51
|
Wang X, He B, Shi J, Li Q, Zhu HJ. Comparative Proteomics Analysis of Human Liver Microsomes and S9 Fractions. Drug Metab Dispos 2019; 48:31-40. [PMID: 31699809 DOI: 10.1124/dmd.119.089235] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/30/2019] [Indexed: 01/09/2023] Open
Abstract
Human liver microsomes (HLM) and human liver S9 fractions (HLS9) are commonly used to study drug metabolism in vitro. However, a quantitative comparison of HLM and HLS9 proteomes is lacking, resulting in the arbitrary selection of one hepatic preparation over another and in difficulties with data interpretation. In this study, we applied a label-free global absolute quantitative proteomics method to the analysis of HLS9 and the corresponding HLM prepared from 102 individual human livers. A total of 3137 proteins were absolutely quantified, and 3087 of those were determined in both HLM and HLS9. Protein concentrations were highly correlated between the two hepatic preparations (R = 0.87, P < 0.0001). We reported the concentrations of 98 drug-metabolizing enzymes (DMEs) and 51 transporters, and demonstrated significant differences between their abundances in HLM and HLS9. We also revealed the protein-protein correlations among these DMEs and transporters and the sex effect on the HLM and HLS9 proteomes. Additionally, HLM and HLS9 displayed distinct expression patterns for protein markers of cytosol and various cellular organelles. Moreover, we evaluated the interindividual variability of three housekeeping proteins, and identified five proteins with low variation across individuals that have the potential to serve as new internal controls for western blot experiments. In summary, these results will lead to better understanding of data obtained from HLM and HLS9 and assist in in vitro-in vivo extrapolations. Knowing the differences between HLM and HLS9 also allows us to make better-informed decisions when choosing between these two hepatic preparations for in vitro drug metabolism studies. SIGNIFICANCE STATEMENT: This investigation revealed significant differences in protein concentrations of drug-metabolizing enzymes and transporters between human liver microsomes and S9 fractions. We also determined the protein-protein correlations among the drug-metabolizing enzymes and transporters and the sex effect on the proteomes of these two hepatic preparations. The results will help interpret data obtained from these two preparations and allow us to make more informed decisions when choosing between human liver microsomes and S9 fractions for in vitro drug metabolism studies.
Collapse
Affiliation(s)
- Xinwen Wang
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (X.W., B.H., J.S., H.-J.Z.); and School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China (Q.L.)
| | - Bing He
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (X.W., B.H., J.S., H.-J.Z.); and School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China (Q.L.)
| | - Jian Shi
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (X.W., B.H., J.S., H.-J.Z.); and School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China (Q.L.)
| | - Qian Li
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (X.W., B.H., J.S., H.-J.Z.); and School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China (Q.L.)
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (X.W., B.H., J.S., H.-J.Z.); and School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China (Q.L.)
| |
Collapse
|
52
|
Yoneten KK, Kasap M, Akpinar G, Gunes A, Gurel B, Utkan NZ. Comparative Proteome Analysis of Breast Cancer Tissues Highlights the Importance of Glycerol-3-phosphate Dehydrogenase 1 and Monoacylglycerol Lipase in Breast Cancer Metabolism. Cancer Genomics Proteomics 2019; 16:377-397. [PMID: 31467232 PMCID: PMC6727073 DOI: 10.21873/cgp.20143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/17/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIM Breast cancer (BC) incidence and mortality rates have been increasing due to the lack of appropriate diagnostic tools for early detection. Proteomics-based studies may provide novel targets for early diagnosis and efficient treatment. The aim of this study was to investigate the global changes occurring in protein profiles in breast cancer tissues to discover potential diagnostic or prognostic biomarkers. MATERIALS AND METHODS BC tissues and their corresponding healthy counterparts were collected, subtyped, and subjected to comparative proteomics analyses using two-dimensional gel electrophoresis (2-DE) and two-dimensional electrophoresis fluorescence difference gel (DIGE) coupled to matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF/TOF) to explore BC metabolism at the proteome level. Western blot analysis was used to verify changes occurring at the protein levels. RESULTS Bioinformatics analyses performed with differentially regulated proteins highlighted the changes occurring in triacylglyceride (TAG) metabolism, and directed our attention to TAG metabolism-associated proteins, namely glycerol-3-phosphate dehydrogenase 1 (GPD1) and monoacylglycerol lipase (MAGL). These proteins were down-regulated in tumor groups in comparison to controls. CONCLUSION GPD1 and MAGL might be promising tissue-based protein biomarkers with a predictive potential for BC.
Collapse
Affiliation(s)
| | - Murat Kasap
- Department of Medical Biology, Kocaeli University Medical School, Kocaeli, Turkey
| | - Gurler Akpinar
- Department of Medical Biology, Kocaeli University Medical School, Kocaeli, Turkey
| | - Abdullah Gunes
- Department of General Surgery, Derince Education and Application Hospital, Kocaeli, Turkey
| | - Bora Gurel
- Department of Pathology, Kocaeli University Medical School, Kocaeli, Turkey
| | - Nihat Zafer Utkan
- Department of General Surgery, Kocaeli University Medical School, Kocaeli, Turkey
| |
Collapse
|
53
|
O'Rourke MB, Town SEL, Dalla PV, Bicknell F, Koh Belic N, Violi JP, Steele JR, Padula MP. What is Normalization? The Strategies Employed in Top-Down and Bottom-Up Proteome Analysis Workflows. Proteomes 2019; 7:proteomes7030029. [PMID: 31443461 PMCID: PMC6789750 DOI: 10.3390/proteomes7030029] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022] Open
Abstract
The accurate quantification of changes in the abundance of proteins is one of the main applications of proteomics. The maintenance of accuracy can be affected by bias and error that can occur at many points in the experimental process, and normalization strategies are crucial to attempt to overcome this bias and return the sample to its regular biological condition, or normal state. Much work has been published on performing normalization on data post-acquisition with many algorithms and statistical processes available. However, there are many other sources of bias that can occur during experimental design and sample handling that are currently unaddressed. This article aims to cast light on the potential sources of bias and where normalization could be applied to return the sample to its normal state. Throughout we suggest solutions where possible but, in some cases, solutions are not available. Thus, we see this article as a starting point for discussion of the definition of and the issues surrounding the concept of normalization as it applies to the proteomic analysis of biological samples. Specifically, we discuss a wide range of different normalization techniques that can occur at each stage of the sample preparation and analysis process.
Collapse
Affiliation(s)
- Matthew B O'Rourke
- Bowel Cancer & Biomarker Lab, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney Lvl 8, Kolling Institute. Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Stephanie E L Town
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia
| | - Penelope V Dalla
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Glebe 2037, Australia
| | - Fiona Bicknell
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia
| | - Naomi Koh Belic
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia
| | - Jake P Violi
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia
| | - Joel R Steele
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia
| | - Matthew P Padula
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia.
| |
Collapse
|
54
|
Tolou-Dabbaghian B, Delphi L, Rezayof A. Blockade of NMDA Receptors and Nitric Oxide Synthesis Potentiated Morphine-Induced Anti-Allodynia via Attenuating Pain-Related Amygdala pCREB/CREB Signaling Pathway. THE JOURNAL OF PAIN 2019; 20:885-897. [DOI: 10.1016/j.jpain.2019.01.329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/30/2018] [Accepted: 01/11/2019] [Indexed: 01/26/2023]
|
55
|
Regulation of glyceraldehyde-3-phosphate dehydrogenase by hypoxia inducible factor 1 in the white shrimp Litopenaeus vannamei during hypoxia and reoxygenation. Comp Biochem Physiol A Mol Integr Physiol 2019; 235:56-65. [PMID: 31100464 DOI: 10.1016/j.cbpa.2019.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022]
Abstract
Hypoxia is a frequent source of stress in the estuarine habitat of the white shrimp Litopenaeus vannamei. During hypoxia, L. vannamei gill cells rely more heavily on anaerobic glycolysis to obtain ATP. This is mediated by transcriptional up-regulation of glycolytic enzymes including glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The hypoxia inducible factor 1 (HIF-1) is an important transcriptional activator of several glycolytic enzymes during hypoxia in diverse animals, including crustaceans. In this work, we cloned and sequenced a fragment corresponding to the 5' flank of the GAPDH gene and identified a putative HIF-1 binding site, as well as sites for other transcription factors involved in the hypoxia signaling pathway. To investigate the role of HIF-1 in GAPDH regulation, we simultaneously injected double-stranded RNA (dsRNA) into shrimp to silence HIF-1α and HIF-1β under normoxia, hypoxia, and hypoxia followed by reoxygenation, and then measured gill HIF-1α, HIF-1β expression, GAPDH expression and activity, and glucose and lactate concentrations at 0, 3, 24 and 48 h. During normoxia, HIF-1 silencing induced up-regulation of GAPDH transcripts and activity, suggesting that expression is down-regulated via HIF-1 under these conditions. In contrast, HIF-1 silencing during hypoxia abolished the increases in GAPDH expression and activity, glucose and lactate concentrations. Finally, HIF-1 silencing during hypoxia-reoxygenation prevented the increase in GAPDH expression, however, those changes were not reflected in GAPDH activity and lactate accumulation. Altogether, these results indicate that GAPDH and glycolysis are transcriptionally regulated by HIF-1 in gills of white shrimp.
Collapse
|
56
|
Choi KM, Zissler A, Kim E, Ehrenfellner B, Cho E, Lee SI, Steinbacher P, Yun KN, Shin JH, Kim JY, Stoiber W, Chung H, Monticelli FC, Kim JY, Pittner S. Postmortem proteomics to discover biomarkers for forensic PMI estimation. Int J Legal Med 2019; 133:899-908. [PMID: 30864069 PMCID: PMC6469664 DOI: 10.1007/s00414-019-02011-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/24/2019] [Indexed: 11/18/2022]
Abstract
The assessment of postmortem degradation of skeletal muscle proteins has emerged as a novel approach to estimate the time since death in the early to mid-postmortem phase (approximately 24 h postmortem (hpm) to 120 hpm). Current protein-based methods are limited to a small number of skeletal muscle proteins, shown to undergo proteolysis after death. In this study, we investigated the usability of a target-based and unbiased system-wide protein analysis to gain further insights into systemic postmortem protein alterations and to identify additional markers for postmortem interval (PMI) delimitation. We performed proteomic profiling to globally analyze postmortem alterations of the rat and mouse skeletal muscle proteome at defined time points (0, 24, 48, 72, and 96 hpm), harnessing a mass spectrometry-based quantitative proteomics approach. Hierarchical clustering analysis for a total of 579 (rat) and 896 (mouse) quantified proteins revealed differentially expressed proteins during the investigated postmortem period. We further focused on two selected proteins (eEF1A2 and GAPDH), which were shown to consistently degrade postmortem in both rat and mouse, suggesting conserved intra- and interspecies degradation behavior, and thus preserved association with the PMI and possible transferability to humans. In turn, we validated the usefulness of these new markers by classical Western blot experiments in a rat model and in human autopsy cases. Our results demonstrate the feasibility of mass spectrometry-based analysis to discover novel protein markers for PMI estimation and show that the proteins eEF1A2 and GAPDH appear to be valuable markers for PMI estimation in humans.
