal enhancement in apoptotic MASI compared to viable MASI. Our results indicate that C-SNAM functions as an imaging probe for stem cell apoptosis in MASI. This concept could be applied to a broad range of cell transplants and target sites.
Collapse
Affiliation(s)
- Hossein Nejadnik
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, CA
| | - Deju Ye
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, CA
| | - Olga D. Lenkov
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, CA
| | - Jessica Donig
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, CA
| | - John E. Martin
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, CA
| | - Rostislav Castillo
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, CA
| | - Nikita Derugin
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, CA
| | - Barbara Sennino
- Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California San Francisco, San Francisco, CA
| | - Jianghong Rao
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, CA
| | - Heike E. Daldrup-Link
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, CA
| |
Collapse
|
87
|
Fontes A, Karimi S, Helm L, Yulikov M, Ferreira PM, André JP. Dinuclear DOTA-Based GdIIIChelates - Revisiting a Straightforward Strategy for Relaxivity Improvement. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201403159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
88
|
Schwarz B, Douglas T. Development of virus-like particles for diagnostic and prophylactic biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:722-35. [PMID: 25677105 DOI: 10.1002/wnan.1336] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/13/2014] [Accepted: 12/30/2014] [Indexed: 02/06/2023]
Abstract
As ordered nanoscale architectures, viruses and virus-like particles (VLPs) remain unsurpassed by synthetic strategies to produce uniform and symmetric nanoparticles. Maintaining or mimicking the symmetry of pathogenic viruses, VLPs offer a ready platform for facilitating recognition, uptake, and processing by the immune system. An emerging understanding of how viruses interact with the immune system offers a means of precisely designing nanoparticles for biomedical use, both with respect to the structure of the particle as well as their ability to stimulate the immune system. Here we discuss recent advances by our group toward two parallel and complementary applications of VLPs, derived primarily from plants, bacteriophage, and nonviral sources, in biomedicine: diagnostic imaging and rational vaccine design. First we discuss advances in increasing VLP payloads of gadolinium magnetic resonance imaging (MRI) contrast agent as well as controlling the characteristics of individual gadolinium containing molecules to increase efficacy. In order to better understand the in vivo potential of VLP constructs, we then discuss the interface of protein-cages and the immune system beginning with the nonspecific innate immune system stimulation and continuing into the use of nonpathogenic VLPs as scaffolds for specific antigen presentation and control of the immune response.
Collapse
Affiliation(s)
- Benjamin Schwarz
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| |
Collapse
|
89
|
Wang K, Pan D, Schmieder AH, Senpan A, Hourcade DE, Pham CTN, Mitchell LM, Caruthers SD, Cui G, Wickline SA, Shen B, Lanza GM. Synergy between surface and core entrapped metals in a mixed manganese-gadolinium nanocolloid affords safer MR imaging of sparse biomarkers. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:601-9. [PMID: 25652900 DOI: 10.1016/j.nano.2014.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/09/2014] [Accepted: 12/13/2014] [Indexed: 12/14/2022]
Abstract
High-relaxivity T1-weighted (T1w) MR molecular imaging nanoparticles typically present high surface gadolinium payloads that can elicit significant acute complement activation (CA). The objective of this research was to develop a high T1w contrast nanoparticle with improved safety. We report the development, optimization, and characterization of a gadolinium-manganese hybrid nanocolloid (MnOL-Gd NC; 138±10 (Dav)/nm; PDI: 0.06; zeta: -27±2 mV). High r1 particulate relaxivity with minute additions of Gd-DOTA-lipid conjugate to the MnOL nanocolloid surface achieved an unexpected paramagnetic synergism. This hybrid MnOL-Gd NC provided optimal MR TSE signal intensity at 5 nM/voxel and lower levels consistent with the level expression anticipated for sparse biomarkers, such as neovascular integrins. MnOL NC produced optimal MR TSE signal intensity at 10 nM/voxel concentrations and above. Importantly, MnOL-Gd NC avoided acute CA in vitro and in vivo while retaining minimal transmetallation risk. From the clinical editor: The authors developed a gadolinium-manganese hybrid nanocolloid (MnOL-Gd NC) in this study. These were used as a high-relaxivity paramagnetic MR molecular imaging agent in experimental models. It was shown that MnOL-Gd NC could provide high T1w MR contrast for targeted imaging. As the level of gadolinium used was reduced, there was also reduced risk of systemic side effects from complement activation.
