51
|
Laser Capture Microdissection of Pancreatic Acinar Cells to Identify Proteomic Alterations in a Murine Model of Caerulein-Induced Pancreatitis. Clin Transl Gastroenterol 2017; 8:e89. [PMID: 28406494 PMCID: PMC5415897 DOI: 10.1038/ctg.2017.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
Objectives: Chronic pancreatitis (CP) is characterized by inflammation and fibrosis of the pancreas, leading to pain, parenchymal damage, and loss of exocrine and endocrine function. There are currently no curative therapies; diagnosis remains difficult and aspects of pathogenesis remain unclear. Thus, there is a need to identify novel biomarkers to improve diagnosis and understand pathophysiology. We hypothesize that pancreatic acinar regions contain proteomic signatures relevant to disease processes, including secreted proteins that could be detected in biofluids. Methods: Acini from pancreata of mice injected with or without caerulein were collected using laser capture microdissection followed by mass spectrometry analysis. This protocol enabled high-throughput analysis that captured altered protein expression throughout the stages of CP. Results: Over 2,900 proteins were identified, whereas 331 were significantly changed ≥2-fold by mass spectrometry spectral count analysis. Consistent with pathogenesis, we observed increases in proteins related to fibrosis (e.g., collagen, P<0.001), several proteases (e.g., trypsin 1, P<0.001), and altered expression of proteins associated with diminished pancreas function (e.g., lipase, amylase, P<0.05). In comparison with proteomic data from a public data set of CP patients, a significant correlation was observed between proteomic changes in tissue from both the caerulein model and CP patients (r=0.725, P<0.001). CONCLUSIONS: This study illustrates the ability to characterize proteome changes of acinar cells isolated from pancreata of caerulein-treated mice and demonstrates a relationship between signatures from murine and human CP.
Collapse
|
52
|
Proteomic and histopathological characterization of the interface between oral squamous cell carcinoma invasion fronts and non-cancerous epithelia. Exp Mol Pathol 2017; 102:327-336. [DOI: 10.1016/j.yexmp.2017.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/23/2017] [Indexed: 11/21/2022]
|
53
|
Donczo B, Szarka M, Tovari J, Ostoros G, Csanky E, Guttman A. Molecular glycopathology by capillary electrophoresis: Analysis of the N-glycome of formalin-fixed paraffin-embedded mouse tissue samples. Electrophoresis 2017; 38:1602-1608. [PMID: 28334446 DOI: 10.1002/elps.201600558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/18/2017] [Accepted: 02/19/2017] [Indexed: 12/17/2022]
Abstract
Capillary electrophoresis with laser-induced fluorescence (CE-LIF) detection was used to analyze endoglycosidase released and fluorophore-labeled N-glycans from formalin-fixed paraffin-embedded (FFPE) mouse tissue samples of lung, brain, heart, spleen, liver, kidney and intestine. The FFPE samples were first deparaffinized followed by solubilization and glycoprotein retrieval. PNGase F mediated release of the N-linked oligosaccharides was followed by labeling with aminopyrene trisulfonate. After CE-LIF glycoprofiling of the FFPE mouse tissues, the N-glycan pool of the lung specimen was subject to further investigation by exoglycosidase array based carbohydrate sequencing. Structural assignment of the oligosaccharides was accomplished by the help of the GUcal software and the associated database, based on the mobility shifts after treatments with the corresponding exoglycosidase reaction mixtures. Sixteen major N-linked carbohydrate structures were sequenced from the mouse lung FFPE tissue glycome and identified, as high mannose (3) neutral biantennary (3) sialylated monoantennary (1) and sialylated bianennary (9) oligosaccharides. Two of these latter ones also possessed alpha(1-3) linked galactose residues.
Collapse
Affiliation(s)
- Boglarka Donczo
- Horváth Csaba Laboratory of Bioseparation Sciences, University of Debrecen, Hungary
| | - Mate Szarka
- Horváth Csaba Laboratory of Bioseparation Sciences, University of Debrecen, Hungary
| | | | | | | | - Andras Guttman
- Horváth Csaba Laboratory of Bioseparation Sciences, University of Debrecen, Hungary.,MTA-PE Translational Glycomics Group, University of Pannonia, Veszprem, Hungary
| |
Collapse
|
54
|
Characterization of histone-related chemical modifications in formalin-fixed paraffin-embedded and fresh-frozen human pancreatic cancer xenografts using LC-MS/MS. J Transl Med 2017; 97:279-288. [PMID: 27941757 DOI: 10.1038/labinvest.2016.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/22/2016] [Accepted: 11/03/2016] [Indexed: 01/22/2023] Open
Abstract
Post-translational modifications (PTMs) of histones including acetylation, methylation, and ubiquitination are known to be involved in the epigenetic regulation of gene expression and thus can have an important role in tumorigenesis. A number of PTMs have been linked to pancreatic cancer and are frequently studied as potential targets for cancer therapy or diagnosis. The availability of biobank-stored, formalin-fixed, paraffin-embedded (FFPE) materials and advanced proteomic analytical tools make it possible to detect histone-related PTMs using predicted mass shifts caused by specific modification. It is, however, important to take into account the fact that formaldehyde (FA) present in the FFPE material is chemically reactive and may undergo condensation reactions, for example, with terminal amino groups and active CH functionalities of the studied proteins. As supported by the results of this study, the possibility to misinterpret such protein condensation product as endogenous PTMs should be taken into consideration in all proteomic analytical work involving FFPE materials. In this study, we used liquid chromatography-tandem mass spectrometry to assess preassumed modification of the lysine residues of histone proteins in FFPE or fresh-frozen (FF) tumor xenografts, derived from the human pancreatic cancer cell line, Capan-1. Here we report modifications with a defined mass shift of +14.016, +28.031, +42.011, or +114.043 Da, corresponding to apparent methylation, dimethylation, acetylation, or ubiquitination that were differentially distributed between the groups. The identified modifications were significantly more frequent in FFPE samples as compared with FF samples. Our results indicate that FFPE tissue processing may result in persistent chemical modifications of histones, which correspond in mass shift of important PTMs. Herein, we highlight the importance to investigate and report FA-formed modifications in FFPE-treated tissues, as well as the necessity of careful manual examination of observed modifications to eliminate false-positive PTMs.
Collapse
|
55
|
Panderi I, Yakirevich E, Papagerakis S, Noble L, Lombardo K, Pantazatos D. Differentiating tumor heterogeneity in formalin-fixed paraffin-embedded (FFPE) prostate adenocarcinoma tissues using principal component analysis of matrix-assisted laser desorption/ionization imaging mass spectral data. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:160-170. [PMID: 27791282 DOI: 10.1002/rcm.7776] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/25/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Many patients with adenocarcinoma of the prostate present with advanced and metastatic cancer at the time of diagnosis. There is an urgent need to detect biomarkers that will improve the diagnosis and prognosis of this disease. Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) is playing a key role in cancer research and it can be useful to unravel the molecular profile of prostate cancer biopsies. METHODS MALDI imaging data sets are highly complex and their interpretation requires the use of multivariate statistical methods. In this study, MALDI-IMS technology, sequential principal component analysis (PCA) and two-dimensional (2-D) peak distribution tests were employed to investigate tumor heterogeneity in formalin-fixed paraffin-embedded (FFPE) prostate cancer biopsies. RESULTS Multivariate statistics revealed a number of mass ion peaks obtained from different tumor regions that were distinguishable from the adjacent normal regions within a given specimen. These ion peaks have been used to generate ion images and visualize the difference between tumor and normal regions. Mass peaks at m/z 3370, 3441, 3447 and 3707 exhibited stronger ion signals in the tumor regions. CONCLUSIONS This study reports statistically significant mass ion peaks unique to tumor regions in adenocarcinoma of the prostate and adds to the clinical utility of MALDI-IMS for analysis of FFPE tissue at a molecular level that supersedes all other standard histopathologic techniques for diagnostic purposes used in the current clinical practice. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Irene Panderi
- Brown University, Warren Alpert Medical School, COBRE Center for Cancer Research, Rhode Island Hospital, Providence, RI, USA
- National and Kapodistrian University of Athens, Department of Pharmacy, Division of Pharmaceutical Chemistry, Laboratory of Pharmaceutical Analysis, Athens, Greece
| | - Evgeny Yakirevich
- Brown University, Warren Alpert Medical School, Department of Pathology, Rhode Island Hospital, Providence, RI, USA
| | - Silvana Papagerakis
- University of Michigan Comprehensive Cancer Center, School of Medicine, Department of Periodontics and Oral Medicine, Division of Oral Pathology/Medicine/Radiology, Ann Arbor, MI, USA
| | - Lelia Noble
- Brown University, Warren Alpert Medical School, COBRE Center for Cancer Research, Rhode Island Hospital, Providence, RI, USA
| | - Kara Lombardo
- Brown University, Warren Alpert Medical School, Department of Pathology, Rhode Island Hospital, Providence, RI, USA
| | - Dionysios Pantazatos
- Brown University, Warren Alpert Medical School, COBRE Center for Cancer Research, Rhode Island Hospital, Providence, RI, USA
- Weill Cornell Medical College, Division of Infectious Diseases, Transplantation-Oncology Infectious Disease Program, New York, NY, USA
| |
Collapse
|
56
|
Hinneburg H, Korać P, Schirmeister F, Gasparov S, Seeberger PH, Zoldoš V, Kolarich D. Unlocking Cancer Glycomes from Histopathological Formalin-fixed and Paraffin-embedded (FFPE) Tissue Microdissections. Mol Cell Proteomics 2017; 16:524-536. [PMID: 28122943 DOI: 10.1074/mcp.m116.062414] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/22/2017] [Indexed: 12/22/2022] Open
Abstract
N- and O-glycans are attractive clinical biomarkers as glycosylation changes in response to diseases. The limited availability of defined clinical specimens impedes glyco-biomarker identification and validation in large patient cohorts. Formalin-fixed paraffin-embedded (FFPE) clinical specimens are the common form of sample preservation in clinical pathology, but qualitative and quantitative N- and O-glycomics of such samples has not been feasible to date. Here, we report a highly sensitive and glycan isomer selective method for simultaneous N- and O-glycomics from histopathological slides. As few as 2000 cells isolated from FFPE tissue sections by laser capture microdissection were sufficient for in-depth histopathology-glycomics using porous graphitized carbon nanoLC ESI-MS/MS. N- and O-glycan profiles were similar between unstained and hematoxylin and eosin stained FFPE samples but differed slightly compared with fresh tissue. This method provides the key to unlock glyco-biomarker information from FFPE histopathological tissues archived in pathology laboratories worldwide.