Collapse
Affiliation(s)
- Kyoung-Min Choi
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, South Korea
| | - Angela Zissler
- Dept. of Biosciences, University of Salzburg, Salzburg, Austria
| | - Eunjung Kim
- Dept. of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | - Eunji Cho
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, South Korea
| | - Se-In Lee
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, South Korea
| | | | - Ki Na Yun
- Dept. of Chemistry, Sogang University, Seoul, South Korea
- Biomedical Omics Center, Korea Basic Science Institute, Ochang, South Korea
| | - Jong Hwan Shin
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, South Korea
- Biomedical Omics Center, Korea Basic Science Institute, Ochang, South Korea
| | - Jin Young Kim
- Biomedical Omics Center, Korea Basic Science Institute, Ochang, South Korea
| | - Walter Stoiber
- Dept. of Biosciences, University of Salzburg, Salzburg, Austria
| | - Heesun Chung
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, South Korea
| | | | - Jae-Young Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, South Korea.
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, South Korea.
| | - Stefan Pittner
- Dept. of Forensic Medicine, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
57
|
Parkin GM, Udawela M, Gibbons A, Dean B. Β-actin does not show the characteristics of a reference protein in human cortex. Electrophoresis 2018; 40:247-253. [DOI: 10.1002/elps.201800328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/24/2018] [Accepted: 10/15/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Georgia M. Parkin
- The Molecular Psychiatry Laboratory; the Florey Institute for Neuroscience and Mental Health; Parkville Victoria Australia
- The Cooperative Research Centre for Mental Health; Parkville Victoria Australia
| | - Madhara Udawela
- The Molecular Psychiatry Laboratory; the Florey Institute for Neuroscience and Mental Health; Parkville Victoria Australia
- The Cooperative Research Centre for Mental Health; Parkville Victoria Australia
| | - Andrew Gibbons
- The Molecular Psychiatry Laboratory; the Florey Institute for Neuroscience and Mental Health; Parkville Victoria Australia
| | - Brian Dean
- The Molecular Psychiatry Laboratory; the Florey Institute for Neuroscience and Mental Health; Parkville Victoria Australia
- The Cooperative Research Centre for Mental Health; Parkville Victoria Australia
- Centre for Mental Health; the Faculty of Health, Arts and Design; Swinburne University; Hawthorn Victoria Australia
| |
Collapse
|
58
|
Chlorination and oxidation of the extracellular matrix protein laminin and basement membrane extracts by hypochlorous acid and myeloperoxidase. Redox Biol 2018; 20:496-513. [PMID: 30476874 PMCID: PMC6260226 DOI: 10.1016/j.redox.2018.10.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
Basement membranes are specialized extracellular matrices that underlie arterial wall endothelial cells, with laminin being a key structural and biologically-active component. Hypochlorous acid (HOCl), a potent oxidizing and chlorinating agent, is formed in vivo at sites of inflammation via the enzymatic action of myeloperoxidase (MPO), released by activated leukocytes. Considerable data supports a role for MPO-derived oxidants in cardiovascular disease and particularly atherosclerosis. These effects may be mediated via extracellular matrix damage to which MPO binds. Herein we detect and quantify sites of oxidation and chlorination on isolated laminin-111, and laminin in basement membrane extracts (BME), by use of mass spectrometry. Increased modification was detected with increasing oxidant exposure. Mass mapping indicated selectivity in the sites and extent of damage; Met residues were most heavily modified. Fewer modifications were detected with BME, possibly due to the shielding effects. HOCl oxidised 30 (of 56 total) Met and 7 (of 24) Trp residues, and chlorinated 33 (of 99) Tyr residues; 3 Tyr were dichlorinated. An additional 8 Met and 10 Trp oxidations, 14 chlorinations, and 18 dichlorinations were detected with the MPO/H2O2/Cl- system when compared to reagent HOCl. Interestingly, chlorination was detected at Tyr2415 in the integrin-binding region; this may decrease cellular adhesion. Co-localization of MPO-damaged epitopes and laminin was detected in human atherosclerotic lesions. These data indicate that laminin is extensively modified by MPO-derived oxidants, with structural and functional changes. These modifications, and compromised cell-matrix interactions, may promote endothelial cell dysfunction, weaken the structure of atherosclerotic lesions, and enhance lesion rupture.
Collapse
|
59
|
Nybo T, Cai H, Chuang CY, Gamon LF, Rogowska-Wrzesinska A, Davies MJ. Chlorination and oxidation of human plasma fibronectin by myeloperoxidase-derived oxidants, and its consequences for smooth muscle cell function. Redox Biol 2018; 19:388-400. [PMID: 30237127 PMCID: PMC6142189 DOI: 10.1016/j.redox.2018.09.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 12/11/2022] Open
Abstract
Fibronectin (FN) occurs as both a soluble form, in plasma and at sites of tissue injury, and a cellular form in tissue extracellular matrices (ECM). FN is critical to wound repair, ECM structure and assembly, cell adhesion and proliferation. FN is reported to play a critical role in the development, progression and stability of cardiovascular atherosclerotic lesions, with high FN levels associated with a thick fibrotic cap, stable disease and a low risk of rupture. Evidence has been presented for FN modification by inflammatory oxidants, and particularly myeloperoxidase (MPO)-derived species including hypochlorous acid (HOCl). The targets and consequences of FN modification are poorly understood. Here we show, using a newly-developed MS protocol, that HOCl and an enzymatic MPO system, generate site-specific dose-dependent Tyr chlorination and dichlorination (up to 16 of 100 residues modified), and oxidation of Trp (7 of 39 residues), Met (3 of 26) and His (1 of 55) within selected FN domains, and particularly the heparin- and cell-binding regions. These alterations increase FN binding to heparin-containing columns. Studies using primary human coronary artery smooth muscle cells (HCASMC) show that exposure to HOCl-modified FN, results in decreased adherence, increased proliferation and altered expression of genes involved in ECM synthesis and remodelling. These findings indicate that the presence of modified fibronectin may play a major role in the formation, development and stabilisation of fibrous caps in atherosclerotic lesions and may play a key role in the switching of quiescent contractile smooth muscle cells to a migratory, synthetic and proliferative phenotype.
Collapse
Affiliation(s)
- Tina Nybo
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Huan Cai
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Luke F Gamon
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Adelina Rogowska-Wrzesinska
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
60
|
Lee JE, Lee EH, Park HJ, Kim YJ, Jung HY, Ahn DH, Cho YJ. Inhibition of inflammatory responses in lipopolysaccharide-induced RAW 264.7 cells byPinus densifloraroot extract. ACTA ACUST UNITED AC 2018. [DOI: 10.3839/jabc.2018.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jae-Eun Lee
- School of Food Science and Biotechnology/Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun-Ho Lee
- School of Food Science and Biotechnology/Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hye-Jin Park
- School of Food Science and Biotechnology/Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ye-Jin Kim
- School of Food Science and Biotechnology/Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hee-Young Jung
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Hyun Ahn
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Je Cho
- School of Food Science and Biotechnology/Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
61
|
Li X, Fan B, Liu L, Chen D, Cao S, Men D, Wang J, Chen J. A Microfluidic Fluorescent Flow Cytometry Capable of Quantifying Cell Sizes and Numbers of Specific Cytosolic Proteins. Sci Rep 2018; 8:14229. [PMID: 30242168 PMCID: PMC6155059 DOI: 10.1038/s41598-018-32333-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022] Open
Abstract
This study presents a microfluidics based cytometry capable of characterizing cell sizes and counting numbers of specific cytosolic proteins where cells were first bound by antibodies labelled with fluorescence and then aspirated into a constriction microchannel in which fluorescent levels were measured. These raw fluorescent pulses were further divided into a rising domain, a stable domain and a declining domain. In addition, antibody solutions with labelled fluorescence were aspirated through the constriction microchannel, yielding curves to translate raw fluorescent levels to protein concentrations. By using key parameters of three domains as well as the calibration curves, cell diameters and the absolute number of β-actins at the single-cell level were quantified as 14.2 ± 1.7 μm and 9.62 ± 4.29 × 105 (A549, ncell = 14 242), 13.0 ± 2.0 μm and 6.46 ± 3.34 × 105 (Hep G2, ncell = 35 932), 13.8 ± 1.9 μm and 1.58 ± 0.90 × 106 (MCF 10 A, ncell = 16 650), and 12.7 ± 1.5 μm and 1.09 ± 0.49 × 106 (HeLa, ncell = 26 246). This platform could be further adopted to measure numbers of various cytosolic proteins, providing key insights in proteomics at the single-cell level.
Collapse
Affiliation(s)
- Xiufeng Li
- State Key Lab of Transducer Technology, Institute of Electronics of Chinese Academy of Sciences, Beijing City, China.,University of Chinese Academy of Sciences, Beijing City, China
| | - Beiyuan Fan
- State Key Lab of Transducer Technology, Institute of Electronics of Chinese Academy of Sciences, Beijing City, China.,University of Chinese Academy of Sciences, Beijing City, China
| | - Lixing Liu
- State Key Lab of Transducer Technology, Institute of Electronics of Chinese Academy of Sciences, Beijing City, China.,University of Chinese Academy of Sciences, Beijing City, China
| | - Deyong Chen
- State Key Lab of Transducer Technology, Institute of Electronics of Chinese Academy of Sciences, Beijing City, China.,University of Chinese Academy of Sciences, Beijing City, China
| | - Shanshan Cao
- State Key Lab of Virology, Wuhan Institute of Virology of Chinese Academy of Sciences, Wuhan City, Hubei Province, China
| | - Dong Men
- State Key Lab of Virology, Wuhan Institute of Virology of Chinese Academy of Sciences, Wuhan City, Hubei Province, China.
| | - Junbo Wang
- State Key Lab of Transducer Technology, Institute of Electronics of Chinese Academy of Sciences, Beijing City, China. .,University of Chinese Academy of Sciences, Beijing City, China.
| | - Jian Chen
- State Key Lab of Transducer Technology, Institute of Electronics of Chinese Academy of Sciences, Beijing City, China. .,University of Chinese Academy of Sciences, Beijing City, China.
| |
Collapse
|
62
|
The Impact of Moderate Chronic Hypoxia and Hyperoxia on the Level of Apoptotic and Autophagic Proteins in Myocardial Tissue. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5786742. [PMID: 30186545 PMCID: PMC6116398 DOI: 10.1155/2018/5786742] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/08/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
The redox imbalance and the consequent oxidative stress have been implicated in many pathological conditions, including cardiovascular diseases. The lack or the excess of O2 supply can alter the redox balance. The aim of the present study was to understand the heart responses to prolonged hypoxia or hyperoxia and how such situations may activate survival mechanisms or trigger cell death. Seven-week-old Foxn1 mice were exposed to hypoxia (10% O2), normoxia (21% O2), or hyperoxia (30% O2) for 28 days, then the heart tissue was excised and analyzed. The alterations in redox balance, housekeeping protein levels, and autophagic and apoptotic process regulation were studied. The D-ROM test demonstrated an increased oxidative stress in the hypoxic group compared to the hyperoxic group. The level of hypoxia inducible factor-1 (HIF-1α) was increased by hypoxia while HIF-2α was not affected by treatments. Chronic hypoxia activated the biochemical markers of autophagy, and we observed elevated levels of Beclin-1 while LC3B-II and p62 were constant. Nevertheless, we measured significantly enhanced number of TUNEL-positive cells and higher Bax/Bcl2 ratio in hyperoxia with respect to hypoxia. Surprisingly, our results revealed alterations in the level of housekeeping proteins. The expression of α-tubulin, total-actin, and GAPDH was increased in the hypoxic group while decreased in the hyperoxic group. These findings suggest that autophagy is induced in the heart under hypoxia, which may serve as a protective mechanism in response to enhanced oxidative stress. While prolonged hypoxia-induced autophagy leads to reduced heart apoptosis, low autophagic level in hyperoxia failed to prevent the excessive DNA fragmentation.