Collapse
Affiliation(s)
- Kezheng Wang
- Department of Radiology, the Fourth Hospital of Harbin Medical University Molecular Imaging Center of Harbin Medical University, Harbin, China; Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dipanjan Pan
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anne H Schmieder
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Angana Senpan
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis E Hourcade
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christine T N Pham
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lynne M Mitchell
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shelton D Caruthers
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Grace Cui
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel A Wickline
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Baozhong Shen
- Department of Radiology, the Fourth Hospital of Harbin Medical University Molecular Imaging Center of Harbin Medical University, Harbin, China.
| | - Gregory M Lanza
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
90
|
Mulder WJM, Jaffer FA, Fayad ZA, Nahrendorf M. Imaging and nanomedicine in inflammatory atherosclerosis. Sci Transl Med 2015; 6:239sr1. [PMID: 24898749 DOI: 10.1126/scitranslmed.3005101] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioengineering provides unique opportunities to better understand and manage atherosclerotic disease. The field is entering a new era that merges the latest biological insights into inflammatory disease processes with targeted imaging and nanomedicine. Preclinical cardiovascular molecular imaging allows the in vivo study of targeted nanotherapeutics specifically directed toward immune system components that drive atherosclerotic plaque development and complication. The first multicenter trials highlight the potential contribution of multimodality imaging to more efficient drug development. This review describes how the integration of engineering, nanotechnology, and cardiovascular immunology may yield precision diagnostics and efficient therapeutics for atherosclerosis and its ischemic complications.
Collapse
Affiliation(s)
- Willem J M Mulder
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA. Department of Vascular Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| | - Farouc A Jaffer
- Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
91
|
Wang H, Shrestha TB, Basel MT, Pyle M, Toledo Y, Konecny A, Thapa P, Ikenberry M, Hohn KL, Chikan V, Troyer DL, Bossmann SH. Hexagonal magnetite nanoprisms: preparation, characterization and cellular uptake. J Mater Chem B 2015; 3:4647-4653. [DOI: 10.1039/c5tb00340g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nearly perfect hexagonal Fe3O4 nanoplatelet structures, with edge length of 45 ± 5 nm and thickness of 5 to 6 nm were synthesized from iron(iii) acetylacetonate using the dual ligand system oleic and stearic acid.
Collapse
Affiliation(s)
- H. Wang
- Kansas State University, Department of Chemistry
- Manhattan
- USA
| | - T. B. Shrestha
- Kansas State University
- Department of Anatomy & Physiology
- Manhattan
- USA
| | - M. T. Basel
- Kansas State University
- Department of Anatomy & Physiology
- Manhattan
- USA
| | - M. Pyle
- Kansas State University
- Department of Anatomy & Physiology
- Manhattan
- USA
| | - Y. Toledo
- Kansas State University, Department of Chemistry
- Manhattan
- USA
| | - A. Konecny
- Kansas State University, Department of Chemistry
- Manhattan
- USA
| | - P. Thapa
- University of Kansas
- Microscopy and Analytical Imaging Laboratory
- Lawrence
- USA
| | - M. Ikenberry
- Kansas State University
- Department of Chemical Engineering
- Manhattan
- USA
| | - K. L. Hohn
- Kansas State University
- Department of Chemical Engineering
- Manhattan
- USA
| | - V. Chikan
- Kansas State University, Department of Chemistry
- Manhattan
- USA
| | - D. L. Troyer
- Kansas State University
- Department of Anatomy & Physiology
- Manhattan
- USA
| | - S. H. Bossmann
- Kansas State University, Department of Chemistry
- Manhattan
- USA
| |
Collapse
|
92
|
Garello F, Arena F, Cutrin JC, Esposito G, D'Angeli L, Cesano F, Filippi M, Figueiredo S, Terreno E. Glucan particles loaded with a NIRF agent for imaging monocytes/macrophages recruitment in a mouse model of rheumatoid arthritis. RSC Adv 2015. [DOI: 10.1039/c5ra00720h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We report here thein vivorecruitment of immune cells in inflamed sites on a mouse model of rheumatoid arthritis (CIA) by NIRF imaging of fluorescent glucan microspheres (GPs).