Collapse
Affiliation(s)
- Hannes Hinneburg
- From the ‡Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14424 Potsdam, Germany.,§Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Petra Korać
- ¶Faculty of Science, Department of Biology, Division of Molecular Biology, University of Zagreb, Zagreb, Croatia
| | - Falko Schirmeister
- From the ‡Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14424 Potsdam, Germany.,§Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Slavko Gasparov
- ‖Institute for Pathology and Cytology, University Hospital Merkur, Zagreb, Croatia.,**Department of Pathology, Medical School Zagreb, University of Zagreb, Zagreb, Croatia
| | - Peter H Seeberger
- From the ‡Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14424 Potsdam, Germany.,§Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Vlatka Zoldoš
- ¶Faculty of Science, Department of Biology, Division of Molecular Biology, University of Zagreb, Zagreb, Croatia
| | - Daniel Kolarich
- From the ‡Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14424 Potsdam, Germany;
| |
Collapse
|
57
|
Ostasiewicz P, Wiśniewski J. A Protocol for Large-Scale Proteomic Analysis of Microdissected Formalin Fixed and Paraffin Embedded Tissue. Methods Enzymol 2017; 585:159-176. [DOI: 10.1016/bs.mie.2016.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
58
|
Galli M, Pagni F, De Sio G, Smith A, Chinello C, Stella M, L'Imperio V, Manzoni M, Garancini M, Massimini D, Mosele N, Mauri G, Zoppis I, Magni F. Proteomic profiles of thyroid tumors by mass spectrometry-imaging on tissue microarrays. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:817-827. [PMID: 27939607 DOI: 10.1016/j.bbapap.2016.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 01/22/2023]
Abstract
The current study proposes the successful use of a mass spectrometry-imaging technology that explores the composition of biomolecules and their spatial distribution directly on-tissue to differentially classify benign and malignant cases, as well as different histotypes. To identify new specific markers, we investigated with this technology a wide histological Tissue Microarray (TMA)-based thyroid lesion series. Results showed specific protein signatures for malignant and benign specimens and allowed to build clusters comprising several proteins with discriminant capabilities. Among them, FINC, ACTB1, LMNA, HSP7C and KAD1 were identified by LC-ESI-MS/MS and found up-expressed in malignant lesions. These findings represent the opening of further investigations for their translation into clinical practice, e.g. for setting up new immunohistochemical stainings, and for a better understanding of thyroid lesions. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Manuel Galli
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Gabriele De Sio
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Andrew Smith
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Clizia Chinello
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Martina Stella
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Vincenzo L'Imperio
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Marco Manzoni
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Mattia Garancini
- Department of Surgery, Hospital San Gerardo, Monza Brianza, Italy
| | - Diego Massimini
- Department of Surgery, Hospital San Gerardo, Monza Brianza, Italy
| | - Niccolò Mosele
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Giancarlo Mauri
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
| | - Italo Zoppis
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
59
|
Broeckx V, Boonen K, Pringels L, Sagaert X, Prenen H, Landuyt B, Schoofs L, Maes E. Comparison of multiple protein extraction buffers for GeLC-MS/MS proteomic analysis of liver and colon formalin-fixed, paraffin-embedded tissues. MOLECULAR BIOSYSTEMS 2016; 12:553-65. [PMID: 26676081 DOI: 10.1039/c5mb00670h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue specimens represent a potential valuable source of samples for clinical research. Since these specimens are banked in hospital archives, large cohorts of samples can be collected in short periods of time which can all be linked with a patients' clinical history. Therefore, the use of FFPE tissue in protein biomarker discovery studies gains interest. However, despite the growing number of FFPE proteome studies in the literature, there is a lack of a FFPE proteomics standard operating procedure (SOP). One of the challenging steps in the development of such a SOP is the ability to obtain an efficient and repeatable extraction of full length FFPE proteins. In this study, the protein extraction efficiency of eight protein extraction buffers is critically compared with GeLC-MS/MS (1D gel electrophoresis followed by in-gel digestion and LC-MS/MS). The data variation caused by using these extraction buffers was investigated since the variation is a very important aspect when using FFPE tissue as a source for biomarker detection. In addition, a qualitative comparison was made between the protein extraction efficiency and repeatability for FFPE tissue and fresh frozen tissue.
Collapse
Affiliation(s)
- Valérie Broeckx
- Research Group of Functional Genomics and Proteomics, Department of Biology, University of Leuven, Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Kurt Boonen
- Research Group of Functional Genomics and Proteomics, Department of Biology, University of Leuven, Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Lentel Pringels
- Research Group of Functional Genomics and Proteomics, Department of Biology, University of Leuven, Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Xavier Sagaert
- Centre for Translational Cell and Tissue Research, University Hospital of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Hans Prenen
- Department of Gastro-Enterology, Digestive Oncology Unit, University Hospital of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Bart Landuyt
- Research Group of Functional Genomics and Proteomics, Department of Biology, University of Leuven, Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Liliane Schoofs
- Research Group of Functional Genomics and Proteomics, Department of Biology, University of Leuven, Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Evelyne Maes
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium and Centre for Proteomics, University of Antwerp/Flemish Institute for Technological Research (VITO), Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
60
|
Protein characterization of intracellular target-sorted, formalin-fixed cell subpopulations. Sci Rep 2016; 6:33999. [PMID: 27666089 PMCID: PMC5036045 DOI: 10.1038/srep33999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/01/2016] [Indexed: 12/14/2022] Open
Abstract
Cellular heterogeneity is inherent in most human tissues, making the investigation of specific cell types challenging. Here, we describe a novel, fixation/intracellular target-based sorting and protein extraction method to provide accurate protein characterization for cell subpopulations. Validation and feasibility tests were conducted using homogeneous, neural cell lines and heterogeneous, rat brain cells, respectively. Intracellular proteins of interest were labeled with fluorescent antibodies for fluorescence-activated cell sorting. Reproducible protein extraction from fresh and fixed samples required lysis buffer with high concentrations of Tris-HCl and sodium dodecyl sulfate as well as exposure to high heat. No deterioration in protein amount or quality was observed for fixed, sorted samples. For the feasibility experiment, a primary rat subpopulation of neuronal cells was selected for based on high, intracellular β-III tubulin signal. These cells showed distinct protein expression differences from the unsorted population for specific (phosphorylated tau) and non-specific (total tau) protein targets. Our approach allows for determining more accurate protein profiles directly from cell types of interest and provides a platform technology in which any cell subpopulation can be biochemically investigated.
Collapse
|
61
|
Optimization of Urea Based Protein Extraction from Formalin-Fixed Paraffin-Embedded Tissue for Shotgun Proteomics. INTERNATIONAL JOURNAL OF PROTEOMICS 2016; 2016:4324987. [PMID: 27660725 PMCID: PMC5021876 DOI: 10.1155/2016/4324987] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/09/2016] [Indexed: 01/19/2023]
Abstract
Urea based protein extraction of formalin-fixed paraffin-embedded (FFPE) tissue provides the most efficient workflow for proteomics due to its compatibility with liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). This study optimizes the use of urea for proteomic analysis of clinical FFPE tissue. A series of protein extraction conditions manipulating temperature and buffer composition were compared to reduce carbamylation introduced by urea and increase protein detection. Each extraction was performed on a randomized pair of serial sections of homogenous FFPE tissue and analyzed with LC-ESI-MS/MS. Results were compared in terms of yield, missed cleavages, and peptide carbamylation. Lowering extraction temperature to 60°C decreased carbamylation at the cost of decreased protein detection and yield. Protein extraction for at least 20 minutes at 95°C followed by 60°C for 2 hours maximized total protein yield while maintaining protein detection and reducing carbamylation by 7.9%. When accounting for carbamylation during analysis, this modified extraction temperature provides equivalent peptide and protein detection relative to the commercially available Qproteome® FFPE Tissue Kit. No changes to buffer composition containing 7 M urea, 2 M thiourea, and 1 M ammonium bicarbonate resulted in improvements to control conditions. Optimized urea in-solution digestion provides an efficient workflow with maximized yields for proteomic analysis of clinically relevant FFPE tissue.
Collapse
|
62
|
Luebker SA, Wojtkiewicz M, Koepsell SA. Two methods for proteomic analysis of formalin-fixed, paraffin embedded tissue result in differential protein identification, data quality, and cost. Proteomics 2016; 15:3744-53. [PMID: 26306679 DOI: 10.1002/pmic.201500147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/06/2015] [Accepted: 08/19/2015] [Indexed: 12/18/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue is a rich source of clinically relevant material that can yield important translational biomarker discovery using proteomic analysis. Protocols for analyzing FFPE tissue by LC-MS/MS exist, but standardization of procedures and critical analysis of data quality is limited. This study compared and characterized data obtained from FFPE tissue using two methods: a urea in-solution digestion method (UISD) versus a commercially available Qproteome FFPE Tissue Kit method (Qkit). Each method was performed independently three times on serial sections of homogenous FFPE tissue to minimize pre-analytical variations and analyzed with three technical replicates by LC-MS/MS. Data were evaluated for reproducibility and physiochemical distribution, which highlighted differences in the ability of each method to identify proteins of different molecular weights and isoelectric points. Each method replicate resulted in a significant number of new protein identifications, and both methods identified significantly more proteins using three technical replicates as compared to only two. UISD was cheaper, required less time, and introduced significant protein modifications as compared to the Qkit method, which provided more precise and higher protein yields. These data highlight significant variability among method replicates and type of method used, despite minimizing pre-analytical variability. Utilization of only one method or too few replicates (both method and technical) may limit the subset of proteomic information obtained.