Collapse
|
63
|
Bussey CE, Withers SB, Saxton SN, Bodagh N, Aldous RG, Heagerty AM. β 3 -Adrenoceptor stimulation of perivascular adipocytes leads to increased fat cell-derived NO and vascular relaxation in small arteries. Br J Pharmacol 2018; 175:3685-3698. [PMID: 29980164 PMCID: PMC6109217 DOI: 10.1111/bph.14433] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 05/04/2018] [Accepted: 06/19/2018] [Indexed: 01/13/2023] Open
Abstract
Background and Purpose In response to noradrenaline, healthy perivascular adipose tissue (PVAT) exerts an anticontractile effect on adjacent small arterial tissue. Organ bath solution transfer experiments have demonstrated the release of PVAT‐derived relaxing factors that mediate this function. The present studies were designed to investigate the mechanism responsible for the noradrenaline‐induced PVAT anticontractile effect. Experimental Approach In vitro rat small arterial contractile function was assessed using wire myography in the presence and absence of PVAT and the effects of sympathomimetic stimulation on the PVAT environment explored using Western blotting and assays of organ bath buffer. Key Results PVAT elicited an anticontractile effect in response to noradrenaline but not phenylephrine stimulation. In arteries surrounded by intact PVAT, the β3‐adrenoceptor agonist, CL‐316243, reduced the vasoconstrictor effect of phenylephrine but not noradrenaline. Kv7 channel inhibition using XE 991 reversed the noradrenaline‐induced anticontractile effect in exogenously applied PVAT studies. Adrenergic stimulation of PVAT with noradrenaline and CL‐316243, but not phenylephrine, was associated with increased adipocyte‐derived NO production, and the contractile response to noradrenaline was augmented following incubation of exogenous PVAT with L‐NMMA. PVAT from eNOS−/− mice had no anticontractile effect. Assays of adipocyte cAMP demonstrated an increase with noradrenaline stimulation implicating Gαs signalling in this process. Conclusions and Implications We have shown that adipocyte‐located β3‐adrenoceptor stimulation leads to activation of Gαs signalling pathways with increased cAMP and the release of adipocyte‐derived NO. This process is dependent upon Kv7 channel function. We conclude that adipocyte‐derived NO plays a central role in anticontractile activity when rodent PVAT is stimulated by noradrenaline.
Collapse
Affiliation(s)
- Charlotte E Bussey
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Sarah B Withers
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK.,Environment and Life Sciences, University of Salford, Salford, UK
| | - Sophie N Saxton
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Neil Bodagh
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Robert G Aldous
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Anthony M Heagerty
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
64
|
Zhou Y, Dhaher R, Parent M, Hu QX, Hassel B, Yee SP, Hyder F, Gruenbaum SE, Eid T, Danbolt NC. Selective deletion of glutamine synthetase in the mouse cerebral cortex induces glial dysfunction and vascular impairment that precede epilepsy and neurodegeneration. Neurochem Int 2018; 123:22-33. [PMID: 30053506 DOI: 10.1016/j.neuint.2018.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 12/31/2022]
Abstract
Glutamate-ammonia ligase (glutamine synthetase; Glul) is enriched in astrocytes and serves as the primary enzyme for ammonia detoxification and glutamate inactivation in the brain. Loss of astroglial Glul is reported in hippocampi of epileptic patients, but the mechanism by which Glul deficiency might cause disease remains elusive. Here we created a novel mouse model by selectively deleting Glul in the hippocampus and neocortex. The Glul deficient mice were born without any apparent malformations and behaved unremarkably until postnatal week three. There were reductions in tissue levels of aspartate, glutamate, glutamine and GABA and in mRNA encoding glutamate receptor subunits GRIA1 and GRIN2A as well as in the glutamate transporter proteins EAAT1 and EAAT2. Adult Glul-deficient mice developed progressive neurodegeneration and spontaneous seizures which increased in frequency with age. Importantly, progressive astrogliosis occurred before neurodegeneration and was first noted in astrocytes along cerebral blood vessels. The responses to CO2-provocation were attenuated at four weeks of age and dilated microvessels were observed histologically in sclerotic areas of cKO. Thus, the abnormal glutamate metabolism observed in this model appeared to cause epilepsy by first inducing gliopathy and disrupting the neurovascular coupling.
Collapse
Affiliation(s)
- Yun Zhou
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317, Oslo, Norway.
| | - Roni Dhaher
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Maxime Parent
- Magnetic Resonance Research Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Qiu-Xiang Hu
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317, Oslo, Norway
| | - Bjørnar Hassel
- Department of Complex Neurology and Neurohabilitation, Oslo University Hospital, University of Oslo, N-0450, Oslo, Norway
| | - Siu-Pok Yee
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Shaun E Gruenbaum
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Tore Eid
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317, Oslo, Norway; Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA.
| | - Niels Christian Danbolt
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317, Oslo, Norway.
| |
Collapse
|
65
|
Hazelhoff MH, Bulacio RP, Chevalier A, Torres AM. Renal expression of organic anion transporters is modified after mercuric chloride exposure: Gender-related differences. Toxicol Lett 2018; 295:390-396. [PMID: 30031051 DOI: 10.1016/j.toxlet.2018.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/05/2018] [Accepted: 07/16/2018] [Indexed: 11/16/2022]
Abstract
Mercuric ions (Hg+2) gain access to proximal tubule cells primarily by the Organic Anion Transporter 1 (Oat1) and 3 (Oat3) in the basolateral plasma membrane. The removal process of Hg+2 ions from cells into the lumen involves an efflux process mainly mediated by the Multidrug Resistance-Associated Protein 2 (Mrp2). The aim of this study was to compare the sex-related differences in the renal expression of Oat1, Oat3, and Mrp2 after mercuric chloride (HgCl2) treatment and analyze their relevance in the mercury-induced nephrotoxicity. Control and Hg-treated male and female Wistar rats were used. Animals received a dose of HgCl2 (4 mg/kg bw, ip) 18 h before the experiments. Tubular injury was assessed by histopathological studies. The renal expression of Oat1, Oat3, and Mrp2 was analyzed by Western Blotting. Mercury levels were determined in urine by cold vapour atomic absorption spectroscopy. HgCl2 treatment increased the expression of renal Oat1 and Mrp2 in both sexes, being more evident in females than in males. The Oat3 renal expression only increased in female rats. The higher expressions of Oat1, Oat3, and Mrp2 could explain the higher renal excretion of mercury and consequently, the lesser renal tubular damage in female rats than in male rats.
Collapse
Affiliation(s)
- María H Hazelhoff
- Área Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, S2002LRK, Rosario, Santa Fe, Argentina
| | - Romina P Bulacio
- Área Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, S2002LRK, Rosario, Santa Fe, Argentina
| | - Alberto Chevalier
- GIHON Laboratorios Químicos SRL, Facultad de Ciencias Exactas, Universidad Nacional de Mar del Plata, Dean Funes 3350, B7602AYL, Mar del Plata, Buenos Aires, Argentina
| | - Adriana M Torres
- Área Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, S2002LRK, Rosario, Santa Fe, Argentina.
| |
Collapse
|
66
|
Morales-Prieto N, Ruiz-Laguna J, Sheehan D, Abril N. Transcriptome signatures of p,p´-DDE-induced liver damage in Mus spretus mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:150-167. [PMID: 29554563 DOI: 10.1016/j.envpol.2018.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/19/2018] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
The use of DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane) in some countries, although regulated, is contributing to an increased worldwide risk of exposure to this organochlorine pesticide or its derivative p,p'-DDE [1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene]. Many studies have associated p,p'-DDE exposure to type 2 diabetes, obesity and alterations of the reproductive system, but their molecular mechanisms of toxicity remain poorly understood. We have addressed this issue by using commercial microarrays based on probes for the entire Mus musculus genome to determine the hepatic transcriptional signatures of p,p'-DDE in the phylogenetically close mouse species Mus spretus. High-stringency hybridization conditions and analysis assured reliable results, which were also verified, in part, by qRT-PCR, immunoblotting and/or enzymatic activity. Our data linked 198 deregulated genes to mitochondrial dysfunction and perturbations of central signaling pathways (kinases, lipids, and retinoic acid) leading to enhanced lipogenesis and aerobic glycolysis, inflammation, cell proliferation and testosterone catabolism and excretion. Alterations of transcript levels of genes encoding enzymes involved in testosterone catabolism and excretion would explain the relationships established between p,p´-DDE exposure and reproductive disorders, obesity and diabetes. Further studies will help to fully understand the molecular basis of p,p´-DDE molecular toxicity in liver and reproductive organs, to identify effective exposure biomarkers and perhaps to design efficient p,p'-DDE exposure counteractive strategies.
Collapse
Affiliation(s)
- Noelia Morales-Prieto
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Julia Ruiz-Laguna
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - David Sheehan
- College of Arts and Science, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain.
| |
Collapse
|
67
|
Li W, Wang M, Sun J, Wang Y, Jiang R. Gene co-opening network deciphers gene functional relationships. MOLECULAR BIOSYSTEMS 2018; 13:2428-2439. [PMID: 28976510 DOI: 10.1039/c7mb00430c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Genome sequencing technology has generated a vast amount of genomic and epigenomic data, and has provided us a great opportunity to study gene functions on a global scale from an epigenomic view. In the last decade, network-based studies, such as those based on PPI networks and co-expression networks, have shown good performance in capturing functional relationships between genes. However, the functions of a gene and the mechanism of interaction of genes with each other to elucidate their functions are still not entirely clear. Here, we construct a gene co-opening network based on chromatin accessibility of genes. We show that genes related to a specific biological process or the same disease tend to be clustered in the co-opening network. This understanding allows us to detect functional clusters from the network and to predict new functions for genes. We further apply the network to prioritize disease genes for Psoriasis, and demonstrate the power of the joint analysis of the co-opening network and GWAS data in identifying disease genes. Taken together, the co-opening network provides a new viewpoint for the elucidation of gene associations and the interpretation of disease mechanisms.
Collapse
Affiliation(s)
- Wenran Li
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic & Systems Biology, TNLIST, Department of Automation, Tsinghua University, Beijing 100084, China.
| | | | | | | | | |
Collapse
|
68
|
Fan B, Li X, Liu L, Chen D, Cao S, Men D, Wang J, Chen J. Absolute Copy Numbers of β-Actin Proteins Collected from 10,000 Single Cells. MICROMACHINES 2018; 9:mi9050254. [PMID: 30424187 PMCID: PMC6187317 DOI: 10.3390/mi9050254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022]
Abstract
Semi-quantitative studies have located varied expressions of β-actin proteins at the population level, questioning their roles as internal controls in western blots, while the absolute copy numbers of β-actins at the single-cell level are missing. In this study, a polymeric microfluidic flow cytometry was used for single-cell analysis, and the absolute copy numbers of single-cell β-actin proteins were quantified as 9.9 ± 4.6 × 105, 6.8 ± 4.0 × 105 and 11.0 ± 5.5 × 105 per cell for A549 (ncell = 14,754), Hep G2 (ncell = 36,949), and HeLa (ncell = 24,383), respectively. High coefficients of variation (~50%) and high quartile coefficients of dispersion (~30%) were located, indicating significant variations of β-actin proteins within the same cell type. Low p values (≪0.01) and high classification rates based on neural network (~70%) were quantified among A549, Hep G2 and HeLa cells, suggesting expression differences of β-actin proteins among three cell types. In summary, the results reported here indicate significant variations of β-actin proteins within the same cell type from cell to cell, and significant expression differences of β-actin proteins among different cell types, strongly questioning the properties of using β-actin proteins as internal controls in western blots.
