51
|
Zhang X, Liu X, Chai W, Wei J, Wang Q, Li B, Li H. The use of proteomic analysis for exploring the phytoremediation mechanism of Scirpus triqueter to pyrene. JOURNAL OF HAZARDOUS MATERIALS 2013; 260:1001-1007. [PMID: 23892167 DOI: 10.1016/j.jhazmat.2013.06.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 06/26/2013] [Indexed: 06/02/2023]
Abstract
Scirpus triqueter has been reported to be an effective phytoremediation plant for pyrene dissipation. The study of S. triqueter in response to pyrene is crucial to understand the mechanism of phytoremediation. To gain a certain extent understanding of S. triqueter in response to pyrene, S. triqueter seedlings were exposed to 50 mg kg(-1) pyrene and a comparative proteomic analysis of total proteins was performed. 37 and 55 proteins were significantly differentially expressed in the shoot and root of S. triqueter upon exposure, respectively. 24 proteins (17 proteins in shoot and 7 proteins in root) were identified on the basis of the homology of their peptide profiles with existing protein sequences using mass spectrometry analysis. Analysis of protein expression patterns revealed that proteins in shoot associated with photosynthesis, defense, energy and matter metabolism, coenzyme metabolism and protein metabolism. Moreover, the proteins related photosynthesis accounted for more than 70% of the identified proteins. The proteins in root associated with stress, defense, energy metabolism, protein modification and carbohydrate metabolism. Pyrene appears to have an important deleterious effect on primary carbon metabolism, the synthesis of proteins and signal transduction. The present study demonstrates the use of proteomic approach to help us understand the phytoremediation mechanism of S. triqueter.
Collapse
Affiliation(s)
- Xinying Zhang
- Laboratory of Environmental Remediation, College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | | | | | | | | | | | | |
Collapse
|
52
|
Kamal AHM, Cho K, Choi JS, Bae KH, Komatsu S, Uozumi N, Woo SH. The wheat chloroplastic proteome. J Proteomics 2013; 93:326-42. [PMID: 23563086 DOI: 10.1016/j.jprot.2013.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 11/18/2022]
Abstract
UNLABELLED With the availability of plant genome sequencing, analysis of plant proteins with mass spectrometry has become promising and admired. Determining the proteome of a cell is still a challenging assignment, which is convoluted by proteome dynamics and convolution. Chloroplast is fastidious curiosity for plant biologists due to their intricate biochemical pathways for indispensable metabolite functions. In this review, an overview on proteomic studies conducted in wheat with a special focus on subcellular proteomics of chloroplast, salt and water stress. In recent years, we and other groups have attempted to understand the photosynthesis in wheat and abiotic stress under salt imposed and water deficit during vegetative stage. Those studies provide interesting results leading to better understanding of the photosynthesis and identifying the stress-responsive proteins. Indeed, recent studies aimed at resolving the photosynthesis pathway in wheat. Proteomic analysis combining two complementary approaches such as 2-DE and shotgun methods couple to high through put mass spectrometry (LTQ-FTICR and MALDI-TOF/TOF) in order to better understand the responsible proteins in photosynthesis and abiotic stress (salt and water) in wheat chloroplast will be focused. BIOLOGICAL SIGNIFICANCE In this review we discussed the identification of the most abundant protein in wheat chloroplast and stress-responsive under salt and water stress in chloroplast of wheat seedlings, thus providing the proteomic view of the events during the development of this seedling under stress conditions. Chloroplast is fastidious curiosity for plant biologists due to their intricate biochemical pathways for indispensable metabolite functions. An overview on proteomic studies conducted in wheat with a special focus on subcellular proteomics of chloroplast, salt and water stress. We have attempted to understand the photosynthesis in wheat and abiotic stress under salt imposed and water deficit during seedling stage. Those studies provide interesting results leading to a better understanding of the photosynthesis and identifying the stress-responsive proteins. In reality, our studies aspired at resolving the photosynthesis pathway in wheat. Proteomic analysis united two complementary approaches such as Tricine SDS-PAGE and 2-DE methods couple to high through put mass spectrometry (LTQ-FTICR and MALDI-TOF/TOF) in order to better understand the responsible proteins in photosynthesis and abiotic stress (salt and water) in wheat chloroplast will be highlighted. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
Affiliation(s)
- Abu Hena Mostafa Kamal
- Research Center for Integrative Cellulomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
53
|
Protein contribution to plant salinity response and tolerance acquisition. Int J Mol Sci 2013; 14:6757-89. [PMID: 23531537 PMCID: PMC3645664 DOI: 10.3390/ijms14046757] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 11/17/2022] Open
Abstract
The review is focused on plant proteome response to salinity with respect to physiological aspects of plant salt stress response. The attention is paid to both osmotic and ionic effects of salinity stress on plants with respect to several protein functional groups. Therefore, the role of individual proteins involved in signalling, changes in gene expression, protein biosynthesis and degradation and the resulting changes in protein relative abundance in proteins involved in energy metabolism, redox metabolism, stressand defence-related proteins, osmolyte metabolism, phytohormone, lipid and secondary metabolism, mechanical stress-related proteins as well as protein posttranslational modifications are discussed. Differences between salt-sensitive (glycophytes) and salt-tolerant (halophytes) plants are analysed with respect to differential salinity tolerance. In conclusion, contribution of proteomic studies to understanding plant salinity tolerance is summarised and discussed.
Collapse
|
54
|
Stagg NJ, Ghantous HN, Ladics GS, House RV, Gendel SM, Hastings KL. Workshop proceedings: challenges and opportunities in evaluating protein allergenicity across biotechnology industries. Int J Toxicol 2013; 32:4-10. [PMID: 23324160 DOI: 10.1177/1091581812471864] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A workshop entitled "Challenges and Opportunities in Evaluating Protein Allergenicity across Biotechnology Industries" was held at the 51st Annual Meeting of the Society of Toxicology (SOT) in San Francisco, California. The workshop was sponsored by the Biotechnology Specialty Section of SOT and was designed to present the science-based approaches used in biotechnology industries to evaluate and regulate protein allergenicity. A panel of experts from industry and government highlighted the allergenicity testing requirements and research in the agricultural, pharmaceutical/biopharma, and vaccine biotechnology industries and addressed challenges and opportunities for advancing the science of protein allergenicity. The main learning from the workshop was that immunoglobulin E-mediated allergenicity of biotechnology-derived products is difficult to assess without human data. The approaches currently being used to evaluate potential for allergenicity across biotechnology industries are very different and range from bioinformatics, in vitro serology, in vivo animal testing, in vitro and in vivo functional assays, and "biosimilar" assessments (ie, biotherapeutic equivalents to innovator products). The challenge remains with regard to the different or lack of regulatory requirements for allergenicity testing across industries, but the novel approaches being used with bioinformatics and biosimilars may lead to opportunities in the future to collaborate across biotechnology industries.