Collapse
Affiliation(s)
- Stephen A Luebker
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
| | - Melinda Wojtkiewicz
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
| | - Scott A Koepsell
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
63
|
Ly A, Buck A, Balluff B, Sun N, Gorzolka K, Feuchtinger A, Janssen KP, Kuppen PJK, van de Velde CJH, Weirich G, Erlmeier F, Langer R, Aubele M, Zitzelsberger H, McDonnell L, Aichler M, Walch A. High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-fixed paraffin-embedded tissue. Nat Protoc 2016; 11:1428-43. [PMID: 27414759 DOI: 10.1038/nprot.2016.081] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Formalin-fixed and paraffin-embedded (FFPE) tissue specimens are the gold standard for histological examination, and they provide valuable molecular information in tissue-based research. Metabolite assessment from archived tissue samples has not been extensively conducted because of a lack of appropriate protocols and concerns about changes in metabolite content or chemical state due to tissue processing. We present a protocol for the in situ analysis of metabolite content from FFPE samples using a high-mass-resolution matrix-assisted laser desorption/ionization fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FT-ICR-MSI) platform. The method involves FFPE tissue sections that undergo deparaffinization and matrix coating by 9-aminoacridine before MALDI-MSI. Using this platform, we previously detected ∼1,500 m/z species in the mass range m/z 50-1,000 in FFPE samples; the overlap compared with fresh frozen samples is 72% of m/z species, indicating that metabolites are largely conserved in FFPE tissue samples. This protocol can be reproducibly performed on FFPE tissues, including small samples such as tissue microarrays and biopsies. The procedure can be completed in a day, depending on the size of the sample measured and raster size used. Advantages of this approach include easy sample handling, reproducibility, high throughput and the ability to demonstrate molecular spatial distributions in situ. The data acquired with this protocol can be used in research and clinical practice.
Collapse
Affiliation(s)
- Alice Ly
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Achim Buck
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, the Netherlands
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Karin Gorzolka
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Gregor Weirich
- Institute of Pathology, Technische Universität München, Munich, Germany
| | | | - Rupert Langer
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Michaela Aubele
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Liam McDonnell
- Centre for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, the Netherlands.,Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
64
|
Abed FM, Dark MJ. Determining the utility of veterinary tissue archives for retrospective DNA analysis. PeerJ 2016; 4:e1996. [PMID: 27168995 PMCID: PMC4860330 DOI: 10.7717/peerj.1996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 04/11/2016] [Indexed: 11/29/2022] Open
Abstract
Histopathology tissue archives can be an important source of specimens for retrospective studies, as these include samples covering a large number of diseases. In veterinary medicine, archives also contain samples from a large variety of species and may represent naturally-occurring models of human disease. The formalin-fixed, paraffin-embedded (FFPE) tissues comprising these archives are rich resources for retrospective molecular biology studies and pilot studies for biomarkers, as evidenced by a number of recent publications highlighting FFPE tissues as a resource for analysis of specific diseases. However, DNA extracted from FFPE specimens are modified and fragmented, making utilization challenging. The current study examines the utility of FFPE tissue samples from a veterinary diagnostic laboratory archive in five year intervals from 1977 to 2013, with 2015 as a control year, to determine how standard processing and storage conditions has affected their utility for future studies. There was a significant difference in our ability to obtain large amplicons from samples from 2015 than from the remaining years, as well as an inverse correlation between the age of the samples and product size obtainable. However, usable DNA samples were obtained in at least some of the samples from all years tested, despite variable storage, fixation, and processing conditions. This study will help make veterinary diagnostic laboratory archives more useful in future studies of human and veterinary disease.
Collapse
Affiliation(s)
- Firas M Abed
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida , Gainesville, FL , United States
| | - Michael J Dark
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States; Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
65
|
Bennike TB, Kastaniegaard K, Padurariu S, Gaihede M, Birkelund S, Andersen V, Stensballe A. Comparing the proteome of snap frozen, RNAlater preserved, and formalin-fixed paraffin-embedded human tissue samples. EUPA OPEN PROTEOMICS 2016; 10:9-18. [PMID: 29900094 PMCID: PMC5988570 DOI: 10.1016/j.euprot.2015.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/19/2015] [Accepted: 10/25/2015] [Indexed: 01/14/2023]
Abstract
Large biobanks exist worldwide containing formalin-fixed, paraffin-embedded samples and samples stored in RNAlater. However, the impact of tissue preservation on the result of a quantative proteome analysis remains poorly described. Human colon mucosal biopsies were extracted from the sigmoideum and either immediately frozen, stabilized in RNAlater, or stabilized by formalin-fixation. In one set of biopsies, formalin stabilization was delayed for 30 min. The protein content of the samples was characterized by high throughput quantitative proteomics. We were able to identify a similar high number of proteins in the samples regardless of preservation method, with only minor differences in protein quantitation.
Collapse
Key Words
- CAN, acetonitrile
- DF, directly-frozen
- FA, formic acid
- FASP, filter-aided sample preparation
- FDR, false discovery rate
- FFPE, formalin-fixed
- Formalin-fixed
- HLA-A class I, histocompatibility antigen A-23 alpha chain
- HLA-DRB1 class II, histocompatibility antigen DRB1-4 beta chain
- Human colon mucosa
- LFQ, label-free quantification
- Mass spectrometry
- PCA, principle component analysis
- PSM, peptide spectral match
- PTM, post-translational modification
- Paraffin-embedded
- Preservation
- Proteomics
- RNAlater
- SDC, sodium deoxycholate
- SDS, sodium dodecyl sulfate
- TEAB, triethylammonium bicarbonate
- iFFPE, immediately formalin-fixed
- s, standard deviation
- sFFPE, stored for 30 min prior to formalin-fixed
Collapse
Affiliation(s)
- Tue Bjerg Bennike
- Research Unit for Molecular Diagnostic and Clinical Research, Hospital of Southern Jutland, Aabenraa, Denmark
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Simona Padurariu
- Department of Otolaryngology, Head and Neck Surgery, Aalborg University Hospital, Aalborg, Denmark
| | - Michael Gaihede
- Department of Otolaryngology, Head and Neck Surgery, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Svend Birkelund
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Vibeke Andersen
- Research Unit for Molecular Diagnostic and Clinical Research, Hospital of Southern Jutland, Aabenraa, Denmark
- Institute of Regional Health Research-Center Soenderjylland, University of Southern Denmark, Odense, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
66
|
Longuespée R, Alberts D, Pottier C, Smargiasso N, Mazzucchelli G, Baiwir D, Kriegsmann M, Herfs M, Kriegsmann J, Delvenne P, De Pauw E. A laser microdissection-based workflow for FFPE tissue microproteomics: Important considerations for small sample processing. Methods 2015; 104:154-62. [PMID: 26690073 DOI: 10.1016/j.ymeth.2015.12.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/09/2015] [Accepted: 12/12/2015] [Indexed: 11/29/2022] Open
Abstract
Proteomic methods are today widely applied to formalin-fixed paraffin-embedded (FFPE) tissue samples for several applications in research, especially in molecular pathology. To date, there is an unmet need for the analysis of small tissue samples, such as for early cancerous lesions. Indeed, no method has yet been proposed for the reproducible processing of small FFPE tissue samples to allow biomarker discovery. In this work, we tested several procedures to process laser microdissected tissue pieces bearing less than 3000 cells. Combined with appropriate settings for liquid chromatography mass spectrometry-mass spectrometry (LC-MS/MS) analysis, a citric acid antigen retrieval (CAAR)-based procedure was established, allowing to identify more than 1400 proteins from a single microdissected breast cancer tissue biopsy. This work demonstrates important considerations concerning the handling and processing of laser microdissected tissue samples of extremely limited size, in the process opening new perspectives in molecular pathology. A proof of the proposed method for biomarker discovery, with respect to these specific handling considerations, is illustrated using the differential proteomic analysis of invasive breast carcinoma of no special type and invasive lobular triple-negative breast cancer tissues. This work will be of utmost importance for early biomarker discovery or in support of matrix-assisted laser desorption/ionization (MALDI) imaging for microproteomics from small regions of interest.
Collapse
Affiliation(s)
- Rémi Longuespée
- Mass Spectrometry Laboratory, Systems Biology and Chemical Biology, GIGA-Research, University of Liège, Liège, Belgium; Proteopath GmbH, Trier, Germany.