Collapse
Affiliation(s)
- Beiyuan Fan
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiufeng Li
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lixing Liu
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shanshan Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
69
|
Ebersbach-Silva P, Poletto AC, David-Silva A, Seraphim PM, Anhê GF, Passarelli M, Furuya DT, Machado UF. Palmitate-induced Slc2a4/GLUT4 downregulation in L6 muscle cells: evidence of inflammatory and endoplasmic reticulum stress involvement. Lipids Health Dis 2018; 17:64. [PMID: 29609616 PMCID: PMC5879605 DOI: 10.1186/s12944-018-0714-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
Background Obesity is strongly associated to insulin resistance, inflammation, and elevated plasma free fatty acids, but the mechanisms behind this association are not fully comprehended. Evidences suggest that endoplasmic reticulum (ER) stress may play a role in this complex pathophysiology. The aim of the present study was to investigate the involvement of inflammation and ER stress in the modulation of glucose transporter GLUT4, encoded by Slc2a4 gene, in L6 skeletal muscle cells. Methods L6 cells were acutely (2 h) and chronically (6 and 12 h) exposed to palmitate, and the expression of several proteins involved in insulin resistance, ER stress and inflammation were analyzed. Results Chronic and acute palmitate exposure significantly reduced GLUT4 protein (~ 39%, P < 0.01) and its mRNA (18%, P < 0.01) expression. Only acute palmitate treatment increased GRP78 (28%, P < 0.05), PERK (98%, P < 0.01), eIF-2A (35%, P < 0.01), IRE1a (60%, P < 0.05) and TRAF2 (23%, P < 0.05) protein content, and PERK phosphorylation (106%, P < 0.001), but did not elicit eIF-2A, IKK phosphorylation or increased XBP1 nuclear content. Additionally, acute and chronic palmitate increased NFKB p65 nuclear content (~ 30%, P < 0.05) and NFKB binding activity to Slc2a4 gene promoter (~ 45%, P < 0.05). Conclusion Different pathways are activated in acute and chronic palmitate induced-repression of Slc2a4/GLUT4 expression. This regulation involves activation of initial component of ER stress, such as the formation of a IRE1a-TRAF2-IKK complex, and converges to NFKB-induced repression of Slc2a4/GLUT4. These results link ER stress, inflammation and insulin resistance in L6 cells.
Collapse
Affiliation(s)
- Patrícia Ebersbach-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, São Paulo, 05508-900, Brazil
| | - Ana Cláudia Poletto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, São Paulo, 05508-900, Brazil
| | - Aline David-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, São Paulo, 05508-900, Brazil
| | - Patrícia Monteiro Seraphim
- Department of Physical Therapy, School of Science and Technology, Universidade Estadual Paulista, São Paulo, Brazil
| | - Gabriel Forato Anhê
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Marisa Passarelli
- Laboratório de Lípides (LIM-10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Daniela Tomie Furuya
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, São Paulo, 05508-900, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, São Paulo, 05508-900, Brazil.
| |
Collapse
|
70
|
Hu X, Du S, Yu J, Yang X, Yang C, Zhou D, Wang Q, Qin S, Yan X, He L, Han D, Wan C. Common housekeeping proteins are upregulated in colorectal adenocarcinoma and hepatocellular carcinoma, making the total protein a better "housekeeper". Oncotarget 2018; 7:66679-66688. [PMID: 27556505 PMCID: PMC5341829 DOI: 10.18632/oncotarget.11439] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/09/2016] [Indexed: 01/22/2023] Open
Abstract
Housekeeping proteins are essential endogenous controls for normalization as they are expected to be stably expressed. However, the stability of the expression level of housekeeping proteins needs to be assessed considering various experimental conditions. Our study evaluated the degree of variability of 7 commonly used housekeeping proteins with regard to their potential utility as normalizers in 56 pairs of matched colorectal adenocarcinoma (CRC) tissue samples and 6 pairs of hepatocellular carcinoma (HCC) tissue samples using multiple reaction monitoring (MRM) and Western blot analyses. A comprehensive experimental design and strict statistical analysis revealed that the expression levels of these 7 housekeeping proteins were not as stable as expected and they all exhibited upregulations to varying degrees in both the CRC and the HCC tissue samples. Consequently, we verified that using the amount of total protein instead of that of an individual protein can serve as a preferable control for studies of protein expression that require normalization.
Collapse
Affiliation(s)
- Xiaowen Hu
- Bio-X Institutes, Key Laboratory for The Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Shujiao Du
- Bio-X Institutes, Key Laboratory for The Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Jiekai Yu
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University, College of Medicine, Hangzhou, Zhejiang, 310009, PR China
| | - Xuhan Yang
- Bio-X Institutes, Key Laboratory for The Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Chao Yang
- Bio-X Institutes, Key Laboratory for The Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Daizhan Zhou
- Bio-X Institutes, Key Laboratory for The Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Qingyu Wang
- Bio-X Institutes, Key Laboratory for The Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for The Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Xiaomei Yan
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Lin He
- Bio-X Institutes, Key Laboratory for The Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Dongmei Han
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for The Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| |
Collapse
|
71
|
Moritz CP. Tubulin or Not Tubulin: Heading Toward Total Protein Staining as Loading Control in Western Blots. Proteomics 2018; 17. [PMID: 28941183 DOI: 10.1002/pmic.201600189] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/13/2017] [Indexed: 12/30/2022]
Abstract
Western blotting is an analytical method widely used for detecting and (semi-)quantifying specific proteins in given samples. Western blots are continuously applied and developed by the protein community. This review article focuses on a significant, but not yet well-established, improvement concerning the internal loading control as a prerequisite to accurately quantifying Western blots. Currently, housekeeping proteins (HKPs) like actin, tubulin, or GAPDH are often used to check for equal loading or to compensate potential loading differences. However, this loading control has multiple drawbacks. Staining of the total protein on the blotting membrane has emerged as a better loading control. Total protein staining (TPS) represents the actual loading amount more accurately than HKPs due to minor technical and biological variation. Further, the broad dynamic range of TPS solves the issue of HKPs that commonly fail to show loading differences above small loading amounts of 0.5-10 μg. Although these and further significant advantages have been demonstrated over the past 10 years, only a small percentage of laboratories take advantage of it. The objective of this review article is to collect and compare information about TPS options and to invite users to reconsider their applied loading control. Nine benefits of TPS are discussed and seven different variants are critically evaluated by comparing technical details. Consequently, this review article offers an orientation in selecting the appropriate staining type. I conclude that TPS should be the preferred loading control in future Western blot approaches.
Collapse
Affiliation(s)
- Christian P Moritz
- Synaptopathies and Autoantibodies, Faculty of Medicine, University Jean Monnet, Saint-Étienne, France.,Institut NeuroMyoGène, Team Synaptopathies and Autoantibodies, Lyon/Saint-Étienne, France
| |
Collapse
|
72
|
Lee HW, Ahmad M, Wang HW, Leenen FHH. Effects of exercise training on brain-derived neurotrophic factor in skeletal muscle and heart of rats post myocardial infarction. Exp Physiol 2018; 102:314-328. [PMID: 28070911 DOI: 10.1113/ep086049] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/03/2017] [Indexed: 01/10/2023]
Abstract
NEW FINDINGS What is the central question of this study? Exercise training increases brain-derived neurotrophic factor (BDNF) in the hippocampus, which depends on a myokine, fibronectin type III domain-containing protein 5 (FNDC5). Whether exercise training after myocardial infarction induces parallel increases in FNDC5 and BDNF expression in skeletal muscle and the heart has not yet been studied. What is the main finding and its importance? Exercise training after myocardial infarction increases BDNF protein in skeletal muscle and the non-infarct area of the LV without changes in FNDC5 protein, suggesting that BDNF is not regulated by FNDC5 in skeletal muscle and heart. An increase in cardiac BDNF may contribute to the improvement of cardiac function by exercise training. Exercise training after myocardial infarction (MI) attenuates progressive left ventricular (LV) remodelling and dysfunction, but the peripheral stimuli induced by exercise that trigger these beneficial effects are still unclear. We investigated as possible mediators fibronectin type III domain-containing protein 5 (FNDC5) and brain-derived neurotrophic factor (BDNF) in the skeletal muscle and heart. Male Wistar rats underwent either sham surgery or ligation of the left descending coronary artery, and surviving MI rats were allocated to either a sedentary (Sed-MI) or an exercise group (ExT-MI). Exercise training was done for 4 weeks on a motor-driven treadmill. At the end, LV function was evaluated, and FNDC5 and BDNF mRNA and protein were assessed in soleus muscle, quadriceps and non-, peri- and infarct areas of the LV. At 5 weeks post MI, FNDC5 mRNA was decreased in soleus muscle and all areas of the LV, but FNDC5 protein was increased in the soleus muscle and the infarct area. Mature BDNF (mBDNF) protein was decreased in the infarct area without a change in mRNA. Exercise training attenuated the decrease in ejection fraction and the increase in LV end-diastolic pressure post MI. Exercise training had no effect on FNDC5 mRNA and protein, but increased mBDNF protein in soleus muscle, quadriceps and the non-infarct area of the LV. The mBDNF protein in the non-infarct area correlated positively with ejection fraction and inversely with LV end-diastolic pressure. In conclusion, mBDNF is induced by exercise training in skeletal muscle and the non-infarct area of the LV, which may contribute to improvement of muscle dysfunction and cardiac function post MI.
Collapse
Affiliation(s)
- Heow Won Lee
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Monir Ahmad
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Hong-Wei Wang
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Frans H H Leenen
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, ON, Canada
| |
Collapse
|
73
|
Marcotulli D, Fattorini G, Bragina L, Perugini J, Conti F. Levetiracetam Affects Differentially Presynaptic Proteins in Rat Cerebral Cortex. Front Cell Neurosci 2017; 11:389. [PMID: 29311825 PMCID: PMC5732259 DOI: 10.3389/fncel.2017.00389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/24/2017] [Indexed: 01/23/2023] Open
Abstract
Presynaptic proteins are potential therapeutic targets for epilepsy and other neurological diseases. We tested the hypothesis that chronic treatment with the SV2A ligand levetiracetam affects the expression of other presynaptic proteins. Results showed that in rat neocortex no significant difference was detected in SV2A protein levels in levetiracetam treated animals compared to controls, whereas levetiracetam post-transcriptionally decreased several vesicular proteins and increased LRRK2, without any change in mRNA levels. Analysis of SV2A interactome indicates that the presynaptic proteins regulation induced by levetiracetam reported here is mediated by this interactome, and suggests that LRRK2 plays a role in forging the pattern of effects.
Collapse
Affiliation(s)
- Daniele Marcotulli
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Giorgia Fattorini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy
| | - Luca Bragina
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy
| | - Jessica Perugini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Fiorenzo Conti
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy
| |
Collapse
|
74
|
Mishra M, Tiwari S, Gomes AV. Protein purification and analysis: next generation Western blotting techniques. Expert Rev Proteomics 2017; 14:1037-1053. [PMID: 28974114 DOI: 10.1080/14789450.2017.1388167] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Western blotting is one of the most commonly used techniques in molecular biology and proteomics. Since western blotting is a multistep protocol, variations and errors can occur at any step reducing the reliability and reproducibility of this technique. Recent reports suggest that a few key steps, such as the sample preparation method, the amount and source of primary antibody used, as well as the normalization method utilized, are critical for reproducible western blot results. Areas covered: In this review, improvements in different areas of western blotting, including protein transfer and antibody validation, are summarized. The review discusses the most advanced western blotting techniques available and highlights the relationship between next generation western blotting techniques and its clinical relevance. Expert commentary: Over the last decade significant improvements have been made in creating more sensitive, automated, and advanced techniques by optimizing various aspects of the western blot protocol. New methods such as single cell-resolution western blot, capillary electrophoresis, DigiWest, automated microfluid western blotting and microchip electrophoresis have all been developed to reduce potential problems associated with the western blotting technique. Innovative developments in instrumentation and increased sensitivity for western blots offer novel possibilities for increasing the clinical implications of western blot.