Collapse
Affiliation(s)
- Nicola J Stagg
- Agensys, 1800 Stewart Street, Santa Monica, CA 90404, USA.
| | | | | | | | | | | |
Collapse
|
55
|
Monavarfeshani A, Mirzaei M, Sarhadi E, Amirkhani A, Khayam Nekouei M, Haynes PA, Mardi M, Salekdeh GH. Shotgun proteomic analysis of the Mexican lime tree infected with "CandidatusPhytoplasma aurantifolia". J Proteome Res 2013; 12:785-95. [PMID: 23244174 DOI: 10.1021/pr300865t] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infection of Mexican lime trees (Citrus aurantifolia L.) with the specialized bacterium "CandidatusPhytoplasma aurantifolia" causes witches' broom disease. Witches' broom disease has the potential to cause significant economic losses throughout western Asia and North Africa. We used label-free quantitative shotgun proteomics to study changes in the proteome of Mexican lime trees in response to infection by "Ca. Phytoplasma aurantifolia". Of 990 proteins present in five replicates of healthy and infected plants, the abundances of 448 proteins changed significantly in response to phytoplasma infection. Of these, 274 proteins were less abundant in infected plants than in healthy plants, and 174 proteins were more abundant in infected plants than in healthy plants. These 448 proteins were involved in stress response, metabolism, growth and development, signal transduction, photosynthesis, cell cycle, and cell wall organization. Our results suggest that proteomic changes in response to infection by phytoplasmas might support phytoplasma nutrition by promoting alterations in the host's sugar metabolism, cell wall biosynthesis, and expression of defense-related proteins. Regulation of defense-related pathways suggests that defense compounds are induced in interactions with susceptible as well as resistant hosts, with the main differences between the two interactions being the speed and intensity of the response.
Collapse
Affiliation(s)
- Aboozar Monavarfeshani
- Department of Genomics, Agricultural Biotechnology Research Institute of Iran, Karaj, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Alikhani M, Khatabi B, Sepehri M, Nekouei MK, Mardi M, Salekdeh GH. A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica. MOLECULAR BIOSYSTEMS 2013; 9:1498-510. [DOI: 10.1039/c3mb70069k] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
57
|
Gong CY, Wang T. Proteomic evaluation of genetically modified crops: current status and challenges. FRONTIERS IN PLANT SCIENCE 2013; 4:41. [PMID: 23471542 PMCID: PMC3590489 DOI: 10.3389/fpls.2013.00041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/19/2013] [Indexed: 05/07/2023]
Abstract
Hectares of genetically modified (GM) crops have increased exponentially since 1996, when such crops began to be commercialized. GM biotechnology, together with conventional breeding, has become the main approach to improving agronomic traits of crops. However, people are concerned about the safety of GM crops, especially GM-derived food and feed. Many efforts have been made to evaluate the unintended effects caused by the introduction of exogenous genes. "Omics" techniques have advantages over targeted analysis in evaluating such crops because of their use of high-throughput screening. Proteins are key players in gene function and are directly involved in metabolism and cellular development or have roles as toxins, antinutrients, or allergens, which are essential for human health. Thus, proteomics can be expected to become one of the most useful tools in safety assessment. This review assesses the potential of proteomics in evaluating various GM crops. We further describe the challenges in ensuring homogeneity and sensitivity in detection techniques.
Collapse
Affiliation(s)
| | - Tai Wang
- *Correspondence: Tai Wang, Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Haidianqu, Beijing 100093, China. e-mail:
| |
Collapse
|
58
|
Sarhadi E, Bazargani MM, Sajise AG, Abdolahi S, Vispo NA, Arceta M, Nejad GM, Singh RK, Salekdeh GH. Proteomic analysis of rice anthers under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 58:280-7. [PMID: 22868211 DOI: 10.1016/j.plaphy.2012.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 07/16/2012] [Indexed: 05/06/2023]
Abstract
Salinity is a major factor that limits rice production worldwide. Rice is considered generally to be sensitive to salt stress during the reproductive stage. To determine the molecular mechanisms of salt tolerance at the reproductive stage, anther proteomic patterns for two contrasting rice genotypes IR64 (salt sensitive) and Cheriviruppu (salt tolerant) under salt stress were compared. Plants were grown in a greenhouse and salt stress (100 mM NaCl) was imposed at the booting stage. Anther samples were collected from control and salt-treated plants at the anthesis stage. The Na(+)/K(+) ratio in IR64 anthers under salt stress was >1.7 times greater than that under control conditions, whereas no significant change was observed in Cheriviruppu. We also observed an 83% reduction in IR64 pollen viability, whereas this reduction was only 23% in Cheriviruppu. Of 454 protein spots detected reproducibly on two-dimensional electrophoresis gels, 38 showed significant changes in at least one genotype in response to stress. Using Mass spectrometry (MALDI TOF/TOF) analysis, we identified 18 protein spots that were involved in several processes that might increase plant adaptation to salt stress, such as carbohydrate/energy metabolism, anther wall remodelling and metabolism, and protein synthesis and assembly. Three isoforms of fructokinase-2 were upregulated only in Cheriviruppu under salt stress. This upregulation might result in increased starch content in pollen, which would support pollen growth and development under salt stress. The results also suggested that anther and pollen wall remodelling/metabolism proteins contribute to the tolerance of rice to salt stress.
Collapse
Affiliation(s)
- Elham Sarhadi
- Agricultural Biotechnology Research Institute of Iran, P.O. Box 31535-1897, Karaj, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Koc A, Cañuelo A, Garcia-Reyes JF, Molina-Diaz A, Trojanowicz M. Low-molecular weight protein profiling of genetically modified maize using fast liquid chromatography electrospray ionization and time-of-flight mass spectrometry. J Sep Sci 2012; 35:1447-61. [DOI: 10.1002/jssc.201200109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anna Koc
- Department of Chemistry; University of Warsaw; Warsaw Poland
| | - Ana Cañuelo
- Department of Experimental Biology; University of Jaén; Jaén Spain
| | - Juan F. Garcia-Reyes
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry; University of Jaén; Jaén Spain
| | - Antonio Molina-Diaz
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry; University of Jaén; Jaén Spain
| | | |
Collapse
|
60
|
Kamal AHM, Cho K, Kim DE, Uozumi N, Chung KY, Lee SY, Choi JS, Cho SW, Shin CS, Woo SH. Changes in physiology and protein abundance in salt-stressed wheat chloroplasts. Mol Biol Rep 2012; 39:9059-74. [DOI: 10.1007/s11033-012-1777-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 06/09/2012] [Indexed: 01/27/2023]
|
61
|
Benešová M, Holá D, Fischer L, Jedelský PL, Hnilička F, Wilhelmová N, Rothová O, Kočová M, Procházková D, Honnerová J, Fridrichová L, Hniličková H. The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration? PLoS One 2012; 7:e38017. [PMID: 22719860 PMCID: PMC3374823 DOI: 10.1371/journal.pone.0038017] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 05/02/2012] [Indexed: 01/05/2023] Open
Abstract
Understanding the response of a crop to drought is the first step in the breeding of tolerant genotypes. In our study, two maize (Zea mays L.) genotypes with contrasting sensitivity to dehydration were subjected to moderate drought conditions. The subsequent analysis of their physiological parameters revealed a decreased stomatal conductance accompanied by a slighter decrease in the relative water content in the sensitive genotype. In contrast, the tolerant genotype maintained open stomata and active photosynthesis, even under dehydration conditions. Drought-induced changes in the leaf proteome were analyzed by two independent approaches, 2D gel electrophoresis and iTRAQ analysis, which provided compatible but only partially overlapping results. Drought caused the up-regulation of protective and stress-related proteins (mainly chaperones and dehydrins) in both genotypes. The differences in the levels of various detoxification proteins corresponded well with the observed changes in the activities of antioxidant enzymes. The number and levels of up-regulated protective proteins were generally lower in the sensitive genotype, implying a reduced level of proteosynthesis, which was also indicated by specific changes in the components of the translation machinery. Based on these results, we propose that the hypersensitive early stomatal closure in the sensitive genotype leads to the inhibition of photosynthesis and, subsequently, to a less efficient synthesis of the protective/detoxification proteins that are associated with drought tolerance.