| | - Deborah Alberts
- Mass Spectrometry Laboratory, Systems Biology and Chemical Biology, GIGA-Research, University of Liège, Liège, Belgium
| | - Charles Pottier
- Department of Pathology, University of Liège Hospital, Liege, Belgium; GIGA Cancer, University of Liège, Liège, Belgium
| | - Nicolas Smargiasso
- Mass Spectrometry Laboratory, Systems Biology and Chemical Biology, GIGA-Research, University of Liège, Liège, Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, Systems Biology and Chemical Biology, GIGA-Research, University of Liège, Liège, Belgium
| | | | - Mark Kriegsmann
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Michael Herfs
- Department of Pathology, University of Liège Hospital, Liege, Belgium; GIGA Cancer, University of Liège, Liège, Belgium
| | - Jörg Kriegsmann
- Proteopath GmbH, Trier, Germany; MVZ for Histology, Cytology and Molecular Diagnostics Trier, Trier, Germany
| | - Philippe Delvenne
- Department of Pathology, University of Liège Hospital, Liege, Belgium; GIGA Cancer, University of Liège, Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, Systems Biology and Chemical Biology, GIGA-Research, University of Liège, Liège, Belgium
| |
Collapse
|
67
|
Donczo B, Szigeti M, Ostoros G, Gacs A, Tovari J, Guttman A. N-Glycosylation analysis of formalin fixed paraffin embedded samples by capillary electrophoresis. Electrophoresis 2015; 37:2292-6. [DOI: 10.1002/elps.201500446] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/06/2015] [Accepted: 11/07/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Boglarka Donczo
- Horváth Csaba Laboratory of Bioseparation Sciences; University of Debrecen; Debrecen Hungary
| | - Marton Szigeti
- Horváth Csaba Laboratory of Bioseparation Sciences; University of Debrecen; Debrecen Hungary
- MTA-PE Translational Glycomics Group; Pannon University; Veszprem Hungary
| | - Gyorgyi Ostoros
- MTA-PE Translational Glycomics Group; Pannon University; Veszprem Hungary
- National Institute of Oncology; Department of Experimental Pharmacology; Budapest Hungary
| | - Alexandra Gacs
- National Institute of Oncology; Department of Experimental Pharmacology; Budapest Hungary
| | - Jozsef Tovari
- National Institute of Oncology; Department of Experimental Pharmacology; Budapest Hungary
| | - Andras Guttman
- Horváth Csaba Laboratory of Bioseparation Sciences; University of Debrecen; Debrecen Hungary
- MTA-PE Translational Glycomics Group; Pannon University; Veszprem Hungary
| |
Collapse
|
68
|
Shen K, Sun J, Cao X, Zhou D, Li J. Comparison of Different Buffers for Protein Extraction from Formalin-Fixed and Paraffin-Embedded Tissue Specimens. PLoS One 2015; 10:e0142650. [PMID: 26580073 PMCID: PMC4651363 DOI: 10.1371/journal.pone.0142650] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/26/2015] [Indexed: 01/26/2023] Open
Abstract
We determined the best extraction buffer for proteomic investigation using formalin-fixation and paraffin-embedded (FFPE) specimens. A Zwittergent 3–16 based buffer, sodium dodecyl sulfate (SDS)-containing buffer with/without polyethylene glycol 20000 (PEG20000), urea-containing buffer, and FFPE-FASP protein preparation kit were compared for protein extraction from different types of rat FFPE tissues, including the heart, brain, liver, lung, and kidney. All of the samples were divided into two groups of laser microdissected (LMD) and non-LMD specimens. For both kinds of specimens, Zwittergent was the most efficient buffer for identifying peptides and proteins, was broadly applicable to different tissues without impairing the enzymatic digestion, and was well compatible with mass spectrometry analysis. As a high molecular weight carrier substance, PEG20000 improved the identification of peptides and proteins; however, such an advantage is limited to tissues containing submicrograms to micrograms of protein. Considering its low lytic strength, urea-containing buffer would not be the first alternative for protein recovery. In conclusion, Zwittergent 3–16 is an effective buffer for extracting proteins from FFPE specimens for downstream proteomics analysis.
Collapse
Affiliation(s)
- Kaini Shen
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jian Sun
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xinxin Cao
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Daobin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
69
|
Becker KF. Using tissue samples for proteomic studies-Critical considerations. Proteomics Clin Appl 2015; 9:257-67. [DOI: 10.1002/prca.201400106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/08/2014] [Accepted: 01/07/2015] [Indexed: 01/09/2023]
|
70
|
Tanca A, Uzzau S, Addis MF. Full-length protein extraction protocols and gel-based downstream applications in formalin-fixed tissue proteomics. Methods Mol Biol 2015; 1295:117-134. [PMID: 25820719 DOI: 10.1007/978-1-4939-2550-6_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Archival formalin-fixed, paraffin-embedded (FFPE) tissue repositories and their associated clinical information can represent a valuable resource for tissue proteomics. In order to make these tissues available for protein biomarker discovery and validation studies, dedicated sample preparation procedures overcoming the intermolecular cross-links introduced by formalin need to be implemented. This chapter describes a full-length protein extraction protocol optimized for downstream gel-based proteomics applications. Using the procedures detailed here, SDS-PAGE, western immunoblotting, GeLC-MS/MS, 2D-PAGE, and 2D-DIGE can be carried out on FFPE tissues. Technical tips, critical aspects, and drawbacks of the method are presented and discussed.
Collapse
Affiliation(s)
- Alessandro Tanca
- Porto Conte Ricerche, Loc, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, Alghero (SS), 07041, Italy
| | | | | |
Collapse
|
71
|
Qualitative and quantitative proteomic analysis of formalin-fixed paraffin-embedded (FFPE) tissue. Methods Mol Biol 2015; 1295:109-15. [PMID: 25820718 DOI: 10.1007/978-1-4939-2550-6_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Formalin-fixed, paraffin-embedded (FFPE) tissue has recently gained interest as an alternative to fresh/frozen tissue for retrospective protein biomarker discovery. However, during the formalin fixation proteins undergo degradation and cross-linking, making conventional protein analysis technologies challenging. Cross-linking is even more challenging when quantitative proteome analysis of FFPE tissue is planned. The use of conventional protein labeling technologies on FFPE tissue has turned out to be problematic as the lysine residue labeling targets are frequently blocked by the formalin treatment. We have established a qualitative and quantitative proteomics analysis technique for FFPE tissues that combines label-free proteomic analysis with optimized protein extraction and separation conditions.
Collapse
|
72
|
Timpe LC, Li D, Yen TY, Wong J, Yen R, Macher BA, Piryatinska A. Mining the Breast Cancer Proteome for Predictors of Drug Sensitivity. ACTA ACUST UNITED AC 2015; 8:204-211. [PMID: 26516301 PMCID: PMC4621756 DOI: 10.4172/jpb.1000370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Approximately 20 drugs have been approved by the FDA for breast cancer treatment, yet predictive biomarkers are known for only a few of these. The identification of additional biomarkers would be useful both for drugs currently approved for breast cancer treatment and for new drug development. Using glycoprotein expression data collected via mass spectrometry, in conjunction with statistical models constructed by elastic net or lasso regression, we modeled quantitatively the responses of breast cancer cell lines to ~90 drugs. Lasso and elastic net regression identified HER2 as a predictor protein for lapatinib, afatinib, gefitinib and erlotinib, which target HER2 or the EGF receptor, thus providing an internal control for the approach. Two additional protein datasets and two RNA datasets were also tested as sources of predictor proteins for modeling drug sensitivity. Protein expression measured by mass spectrometry gave models with higher coefficients of determination than did reverse phase protein array (RPPA) predictor data. Further, cross validation of the elastic net models shows that, for many drugs, the prediction error is lower when the predictor data is from proteins, rather than mRNA expression measured on microarrays. Drugs that could be modeled effectively include PI3K inhibitors, Akt inhibitors, paclitaxel and docetaxel, rapamycin, everolimus and temsirolimus, gemcitabine and vinorelbine. Strikingly, this modeling approach with protein predictors often succeeds for drugs that are targeted agents, even when the nominal target is not in the dataset.
Collapse
Affiliation(s)
- Leslie C Timpe
- Department of Mathematics, San Francisco State University, San Francisco, California 94132, USA
| | - Dian Li
- Department of Mathematics, San Francisco State University, San Francisco, California 94132, USA
| | - Ten-Yang Yen
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, USA
| | - Judi Wong
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, USA
| | - Roger Yen
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, USA
| | - Bruce A Macher
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, USA
| | - Alexandra Piryatinska
- Department of Mathematics, San Francisco State University, San Francisco, California 94132, USA
| |
Collapse
|
73
|
Assessment of the 2-d gel-based proteomics application of clinically archived formalin-fixed paraffin embedded tissues. Protein J 2014; 33:135-42. [PMID: 24500075 DOI: 10.1007/s10930-014-9545-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hospital tissue repositories possess a vast and valuable supply of disease samples with matched retrospective clinical information. Detection and characterization of disease biomarkers in formalin-fixed paraffin-embedded (FFPE) tissues will greatly aid the understanding of the diseases mechanisms and help in the development of diagnostic and prognostic markers. In this study, the possibility of using full-length proteins extracted from clinically archived FFPE tissues in two-dimensional (2-D) gel-based proteomics was evaluated. The evaluation was done based on two types of tumor tissues (breast and prostate) and two extraction protocols. The comparison of the 2-D patterns of FFPE extracts obtained by two extraction protocols with the matching frozen tissue extracts showed that only 7-10% of proteins from frozen tissues can be matched to proteins from FFPE tissues. Most of the spots in the 2-D FFPE's maps had pl 4-6, while the percentages of proteins with pl above 6 were 3-5 times lower in comparison to the fresh/frozen tissue. Despite the three-fold lower number of the detected spots in FFPE maps compared to matched fresh/frozen maps, 67-78% of protein spots in FFPE could not be matched to the corresponding spots in the fresh/frozen tissue maps indicating irreversible protein modifications. In conclusion, the inability to completely reverse the cross-linked complexes and overcome protein fragmentation with the present day FFPE extraction methods stands in the way of effective use of these samples in 2-D gel based proteomics studies.