Collapse
Affiliation(s)
- Manish Mishra
- a Department of Physiology , University of Saskatchewan College of Medicine , Saskatoon , SK , Canada
| | - Shuchita Tiwari
- b Department of Neurobiology, Physiology, and Behavior , University of California , Davis , CA , USA
| | - Aldrin V Gomes
- b Department of Neurobiology, Physiology, and Behavior , University of California , Davis , CA , USA.,c Department of Physiology and Membrane Biology , University of California , Davis , CA , USA
| |
Collapse
|
75
|
Bonfim-Silva R, Ferreira Melo FU, Thomé CH, Abraham KJ, De Souza FAL, Ramalho FS, Machado HR, De Oliveira RS, Cardoso AA, Covas DT, Fontes AM. Functional analysis of HOXA10 and HOXB4 in human medulloblastoma cell lines. Int J Oncol 2017; 51:1929-1940. [PMID: 29039487 DOI: 10.3892/ijo.2017.4151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 09/28/2017] [Indexed: 11/06/2022] Open
Abstract
Medulloblastoma (MB) is a malignant childhood brain tumor which at molecular level is classified into at least four major subtypes: WNT, SHH, group C and group D differing in response to treatment. Previous studies have associated changes in expression levels and activation of certain HOX genes with MB development. In the present study, we investigate the role of HOX genes in two attributes acquired by tumor cells: migration and proliferation potential, as well as, in vivo tumorigenic potential. We analyzed UW402, UW473, DAOY and ONS-76 human pediatric MB cell lines and cerebellum primary cultures. Two-color microarray-based gene expression analysis was used to identify differentially expressed HOX genes. Among the various HOX genes significantly overexpressed in DAOY and ONS-76 cell lines compared to UW402 and UW473 cell lines, HOXA10 and HOXB4 were selected for further analysis. The expression levels of these HOX genes were validated by real-time PCR. A mouse model was used to study the effect of the HOXA10 and HOXB4 genes on the in vivo tumorigenic potential and the in vitro proliferative and migration potential of MB cell lines. Our results show that the inhibition of HOXA10 in DAOY cell line led to increased in vitro cell migration while in vitro cell proliferation or in vivo tumorigenic potential were unaffected. We also observed that induced expression of HOXB4 in the UW473 cell line significantly reduced in vitro cell proliferation and migration capability of UW473 cells with no effect on the in vivo tumorigenicity. This suggests that HOXA10 plays a role in migration events and the HOXB4 gene is involved in proliferation and migration processes of medulloblastoma cells, however, it appears that these genes are not essential for the tumorigenic process of these cells.
Collapse
Affiliation(s)
- Ricardo Bonfim-Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Fernanda Ursoli Ferreira Melo
- Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Carolina Hassibe Thomé
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Kuruvilla Joseph Abraham
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Fábio Augusto Labre De Souza
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Fernando Silva Ramalho
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Hélio Rubens Machado
- Division of Pediatric Neurosurgery of the Department of Surgery and Anatomy, University Hospital of Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Ricardo Santos De Oliveira
- Division of Pediatric Neurosurgery of the Department of Surgery and Anatomy, University Hospital of Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Angelo A Cardoso
- Center for Gene Therapy, City of Hope Alpha Stem Cell Clinic, Duarte, CA 91010, USA
| | - Dimas Tadeu Covas
- Department of Internal Medicine, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Aparecida Maria Fontes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
76
|
McInerney MP, Pan Y, Short JL, Nicolazzo JA. Development and Validation of an In-Cell Western for Quantifying P-Glycoprotein Expression in Human Brain Microvascular Endothelial (hCMEC/D3) Cells. J Pharm Sci 2017; 106:2614-2624. [DOI: 10.1016/j.xphs.2016.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
|
77
|
Novel large-particle FACS purification of adult ventricular myocytes reveals accumulation of myosin and actin disproportionate to cell size and proteome in normal post-weaning development. J Mol Cell Cardiol 2017; 111:114-122. [PMID: 28780067 DOI: 10.1016/j.yjmcc.2017.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022]
Abstract
RATIONALE Quantifying cellular proteins in ventricular myocytes (MCs) is challenging due to tissue heterogeneity and the variety of cell sizes in the heart. In post-weaning cardiac ontogeny, rod-shaped MCs make up the majority of the cardiac mass while remaining a minority of cardiac cells in number. Current biochemical analyses of cardiac proteins do not correlate well the content of MC-specific proteins to cell type or size in normally developing tissue. OBJECTIVE To develop a new large-particle fluorescent-activated cell sorting (LP-FACS) strategy for the purification of adult rod-shaped MCs. This approach is developed to enable growth-scaled measurements per-cell of the MC proteome and sarcomeric proteins (i.e. myosin heavy chain (MyHC) and alpha-actin (α-actin)) content. METHODS AND RESULTS Individual cardiac cells were isolated from 21 to 94days old mice. An LP-FACS jet-in-air system with a 200-μm nozzle was defined for the first time to purify adult MCs. Cell-type specific immunophenotyping and sorting yielded ≥95% purity of adult MCs independently of cell morphology and size. This approach excluded other cell types and tissue contaminants from further analysis. MC proteome, MyHC and α-actin proteins were measured in linear biochemical assays normalized to cell numbers. Using the allometric coefficient α, we scaled the MC-specific rate of protein accumulation to growth post-weaning. MC-specific volumes (α=1.02) and global protein accumulation (α=0.94) were proportional (i.e. isometric) to body mass. In contrast, MyHC and α-actin accumulated at a much greater rate (i.e. hyperallometric) than body mass (α=1.79 and 2.19 respectively) and MC volumes (α=1.76 and 1.45 respectively). CONCLUSION Changes in MC proteome and cell volumes measured in LP-FACS purified MCs are proportional to body mass post-weaning. Oppositely, MyHC and α-actin are concentrated more rapidly than what would be expected from MC proteome accumulation, cell enlargement, or animal growth alone. LP-FACS provides a new standard for adult MC purification and an approach to scale the biochemical content of specific proteins or group of proteins per cell in enlarging MCs.
Collapse
|
78
|
Frandsen SK, Krüger MB, Mangalanathan UM, Tramm T, Mahmood F, Novak I, Gehl J. Normal and Malignant Cells Exhibit Differential Responses to Calcium Electroporation. Cancer Res 2017; 77:4389-4401. [DOI: 10.1158/0008-5472.can-16-1611] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/28/2016] [Accepted: 06/05/2017] [Indexed: 11/16/2022]
|
79
|
Abstract
The members of the Tear Film Subcommittee reviewed the role of the tear film in dry eye disease (DED). The Subcommittee reviewed biophysical and biochemical aspects of tears and how these change in DED. Clinically, DED is characterized by loss of tear volume, more rapid breakup of the tear film and increased evaporation of tears from the ocular surface. The tear film is composed of many substances including lipids, proteins, mucins and electrolytes. All of these contribute to the integrity of the tear film but exactly how they interact is still an area of active research. Tear film osmolarity increases in DED. Changes to other components such as proteins and mucins can be used as biomarkers for DED. The Subcommittee recommended areas for future research to advance our understanding of the tear film and how this changes with DED. The final report was written after review by all Subcommittee members and the entire TFOS DEWS II membership.
Collapse
|
80
|
Vehus T. Performing Quantitative Determination of Low-Abundant Proteins by Targeted Mass Spectrometry Liquid Chromatography. Mass Spectrom (Tokyo) 2017. [DOI: 10.5772/intechopen.68713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
81
|
Tonry C, Armstrong J, Pennington S. Probing the prostate tumour microenvironment II: Impact of hypoxia on a cell model of prostate cancer progression. Oncotarget 2017; 8:15307-15337. [PMID: 28410543 PMCID: PMC5362488 DOI: 10.18632/oncotarget.14574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022] Open
Abstract
Approximately one in six men are diagnosed with Prostate Cancer every year in the Western world. Although it can be well managed and non-life threatening in the early stages, over time many patients cease to respond to treatment and develop castrate resistant prostate cancer (CRPC). CRPC represents a clinically challenging and lethal form of prostate cancer. Progression of CRPC is, in part, driven by the ability of cancer cells to alter their metabolic profile during the course of tumourgenesis and metastasis so that they can survive in oxygen and nutrient-poor environments and even withstand treatment. This work was carried out as a continuation of a study aimed towards gaining greater mechanistic understanding of how conditions within the tumour microenvironment impact on both androgen sensitive (LNCaP) and androgen independent (LNCaP-abl and LNCaP-abl-Hof) prostate cancer cell lines. Here we have applied technically robust and reproducible label-free liquid chromatography mass spectrometry analysis for comprehensive proteomic profiling of prostate cancer cell lines under hypoxic conditions. This led to the identification of over 4,000 proteins - one of the largest protein datasets for prostate cancer cell lines established to date. The biological and clinical significance of proteins showing a significant change in expression as result of hypoxic conditions was established. Novel, intuitive workflows were subsequently implemented to enable robust, reproducible and high throughput verification of selected proteins of interest. Overall, these data suggest that this strategy supports identification of protein biomarkers of prostate cancer progression and potential therapeutic targets for CRPC.
Collapse
Affiliation(s)
- Claire Tonry
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | | | - Stephen Pennington
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
82
|
Lima L, Gaiteiro C, Peixoto A, Soares J, Neves M, Santos LL, Ferreira JA. Reference Genes for Addressing Gene Expression of Bladder Cancer Cell Models under Hypoxia: A Step Towards Transcriptomic Studies. PLoS One 2016; 11:e0166120. [PMID: 27835695 PMCID: PMC5106008 DOI: 10.1371/journal.pone.0166120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022] Open
Abstract
Highly aggressive, rapidly growing tumors contain significant areas of hypoxia or anoxia as a consequence of inadequate and/or irregular blood supply. During oxygen deprivation, tumor cells withstand a panoply of adaptive responses, including a shift towards anaerobic metabolism and the reprogramming of the transcriptome. One of the major mediators of the transcriptional hypoxic response is the hypoxia-inducible factor 1 (HIF-1), whose stabilization under hypoxia acts as an oncogenic stimulus contributing to chemotherapy resistance, invasion and metastasis. Gene expression analysis by qRT-PCR is a powerful tool for cancer cells phenotypic characterization. Nevertheless, as cells undergo a severe transcriptome remodeling.in response to oxygen deficit, the precise identification of reference genes poses a significant challenge for hypoxic studies. Herein, we aim to establish the best reference genes for studying the effects of hypoxia on bladder cancer cells. Accordingly, three bladder cancer cell lines (T24, 5637, and HT1376) representative of two distinct carcinogenesis pathways to invasive cancer (FGFR3/CCND1 and E2F3/RB1) were used. Additionally, we have explored the most suitable control gene when addressing the influence of Deferoxamine Mesilate salt (DFX), an iron chelator often used to avoid the proteasomal degradation of HIF-1α, acting as an hypoxia-mimetic agent. Using bioinformatics tools (GeNorm and NormFinder), we have elected B2M and HPRT as the most stable genes for all cell lines and experimental conditions out of a panel of seven putative candidates (HPRT, ACTB, 18S, GAPDH, TBP, B2M, and SDHA). These observations set the molecular basis for future studies addressing the effect of hypoxia and particularly HIF-1α in bladder cancer cells.