Collapse
Affiliation(s)
- Monika Benešová
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Dana Holá
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Lukáš Fischer
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Petr L. Jedelský
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- Laboratory of Mass Spectrometry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - František Hnilička
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Naďa Wilhelmová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Olga Rothová
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Marie Kočová
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Dagmar Procházková
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jana Honnerová
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Lenka Fridrichová
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Helena Hniličková
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
62
|
Burkitt M, Walker D, Romano DM, Fazeli A. Computational modelling of maternal interactions with spermatozoa: potentials and prospects. Reprod Fertil Dev 2012; 23:976-89. [PMID: 22127003 DOI: 10.1071/rd11032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 07/12/2011] [Indexed: 12/20/2022] Open
Abstract
Understanding the complex interactions between gametes, embryos and the maternal tract is required knowledge for combating infertility and developing new methods of contraception. Here we present some main aspects of spermatozoa interactions with the mammalian oviduct before fertilisation and discuss how computational modelling can be used as an invaluable aid to experimental investigation in this field. A complete predictive computational model of gamete and embryo interactions with the female reproductive tract is a long way off. However, the enormity of this task should not discourage us from working towards it. Computational modelling allows us to investigate aspects of maternal communication with gametes and embryos, which are financially, ethically or practically difficult to look at experimentally. In silico models of maternal communication with gametes and embryos can be used as tools to complement in vivo experiments, in the same way as in vitro and in situ models.
Collapse
Affiliation(s)
- Mark Burkitt
- The Department of Computer Science, University of Sheffield, Sheffield, Regent Court, 211 Portobello, Sheffield S1 4DP, UK
| | | | | | | |
Collapse
|
63
|
Mirzaei M, Soltani N, Sarhadi E, Pascovici D, Keighley T, Salekdeh GH, Haynes PA, Atwell BJ. Shotgun Proteomic Analysis of Long-distance Drought Signaling in Rice Roots. J Proteome Res 2011; 11:348-58. [DOI: 10.1021/pr2008779] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mehdi Mirzaei
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Neda Soltani
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Iran
| | - Elham Sarhadi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Iran
| | - Dana Pascovici
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, Australia
| | - Tim Keighley
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, Australia
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Iran
| | - Paul A. Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Brian J. Atwell
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
64
|
Shu L, Lou Q, Ma C, Ding W, Zhou J, Wu J, Feng F, Lu X, Luo L, Xu G, Mei H. Genetic, proteomic and metabolic analysis of the regulation of energy storage in rice seedlings in response to drought. Proteomics 2011; 11:4122-38. [PMID: 21818852 DOI: 10.1002/pmic.201000485] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 06/19/2011] [Accepted: 07/29/2011] [Indexed: 01/13/2023]
Abstract
We used proteomic analysis to determine the response of rice plant seedlings to drought-induced stress. The expression of 71 protein spots was significantly altered, and 60 spots were successfully identified. The greatest down-regulated protein functional category was translation. Up-regulated proteins were mainly related to protein folding and assembly. Additionally, many proteins involved in metabolism (e.g. carbohydrate metabolism) also showed differences in expression. cDNA microarray and GC-MS analysis showed 4756 differentially expressed mRNAs and 37 differentially expressed metabolites. Once these data were integrated with the proteomic analysis, we were able to elucidate the metabolic pathways affected by drought-induced stress. These results suggest that increased energy consumption from storage substances occurred during drought. In addition, increased expression of the enzymes involved in anabolic pathways corresponded with an increase in the content of six amino acids. We speculated that energy conversion from carbohydrates and/or fatty acids to amino acids was increased. Analysis of basic metabolism networks allowed us to understand how rice plants adjust to drought conditions.
Collapse
Affiliation(s)
- Liebo Shu
- Shanghai Agrobiological Gene Center, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Taheri F, Nematzadeh G, Zamharir MG, Nekouei MK, Naghavi M, Mardi M, Salekdeh GH. Proteomic analysis of the Mexican lime tree response to "Candidatus Phytoplasma aurantifolia" infection. MOLECULAR BIOSYSTEMS 2011; 7:3028-35. [PMID: 21853195 DOI: 10.1039/c1mb05268c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
"Candidatus Phytoplasma aurantifolia" is the causative agent of witches' broom disease in the Mexican lime tree (Citrus aurantifolia L.), and is responsible for major tree losses in Southern Iran and Oman. The pathogen is strictly biotrophic, and, therefore, completely dependent on living host cells for its survival. The molecular basis of compatibility and disease development in this system is poorly understood. We applied a proteomics approach to analyse gene expression in Mexican limes infected with "Ca. Phytoplasma aurantifolia". Leaf samples were collected from healthy and infected plants and were analysed using 2-DE coupled with MS. Among 800 leaf proteins that were detected reproducibly in eight biological replicates of healthy and eight biological replicates of infected plants, 55 showed a significant response to the disease. MS resulted in identification of 39 regulated proteins, which included proteins that were involved in oxidative stress defence, photosynthesis, metabolism, and the stress response. Our results provide the first proteomic view of the molecular basis of the infection process and identify genes that could help inhibit the effects of the pathogen.
Collapse
Affiliation(s)
- Farzan Taheri
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, P.O. Box 31535-1897, Karaj, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
66
|
Kosová K, Vítámvás P, Prášil IT, Renaut J. Plant proteome changes under abiotic stress — Contribution of proteomics studies to understanding plant stress response. J Proteomics 2011; 74:1301-22. [DOI: 10.1016/j.jprot.2011.02.006] [Citation(s) in RCA: 567] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 01/01/2023]
|
67
|
Herman RA, Ladics GS. Endogenous allergen upregulation: transgenic vs. traditionally bred crops. Food Chem Toxicol 2011; 49:2667-9. [PMID: 21784119 DOI: 10.1016/j.fct.2011.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/05/2011] [Accepted: 07/07/2011] [Indexed: 11/26/2022]
Abstract
The safety assessment for transgenic food crops currently includes an evaluation of the endogenous allergy potential (via serum IgE screening) when the non-transgenic counterpart is a commonly allergenic food. The value of this analysis in the safety assessment of transgenic crops, especially with reference to recent requests to quantify individual allergen concentrations in raw commodities, is examined. We conclude that the likelihood of upregulating an endogenous allergen due to transgenesis is no greater than from traditional breeding which has a history of safety and is largely unregulated. The potential consequences of upregulating an endogenous allergen are also unclear.