Collapse
|
74
|
Steiner C, Ducret A, Tille JC, Thomas M, McKee TA, Rubbia-Brandt L, Scherl A, Lescuyer P, Cutler P. Applications of mass spectrometry for quantitative protein analysis in formalin-fixed paraffin-embedded tissues. Proteomics 2014; 14:441-51. [PMID: 24339433 PMCID: PMC4265304 DOI: 10.1002/pmic.201300311] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/04/2013] [Accepted: 11/11/2013] [Indexed: 12/12/2022]
Abstract
Proteomic analysis of tissues has advanced in recent years as instruments and methodologies have evolved. The ability to retrieve peptides from formalin-fixed paraffin-embedded tissues followed by shotgun or targeted proteomic analysis is offering new opportunities in biomedical research. In particular, access to large collections of clinically annotated samples should enable the detailed analysis of pathologically relevant tissues in a manner previously considered unfeasible. In this paper, we review the current status of proteomic analysis of formalin-fixed paraffin-embedded tissues with a particular focus on targeted approaches and the potential for this technique to be used in clinical research and clinical diagnosis. We also discuss the limitations and perspectives of the technique, particularly with regard to application in clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Carine Steiner
- Division of Laboratory Medicine, Geneva University Hospital, Geneva, Switzerland; Human Protein Sciences Department, University of Geneva, Geneva, Switzerland; Translational Technologies and Bioinformatics, Pharma Research and Early Development, F. Hoffmann-La Roche AG, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Aichler M, Luber B, Lordick F, Walch A. Proteomic and metabolic prediction of response to therapy in gastric cancer. World J Gastroenterol 2014; 20:13648-13657. [PMID: 25320503 PMCID: PMC4194549 DOI: 10.3748/wjg.v20.i38.13648] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
Several new treatment options for gastric cancer have been introduced but the prognosis of patients diagnosed with gastric cancer is still poor. Disease prognosis could be improved for high-risk individuals by implementing earlier screenings. Because many patients are asymptomatic during the early stages of gastric cancer, the diagnosis is often delayed and patients present with unresectable locally advanced or metastatic disease. Cytotoxic treatment has been shown to prolong survival in general, but not all patients are responders. The application of targeted therapies and multimodal treatment has improved prognosis for those with advanced disease. However, these new therapeutic strategies do not uniformly benefit all patients. Predicting whether patients will respond to specific therapies would be of particular value and would allow for stratifying patients for personalized treatment strategies. Metabolic imaging by positron emission tomography was the first technique with the potential to predict the response of esophago-gastric cancer to neoadjuvant therapy. Exploring and validating tissue-based biomarkers are ongoing processes. In this review, we discuss the status of several targeted therapies for gastric cancer, as well as proteomic and metabolic methods for investigating biomarkers for therapy response prediction in gastric cancer.
Collapse
|
76
|
Gustafsson OJR, Arentz G, Hoffmann P. Proteomic developments in the analysis of formalin-fixed tissue. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:559-80. [PMID: 25315853 DOI: 10.1016/j.bbapap.2014.10.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/22/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
Abstract
Retrospective proteomic studies, including those which aim to elucidate the molecular mechanisms driving cancer, require the assembly and characterization of substantial patient tissue cohorts. The difficulty of maintaining and accessing native tissue archives has prompted the development of methods to access archives of formalin-fixed tissue. Formalin-fixed tissue archives, complete with patient meta data, have accumulated for decades, presenting an invaluable resource for these retrospective studies. This review presents the current knowledge concerning formalin-fixed tissue, with descriptions of the mechanisms of formalin fixation, protein extraction, top-down proteomics, bottom-up proteomics, quantitative proteomics, phospho- and glycoproteomics as well as imaging mass spectrometry. Particular attention has been given to the inclusion of proteomic investigations of archived tumour tissue. This article is part of a Special Issue entitled: Medical Proteomics.
Collapse
Affiliation(s)
- Ove J R Gustafsson
- Adelaide Proteomics Centre, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia 5005
| | - Georgia Arentz
- Adelaide Proteomics Centre, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia 5005
| | - Peter Hoffmann
- Adelaide Proteomics Centre, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia 5005.
| |
Collapse
|
77
|
Shah P, Zhang B, Choi C, Yang S, Zhou J, Harlan R, Tian Y, Zhang Z, Chan DW, Zhang H. Tissue proteomics using chemical immobilization and mass spectrometry. Anal Biochem 2014; 469:27-33. [PMID: 25283129 DOI: 10.1016/j.ab.2014.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 01/04/2023]
Abstract
Proteomics analysis is important for characterizing tissues to gain biological and pathological insights, which could lead to the identification of disease-associated proteins for disease diagnostics or targeted therapy. However, tissues are commonly embedded in optimal cutting temperature medium (OCT) or are formalin-fixed and paraffin-embedded (FFPE) in order to maintain tissue morphology for histology evaluation. Although several tissue proteomic analyses have been performed on FFPE tissues using advanced mass spectrometry (MS) technologies, high-throughput proteomic analysis of OCT-embedded tissues has been difficult due to the interference of OCT in the MS analysis. In addition, molecules other than proteins present in tissues further complicate tissue proteomic analysis. Here, we report the development of a method using chemical immobilization of proteins for peptide extraction (CIPPE). In this method, proteins are chemically immobilized onto a solid support; interferences from tissues and OCT embedding are removed by extensive washing of proteins conjugated on the solid support. Peptides are then released from the solid phase by proteolysis, enabling MS analysis. This method was first validated by eliminating OCT interference from a standard protein, human serum albumin, where all of the unique peaks contributed by OCT contamination were eradicated. Finally, this method was applied for the proteomic analysis of frozen and OCT-embedded tissues using iTRAQ (isobaric tag for relative and absolute quantitation) labeling and two-dimensional liquid chromatography tandem mass spectrometry. The data showed reproducible extraction and quantitation of 10,284 proteins from 3996 protein groups and a minimal impact of OCT embedding on the analysis of the global proteome of the stored tissue samples.
Collapse
Affiliation(s)
- Punit Shah
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Bai Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Caitlin Choi
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Shuang Yang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Jianying Zhou
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Robert Harlan
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Yuan Tian
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Zhen Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA.
| |
Collapse
|
78
|
Sepiashvili L, Waggott D, Hui A, Shi W, Su S, Ignatchenko A, Ignatchenko V, Laureano M, Huang SH, Xu W, Weinreb I, Waldron J, O'Sullivan B, Irish JC, Boutros PC, Liu FF, Kislinger T. Integrated omic analysis of oropharyngeal carcinomas reveals human papillomavirus (HPV)-dependent regulation of the activator protein 1 (AP-1) pathway. Mol Cell Proteomics 2014; 13:3572-84. [PMID: 25271301 DOI: 10.1074/mcp.m114.041764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
HPV-positive oropharyngeal carcinoma (OPC) patients have superior outcomes relative to HPV-negative patients, but the underlying mechanisms remain poorly understood. We conducted a proteomic investigation of HPV-positive (n = 27) and HPV-negative (n = 26) formalin-fixed paraffin-embedded OPC biopsies to acquire insights into the biological pathways that correlate with clinical behavior. Among the 2,633 proteins identified, 174 were differentially abundant. These were enriched for proteins related to cell cycle, DNA replication, apoptosis, and immune response. The differential abundances of cortactin and methylthioadenosine phosphorylase were validated by immunohistochemistry in an independent cohort of 29 OPC samples (p = 0.023 and p = 0.009, respectively). An additional 1,124 proteins were independently corroborated through comparison to a published proteomic dataset of OPC. Furthermore, utilizing the Cancer Genome Atlas, we conducted an integrated investigation of OPC, attributing mechanisms underlying differential protein abundances to alterations in mutation, copy number, methylation, and mRNA profiles. A key finding of this integration was the identification of elevated cortactin oncoprotein levels in HPV-negative OPCs. These proteins might contribute to reduced survival in these patients via their established role in radiation resistance. Through interrogation of Cancer Genome Atlas data, we demonstrated that activation of the β1-integrin/FAK/cortactin/JNK1 signaling axis and associated differential regulation of activator protein 1 transcription factor target genes are plausible consequences of elevated cortactin protein levels.
Collapse
Affiliation(s)
- Lusia Sepiashvili
- From the ‡Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 1L7; §Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada M5T 2M9
| | - Daryl Waggott
- ¶Informatics & Biocomputing, Ontario Institute for Cancer Research, Toronto, Ontario, Canada M5G 0A3
| | - Angela Hui
- §Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada M5T 2M9
| | - Wei Shi
- §Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada M5T 2M9
| | - Susie Su
- ‖Division of Biostatistics, University of Toronto, Toronto, Ontario, Canada M5G 2M9
| | - Alex Ignatchenko
- §Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada M5T 2M9
| | - Vladimir Ignatchenko
- §Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada M5T 2M9
| | - Marissa Laureano
- §Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada M5T 2M9
| | - Shao Hui Huang
- **Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada M5G 2M9
| | - Wei Xu
- ‖Division of Biostatistics, University of Toronto, Toronto, Ontario, Canada M5G 2M9
| | - Ilan Weinreb
- ‡‡Department of Pathology, University of Toronto, Toronto, Ontario, Canada M5G 2C4
| | - John Waldron
- **Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada M5G 2M9
| | - Brian O'Sullivan
- **Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada M5G 2M9
| | - Jonathan C Irish
- §§Department of Surgery, University of Toronto, Toronto, Ontario, Canada M5G 2M9
| | - Paul C Boutros
- From the ‡Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 1L7; ¶Informatics & Biocomputing, Ontario Institute for Cancer Research, Toronto, Ontario, Canada M5G 0A3; ¶¶Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada M5G 0A3
| | - Fei-Fei Liu
- From the ‡Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 1L7; §Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada M5T 2M9; **Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada M5G 2M9;
| | - Thomas Kislinger
- From the ‡Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 1L7; §Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada M5T 2M9;
| |
Collapse
|
79
|
Comparison of two FFPE preparation methods using label-free shotgun proteomics: Application to tissues of diverticulitis patients. J Proteomics 2014; 112:250-61. [PMID: 25218866 DOI: 10.1016/j.jprot.2014.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/12/2014] [Accepted: 08/28/2014] [Indexed: 12/15/2022]
Abstract
UNLABELLED Formalin-fixed paraffin-embedded (FFPE) specimens of patients are useful sources of materials for clinical research and have recently gained interest for use in the discovery of clinical proteomic biomarkers. However, the critical step in this field is the ability to obtain an efficient and repeatable extraction using the limited quantities of material available for research in hospital biobanks. This work describes the evaluation of the peptide/protein extraction using FFPE sections treated by the following two methods before shotgun proteomic analysis: a commercial solution (FFPE-FASP) (filter aided sample preparation) and an antigen retrieval-derived protocol (On Slice AR). Their efficiencies and repeatabilities are compared using data-independent differential quantitative label-free analysis. FFPE-FASP was shown to be globally better both qualitatively and quantitatively than On Slice AR. FFPE-FASP was tested on several samples, and differential analysis was used to compare the tissues of diverticulitis patients (healthy and inflammatory tissues). In this differential proteomic analysis using retrospective clinical FFPE material, FFPE-FASP was reproducible and provided a high number of confident protein identifications, highlighting potential protein biomarkers. BIOLOGICAL SIGNIFICANCE In clinical proteomics, FFPE is an important resource for retrospective analysis and for the discovery of biomarkers. The challenge for FFPE shotgun proteomic analysis is preparation by an efficient and reproducible protocol, which includes protein extraction and digestion. In this study, we analyzed two different methods and evaluated their repeatabilities and efficiencies. We illustrated the reproducibility of the most efficient method, FFPE-FASP, by a pilot study on diverticulitis tissue and on FFPE samples amount accessible in hospital biobanks. These data showed that FFPE is suitable for use in clinical proteomics, especially when the FFPE-FASP method is combined with label-free shotgun proteomics as described in the workflow presented in this work.