Collapse
Affiliation(s)
- Luís Lima
- Experimental Pathology and Therapeutics Group – Research Center, Portuguese Institute of Oncology of Porto (IPO-Porto), 4200-072, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- * E-mail:
| | - Cristiana Gaiteiro
- Experimental Pathology and Therapeutics Group – Research Center, Portuguese Institute of Oncology of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group – Research Center, Portuguese Institute of Oncology of Porto (IPO-Porto), 4200-072, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Janine Soares
- Experimental Pathology and Therapeutics Group – Research Center, Portuguese Institute of Oncology of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Manuel Neves
- Experimental Pathology and Therapeutics Group – Research Center, Portuguese Institute of Oncology of Porto (IPO-Porto), 4200-072, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group – Research Center, Portuguese Institute of Oncology of Porto (IPO-Porto), 4200-072, Porto, Portugal
- Health School of University of Fernando Pessoa, 4249-004, Porto, Portugal
- Department of Surgical Oncology, Portuguese Institute of Oncology of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group – Research Center, Portuguese Institute of Oncology of Porto (IPO-Porto), 4200-072, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
83
|
Mavlyutov TA, Duellman T, Kim HT, Epstein ML, Leese C, Davletov BA, Yang J. Sigma-1 receptor expression in the dorsal root ganglion: Reexamination using a highly specific antibody. Neuroscience 2016; 331:148-57. [PMID: 27339730 PMCID: PMC5047027 DOI: 10.1016/j.neuroscience.2016.06.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023]
Abstract
Sigma-1 receptor (S1R) is a unique pluripotent modulator of living systems and has been reported to be associated with a number of neurological diseases including pathological pain. Intrathecal administration of S1R antagonists attenuates the pain behavior of rodents in both inflammatory and neuropathic pain models. However, the S1R localization in the spinal cord shows a selective ventral horn motor neuron distribution, suggesting the high likelihood of S1R in the dorsal root ganglion (DRG) mediating the pain relief by intrathecally administered drugs. Since primary afferents are the major component in the pain pathway, we examined the mouse and rat DRGs for the presence of the S1R. At both mRNA and protein levels, quantitative RT-PCR (qRT-PCR) and Western confirmed that the DRG contains greater S1R expression in comparison to spinal cord, cortex, or lung but less than liver. Using a custom-made highly specific antibody, we demonstrated the presence of a strong S1R immuno-fluorescence in all rat and mouse DRG neurons co-localizing with the Neuron-Specific Enolase (NSE) marker, but not in neural processes or GFAP-positive glial satellite cells. In addition, S1R was absent in afferent terminals in the skin and in the dorsal horn of the spinal cord. Using immuno-electron microscopy, we showed that S1R is detected in the nuclear envelope and endoplasmic reticulum (ER) of DRG cells. In contrast to other cells, S1R is also located directly at the plasma membrane of the DRG neurons. The presence of S1R in the nuclear envelope of all DRG neurons suggests an exciting potential role of S1R as a regulator of neuronal nuclear activities and/or gene expression, which may provide insight toward new molecular targets for modulating nociception at the level of primary afferent neurons.
Collapse
MESH Headings
- Animals
- Antibodies
- Blotting, Western
- Cell Membrane/metabolism
- Endoplasmic Reticulum/metabolism
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/ultrastructure
- Immunohistochemistry
- Male
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Confocal
- Microscopy, Immunoelectron
- Neurons/metabolism
- Neurons/ultrastructure
- Nuclear Envelope/metabolism
- Phosphopyruvate Hydratase/metabolism
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Real-Time Polymerase Chain Reaction
- Receptors, sigma/genetics
- Receptors, sigma/immunology
- Receptors, sigma/metabolism
- Sigma-1 Receptor
Collapse
Affiliation(s)
- Timur A Mavlyutov
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53726, USA.
| | - Tyler Duellman
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53726, USA
| | - Hung Tae Kim
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53726, USA
| | - Miles L Epstein
- Department of Neuroscience, University of Wisconsin, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Charlotte Leese
- Department of Biomedical Science, University of Sheffield, Firth Court, Sheffield S10 2TN, South Yorkshire, England, United Kingdom
| | - Bazbek A Davletov
- Department of Biomedical Science, University of Sheffield, Firth Court, Sheffield S10 2TN, South Yorkshire, England, United Kingdom
| | - Jay Yang
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53726, USA.
| |
Collapse
|
84
|
Fortes MAS, Marzuca-Nassr GN, Vitzel KF, da Justa Pinheiro CH, Newsholme P, Curi R. Housekeeping proteins: How useful are they in skeletal muscle diabetes studies and muscle hypertrophy models? Anal Biochem 2016; 504:38-40. [PMID: 27060530 DOI: 10.1016/j.ab.2016.03.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 12/15/2022]
Abstract
The use of Western blot analysis is of great importance in research, and the measurement of housekeeping proteins is commonly used for loading controls. However, Ponceau S staining has been shown to be an alternative to analysis of housekeeping protein levels as loading controls in some conditions. In the current study, housekeeping protein levels were measured in skeletal muscle hypertrophy and streptozotocin-induced diabetes experimental models. The following housekeeping proteins were investigated: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-actin, α-tubulin, γ-tubulin, and α-actinin. Evidence is presented that Ponceau S is more reliable than housekeeping protein levels for specific protein quantifications in Western blot analysis.
Collapse
Affiliation(s)
- Marco Aurélio Salomão Fortes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Butantã, São Paulo 05508-900, Brazil.
| | - Gabriel Nasri Marzuca-Nassr
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Butantã, São Paulo 05508-900, Brazil
| | - Kaio Fernando Vitzel
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Butantã, São Paulo 05508-900, Brazil
| | - Carlos Hermano da Justa Pinheiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Butantã, São Paulo 05508-900, Brazil
| | - Philip Newsholme
- School of Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI) Biosciences, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Butantã, São Paulo 05508-900, Brazil
| |
Collapse
|
85
|
Thacker JS, Yeung DH, Staines WR, Mielke JG. Total protein or high-abundance protein: Which offers the best loading control for Western blotting? Anal Biochem 2016; 496:76-8. [DOI: 10.1016/j.ab.2015.11.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/20/2015] [Accepted: 11/30/2015] [Indexed: 01/08/2023]
|
86
|
Molecular association of glucose-6-phosphate isomerase and pyruvate kinase M2 with glyceraldehyde-3-phosphate dehydrogenase in cancer cells. BMC Cancer 2016; 16:152. [PMID: 26911935 PMCID: PMC4766697 DOI: 10.1186/s12885-016-2172-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 02/14/2016] [Indexed: 12/19/2022] Open
Abstract
Background For a long time cancer cells are known for increased uptake of glucose and its metabolization through glycolysis. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key regulatory enzyme of this pathway and can produce ATP through oxidative level of phosphorylation. Previously, we reported that GAPDH purified from a variety of malignant tissues, but not from normal tissues, was strongly inactivated by a normal metabolite, methylglyoxal (MG). Molecular mechanism behind MG mediated GAPDH inhibition in cancer cells is not well understood. Methods GAPDH was purified from Ehrlich ascites carcinoma (EAC) cells based on its enzymatic activity. GAPDH associated proteins in EAC cells and 3-methylcholanthrene (3MC) induced mouse tumor tissue were detected by mass spectrometry analysis and immunoprecipitation (IP) experiment, respectively. Interacting domains of GAPDH and its associated proteins were assessed by in silico molecular docking analysis. Mechanism of MG mediated GAPDH inactivation in cancer cells was evaluated by measuring enzyme activity, Circular dichroism (CD) spectroscopy, IP and mass spectrometry analyses. Result Here, we report that GAPDH is associated with glucose-6-phosphate isomerase (GPI) and pyruvate kinase M2 (PKM2) in Ehrlich ascites carcinoma (EAC) cells and also in 3-methylcholanthrene (3MC) induced mouse tumor tissue. Molecular docking analyses suggest C-terminal domain preference for the interaction between GAPDH and GPI. However, both C and N termini of PKM2 might be interacting with the C terminal domain of GAPDH. Expression of both PKM2 and GPI is increased in 3MC induced tumor compared with the normal tissue. In presence of 1 mM MG, association of GAPDH with PKM2 or GPI is not perturbed, but the enzymatic activity of GAPDH is reduced to 26.8 ± 5 % in 3MC induced tumor and 57.8 ± 2.3 % in EAC cells. Treatment of MG to purified GAPDH complex leads to glycation at R399 residue of PKM2 only, and changes the secondary structure of the protein complex. Conclusion PKM2 may regulate the enzymatic activity of GAPDH. Increased enzymatic activity of GAPDH in tumor cells may be attributed to its association with PKM2 and GPI. Association of GAPDH with PKM2 and GPI could be a signature for cancer cells. Glycation at R399 of PKM2 and changes in the secondary structure of GAPDH complex could be one of the mechanisms by which GAPDH activity is inhibited in tumor cells by MG. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2172-x) contains supplementary material, which is available to authorized users.
Collapse
|
87
|
Faden F, Eschen-Lippold L, Dissmeyer N. Normalized Quantitative Western Blotting Based on Standardized Fluorescent Labeling. Methods Mol Biol 2016; 1450:247-258. [PMID: 27424760 DOI: 10.1007/978-1-4939-3759-2_20] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Western blot (WB) analysis is the most widely used method to monitor expression of proteins of interest in protein extracts of high complexity derived from diverse experimental setups. WB allows the rapid and specific detection of a target protein, such as non-tagged endogenous proteins as well as protein-epitope tag fusions depending on the availability of specific antibodies. To generate quantitative data from independent samples within one experiment and to allow accurate inter-experimental quantification, a reliable and reproducible method to standardize and normalize WB data is indispensable. To date, it is a standard procedure to normalize individual bands of immunodetected proteins of interest from a WB lane to other individual bands of so-called housekeeping proteins of the same sample lane. These are usually detected by an independent antibody or colorimetric detection and do not reflect the real total protein of a sample. Housekeeping proteins-assumed to be constitutively expressed mostly independent of developmental and environmental states-can greatly differ in their expression under these various conditions. Therefore, they actually do not represent a reliable reference to normalize the target protein's abundance to the total amount of protein contained in each lane of a blot.Here, we demonstrate the Smart Protein Layers (SPL) technology, a combination of fluorescent standards and a stain-free fluorescence-based visualization of total protein in gels and after transfer via WB. SPL allows a rapid and highly sensitive protein visualization and quantification with a sensitivity comparable to conventional silver staining with a 1000-fold higher dynamic range. For normalization, standardization and quantification of protein gels and WBs, a sample-dependent bi-fluorescent standard reagent is applied and, for accurate quantification of data derived from different experiments, a second calibration standard is used. Together, the precise quantification of protein expression by lane-to-lane, gel-to-gel, and blot-to-blot comparisons is facilitated especially with respect to experiments in the area of proteostasis dealing with highly variable protein levels and involving protein degradation mutants and treatments modulating protein abundance.
Collapse
Affiliation(s)
- Frederik Faden
- Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany
- ScienceCampus Halle - Plant-Based Bioeconomy, Halle (Saale), Germany
| | | | - Nico Dissmeyer
- Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany.