Collapse
Affiliation(s)
- Rod A Herman
- Dow AgroSciences LLC, 9330 Zionsville Rd., Indianapolis, IN 46268, USA.
| | | |
Collapse
|
68
|
Owiti J, Grossmann J, Gehrig P, Dessimoz C, Laloi C, Hansen MB, Gruissem W, Vanderschuren H. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:145-56. [PMID: 21435052 DOI: 10.1111/j.1365-313x.2011.04582.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The short storage life of harvested cassava roots is an important constraint that limits the full potential of cassava as a commercial food crop in developing countries. We investigated the molecular changes during physiological deterioration of cassava root after harvesting using isobaric tags for relative and absolute quantification (iTRAQ) of proteins in soluble and non-soluble fractions prepared during a 96 h post-harvest time course. Combining bioinformatic approaches to reduce information redundancy for unsequenced or partially sequenced plant species, we established a comprehensive proteome map of the cassava root and identified quantitatively regulated proteins. Up-regulation of several key proteins confirmed that physiological deterioration of cassava root after harvesting is an active process, with 67 and 170 proteins, respectively, being up-regulated early and later after harvesting. This included regulated proteins that had not previously been associated with physiological deterioration after harvesting, such as linamarase, glutamic acid-rich protein, hydroxycinnamoyl transferase, glycine-rich RNA binding protein, β-1,3-glucanase, pectin methylesterase, maturase K, dehydroascorbate reductase, allene oxide cyclase, and proteins involved in signal pathways. To confirm the regulation of these proteins, activity assays were performed for selected enzymes. Together, our results show that physiological deterioration after harvesting is a highly regulated complex process involving proteins that are potential candidates for biotechnology approaches to reduce such deterioration.
Collapse
Affiliation(s)
- Judith Owiti
- Department of Biology, Plant Biotechnology, Eidgenössische Technische Hochschule (ETH) Zurich, Universitätstraβe 2, 8092 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Finnie C, Sultan A, Grasser KD. From protein catalogues towards targeted proteomics approaches in cereal grains. PHYTOCHEMISTRY 2011; 72:1145-1153. [PMID: 21134685 DOI: 10.1016/j.phytochem.2010.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 05/27/2023]
Abstract
Due to their importance for human nutrition, the protein content of cereal grains has been a subject of intense study for over a century and cereal grains were not surprisingly one of the earliest subjects for 2D-gel-based proteome analysis. Over the last two decades, countless cereal grain proteomes, mostly derived using 2D-gel based technologies, have been described and hundreds of proteins identified. However, very little is still known about post-translational modifications, subcellular proteomes, and protein-protein interactions in cereal grains. Development of techniques for improved extraction, separation and identification of proteins and peptides is facilitating functional proteomics and analysis of sub-proteomes from small amounts of starting material, such as seed tissues. The combination of proteomics with structural and functional analysis is increasingly applied to target subsets of proteins. These "next-generation" proteomics studies will vastly increase our depth of knowledge about the processes controlling cereal grain development, nutritional and processing characteristics.
Collapse
Affiliation(s)
- Christine Finnie
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Bldg 224, DK-2800 Kgs. Lyngby, Denmark.
| | | | | |
Collapse
|
70
|
Bazargani MM, Sarhadi E, Bushehri AAS, Matros A, Mock HP, Naghavi MR, Hajihoseini V, Mardi M, Hajirezaei MR, Moradi F, Ehdaie B, Salekdeh GH. A proteomics view on the role of drought-induced senescence and oxidative stress defense in enhanced stem reserves remobilization in wheat. J Proteomics 2011; 74:1959-73. [PMID: 21621021 DOI: 10.1016/j.jprot.2011.05.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 05/06/2011] [Accepted: 05/09/2011] [Indexed: 01/04/2023]
Abstract
Drought is one of the major factors limiting the yield of wheat (Triticum aestivum L.) particularly during grain filling. Under terminal drought condition, remobilization of pre-stored carbohydrates in wheat stem to grain has a major contribution in yield. To determine the molecular mechanism of stem reserve utilization under drought condition, we compared stem proteome patterns of two contrasting wheat landraces (N49 and N14) under a progressive post-anthesis drought stress, during which period N49 peduncle showed remarkably higher stem reserves remobilization efficiency compared to N14. Out of 830 protein spots reproducibly detected and analyzed on two-dimensional electrophoresis gels, 135 spots showed significant changes in at least one landrace. The highest number of differentially expressed proteins was observed in landrace N49 at 20days after anthesis when active remobilization of dry matter was observed, suggesting a possible involvement of these proteins in effective stem reserve remobilization of N49. The identification of 82 of differentially expressed proteins using mass spectrometry revealed a coordinated expression of proteins involved in leaf senescence, oxidative stress defense, signal transduction, metabolisms and photosynthesis which might enable N49 to efficiently remobilized its stem reserves compared to N14. The up-regulation of several senescence-associated proteins and breakdown of photosynthetic proteins in N49 might reflect the fact that N49 increased carbon remobilization from the stem to the grains by enhancing senescence. Furthermore, the up-regulation of several oxidative stress defense proteins in N49 might suggest a more effective protection against oxidative stress during senescence in order to protect stem cells from premature cell death. Our results suggest that wheat plant might response to soil drying by efficiently remobilize assimilates from stem to grain through coordinated gene expression.
Collapse
|
71
|
Afroz A, Ali GM, Mir A, Komatsu S. Application of proteomics to investigate stress-induced proteins for improvement in crop protection. PLANT CELL REPORTS 2011; 30:745-63. [PMID: 21287176 DOI: 10.1007/s00299-010-0982-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 12/14/2010] [Accepted: 12/14/2010] [Indexed: 05/24/2023]
Abstract
Proteomics has contributed to defining the specific functions of genes and proteins involved in plant-pathogen interactions. Proteomic studies have led to the identification of many pathogenicity and defense-related genes and proteins expressed during phytopathogen infections, resulting in the collection of an enormous amount of data. However, the molecular basis of plant-pathogen interactions remains an intensely active area of investigation. In this review, the role of differential analysis of proteins expressed during fungal, bacterial, and viral infection is discussed, as well as the role of JA and SA in the production of stress related proteins. Resistance acquired upon induction of stress related proteins in intact plant leaves is mediated by potentiation of pathogens via signal elicitors. Stress related genes extensively used in biotechnology had been cited. Stress related proteins identified must be followed through for studying the molecular mechanism for plant defense against pathogens.