Collapse
|
80
|
MALDI imaging mass spectrometry profiling of N-glycans in formalin-fixed paraffin embedded clinical tissue blocks and tissue microarrays. PLoS One 2014; 9:e106255. [PMID: 25184632 PMCID: PMC4153616 DOI: 10.1371/journal.pone.0106255] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 08/01/2014] [Indexed: 02/06/2023] Open
Abstract
A recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) method to spatially profile the location and distribution of multiple N-linked glycan species in frozen tissues has been extended and improved for the direct analysis of glycans in clinically derived formalin-fixed paraffin-embedded (FFPE) tissues. Formalin-fixed tissues from normal mouse kidney, human pancreatic and prostate cancers, and a human hepatocellular carcinoma tissue microarray were processed by antigen retrieval followed by on-tissue digestion with peptide N-glycosidase F. The released N-glycans were detected by MALDI-IMS analysis, and the structural composition of a subset of glycans could be verified directly by on-tissue collision-induced fragmentation. Other structural assignments were confirmed by off-tissue permethylation analysis combined with multiple database comparisons. Imaging of mouse kidney tissue sections demonstrates specific tissue distributions of major cellular N-linked glycoforms in the cortex and medulla. Differential tissue distribution of N-linked glycoforms was also observed in the other tissue types. The efficacy of using MALDI-IMS glycan profiling to distinguish tumor from non-tumor tissues in a tumor microarray format is also demonstrated. This MALDI-IMS workflow has the potential to be applied to any FFPE tissue block or tissue microarray to enable higher throughput analysis of the global changes in N-glycosylation associated with cancers.
Collapse
|
81
|
Longuespée R, Fléron M, Pottier C, Quesada-Calvo F, Meuwis MA, Baiwir D, Smargiasso N, Mazzucchelli G, De Pauw-Gillet MC, Delvenne P, De Pauw E. Tissue Proteomics for the Next Decade? Towards a Molecular Dimension in Histology. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:539-52. [DOI: 10.1089/omi.2014.0033] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rémi Longuespée
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| | - Maximilien Fléron
- Mammalian Cell Culture Laboratory, GIGA-Research, Department of Biomedical and Preclinical Sciences, University of Liège, Liège, Belgium
| | - Charles Pottier
- Laboratory of Experimental Pathology, GIGA-Cancer, Department of Pathology, University of Liège, Liège, Belgium
| | - Florence Quesada-Calvo
- Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital, University of Liège, Liège, Belgium
| | - Marie-Alice Meuwis
- Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital, University of Liège, Liège, Belgium
| | - Dominique Baiwir
- GIGA-R, GIGA Proteomic Facilities, University of Liège, Liège, Belgium
| | - Nicolas Smargiasso
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| | - Marie-Claire De Pauw-Gillet
- Mammalian Cell Culture Laboratory, GIGA-Research, Department of Biomedical and Preclinical Sciences, University of Liège, Liège, Belgium
| | - Philippe Delvenne
- Laboratory of Experimental Pathology, GIGA-Cancer, Department of Pathology, University of Liège, Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| |
Collapse
|
82
|
Mansour A, Chatila R, Bejjani N, Dagher C, Faour WH. A novel xylene-free deparaffinization method for the extraction of proteins from human derived formalin-fixed paraffin embedded (FFPE) archival tissue blocks. MethodsX 2014; 1:90-5. [PMID: 26150940 PMCID: PMC4472860 DOI: 10.1016/j.mex.2014.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/18/2014] [Accepted: 07/30/2014] [Indexed: 11/24/2022] Open
Abstract
Protein detection methods in formalin-fixed paraffin embedded (FFPE) tissue blocks are widely used in research and clinical setting in order to diagnose or to confirm a diagnosis of various types of diseases. Therefore, multiple protein extraction methods from FFPE tissue sections have been developed in this regard. However, the yield and the quality of proteins extracted from FFPE tissues are significantly reduced in blocks stored for longer periods of time. Regardless the protein extraction method used, tissue sections must be first deparaffinized with xylene, and then washed in serial dilutions of ethanol in order to remove the toxic organic solvent “xylene” and rehydrate the tissue. The objective of this study was first to develop a method to deparaffinize FFPE blocks that excludes the use of toxic solvent “xylene”. Second minimize the time required to perform the extraction. Here we describe a method where:The entire paraffin embedded blocks are deparaffinized and rehydrated using only hot distilled water as a substitute for both xylene and ethanol The entire procedure takes about 15 min Deparaffinized blocks are immediately homogenized in lysis buffer, and the obtained lysate analyzed by Western blot.
With this new modified technique, we were able to successfully detect actin and AKT proteins in lysates from blocks embedded in paraffin for up to 9 years.
Collapse
Affiliation(s)
- Anthony Mansour
- School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Rajaa Chatila
- School of Medicine, Lebanese American University, Byblos, Lebanon ; Lebanese American University Medical Center - Rizk Hospital, Beirut, Lebanon
| | - Noha Bejjani
- Lebanese American University Medical Center - Rizk Hospital, Beirut, Lebanon
| | - Carole Dagher
- School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Wissam H Faour
- School of Medicine, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
83
|
The tissue is the issue: improved methylome analysis from paraffin-embedded tissues by application of the HOPE technique. J Transl Med 2014; 94:927-33. [PMID: 24933424 DOI: 10.1038/labinvest.2014.79] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/25/2014] [Accepted: 05/14/2014] [Indexed: 01/07/2023] Open
Abstract
Alterations in the DNA methylome are characteristic for numerous diseases and a typical hallmark of cancer. Therefore, DNA methylation is currently under investigation in research labs and has also entered diagnostics. Recently, protocols like the BeadChip technology have become commercially available to study DNA methylation in an array format and semiquantitative fashion. However, it is known that fixation of the sample material with formalin prior to BeadChip analysis can affect the results. In this study we compared the influence of fixation on the outcome of BeadChip analysis. From six patients each a lung cancer tissue sample and a corresponding tumor-free lung tissue sample were collected. The samples were separated into three pieces. One piece of each sample was fixed with formalin, another one by the non-cross-linking HOPE technique (Hepes-glutamic acid buffer mediated Organic solvent Protection Effect). Subsequently, both became paraffin embedded. As a reference, the remaining third piece was cryopreserved. In addition we used three adenocarcinoma cell lines (H838, A549, and H1650) to validate the results from patient tissues. We show that using the HOPE technique instead of formalin largely prevents the introduction of formalin-fixation related artifacts. An ANOVA analysis significantly separated HOPE- and cryopreserved from formalin-fixed samples (FDR<0.05), while differences in the methylation data obtained from HOPE-fixed and cryopreserved material were minor. Consequently, HOPE fixation is superior to formalin fixation if a subsequent BeadChip analysis of paraffin-embedded sample material is intended.
Collapse
|
84
|
Accessing microenvironment compartments in formalin-fixed paraffin-embedded tissues by protein expression analysis. Bioanalysis 2014; 5:2647-59. [PMID: 24180505 DOI: 10.4155/bio.13.222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Formalin-fixed paraffin-embedded (FFPE) samples are an outstanding source of new information regarding disease evolvements. Current research on new biomarkers and diseases features has recently invested resources in FFPE-related projects. RESULTS In order to initiate clinical protein-expression studies using minute amount of biological material, a workflow based on the combination of filter-assisted sample preparation with MS analysis and label-free quantification was developed. Xenograft lung tumor tissue was investigated as a model system. The workflow was optimized and characterized in terms of its reproducibility from a quantitative and qualitative point of view. We proposed a modification of the original filter-assisted sample preparation protocol to improve reproducibility and highlight its potential for the investigation of hydrophobic proteins. CONCLUSIONS Altogether the presented workflow allows analysis of FFPE samples with improvements in the analytical time and performance, and we show its application for lung cancer xenograft tissue samples.
Collapse
|
85
|
Tanca A, Abbondio M, Pisanu S, Pagnozzi D, Uzzau S, Addis MF. Critical comparison of sample preparation strategies for shotgun proteomic analysis of formalin-fixed, paraffin-embedded samples: insights from liver tissue. Clin Proteomics 2014; 11:28. [PMID: 25097466 PMCID: PMC4115481 DOI: 10.1186/1559-0275-11-28] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/03/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The growing field of formalin-fixed paraffin-embedded (FFPE) tissue proteomics holds promise for improving translational research. Direct tissue trypsinization (DT) and protein extraction followed by in solution digestion (ISD) or filter-aided sample preparation (FASP) are the most common workflows for shotgun analysis of FFPE samples, but a critical comparison of the different methods is currently lacking. EXPERIMENTAL DESIGN DT, FASP and ISD workflows were compared by subjecting to the same label-free quantitative approach three independent technical replicates of each method applied to FFPE liver tissue. Data were evaluated in terms of method reproducibility and protein/peptide distribution according to localization, MW, pI and hydrophobicity. RESULTS DT showed lower reproducibility, good preservation of high-MW proteins, a general bias towards hydrophilic and acidic proteins, much lower keratin contamination, as well as higher abundance of non-tryptic peptides. Conversely, FASP and ISD proteomes were depleted in high-MW proteins and enriched in hydrophobic and membrane proteins; FASP provided higher identification yields, while ISD exhibited higher reproducibility. CONCLUSIONS These results highlight that diverse sample preparation strategies provide significantly different proteomic information, and present typical biases that should be taken into account when dealing with FFPE samples. When a sufficient amount of tissue is available, the complementary use of different methods is suggested to increase proteome coverage and depth.