Collapse
Affiliation(s)
- Francesca Garello
- Molecular & Preclinical Imaging Centres
- Department of Molecular Biotechnology and Health Sciences
- University of Torino
- Torino
- Italy
| | - Francesca Arena
- Molecular & Preclinical Imaging Centres
- Department of Molecular Biotechnology and Health Sciences
- University of Torino
- Torino
- Italy
| | - Juan Carlos Cutrin
- Molecular & Preclinical Imaging Centres
- Department of Molecular Biotechnology and Health Sciences
- University of Torino
- Torino
- Italy
| | - Giovanna Esposito
- Molecular & Preclinical Imaging Centres
- Department of Molecular Biotechnology and Health Sciences
- University of Torino
- Torino
- Italy
| | - Luca D'Angeli
- Molecular & Preclinical Imaging Centres
- Department of Molecular Biotechnology and Health Sciences
- University of Torino
- Torino
- Italy
| | | | - Miriam Filippi
- Molecular & Preclinical Imaging Centres
- Department of Molecular Biotechnology and Health Sciences
- University of Torino
- Torino
- Italy
| | - Sara Figueiredo
- Molecular & Preclinical Imaging Centres
- Department of Molecular Biotechnology and Health Sciences
- University of Torino
- Torino
- Italy
| | - Enzo Terreno
- Molecular & Preclinical Imaging Centres
- Department of Molecular Biotechnology and Health Sciences
- University of Torino
- Torino
- Italy
| |
Collapse
|
93
|
Affiliation(s)
- Kunikazu Moribe
- Department of Pharmaceutical Technology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Kenjirou Higashi
- Department of Pharmaceutical Technology, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
94
|
Liu J, Detrembleur C, Mornet S, Jérôme C, Duguet E. Design of hybrid nanovehicles for remotely triggered drug release: an overview. J Mater Chem B 2015; 3:6117-6147. [DOI: 10.1039/c5tb00664c] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review addresses the advantages of remote triggers, e.g. ultrasounds, near infrared light and alternating magnetic fields, the fabrication of the hybrid nanovehicles, the release mechanisms and the next challenges.
Collapse
Affiliation(s)
- Ji Liu
- Centre for Education and Research on Macromolecules (CERM)
- University of Liege
- Chemistry Department
- B-4000 Liège
- Belgium
| | - Christophe Detrembleur
- Centre for Education and Research on Macromolecules (CERM)
- University of Liege
- Chemistry Department
- B-4000 Liège
- Belgium
| | | | - Christine Jérôme
- Centre for Education and Research on Macromolecules (CERM)
- University of Liege
- Chemistry Department
- B-4000 Liège
- Belgium
| | | |
Collapse
|
95
|
Filippi M, Remotti D, Botta M, Terreno E, Tei L. GdDOTAGA(C18)2: an efficient amphiphilic Gd(iii) chelate for the preparation of self-assembled high relaxivity MRI nanoprobes. Chem Commun (Camb) 2015; 51:17455-8. [DOI: 10.1039/c5cc06032j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MRI-nanoprobes endowed with improved relaxivity, incorporation stability and in vivo MRI efficiency were prepared using a newly synthesized amphiphilic GdDOTA-like complex.
Collapse
Affiliation(s)
- M. Filippi
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute
- Centro di Imaging Molecolare e Preclinico
- Università degli Studi di Torino
- Torino
- Italy
| | - D. Remotti
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale “Amedeo Avogadro”
- Alessandria
- Italy
| | - M. Botta
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale “Amedeo Avogadro”
- Alessandria
- Italy
| | - E. Terreno
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute
- Centro di Imaging Molecolare e Preclinico
- Università degli Studi di Torino
- Torino
- Italy
| | - L. Tei
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale “Amedeo Avogadro”
- Alessandria
- Italy
| |
Collapse
|
96
|
Abstract
The recent research progress in biological and biomedical applications of hyperbranched polymers has been summarized in this review.
Collapse
Affiliation(s)
- Dali Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Tianyu Zhao
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Wenxin Wang
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| |
Collapse
|
97
|
Luo D, Carter KA, Lovell JF. Nanomedical engineering: shaping future nanomedicines. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:169-88. [PMID: 25377691 DOI: 10.1002/wnan.1315] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/05/2014] [Accepted: 09/27/2014] [Indexed: 12/15/2022]
Abstract
Preclinical research in the field of nanomedicine continues to produce a steady stream of new nanoparticles with unique capabilities and complex properties. With improvements come promising treatments for diseases, with the ultimate goal of clinical translation and better patient outcomes compared with current standards of care. Here, we outline engineering considerations for nanomedicines, with respect to design criteria, targeting, and stimuli-triggered drug release strategies. General properties, clinical relevance, and current research advances of various nanomedicines are discussed in light of how these will realize their potential and shape the future of the field.