Collapse
Affiliation(s)
- Amber Afroz
- Plant Biotechnology Program, National Agriculture Research Center, Park Road, Islamabad, Pakistan
| | | | | | | |
Collapse
|
72
|
Rinalducci S, Egidi MG, Mahfoozi S, Jahanbakhsh Godehkahriz S, Zolla L. The influence of temperature on plant development in a vernalization-requiring winter wheat: A 2-DE based proteomic investigation. J Proteomics 2011; 74:643-59. [DOI: 10.1016/j.jprot.2011.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 01/30/2011] [Accepted: 02/02/2011] [Indexed: 12/25/2022]
|
73
|
Huerta-Ocampo JA, León-Galván MF, Ortega-Cruz LB, Barrera-Pacheco A, De León-Rodríguez A, Mendoza-Hernández G, de la Rosa APB. Water stress induces up-regulation of DOF1 and MIF1 transcription factors and down-regulation of proteins involved in secondary metabolism in amaranth roots (Amaranthus hypochondriacus L.). PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:472-82. [PMID: 21489098 DOI: 10.1111/j.1438-8677.2010.00391.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Roots are the primary sites of water stress perception in plants. The aim of this work was to study differential expression of proteins and transcripts in amaranth roots (Amaranthus hypochondriacus L.) when the plants were grown under drought stress. Changes in protein abundance within the roots were examined using two-dimensional electrophoresis and LC/ESI-MS/MS, and the differential expression of transcripts was evaluated with suppression subtractive hybridisation (SSH). Induction of drought stress decreased relative water content in leaves and increased solutes such as proline and total soluble sugars in roots. Differentially expressed proteins such as SOD(Cu-Zn) , heat shock proteins, signalling-related and glycine-rich proteins were identified. Up-regulated transcripts were those related to defence, stress, signalling (Ser, Tyr-kinases and phosphatases) and water transport (aquaporins and nodulins). More noteworthy was identification of the transcription factors DOF1, which has been related to several plant-specific biological processes, and MIF1, whose constitutive expression has been related to root growth reduction and dwarfism. The down-regulated genes/proteins identified were related to cell differentiation (WOX5A) and secondary metabolism (caffeic acid O-methyltransferase, isoflavone reductase-like protein and two different S-adenosylmethionine synthetases). Amaranth root response to drought stress appears to involve a coordinated response of osmolyte accumulation, up-regulation of proteins that control damage from reactive oxygen species, up-regulation of a family of heat shock proteins that stabilise other proteins and up-regulation of transcription factors related to plant growth control.
Collapse
Affiliation(s)
- J A Huerta-Ocampo
- Molecular Biology Division, Institute for Scientific and Technological Research of San Luis Potosí, San Luis Potosí, México
| | | | | | | | | | | | | |
Collapse
|
74
|
Bandehagh A, Salekdeh GH, Toorchi M, Mohammadi A, Komatsu S. Comparative proteomic analysis of canola leaves under salinity stress. Proteomics 2011; 11:1965-75. [PMID: 21480525 DOI: 10.1002/pmic.201000564] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 01/16/2011] [Accepted: 02/01/2011] [Indexed: 11/07/2022]
Abstract
Although canola is a moderately salt-tolerant species, its growth, seed yield, and oil production are markedly reduced under salt stress, particularly during the early vegetative growth stage. To identify the mechanisms of salt responsiveness in canola, the proteins expressed in the second and third newly developed leaves of salt-tolerant, Hyola 308, and salt-sensitive, Sarigol, cultivars were analyzed. Plants were exposed to 0, 175, and 350 mM NaCl during the vegetative stage. An increase in the Na content and a reduction in growth were observed in the third leaves compared to the second leaves. The accumulation of Na was more pronounced in the salt-sensitive compared with the salt-tolerant genotype. Out of 900 protein spots detected on 2-DE gels, 44 and 31 proteins were differentially expressed in the tolerant and susceptible genotypes, respectively. Cluster analysis based on the expression level of total and responsive proteins indicated that the second leaves had a discriminator role between the two genotypes at both salinity levels. Using MS analysis, 46 proteins could be identified including proteins involved in responses to oxidative stress, energy production, electron transport, translation, and photosynthesis. Our results suggest that these proteins might play roles in canola adaptation to salt stress.
Collapse
Affiliation(s)
- Ali Bandehagh
- Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | | | | | | | | |
Collapse
|
75
|
Li T, Xu SL, Oses-Prieto JA, Putil S, Xu P, Wang RJ, Li KH, Maltby DA, An LH, Burlingame AL, Deng ZP, Wang ZY. Proteomics analysis reveals post-translational mechanisms for cold-induced metabolic changes in Arabidopsis. MOLECULAR PLANT 2011; 4:361-74. [PMID: 21242321 PMCID: PMC3063518 DOI: 10.1093/mp/ssq078] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 12/01/2010] [Indexed: 05/21/2023]
Abstract
Cold-induced changes of gene expression and metabolism are critical for plants to survive freezing. Largely by changing gene expression, exposure to a period of non-freezing low temperatures increases plant tolerance to freezing-a phenomenon known as cold acclimation. Cold also induces rapid metabolic changes, which provide instant protection before temperature drops below freezing point. The molecular mechanisms for such rapid metabolic responses to cold remain largely unknown. Here, we use two-dimensional difference gel electrophoresis (2-D DIGE) analysis of sub-cellular fractions of Arabidopsis thaliana proteome coupled with spot identification by tandem mass spectrometry to identify early cold-responsive proteins in Arabidopsis. These proteins include four enzymes involved in starch degradation, three HSP100 proteins, several proteins in the tricarboxylic acid cycle, and sucrose metabolism. Upon cold treatment, the Disproportionating Enzyme 2 (DPE2), a cytosolic transglucosidase metabolizing maltose to glucose, increased rapidly in the centrifugation pellet fraction and decreased in the soluble fraction. Consistent with cold-induced inactivation of DPE2 enzymatic activity, the dpe2 mutant showed increased freezing tolerance without affecting the C-repeat binding transcription factor (CBF) transcriptional pathway. These results support a model that cold-induced inactivation of DPE2 leads to rapid accumulation of maltose, which is a cold-induced compatible solute that protects cells from freezing damage. This study provides evidence for a key role of rapid post-translational regulation of carbohydrate metabolic enzymes in plant protection against sudden temperature drop.
Collapse
Affiliation(s)
- Tian Li
- Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Juan A. Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Sunita Putil
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Peng Xu
- Institute of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050016, China
| | - Rui-Ju Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Kathy H. Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - David A. Maltby
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Liz-He An
- Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Zhi-Ping Deng
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
- To whom correspondence should be addressed. E-mail of Dr. Zhi-Yong Wang: , email of Dr. Zhi-Ping Deng:
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
- To whom correspondence should be addressed. E-mail of Dr. Zhi-Yong Wang: , email of Dr. Zhi-Ping Deng:
| |
Collapse
|
76
|
Liu JX, Bennett J. Reversible and irreversible drought-induced changes in the anther proteome of rice (Oryza sativa L.) genotypes IR64 and Moroberekan. MOLECULAR PLANT 2011; 4:59-69. [PMID: 20643753 DOI: 10.1093/mp/ssq039] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Crop yield is most sensitive to water deficit during the reproductive stage. For rice, the most sensitive yield component is spikelet fertility and the most sensitive stage is immediately before heading. Here, we examined the effect of drought on the anther proteome of two rice genotypes: Moroberekan and IR64. Water was withheld for 3 d before heading (3DBH) in well watered controls for 5 d until the flag leaf relative water content (RWC) had declined to 45-50%. Plants were then re-watered and heading occurred 2-3 d later, representing a delay of 4-5 d relative to controls. The anther proteins were separated at 3 DBH, at the end of the stress period, and at heading in stressed/re-watered plants and controls by two-dimensional (2-D) gel electrophoresis, and 93 protein spots were affected reproducibly in abundance by drought during the experiment across two rice genotypes. After drought stress, upon re-watering, expressions of 24 protein spots were irreversible in both genotypes, 60 protein spots were irreversible in IR64 but reversible in Moroberekan, only nine protein spots were irreversible in Moroberekan while reversible in IR64. Among them, there were 14 newly drought-induced protein spots in IR64; none of them was reversible on re-watering. However, there were 13 newly drought-induced protein spots in Moroberekan, 10 of them were reversible on re-watering, including six drought-induced protein spots that were not reversed in IR64. Taken together, our proteomics data reveal that drought-tolerant genotype Moroberekan possessed better recovery capability following drought and re-watering at the anther proteome level than the drought-sensitive genotype IR64. The disruptions of drought to rice anther development and pollen cell functions are also discussed in the paper.