Collapse
Affiliation(s)
- Alessandro Tanca
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Marcello Abbondio
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Salvatore Pisanu
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Daniela Pagnozzi
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Sergio Uzzau
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy ; Dipartimento di Scienze Biomediche, Università di Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
| | - Maria Filippa Addis
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| |
Collapse
|
86
|
Maes E, Valkenborg D, Mertens I, Broeckx V, Baggerman G, Sagaert X, Landuyt B, Prenen H, Schoofs L. Proteomic analysis of formalin-fixed paraffin-embedded colorectal cancer tissue using tandem mass tag protein labeling. MOLECULAR BIOSYSTEMS 2014; 9:2686-95. [PMID: 23986405 DOI: 10.1039/c3mb70177h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In clinical research, repositories of biological samples form a rich source of clinical material for biomarker studies. Banked material, however, is often not stored in optimal conditions regarding the technology used for biomarker research. A case in point is formalin-fixed paraffin-embedded (FFPE) tissue that could be used to obtain large cohorts of samples over a short period of time, as these tissues are routinely prepared for pathological analysis. However, in the context of mass spectrometry based peptide-centric proteomics, protein extraction and identification can be hampered by formalin-induced crosslinking. Furthermore, the molecular formalin crosslinks might be entangled differently across various samples, making it more difficult to reproducibly extract the same proteins from different samples. In this study, we establish the crosslink variability using Tandem Mass Tag (TMT) protein labeling followed by digestion, separation, identification and quantification of proteins extracted from FFPE colorectal cancer and paired healthy tissues. Moreover, by applying de novo interpretation of tandem mass spectra and subsequent analysis by Peaks PTM, unspecified modifications could be elucidated, leading to increased protein and proteome coverage. This approach might be useful for future FFPE proteomics studies.
Collapse
Affiliation(s)
- Evelyne Maes
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
|
88
|
Fowler CB, O'Leary TJ, Mason JT. Toward improving the proteomic analysis of formalin-fixed, paraffin-embedded tissue. Expert Rev Proteomics 2014; 10:389-400. [PMID: 23992421 DOI: 10.1586/14789450.2013.820531] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Archival formalin-fixed, paraffin-embedded (FFPE) tissue and their associated diagnostic records represent an invaluable source of retrospective proteomic information on diseases for which the clinical outcome and response to treatment are known. However, analysis of archival FFPE tissues by high-throughput proteomic methods has been hindered by the adverse effects of formaldehyde fixation and subsequent tissue histology. This review examines recent methodological advances for extracting proteins from FFPE tissue suitable for proteomic analysis. These methods, based largely upon heat-induced antigen retrieval techniques borrowed from immunohistochemistry, allow at least a qualitative analysis of the proteome of FFPE archival tissues. The authors also discuss recent advances in the proteomic analysis of FFPE tissue; including liquid-chromatography tandem mass spectrometry, reverse phase protein microarrays and imaging mass spectrometry.
Collapse
Affiliation(s)
- Carol B Fowler
- Laboratory of Proteomics and Protein Science, Washington DC Veterans Affairs Medical Center, Washington, DC, USA.
| | | | | |
Collapse
|
89
|
Kawashima Y, Kodera Y, Singh A, Matsumoto M, Matsumoto H. Efficient extraction of proteins from formalin-fixed paraffin-embedded tissues requires higher concentration of tris(hydroxymethyl)aminomethane. Clin Proteomics 2014; 11:4. [PMID: 24484752 PMCID: PMC3922997 DOI: 10.1186/1559-0275-11-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/17/2013] [Indexed: 11/10/2022] Open
Abstract
Background Numerous formaldehyde-fixed and paraffin-embedded clinical tissues have been created in the past decades and stored in pathological depositories at hospitals as well as in clinical laboratories worldwide. In addition to the archived tissues, formaldehyde-fixation is also mandatory for preparing proteomics samples from diseased patients or animal models in order to inactivate contagious agents. Protein extraction from formaldehyde-fixed tissues is hampered by the Schiff base formation between the amino groups of proteins and formaldehyde. Although achievement of the highest extraction efficiency of proteins from the formaldehyde-fixed tissues is essential for obtaining maximum proteomics information, no attention has been paid to the concentration dependence of tris(hydroxymethyl)aminomethane on the extraction efficacy. We suspected that the concentration of tris(hydroxymethyl)aminomethane affects the protein extraction efficiency because of its property as a primary amine that reverses the Schiff base formation between the primary amines of proteins and formaldehyde. Thus we pursued optimization of the component and protocol of protein extraction buffer to achieve better extraction efficiency of proteins from formaldehyde-fixed and paraffin-embedded tissues. Results In order to simulate protein extraction from diseased tissues we made formaldehyde-fixed and paraffin-embedded samples from mouse liver slices and investigated the protein extraction efficiency and speed by changing the concentration of the protein extraction buffer component tris(hydroxymethyl)aminomethane under various extraction conditions. We find, as expected, that tris(hydroxymethyl)aminomethane significantly affects the performance of protein extraction from the formaldehyde-fixed and paraffin-embedded samples both in the extraction yield and in the extraction speed. Conclusions We recommend the concentration of tris(hydroxymethyl)aminomethane in protein extraction buffer to be higher than 300 mM when extraction is conducted for 90 min at 90°C to achieve the most efficient protein extraction in a shorter time. The information will be essential for performing the most efficient protein extraction from formaldehyde-fixed and paraffin-embedded tissue samples for proteomics analysis.
Collapse
Affiliation(s)
| | | | | | | | - Hiroyuki Matsumoto
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
90
|
Rieppo L, Saarakkala S, Jurvelin JS, Rieppo J. Optimal variable selection for Fourier transform infrared spectroscopic analysis of articular cartilage composition. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:027003. [PMID: 24522808 DOI: 10.1117/1.jbo.19.2.027003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/15/2014] [Indexed: 06/03/2023]
Abstract
Articular cartilage (AC) is mainly composed of collagen, proteoglycans, chondrocytes, and water. These constituents are inhomogeneously distributed to provide unique biomechanical properties to the tissue. Characterization of the spatial distribution of these components in AC is important for understanding the function of the tissue and progress of osteoarthritis. Fourier transform infrared (FT-IR) absorption spectra exhibit detailed information about the biochemical composition of AC. However, highly specific FT-IR analysis for collagen and proteoglycans is challenging. In this study, a chemometric approach to predict the biochemical composition of AC from the FT-IR spectra was investigated. Partial least squares (PLS) regression was used to predict the proteoglycan content (n=32) and collagen content (n=28) of bovine cartilage samples from their average FT-IR spectra. The optimal variables for the PLS regression models were selected by using backward interval partial least squares and genetic algorithm. The linear correlation coefficients between the biochemical reference and predicted values of proteoglycan and collagen contents were r=0.923 (p<0.001) and r=0.896 (p<0.001), respectively. The results of the study show that variable selection algorithms can significantly improve the PLS regression models when the biochemical composition of AC is predicted.
Collapse
Affiliation(s)
- Lassi Rieppo
- University of Eastern Finland, Department of Applied Physics, FI-70211 Kuopio, FinlandbKuopio University Hospital, Department of Clinical Neurophysiology, FI-70029 Kuopio, Finland
| | - Simo Saarakkala
- University of Oulu, Institute of Biomedicine, Department of Medical Technology, FI-90014 Oulu, FinlanddOulu University Hospital, Department of Diagnostic Radiology, FI-90014 Oulu, FinlandeOulu University Hospital and University of Oulu, Medical Research C
| | - Jukka S Jurvelin
- University of Eastern Finland, Department of Applied Physics, FI-70211 Kuopio, Finland
| | - Jarno Rieppo
- University of Eastern Finland, Institute of Biomedicine, Anatomy, FI-70211 Kuopio, FinlandgIisalmi Hospital, FI-74101 Iisalmi, Finland
| |
Collapse
|
91
|
Konz I, Fernández B, Fernández ML, Pereiro R, Sanz-Medel A. Design and evaluation of a new Peltier-cooled laser ablation cell with on-sample temperature control. Anal Chim Acta 2014; 809:88-96. [DOI: 10.1016/j.aca.2013.11.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/11/2013] [Accepted: 11/16/2013] [Indexed: 12/17/2022]
|
92
|
Wakabayashi M, Yoshihara H, Masuda T, Tsukahara M, Sugiyama N, Ishihama Y. Phosphoproteome Analysis of Formalin-Fixed and Paraffin-Embedded Tissue Sections Mounted on Microscope Slides. J Proteome Res 2013; 13:915-24. [DOI: 10.1021/pr400960r] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Masaki Wakabayashi
- Graduate
School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroki Yoshihara
- Institute
for Advanced Biosciences, Keio University, Daihoji, Tsuruoka, Yamagata 997-0017, Japan
| | - Takeshi Masuda
- Institute
for Advanced Biosciences, Keio University, Daihoji, Tsuruoka, Yamagata 997-0017, Japan
| | - Mai Tsukahara
- Graduate
School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Naoyuki Sugiyama
- Graduate
School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Institute
for Advanced Biosciences, Keio University, Daihoji, Tsuruoka, Yamagata 997-0017, Japan
| | - Yasushi Ishihama
- Graduate
School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Institute
for Advanced Biosciences, Keio University, Daihoji, Tsuruoka, Yamagata 997-0017, Japan
| |
Collapse
|
93
|
Araújo JE, Oliveira E, Otero-Glez A, Santos Nores J, Igrejas G, Lodeiro C, Capelo JL, Santos HM. A comprehensive factorial design study of variables affecting protein extraction from formalin-fixed kidney tissue samples. Talanta 2013; 119:90-7. [PMID: 24401389 DOI: 10.1016/j.talanta.2013.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/03/2013] [Accepted: 10/15/2013] [Indexed: 12/25/2022]
Abstract
Formalin-fixed tissues are an important source of biological samples for biomedical research. However, proteomics analysis of formalin-fixed tissues has been set aside by formalin-induced protein modifications, which reduce protein extraction efficiency. In this study, a two level full factorial experimental design (2(4)) was used to determine the effects of the extracting conditions in the efficiency of protein recovery from formalin-fixed kidney samples. The following variables were assessed: temperature of extraction, pH of extraction, composition of the extracting buffer and the use ultrasonic energy applied with probe. It is clearly demonstrated that when hating and ultrasonic energy are used in conjunction, a 7-fold increase (p < 0.05) in protein extraction is obtained if compared to extracting conditions for which neither heating nor ultrasonic energy are used. The optimization study was done following the amount of protein extracted by UV (Nanodrop(®) technology, protein ABS at 280 nm) and by 1D SDS-PAGE. Extracts obtained with the optimized conditions were subjected to LC-MALDI MS/MS. A total of 112 proteins were identified.