- ScienceCampus Halle - Plant-Based Bioeconomy, Halle (Saale), Germany.
| |
Collapse
|
88
|
Chamorro-Garcia A, de la Escosura-Muñiz A, Espinosa-Castañeda M, Rodriguez-Hernandez CJ, de Torres C, Merkoçi A. Detection of parathyroid hormone-like hormone in cancer cell cultures by gold nanoparticle-based lateral flow immunoassays. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:53-61. [PMID: 26492976 DOI: 10.1016/j.nano.2015.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/28/2015] [Accepted: 09/28/2015] [Indexed: 10/22/2022]
Abstract
Parathyroid hormone-like hormone (PTHLH) exerts relevant roles in progression and dissemination of several tumors. However, factors influencing its production and secretion have not been fully characterized. The main limitation is the lack of specific, sensitive and widely available techniques to detect and quantify PTHLH. We have developed a lateral flow immunoassay using gold nanoparticles label for the fast and easy detection of PTHLH in lysates and culture media of three human cell lines (HaCaT, LA-N-1, SK-N-AS). Levels in culture media and lysates ranged from 11 to 20 ng/mL and 0.66 to 0.87 μg/mL respectively. Results for HaCaT are in agreement to the previously reported, whereas LA-N-1 and SK-N-AS have been evaluated for the first time. The system also exhibits good performance in human serum samples. This methodology represents a helpful tool for future in vitro and in vivo studies of mechanisms involved in PTHLH production as well as for diagnostics. From the Clinical Editor: Parathyroid Hormone-like Hormone (PTHLH) is known to be secreted by some tumors. However, the detection of this peptide remains difficult. The authors here described their technique of using gold nanoparticles as label for the detection of PTHLH by Lateral-flow immunoassays (LFIAs). The positive results may also point a way to using the same technique for the rapid determination of other relevant cancer proteins.
Collapse
Affiliation(s)
- Alejandro Chamorro-Garcia
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Hospital Sant Joan de Déu and Fundació Sant Joan de Déu, 08950 Barcelona, Spain
| | - Alfredo de la Escosura-Muñiz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Marisol Espinosa-Castañeda
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | | | - Carmen de Torres
- Hospital Sant Joan de Déu and Fundació Sant Joan de Déu, 08950 Barcelona, Spain
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain; ICREA-Institucio Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain.
| |
Collapse
|
89
|
Thuring C, Follin E, Geironson L, Freyhult E, Junghans V, Harndahl M, Buus S, Paulsson KM. HLA class I is most tightly linked to levels of tapasin compared with other antigen-processing proteins in glioblastoma. Br J Cancer 2015; 113:952-62. [PMID: 26313662 PMCID: PMC4578088 DOI: 10.1038/bjc.2015.297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 07/15/2014] [Accepted: 07/25/2015] [Indexed: 12/24/2022] Open
Abstract
Background: Tumour cells can evade the immune system by dysregulation of human leukocyte antigens (HLA-I). Low quantity and/or altered quality of HLA-I cell surface expression is the result of either HLA-I alterations or dysregulations of proteins of the antigen-processing machinery (APM). Tapasin is an APM protein dedicated to the maturation of HLA-I and dysregulation of tapasin has been linked to higher malignancy in several different tumours. Methods: We studied the expression of APM components and HLA-I, as well as HLA-I tapasin-dependency profiles in glioblastoma tissues and corresponding cell lines. Results: Tapasin displayed the strongest correlation to HLA-I heavy chain but also clustered with β2-microglobulin, transporter associated with antigen processing (TAP) and LMP. Moreover, tapasin also correlated to survival of glioblastoma patients. Some APM components, for example, TAP1/TAP2 and LMP2/LMP7, showed variable but coordinated expression, whereas ERAP1/ERAP2 displayed an imbalanced expression pattern. Furthermore, analysis of HLA-I profiles revealed variable tapasin dependence of HLA-I allomorphs in glioblastoma patients. Conclusions: Expression of APM proteins is highly variable between glioblastomas. Tapasin stands out as the APM component strongest correlated to HLA-I expression and we proved that HLA-I profiles in glioblastoma patients include tapasin-dependent allomorphs. The level of tapasin was also correlated with patient survival time. Our results support the need for individualisation of immunotherapy protocols.
Collapse
Affiliation(s)
- Camilla Thuring
- Immunology Section, Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Elna Follin
- Immunology Section, Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Linda Geironson
- Immunology Section, Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Eva Freyhult
- Science for Life Laboratory, Bioinformatics Infrastructure for Life Sciences, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, SE-751 05 Uppsala, Sweden
| | - Victoria Junghans
- Immunology Section, Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Mikkel Harndahl
- Department of Experimental Immunology, Institute of International Health, Immunology and Microbiology, DK-2200 Copenhagen, Denmark
| | - Søren Buus
- Department of Experimental Immunology, Institute of International Health, Immunology and Microbiology, DK-2200 Copenhagen, Denmark
| | - Kajsa M Paulsson
- Immunology Section, Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| |
Collapse
|
90
|
Julian MW, Strange HR, Ballinger MN, Hotchkiss RS, Papenfuss TL, Crouser ED. Tolerance and Cross-Tolerance following Toll-Like Receptor (TLR)-4 and -9 Activation Are Mediated by IRAK-M and Modulated by IL-7 in Murine Splenocytes. PLoS One 2015. [PMID: 26218271 PMCID: PMC4517781 DOI: 10.1371/journal.pone.0132921] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective Immune suppression during critical illness predisposes to serious infections. We sought to determine the mechanisms regulating tolerance and cross-tolerance to common pro-inflammatory danger signals in a model that recapitulates the intact in vivo immune response. Materials and Methods Flt3-expanded splenocytes obtained from wild-type or matching IRAK-M knockout (IRAK-M-/-), C57BL/6, male mice (8–10 weeks old) were treated repeatedly or alternately with either LPS or CpGA DNA, agonists of Toll-like receptor (TLR)-4 and -9, respectively, over successive 24-hour periods. Supernatants were collected following each 24-hour period with cytokine release (ELISA) and splenocyte IRAK-M expression (Western blot) determined. Tolerance and cross-tolerance were assessed in the absence or presence of programmed death receptor (PD)-1 blocking antibody or IL-7 pre-treatment. Main Results Splenocytes notably exhibited both tolerance and cross-tolerance to subsequent treatments with either LPS or CpGA DNA. The character of tolerance and cross-tolerance in this model was distinct following initial LPS or CpGA treatment in that TNFα and IFNγ release (not IL-10) were suppressed following LPS; whereas, initial CpGA treatment suppressed TNFα, IFNγ and IL-10 release in response to subsequent stimulation (LPS or CpGA). Tolerance and cross-tolerance were unrelated to IL-10 release or PD-1 but were attenuated in IRAK-M-/- splenocytes. IL-7 significantly suppressed IRAK-M expression and restored TNFα and IFNγ production without influencing IL-10 release. Conclusions In summary, acute immune tolerance and cross-tolerance in response to LPS or CpGA were distinct in that LPS selectively suppressed pro-inflammatory cytokine responses; whereas, CpGA suppressed both pro- and anti-inflammatory responses. The induction of tolerance and cross-tolerance in response to common danger signals was mechanistically unrelated to IL-10 or PD-1 but was directly influenced by IRAK-M expression. IL-7 reduced IRAK-M expression and attenuated immune tolerance induced by either LPS or CpGA, and thus may be useful for reversal of immune tolerance in the setting of critical illness.
Collapse
Affiliation(s)
- Mark W. Julian
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary Allergy, Critical Care, and Sleep Medicine, Wexner Medical Center, Columbus, OH, United States of America
| | - Heather R. Strange
- College of Veterinary Medicine, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States of America
| | - Megan N. Ballinger
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary Allergy, Critical Care, and Sleep Medicine, Wexner Medical Center, Columbus, OH, United States of America
| | - Richard S. Hotchkiss
- Departments of Anesthesiology, Medicine and Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Tracey L. Papenfuss
- College of Veterinary Medicine, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States of America
| | - Elliott D. Crouser
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary Allergy, Critical Care, and Sleep Medicine, Wexner Medical Center, Columbus, OH, United States of America
- * E-mail:
| |
Collapse
|
91
|
Maeda S, Morikawa T, Takadate T, Suzuki T, Minowa T, Hanagata N, Onogawa T, Motoi F, Nishimura T, Unno M. Mass spectrometry-based proteomic analysis of formalin-fixed paraffin-embedded extrahepatic cholangiocarcinoma. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2015; 22:683-91. [PMID: 25917007 DOI: 10.1002/jhbp.262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/21/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Extrahepatic cholangiocarcinoma is very difficult to diagnose at an early stage, and has a poor prognosis. Novel markers for diagnosis and optimal treatment selection are needed. However, there has been very limited data on the proteome profile of extrahepatic cholangiocarcinoma. This study was designed to unravel the proteome profile of this disease and to identify overexpressed proteins using mass spectrometry-based proteomic approaches. METHODS We analyzed a discovery set of formalin-fixed paraffin-embedded tissues of 14 extrahepatic cholangiocarcinomas using shotgun mass spectrometry, and compared proteome profiles with those of seven controls. Then, selected candidates were verified by quantitative analysis using scheduled selected reaction monitoring-based mass spectrometry. Furthermore, immunohistochemical staining used a validation set of 165 cases. RESULTS In total, 1,992 proteins were identified and 136 proteins were overexpressed. Verification of 58 selected proteins by quantitative analysis revealed 11 overexpressed proteins. Immunohistochemical validation for 10 proteins showed positive rates of S100P (84%), CEAM5 (75%), MUC5A (62%), OLFM4 (60%), OAT (42%), CAD17 (41%), FABPL (38%), AOFA (30%), K1C20 (25%) and CPSM (22%) in extrahepatic cholangiocarcinomas, which were rarely positive in controls. CONCLUSIONS We identified 10 proteins associated with extrahepatic cholangiocarcinoma using proteomic approaches. These proteins are potential targets for future diagnostic biomarkers and therapy.
Collapse
Affiliation(s)
- Shimpei Maeda
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Surgery, South Miyagi Medical Center, Miyagi, Japan
| | - Takanori Morikawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tatsuyuki Takadate
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Minowa
- Nanotechnology Innovation Station, National Institute for Materials Science, Tsukuba, Japan
| | - Nobutaka Hanagata
- Nanotechnology Innovation Station, National Institute for Materials Science, Tsukuba, Japan
| | - Tohru Onogawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fuyuhiko Motoi
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
92
|
Collins MA, An J, Peller D, Bowser R. Total protein is an effective loading control for cerebrospinal fluid western blots. J Neurosci Methods 2015; 251:72-82. [PMID: 26004848 DOI: 10.1016/j.jneumeth.2015.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) has been used to identify biomarkers of neurological disease. CSF protein biomarkers identified by high-throughput methods, however, require further validation. While Western blotting (WB) is well-suited to this task, the lack of a validated loading control for CSF WB limits the method's accuracy. NEW METHOD We investigated the use of total protein (TP) as a CSF WB loading control. Using iodine-based reversible membrane staining, we determined the linear range and consistency of the CSF TP signal. We then spiked green fluorescent protein (GFP) into CSF to create defined sample-to-sample differences in GFP levels that were measured by WB before and after TP loading correction. Levels of CSF complement C3 and cystatin C measured by WB with TP loading correction and ELISA in amyotrophic lateral sclerosis and healthy control CSF samples were then compared. RESULTS CSF WB with the TP loading control accurately detected defined differences in GFP levels and corrected for simulated loading errors. Individual CSF sample Western blot and ELISA measurements of complement C3 and cystatin C were significantly correlated and the methods showed a comparable ability to detect between-groups differences. COMPARISON WITH EXISTING METHOD CSF TP staining has a greater linear dynamic range and sample-to-sample consistency than albumin, a commonly used CSF loading control. The method accurately corrects for simulated errors in loading and improves the sensitivity of CSF WB compared to using no loading control. CONCLUSIONS The TP staining loading control improves the sensitivity and accuracy of CSF WB results.