Collapse
Affiliation(s)
- Jian-Xiang Liu
- Plant Breeding, Genetics and Biochemistry Division, International Rice Research Institute, Metro Manila, Philippines.
| | | |
Collapse
|
77
|
Sobhanian H, Motamed N, Jazii FR, Nakamura T, Komatsu S. Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a halophyte C(4) plant. J Proteome Res 2010; 9:2882-97. [PMID: 20397718 DOI: 10.1021/pr900974k] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A proteomic approach was used to identify proteins affected by salt in the halophyte C(4) plant Aeluropus lagopoides (Poaceae) in an attempt to understand the mechanism of salt tolerance. Plants were treated with 450 mM NaCl for 10 days, and proteins were then extracted from the shoots and separated by two-dimensional polyacrylamide gel electrophoresis. A total of 1805 protein spots were detected, of which 39 were up-regulated and 44 were down-regulated by treatment with NaCl. Metabolism-related proteins were up-regulated, whereas photosynthesis-related proteins were down-regulated. Dose-dependence studies showed that the up-regulation continued at NaCl concentrations above 450 mM for defense-related proteins alone. Western blot analysis confirmed the down-regulation of RuBisCO LSU and RuBisCO SSU and severe down-regulation of RuBisCO activase. The activity of glyoxalase I increased with increasing NaCl concentration. Metabolome studies indicated up-regulation of amino acids and down-regulation of tricarboxylic acid cycle-related metabolites. These studies suggest that up-regulation of energy formation, amino acid biosynthesis, C(4) photosynthesis, and detoxification are the main strategies for salt tolerance in A. lagopoides.
Collapse
|
78
|
Xu C, Huang B. Differential proteomic responses to water stress induced by PEG in two creeping bentgrass cultivars differing in stress tolerance. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1477-1485. [PMID: 20674080 DOI: 10.1016/j.jplph.2010.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 05/25/2010] [Accepted: 05/25/2010] [Indexed: 05/29/2023]
Abstract
Protein metabolism and expression play important role in plant adaptation to water stress. The objectives of this study were to examine proteomic responses to water stress induced by polyethylene glycol (PEG) in creeping bentgrass (Agrostis stolonifera L.) leaves and to identify proteins associated with stress tolerance. Plants of two cultivars ('Penncross' and 'Penn-A4') differing in water stress tolerance were grown in sand irrigated daily with water (control) or PEG solution (osmotic potential of -0.66MPa) to induce water stress, for 28d in growth chambers. Shoot extension rate, relative water content and cell membrane stability were measured to compare drought tolerance between the two cultivars. All parameters maintained at a significantly higher level in 'Penn-A4' than in 'Penncross' under PEG treatment. After 28d of water stress, proteins were extracted from leaves and separated by difference gel electrophoresis. Among 56 stress-responsive protein spots, 46 were identified using mass spectrometry. Some proteins involved in primary nitrogen and carbon metabolism were down-regulated by PEG-induced water stress in both cultivars. The abundance of antioxidant enzyme proteins (ascorbate peroxidase, catalase and glutathione-S-transferase) increased under water stress, particularly ascorbate peroxidase in 'Penn-A4'. The abundance levels of actins, UDP-sulfoquinovose synthase and glucan exohydrolase were greater in 'Penn-A4' than in 'Penncross' under PEG treatment. Our results suggest that proteins involved in membrane synthesis, cell wall loosening, cell turgor maintenance, and antioxidant defense may play roles in perennial grass adaptation to PEG-induced water stress.
Collapse
Affiliation(s)
- Chenping Xu
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, United States
| | | |
Collapse
|
79
|
Sarhadi E, Mahfoozi S, Hosseini SA, Salekdeh GH. Cold Acclimation Proteome Analysis Reveals Close Link between the Up-Regulation of Low-Temperature Associated Proteins and Vernalization Fulfillment. J Proteome Res 2010; 9:5658-67. [DOI: 10.1021/pr100475r] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elham Sarhadi
- Department of Systems Biology, Agricultural Biotechnology Research Institute, Karaj, Iran, Science and Research Branch, Islamic Azad University, Tehran, Iran, Physiology-Agronomy unit of Department of Cereals Research, Seed and Plant Improvement Institute, P.O. Box 31585-4119, Karaj, Iran, and Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACCER, Tehran, Iran
| | - Siroos Mahfoozi
- Department of Systems Biology, Agricultural Biotechnology Research Institute, Karaj, Iran, Science and Research Branch, Islamic Azad University, Tehran, Iran, Physiology-Agronomy unit of Department of Cereals Research, Seed and Plant Improvement Institute, P.O. Box 31585-4119, Karaj, Iran, and Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACCER, Tehran, Iran
| | - Seyed Abdollah Hosseini
- Department of Systems Biology, Agricultural Biotechnology Research Institute, Karaj, Iran, Science and Research Branch, Islamic Azad University, Tehran, Iran, Physiology-Agronomy unit of Department of Cereals Research, Seed and Plant Improvement Institute, P.O. Box 31585-4119, Karaj, Iran, and Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACCER, Tehran, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute, Karaj, Iran, Science and Research Branch, Islamic Azad University, Tehran, Iran, Physiology-Agronomy unit of Department of Cereals Research, Seed and Plant Improvement Institute, P.O. Box 31585-4119, Karaj, Iran, and Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACCER, Tehran, Iran
| |
Collapse
|
80
|
Hashiguchi A, Ahsan N, Komatsu S. Proteomics application of crops in the context of climatic changes. Food Res Int 2010. [DOI: 10.1016/j.foodres.2009.07.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
81
|
Xu C, Huang B. Differential proteomic response to heat stress in thermal Agrostis scabra and heat-sensitive Agrostis stolonifera. PHYSIOLOGIA PLANTARUM 2010; 139:192-204. [PMID: 20113435 DOI: 10.1111/j.1399-3054.2010.01357.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Knowledge of heat-responsive proteins is critical for further understanding of the molecular mechanisms of heat tolerance. The objective of this study was to compare proteins differentially expressed in two C(3) grass species contrasting in heat tolerance, heat-tolerant thermal Agrostis scabra and heat-sensitive Agrostis stolonifera L., and to identify heat-responsive proteins for short- and long-term responses. Plants were exposed to 20/15 degrees C (day/night, control) or 40/35 degrees C (day/night, heat stress) in growth chambers. Leaves were harvested at 2 and 10 days after temperature treatment. Proteins were extracted and separated by fluorescence difference gel electrophoresis (DIGE). Thermal A. scabra had superior heat tolerance than A. stolonifera, as indicated by the maintenance of higher chlorophyll content and photochemical efficiency under heat stress. The two-dimensional difference electrophoresis detected 68 heat-responsive proteins in the two species. Thermal A. scabra had more protein spots either down- or up-regulated at 2 days of heat stress, but fewer protein spots were altered at 10 days of heat stress compared with A. stolonifera. Many protein spots exhibited transient down-regulation in thermal A. scabra (only at 2 days of heat treatment), whereas down-regulation of many proteins was also found at 10 days of heat treatment in A. stolonifera, which suggested that protein metabolism in thermal A. scabra might acclimate to heat stress more rapidly than those in A. stolonifera. The sequences of 56 differentially expressed protein spots were identified using mass spectrometry. The results suggest that the maintenance or less severe down-regulation of proteins during long-term (10 days) heat stress may contribute to the superior heat tolerance in thermal A. scabra, including those involved in photosynthesis [RuBisCo, RuBisCo activase, chloroplastic glyceraldehydes-3-phosphate dehydrogenase (GAPDH), chloroplastic aldolase, oxygen-evolving complex, photosystem I subunits], dark respiration (cytosolic GAPDH, cytoplasmic aldolase, malate dehydrogenase, hydroxypyruvate reductase, sedoheptulose-1,7-bisphosphatase), photorespiration [(hydroxypyruvate reductase, alanine aminotransferase (AlaAT), hydroxymethyltransferase (SHMT), glycine decarboxylase (GDC)], as well as heat and oxidative stress protection [heat shock cognate (HSC) 70 and FtsH-like protein].