Collapse
Affiliation(s)
- J E Araújo
- BIOSCOPE group, REQUIMTE, Department of Chemistry, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, Portugal; Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - E Oliveira
- BIOSCOPE group, REQUIMTE, Department of Chemistry, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, Portugal
| | - A Otero-Glez
- Servicio de Nefrología, Complejo Hospitalario Universitario de Ourense, Ourense, España
| | - J Santos Nores
- Servicio de Nefrología, Complejo Hospitalario Universitario de Ourense, Ourense, España
| | - G Igrejas
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - C Lodeiro
- BIOSCOPE group, REQUIMTE, Department of Chemistry, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, Portugal
| | - J L Capelo
- BIOSCOPE group, REQUIMTE, Department of Chemistry, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, Portugal
| | - H M Santos
- BIOSCOPE group, REQUIMTE, Department of Chemistry, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, Portugal; Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.
| |
Collapse
|
94
|
Obradovic J, Jurisic V, Tosic N, Mrdjanovic J, Perin B, Pavlovic S, Djordjevic N. Optimization of PCR conditions for amplification of GC-Rich EGFR promoter sequence. J Clin Lab Anal 2013; 27:487-93. [PMID: 24218132 PMCID: PMC6807403 DOI: 10.1002/jcla.21632] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/07/2013] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Polymerase chain reaction (PCR) is an extremely sensitive method that often demands optimization, especially when difficult templates need to be amplified. The aim of the present study was to optimize the PCR conditions for amplification of the epidermal growth factor receptor (EGFR) promoter sequence featuring an extremely high guanine-cytosine (GC) content in order to detect single nucleotide polymorphisms -216G>T and -191C>A. METHODS Genomic DNA used for amplification was extracted from formalin-fixed paraffin-embedded lung tumor tissue and PCR products were detected by agarose gel electrophoresis. RESULTS Results showed that addition of 5% dimethyl sulfoxide (DMSO), as well as DNA concentration in PCR reaction of at least 2 μg/ml, were necessary for successful amplification. Due to high GC content, optimal annealing temperature was 7°C higher than calculated, while adequate MgCl2 concentration ranged from 1.5 to 2.0 mM. CONCLUSION In conclusion, EGFR promoter region is a difficult PCR target, but it could be amplified after optimization of MgCl2 concentration and annealing temperature in the presence of DMSO and the DNA template of acceptable concentration.
Collapse
Affiliation(s)
- Jasmina Obradovic
- Faculty of Medical SciencesUniversity of KragujevacKragujevacSerbia
- Faculty of ScienceInstitute of Biology and EcologyUniversity of KragujevacKragujevacSerbia
| | - Vladimir Jurisic
- Faculty of Medical SciencesUniversity of KragujevacKragujevacSerbia
| | - Natasa Tosic
- Institute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeSerbia
| | - Jasminka Mrdjanovic
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi SadSremska KamenicaSerbia
| | - Branislav Perin
- Institute for Pulmonary Diseases of VojvodinaClinic for Pulmonary OncologyFaculty of MedicineUniversity of Novi SadSremska KamenicaSerbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeSerbia
| | | |
Collapse
|
95
|
Assimakopoulos SF, Charonis AS. Uncovering the molecular events associated with increased intestinal permeability in liver cirrhosis: the pivotal role of enterocyte tight junctions and future perspectives. J Hepatol 2013; 59:1144-6. [PMID: 23928410 DOI: 10.1016/j.jhep.2013.06.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/13/2013] [Accepted: 06/29/2013] [Indexed: 12/12/2022]
|
96
|
Proteomic Analysis of Matched Formalin-Fixed, Paraffin-Embedded Specimens in Patients with Advanced Serous Ovarian Carcinoma. Proteomes 2013; 1:240-253. [PMID: 28250404 PMCID: PMC5302701 DOI: 10.3390/proteomes1030240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE The biology of high grade serous ovarian carcinoma (HGSOC) is poorly understood. Little has been reported on intratumoral homogeneity or heterogeneity of primary HGSOC tumors and their metastases. We evaluated the global protein expression profiles of paired primary and metastatic HGSOC from formalin-fixed, paraffin-embedded (FFPE) tissue samples. METHODS After IRB approval, six patients with advanced HGSOC were identified with tumor in both ovaries at initial surgery. Laser capture microdissection (LCM) was used to extract tumor for protein digestion. Peptides were extracted and analyzed by reversed-phase liquid chromatography coupled to a linear ion trap mass spectrometer. Tandem mass spectra were searched against the UniProt human protein database. Differences in protein abundance between samples were assessed and analyzed by Ingenuity Pathway Analysis software. Immunohistochemistry (IHC) for select proteins from the original and an additional validation set of five patients was performed. RESULTS Unsupervised clustering of the abundance profiles placed the paired specimens adjacent to each other. IHC H-score analysis of the validation set revealed a strong correlation between paired samples for all proteins. For the similarly expressed proteins, the estimated correlation coefficients in two of three experimental samples and all validation samples were statistically significant (p < 0.05). The estimated correlation coefficients in the experimental sample proteins classified as differentially expressed were not statistically significant. CONCLUSION A global proteomic screen of primary HGSOC tumors and their metastatic lesions identifies tumoral homogeneity and heterogeneity and provides preliminary insight into these protein profiles and the cellular pathways they constitute.
Collapse
|
97
|
Abstract
Preserved clinical material is a unique source for proteomic investigation of human disorders. Here we describe an optimized protocol allowing large scale quantitative analysis of formalin fixed and paraffin embedded (FFPE) tissue. The procedure comprises four distinct steps. The first one is the preparation of sections from the FFPE material and microdissection of cells of interest. In the second step the isolated cells are lysed and processed using 'filter aided sample preparation' (FASP) technique. In this step, proteins are depleted from reagents used for the sample lysis and are digested in two-steps using endoproteinase LysC and trypsin. After each digestion, the peptides are collected in separate fractions and their content is determined using a highly sensitive fluorescence measurement. Finally, the peptides are fractionated on 'pipette-tip' microcolumns. The LysC-peptides are separated into 4 fractions whereas the tryptic peptides are separated into 2 fractions. In this way prepared samples allow analysis of proteomes from minute amounts of material to a depth of 10,000 proteins. Thus, the described workflow is a powerful technique for studying diseases in a system-wide-fashion as well as for identification of potential biomarkers and drug targets.
Collapse
Affiliation(s)
- Jacek R Wiśniewski
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry
| |
Collapse
|
98
|
Enany S, Yoshida Y, Magdeldin S, Bo X, Zhang Y, Enany M, Yamamoto T. Two dimensional electrophoresis of the exo-proteome produced from community acquired methicillin resistant Staphylococcus aureus belonging to clonal complex 80. Microbiol Res 2013; 168:504-11. [PMID: 23566758 DOI: 10.1016/j.micres.2013.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/07/2013] [Accepted: 03/10/2013] [Indexed: 12/22/2022]
Abstract
Two-dimensional electrophoresis (2DE) combined with mass spectrometry was used to characterize the exo-proteome secreted by two strains (ER13 and ER21) representing community acquired methicillin resistant Staphylococcus aureus (CA-MRSA) belonging to clonal complex 80 (CC80). Common spots were detected between the 2 gels using the Progenesis SameSpots software. Two hundred and fifty-one and 312 spots from the exo-proteome of ER13 and ER21 were resolved, respectively. 2DE overlap comparison showed that 59 spots were shared. LC-MS/MS analysis identified 57 proteins from these spots comprising about 21% extracellular, 48% cytoplasmic, 2% cytoplasmic membrane, 2% cell wall, and 26% with unknown localization. The identified proteins were classified with respect to their Gene Ontology (GO) annotation as ∼24% virulence determinants and toxins, ∼17% involved in carbohydrate metabolism, ∼14% involved in environmental stress, and ∼12% associated with cell division. The identification of the enterotoxin B from the exo-products of both strains used in our study, as belonging to CC80 was interesting.
Collapse
Affiliation(s)
- Shymaa Enany
- Department of Structural Pathology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| | | | | | | | | | | | | |
Collapse
|
99
|
Craven RA, Vasudev NS, Banks RE. Proteomics and the search for biomarkers for renal cancer. Clin Biochem 2013; 46:456-65. [DOI: 10.1016/j.clinbiochem.2012.11.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 12/25/2022]
|
100
|
Vincenti DC, Murray GI. The proteomics of formalin-fixed wax-embedded tissue. Clin Biochem 2013; 46:546-51. [DOI: 10.1016/j.clinbiochem.2012.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/06/2012] [Accepted: 10/01/2012] [Indexed: 01/16/2023]
|