Collapse
Affiliation(s)
- Mahlon A Collins
- Department of Neurobiology, University of Pittsburgh, 200 South Lothrop Street, Pittsburgh, PA 15213, USA; Departments of Neurobiology and Neurology, St. Joseph's Hospital and Medical Center and Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ 85013, USA.
| | - Jiyan An
- Departments of Neurobiology and Neurology, St. Joseph's Hospital and Medical Center and Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ 85013, USA.
| | - Danielle Peller
- Departments of Neurobiology and Neurology, St. Joseph's Hospital and Medical Center and Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ 85013, USA.
| | - Robert Bowser
- Departments of Neurobiology and Neurology, St. Joseph's Hospital and Medical Center and Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ 85013, USA.
| |
Collapse
|
93
|
Gorr TA, Vogel J. Western blotting revisited: Critical perusal of underappreciated technical issues. Proteomics Clin Appl 2015; 9:396-405. [DOI: 10.1002/prca.201400118] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/19/2014] [Accepted: 01/14/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Thomas A. Gorr
- Institute of Veterinary Physiology; Vetsuisse Faculty; University of Zürich; Zürich Switzerland
- Center for Pediatrics and Adolescent Medicine; Clinic IV: Division of Pediatric Hematology and Oncology; University Medical Center Freiburg; Freiburg Germany
| | - Johannes Vogel
- Institute of Veterinary Physiology; Vetsuisse Faculty; University of Zürich; Zürich Switzerland
| |
Collapse
|
94
|
Stauch KL, Purnell PR, Villeneuve LM, Fox HS. Proteomic analysis and functional characterization of mouse brain mitochondria during aging reveal alterations in energy metabolism. Proteomics 2015; 15:1574-86. [PMID: 25546256 DOI: 10.1002/pmic.201400277] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 11/05/2014] [Accepted: 12/18/2014] [Indexed: 12/18/2022]
Abstract
Mitochondria are the main cellular source of reactive oxygen species and are recognized as key players in several age-associated disorders and neurodegeneration. Their dysfunction has also been linked to cellular aging. Additionally, mechanisms leading to the preservation of mitochondrial function promote longevity. In this study we investigated the proteomic and functional alterations in brain mitochondria isolated from mature (5 months old), old (12 months old), and aged (24 months old) mice as determinants of normal "healthy" aging. Here the global changes concomitant with aging in the mitochondrial proteome of mouse brain analyzed by quantitative mass-spectrometry based super-SILAC identified differentially expressed proteins involved in several metabolic pathways including glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation. Despite these changes, the bioenergetic function of these mitochondria was preserved. Overall, this data indicates that proteomic changes during aging may compensate for functional defects aiding in preservation of mitochondrial function. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD001370 (http://proteomecentral.proteomexchange.org/dataset/PXD001370).
Collapse
Affiliation(s)
- Kelly L Stauch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | |
Collapse
|
95
|
Trötschel C, Poetsch A. Current approaches and challenges in targeted absolute quantification of membrane proteins. Proteomics 2015; 15:915-29. [DOI: 10.1002/pmic.201400427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/05/2014] [Accepted: 12/05/2014] [Indexed: 01/08/2023]
Affiliation(s)
| | - Ansgar Poetsch
- Department of Plant Biochemistry; Ruhr-University Bochum; Bochum Germany
| |
Collapse
|
96
|
Sex-specific effects of low protein diet on in utero programming of renal G-protein coupled receptors. J Dev Orig Health Dis 2015; 5:36-44. [PMID: 24847689 DOI: 10.1017/s2040174413000524] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Intrauterine growth restriction (IUGR) is an important risk factor for development of hypertension, diabetes and the metabolic syndrome. Maternal low protein (LP) intake during rat pregnancy leads to IUGR in male and female offspring, although females may be resistant to the development of effect. Current evidence suggests that changes in the renin-angiotensin system (RAS) in utero contribute to this programmed hypertension, via sex-specific mechanisms. The previously orphaned G-protein coupled receptor (GPR91) was identified as a central player in the development of hypertension in adult mice, through a RAS-dependent pathway. However, whether the GPR91 pathway contributes to fetal programming is unknown. Furthermore, the nature of involvement of downstream modulators of the RAS including Gqα/11α and GαS has not been investigated in IUGR-LP rats. Therefore, we postulated that renal GPR91, in conjunction with RAS, is differentially impacted in a sex-specific manner from LP-induced IUGR rats. Pregnant Wistar rats were fed control (C, 20% protein) or LP (8% protein) diet until embryonic day 19 (E19) or postnatal d21. At E19, GPR91 protein and mRNA were increased in both male and female LP kidneys (P<0.05), whereas renin and angiotensin converting enzyme (ACE) were only increased in males (P=0.06 and P<0.05, respectively). On d21, AT1R and Gqα/11α were increased in LP males, while in LP females, AT2R protein was elevated and renin expression was decreased (P<0.05). This study demonstrates that in IUGR-LP rats, up regulation of GPR91 in fetal kidney is mirrored by increased ACE and renin in males. These in utero alterations, when combined with postnatal increases in AT1R-Gqα/11α specifically in male offspring, may predispose to the development of hypertension.
Collapse
|
97
|
Pascoe MC, Howells DW, Crewther DP, Carey LM, Crewther SG. Fish oil supplementation associated with decreased cellular degeneration and increased cellular proliferation 6 weeks after middle cerebral artery occlusion in the rat. Neuropsychiatr Dis Treat 2015; 11:153-64. [PMID: 25609971 PMCID: PMC4298295 DOI: 10.2147/ndt.s72925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Anti-inflammatory long-chain omega-3 polyunsaturated fatty acids (n-3-LC-PUFAs) are both neuroprotective and have antidepressive effects. However the influence of dietary supplemented n-3-LC-PUFAs on inflammation-related cell death and proliferation after middle cerebral artery occlusion (MCAo)-induced stroke is unknown. We have previously demonstrated that anxiety-like and hyperactive locomotor behaviors are reduced in n-3-LC-PUFA-fed MCAo animals. Thus in the present study, male hooded Wistar rats were exposed to MCAo or sham surgeries and examined behaviorally 6 weeks later, prior to euthanasia and examination of lesion size, cell death and proliferation in the dentate gyrus, cornu ammonis region of the hippocampus of the ipsilesional hemispheres, and the thalamus of the ipsilesional and contralesional hemispheres. Markers of cell genesis and cell degeneration in the hippocampus or thalamus of the ipsilesional hemisphere did not differ between surgery and diet groups 6 weeks post MCAo. Dietary supplementation with n-3-LC-PUFA decreased cell degeneration and increased cell proliferation in the thalamic region of the contralesional hemisphere. MCAo-associated cell degeneration in the hippocampus and thalamus positively correlated with anxiety-like and hyperactive locomotor behaviors previously reported in these animals. These results suggest that anti-inflammatory n-3-LC-PUFA supplementation appears to have cellular protective effects after MCAo in the rat, which may affect behavioral outcomes.
Collapse
Affiliation(s)
| | - David W Howells
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | | | - Leeanne M Carey
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia ; Department of Occupational Therapy, School of Allied Health La Trobe University, VIC, Australia
| | - Sheila G Crewther
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
98
|
Poletto AC, David-Silva A, Yamamoto APDM, Machado UF, Furuya DT. Reduced Slc2a4/GLUT4 expression in subcutaneous adipose tissue of monosodium glutamate obese mice is recovered after atorvastatin treatment. Diabetol Metab Syndr 2015; 7:18. [PMID: 25834641 PMCID: PMC4381373 DOI: 10.1186/s13098-015-0015-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/24/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Decreased expression of glucose transporter protein GLUT4, encoded by the solute carrier 2A4 (Slc2a4) gene, is involved in obesity-induced insulin resistance. Local tissue inflammation, by nuclear factor-κB (NFκB)-mediated pathway, has been related to Slc2a4 repression; a mechanism that could be modulated by statins. Using a model of obesity with insulin resistance, this study investigated whether (1) inflammatory markers and Slc2a4 expression are altered; (2) atorvastatin has beneficial effects on inflammation and Slc2a4 expression; and (3) inhibitor of NFκB (IKK)/NFκB pathway is involved in subcutaneous adipose tissue (SAT). FINDINGS Obese mice showed insulin resistance, decreased expression of Slc2a4 mRNA (66%, P < 0.01) and GLUT4 protein (30%, P < 0.05), and increased expression of interleukin 6 (Il6) mRNA (44%, P < 0.05) in SAT. Obese mice treated with atorvastatin had enhanced in vivo insulin sensitivity, besides increased Slc2a4/GLUT4 expression and reduced Il6 expression in SAT. No alterations of tumor necrosis factor-α, interleukin 1β and adiponectin expression or IKKα/β activity in SAT of obese mice or obese mice treated with atorvastatin were observed. CONCLUSIONS Atorvastatin has beneficial effect upon glycemic homeostasis, which may be related to its positive impact on Il6 and Slc2a4/GLUT4 expression in SAT.
Collapse
Affiliation(s)
- Ana Cláudia Poletto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, 05508-900 São Paulo, Brazil
| | - Aline David-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, 05508-900 São Paulo, Brazil
| | - Aline Pedro de Melo Yamamoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, 05508-900 São Paulo, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, 05508-900 São Paulo, Brazil
| | - Daniela Tomie Furuya
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, 05508-900 São Paulo, Brazil
| |
Collapse
|
99
|
Aksamitiene E, Hoek JB, Kiyatkin A. Multistrip Western blotting: a tool for comparative quantitative analysis of multiple proteins. Methods Mol Biol 2015; 1312:197-226. [PMID: 26044004 DOI: 10.1007/978-1-4939-2694-7_23] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The qualitative and quantitative measurements of protein abundance and modification states are essential in understanding their functions in diverse cellular processes. Typical Western blotting, though sensitive, is prone to produce substantial errors and is not readily adapted to high-throughput technologies. Multistrip Western blotting is a modified immunoblotting procedure based on simultaneous electrophoretic transfer of proteins from multiple strips of polyacrylamide gels to a single membrane sheet. In comparison with the conventional technique, Multistrip Western blotting increases data output per single blotting cycle up to tenfold; allows concurrent measurement of up to nine different total and/or posttranslationally modified protein expression obtained from the same loading of the sample; and substantially improves the data accuracy by reducing immunoblotting-derived signal errors. This approach enables statistically reliable comparison of different or repeated sets of data and therefore is advantageous to apply in biomedical diagnostics, systems biology, and cell signaling research.
Collapse
Affiliation(s)
- Edita Aksamitiene
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | | | | |
Collapse
|
100
|
Stauch KL, Purnell PR, Fox HS. Aging synaptic mitochondria exhibit dynamic proteomic changes while maintaining bioenergetic function. Aging (Albany NY) 2014; 6:320-34. [PMID: 24827396 PMCID: PMC4032798 DOI: 10.18632/aging.100657] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging correlates with a progressive impairment of mitochondrial homeostasis and is an influential factor for several forms of neurodegeneration. However, the mechanisms underlying age-related alterations in synaptosomal mitochondria, a neuronal mitochondria population highly susceptible to insults and critical for brain function, remain incompletely understood. Therefore this study investigates the synaptic mitochondrial proteomic and bioenergetic alterations that occur with age. The utilization of a state of the art quantitative proteomics approach allowed for the comparison of protein expression levels in synaptic mitochondria isolated from 5 (mature), 12 (old), and 24 (aged) month old mice. During the process of aging we find that dynamic proteomic alterations occur in synaptic mitochondria. Despite direct (mitochondrial DNA deletions) and indirect (increased antioxidant protein levels) signs of mitochondrial damage in the aged mice, there was an overall maintenance of mitochondrial function. Therefore the synaptic mitochondrial proteomic changes that occur with aging correlate with preservation of synaptic mitochondrial function.
Collapse
Affiliation(s)
- Kelly L Stauch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | | | | |
Collapse
|