Collapse
Affiliation(s)
- Dandan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | | | | |
Collapse
|
98
|
Guo W, Yang W, Wang Y, Sun X, Liu Z, Zhang B, Chang J, Chen X. Color Tunable Gd-Zn-Cu-In-S/ZnS Quantum Dots for Dual Modality Magnetic Resonance and Fluorescence Imaging. NANO RESEARCH 2014; 7:1581-1591. [PMID: 25485043 PMCID: PMC4254824 DOI: 10.1007/s12274-014-0518-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Inorganic nanoparticles have been introduced into biological systems as useful probes for in vitro diagnosis and in vivo imaging, due to their relatively small size and exceptional physical and chemical properties. A new kind of color tunable Gd-Zn-Cu-In-S/ZnS (GZCIS/ZnS) quantum dots (QDs) with stable crystal structure was successfully synthesized and utilized for magnetic resonance (MR) and fluorescence dual modality imaging. This strategy allows successful fabrication of GZCIS/ZnS QDs by incorporating Gd into ZCIS/ZnS QDs to achieve great MR enhancement without compromising the fluorescence properties of the initial ZCIS/ZnS QDs. The as-prepared GZCIS/ZnS QDs show high T1 MR contrast as well as "color-tunable" photoluminescence (PL) in the range of 550-725 nm by adjusting the Zn/Cu feeding ratio with high PL quantum yield (QY). The GZCIS/ZnS QDs were transferred into water via a bovine serum albumin (BSA) coating strategy. The resulting Cd-free GZCIS/ZnS QDs reveal negligible cytotoxicity on both HeLa and A549 cells. Both fluorescence and MR imaging studies were successfully performed in vitro and in vivo. The results demonstrated that GZCIS/ZnS QDs could be a dual-modal contrast agent to simultaneously produce strong MR contrast enhancement as well as fluorescence emission for in vivo imaging.
Collapse
Affiliation(s)
- Weisheng Guo
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin University and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin, 300072, China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Weitao Yang
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin University and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin, 300072, China
| | - Yu Wang
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Xiaolian Sun
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhongyun Liu
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin University and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin, 300072, China
| | - Bingbo Zhang
- The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jin Chang
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin University and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin, 300072, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
99
|
Wang W, Xu D, Wei X, Chen K. Magnetic-luminescent YbPO4:Er,Dy microspheres designed for tumor theranostics with synergistic effect of photodynamic therapy and chemotherapy. Int J Nanomedicine 2014; 9:4879-91. [PMID: 25364246 PMCID: PMC4211918 DOI: 10.2147/ijn.s62678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this paper, magnetic and fluorescent bifunctional YbPO4:Er,Dy microspheres were synthesized via a simple solvothermal method. The prepared microspheres exposed to 980 nm near-infrared (NIR) laser light emitted bright upconversion fluorescence (450-570 nm) after calcination at high temperatures (>800°C). Results of magnetic resonance studies demonstrated that the YbPO4:Er,Dy microspheres are more suitable to be used as a transverse relaxation time (negative) contrast magnetic resonance imaging agent. The microspheres successfully entered the human hepatocellular carcinoma cells and presented low toxicity. A well-selected photodynamic therapy (PDT) drug, merocyanine 540 (MC540) with an ultraviolet-visible spectroscopy absorption maximum of 540 nm, was loaded onto the microspheres to obtain YbPO4:Er,Dy-MC540. Since the upconversion fluorescence emitting from the microspheres could be absorbed by MC540 with a small absorption/emission disparity, YbPO4:Er,Dy-MC540 could kill the hepatocellular carcinoma cells via PDT mechanism effectively. In other words, being upconverting particles, the prepared microspheres acted as light transducers in the NIR light-triggered PDT process. A chemotherapy drug, doxorubicin, was further loaded onto YbPO4:Er,Dy-MC540 to achieve enhanced antitumor effect based on synergistic therapeutic efficacy of PDT and chemotherapy. It is expected that the prepared YbPO4:Er,Dy microspheres have applications in tumor theranostics including magnetic-fluorescent bimodal imaging and NIR light-triggered PDT.
Collapse
Affiliation(s)
- Wei Wang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Dong Xu
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Xiaojun Wei
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Kezheng Chen
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
100
|
Samanta A, Ravoo BJ. Magnetic Separation of Proteins by a Self-Assembled Supramolecular Ternary Complex. Angew Chem Int Ed Engl 2014; 53:12946-50. [DOI: 10.1002/anie.201405849] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/18/2014] [Indexed: 12/19/2022]
|