Collapse
Affiliation(s)
- Chenping Xu
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA
| | | |
Collapse
|
82
|
Awang A, Karim R, Mitsui T. Proteomic Analysis of Theobroma cacao Pod Husk. J Appl Glycosci (1999) 2010. [DOI: 10.5458/jag.57.245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
83
|
Toorchi M, Yukawa K, Nouri MZ, Komatsu S. Proteomics approach for identifying osmotic-stress-related proteins in soybean roots. Peptides 2009; 30:2108-17. [PMID: 19747515 DOI: 10.1016/j.peptides.2009.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/03/2009] [Accepted: 09/03/2009] [Indexed: 10/20/2022]
Abstract
Osmotic stress can endanger the survival of plants. To investigate the mechanisms by which plants respond to osmotic stress, protein profiles from soybean plants treated with polyethylene glycol (PEG) were monitored by a proteomics approach. Treatment with 10% aqueous PEG reduced the lengths of roots and hypocotyls of soybean seedlings. Proteins from soybean roots were separated by two-dimensional polyacrylamide gel electrophoresis, and 415 proteins were detected by Coomassie brilliant blue staining. Thirty-seven proteins changed by PEG treatment were analyzed using Edman sequencing and peptide-mass fingerprinting method and this group included proteins involved in disease/defense. Seven proteins were selected for further experiments using the results of cluster analysis and statistical analysis of the abundance change. A comparison with the effects of other abiotic stresses showed that caffeoyl-CoA-O-methyltransferase and 20S proteasome alpha subunit A were decreased and increased by abiotic stresses, respectively. Expression analyses of these transcripts were also changed by PEG treatment. Caffeoyl-CoA-O-methyltransferase and 20S proteasome alpha subunit A may control the sensitivity of several regulatory genes specific to short exposure to osmotic stress.
Collapse
Affiliation(s)
- Mahmoud Toorchi
- National Institute of Crop Science, Kannondai 2-1-18, Tsukuba 305-8518, Japan
| | | | | | | |
Collapse
|
84
|
Cell wall proteome of wheat roots under flooding stress using gel-based and LC MS/MS-based proteomics approaches. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:124-36. [PMID: 19786127 DOI: 10.1016/j.bbapap.2009.09.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 09/18/2009] [Accepted: 09/21/2009] [Indexed: 11/21/2022]
Abstract
Cell wall proteins (CWPs) are important both for maintenance of cell structure and for responses to abiotic and biotic stresses. In this study, a destructive CWP purification procedure was adopted using wheat seedling roots and the purity of the CWP extract was confirmed by minimizing the activity of glucose-6-phosphate dehydrogenase, a cytoplasmic marker enzyme. To determine differentially expressed CWPs under flooding stress, gel-based proteomic and LC-MS/MS-based proteomic techniques were applied. Eighteen proteins were found to be significantly regulated in response to flood by gel-based proteomics and 15 proteins by LC MS/MS-based proteomics. Among the flooding down-regulated proteins, most were related to the glycolysis pathway and cell wall structure and modification. However, the most highly up-regulated proteins in response to flooding belong to the category of defense and disease response proteins. Among these differentially expressed proteins, only methionine synthase, beta-1,3-glucanases, and beta-glucosidase were consistently identified by both techniques. The down-regulation of these three proteins suggested that wheat seedlings respond to flooding stress by restricting cell growth to avoid energy consumption; by coordinating methionine assimilation and cell wall hydrolysis, CWPs played critical roles in flooding responsiveness.
Collapse
|
85
|
Ahsan N, Renaut J, Komatsu S. Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics 2009; 9:2602-21. [PMID: 19405030 DOI: 10.1002/pmic.200800935] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pollution of soils by heavy metals is an ever-growing problem throughout the world, and is the result of human activities as well as geochemical weathering of rocks and other environmental causes such as volcanic eruptions, acid rain and continental dusts. Plants everywhere are continuously exposed to metal-contaminated soils. The uptake of heavy metals not only constrains crop yields, but can also be a major hazard to the health of humans and to the entire ecosystem. Although analysis of gene expression at the mRNA level has enhanced our understanding of the response of plants to heavy metals, many questions regarding the functional translated portions of plant genomes under metal stress remain unanswered. Proteomics offers a new platform for studying complex biological functions involving large numbers and networks of proteins, and can serve as a key tool for revealing the molecular mechanisms that are involved in interactions between toxic metals and plant species. This review focuses on recent developments in the applications of proteomics to the analysis of the responses of plants to heavy metals; such studies provide a deeper understanding of protein responses and the interactions among the possible pathways that are involved in detoxification of toxic metals in plant cells. In addition, the challenges faced by proteomics in understanding the responses of plants to toxic metal are discussed, and some possible future strategies for meeting these challenges are proposed.
Collapse
Affiliation(s)
- Nagib Ahsan
- National Institute of Crop Science, Tsukuba, Japan.
| | | | | |
Collapse
|
86
|
Coumans JVF, Poljak A, Raftery MJ, Backhouse D, Pereg-Gerk L. Analysis of cotton (Gossypium hirsutum) root proteomes during a compatible interaction with the black root rot fungus Thielaviopsis basicola. Proteomics 2009; 9:335-49. [PMID: 19105169 DOI: 10.1002/pmic.200800251] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A proteomic approach was used to uncover the inducible molecular defense mechanism of cotton root occurring during the compatible interaction with Thielaviopsis basicola. Microscopic observation of cotton root inoculated with a suspension of conidia showed that this necrotrophic hemibiotroph fungus interacts with the plant and completes its life cycle in our experimental system. 2-DE analysis of root extracts taken after 1, 3, 5, and 7 days postinoculation and cluster analysis of the protein expression levels showed four major profiles (constant, upregulated, one slightly downregulated, and one dramatically downregulated). Spots significantly (p<0.05) upregulated were analyzed by LC-MS/MS and identified using MASCOT MS/MS ion search software and associated databases. These proteins included defense and stress related proteins, such as pathogenesis-related proteins and proteins likely to be involved in the oxidative burst, sugar, and nitrogen metabolism as well as amino acid and isoprenoid synthesis. While many of the identified proteins are common components of the defense response of most plants, a proteasome subunit and a protein reported to be induced only in cotton root following Meloidogyne incognita infection were also identified.
Collapse
Affiliation(s)
- Joëlle V F Coumans
- Molecular and Cellular Biology, School of Science and Technology, University of New England, Armidale, NSW, Australia.
| | | | | | | | | |
Collapse
|
87
|
Krishnan HB, Oehrle NW, Natarajan SS. A rapid and simple procedure for the depletion of abundant storage proteins from legume seeds to advance proteome analysis: a case study using Glycine max. Proteomics 2009; 9:3174-88. [PMID: 19526550 DOI: 10.1002/pmic.200800875] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 03/01/2009] [Indexed: 11/06/2022]
Abstract
2-D analysis of plant proteomes containing thousands of proteins has limited dynamic resolution because only abundant proteins can be detected. Proteomic assessment of the non-abundant proteins within seeds is difficult when 60-80% is storage proteins. Resolution can be improved through sample fractionation using separation techniques based upon different physiological or biochemical principles. We have developed a fast and simple fractionation technique using 10 mM Ca(2+) to precipitate soybean (Glycine max) seed storage globulins, glycinin and beta-conglycinin. This method removes 87+/-4% of the highly abundant seed proteins from the extract, allowing for 541 previously inconspicuous proteins present in soybean seed to be more detectable (volume increase of >or=50%) using fluorescent detection. Of those 541 enhanced spots, 197 increased more than 2.5-fold when visualized with Coomassie. The majority of those spots were isolated and identified using peptide mass fingerprinting. Fractionation also provided detection of 63 new phosphorylated protein spots and enhanced the visibility of 15 phosphorylated protein spots, using 2-D electrophoretic separation and an in-gel phosphoprotein stain. Application of this methodology toward other legumes, such as peanut, bean, pea, alfalfa and others, also containing high amounts of storage proteins, was examined, and is reported here.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
88
|
Lin WC, Linda Chang PF. Approaches for Acquired Tolerance to Abiotic Stress of Economically Important Crops. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2009. [DOI: 10.1201/9781420077070.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
89
|
Jorrín-Novo JV, Maldonado AM, Echevarría-Zomeño S, Valledor L, Castillejo MA, Curto M, Valero J, Sghaier B, Donoso G, Redondo I. Plant proteomics update (2007–2008): Second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteomics 2009; 72:285-314. [DOI: 10.1016/j.jprot.2009.01.026] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
90
|
Torabi S, Wissuwa M, Heidari M, Naghavi MR, Gilany K, Hajirezaei MR, Omidi M, Yazdi-Samadi B, Ismail AM, Salekdeh GH. A comparative proteome approach to decipher the mechanism of rice adaptation to phosphorous deficiency. Proteomics 2009; 9:159-70. [PMID: 19053143 DOI: 10.1002/pmic.200800350] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mineral deficiency limits crop production in most soils and in Asia alone, about 50% of rice lands are phosphorous deficient. In an attempt to determine the mechanism of rice adaptation to phosphorous deficiency, changes in proteome patterns associated with phosphorous deficiency have been investigated. We analyzed the parental line Nipponbare in comparison to its near isogenic line (NIL6-4) carrying a major phosphorous uptake QTL (Pup1) on chromosome 12. Using 2-DE, the proteome pattern of roots grown under 1 and 100 microM phosphorous were compared. Out of 669 proteins reproducibly detected on root 2-DE gels, 32 proteins showed significant changes in the two genotypes. Of them, 17 proteins showed different responses in two genotypes under stress condition. MS resulted in identification of 26 proteins involved in major phosphorous deficiency adaptation pathways including reactive oxygen scavenging, citric acid cycle, signal transduction, and plant defense responses as well as proteins with unknown function. Our results highlighted a coordinated response in NIL in response to phosphorous deficiency which may confer higher adaptation to nutrient deficiency.
Collapse
Affiliation(s)
- Sepideh Torabi
- Agricultural Biotechnology Research Institute of Iran, Karaj, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Huang B, Xu C. Identification and characterization of proteins associated with plant tolerance to heat stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:1230-7. [PMID: 19017110 DOI: 10.1111/j.1744-7909.2008.00735.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Heat stress is a major abiotic stress limiting plant growth and productivity in many areas of the world. Understanding mechanisms of plant adaptation to heat stress would facilitate the development of heat-tolerant cultivars for improving productivity in warm climatic regions. Protein metabolism involving protein synthesis and degradation is one of the most sensitive processes to heat stress. Changes in the level and expression pattern of some proteins may play an important role in plant adaptation to heat stress. The identification of stress-responsive proteins and pathways has been facilitated by an increasing number of tools and resources, including two-dimensional electrophoresis and mass spectrometry, and the rapidly expanding nucleotide and amino acid sequence databases. Heat stress may induce or enhance protein expression or cause protein degradation. The induction of heat-responsive proteins, particularly heat shock proteins (HSPs), plays a key role in plant tolerance to heat stress. Protein degradation involving various proteases is also important in regulating plant responses to heat stress. This review provides an overview of recent research on proteomic profiling for the identification of heat-responsive proteins associated with heat tolerance, heat induction and characteristics of HSPs, and protein degradation in relation to plant responses to heat stress.
Collapse
Affiliation(s)
- Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
92
|
|
93
|
Ahsan N, Lee DG, Alam I, Kim PJ, Lee JJ, Ahn YO, Kwak SS, Lee IJ, Bahk JD, Kang KY, Renaut J, Komatsu S, Lee BH. Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteomics 2008; 8:3561-76. [DOI: 10.1002/pmic.200701189] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
94
|
Carpentier SC, Panis B, Vertommen A, Swennen R, Sergeant K, Renaut J, Laukens K, Witters E, Samyn B, Devreese B. Proteome analysis of non-model plants: a challenging but powerful approach. MASS SPECTROMETRY REVIEWS 2008; 27:354-77. [PMID: 18381744 DOI: 10.1002/mas.20170] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Biological research has focused in the past on model organisms and most of the functional genomics studies in the field of plant sciences are still performed on model species or species that are characterized to a great extent. However, numerous non-model plants are essential as food, feed, or energy resource. Some features and processes are unique to these plant species or families and cannot be approached via a model plant. The power of all proteomic and transcriptomic methods, that is, high-throughput identification of candidate gene products, tends to be lost in non-model species due to the lack of genomic information or due to the sequence divergence to a related model organism. Nevertheless, a proteomics approach has a great potential to study non-model species. This work reviews non-model plants from a proteomic angle and provides an outline of the problems encountered when initiating the proteome analysis of a non-model organism. The review tackles problems associated with (i) sample preparation, (ii) the analysis and interpretation of a complex data set, (iii) the protein identification via MS, and (iv) data management and integration. We will illustrate the power of 2DE for non-model plants in combination with multivariate data analysis and MS/MS identification and will evaluate possible alternatives.
Collapse
|