51
|
Heijs B, Holst S, Briaire-de Bruijn IH, van Pelt GW, de Ru AH, van Veelen PA, Drake RR, Mehta AS, Mesker WE, Tollenaar RA, Bovée JVMG, Wuhrer M, McDonnell LA. Multimodal Mass Spectrometry Imaging of N-Glycans and Proteins from the Same Tissue Section. Anal Chem 2016; 88:7745-53. [PMID: 27373711 DOI: 10.1021/acs.analchem.6b01739] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
On-tissue digestion matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can be used to record spatially correlated molecular information from formalin-fixed, paraffin-embedded (FFPE) tissue sections. In this work, we present the in situ multimodal analysis of N-linked glycans and proteins from the same FFPE tissue section. The robustness and applicability of the method are demonstrated for several tumors, including epithelial and mesenchymal tumor types. Major analytical aspects, such as lateral diffusion of the analyte molecules and differences in measurement sensitivity due to the additional sample preparation methods, have been investigated for both N-glycans and proteolytic peptides. By combining the MSI approach with extract analysis, we were also able to assess which mass spectral peaks generated by MALDI-MSI could be assigned to unique N-glycan and peptide identities.
Collapse
Affiliation(s)
- Bram Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center , Leiden, The Netherlands
| | - Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center , Leiden, The Netherlands
| | | | - Gabi W van Pelt
- Department of Surgery, Leiden University Medical Center , Leiden, The Netherlands
| | - Arnoud H de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center , Leiden, The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center , Leiden, The Netherlands
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina 29425, United States
| | - Anand S Mehta
- Department of Microbiology and Immunology, College of Medicine, Drexel University , Philadelphia, Pennsylvania 19129, United States
| | - Wilma E Mesker
- Department of Surgery, Leiden University Medical Center , Leiden, The Netherlands
| | - Rob A Tollenaar
- Department of Surgery, Leiden University Medical Center , Leiden, The Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center , Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center , Leiden, The Netherlands
| | - Liam A McDonnell
- Center for Proteomics and Metabolomics, Leiden University Medical Center , Leiden, The Netherlands.,Department of Pathology, Leiden University Medical Center , Leiden, The Netherlands.,Fondazione Pisana per la Scienza ONLUS , Pisa, Italy
| |
Collapse
|
52
|
Ly A, Buck A, Balluff B, Sun N, Gorzolka K, Feuchtinger A, Janssen KP, Kuppen PJK, van de Velde CJH, Weirich G, Erlmeier F, Langer R, Aubele M, Zitzelsberger H, McDonnell L, Aichler M, Walch A. High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-fixed paraffin-embedded tissue. Nat Protoc 2016; 11:1428-43. [PMID: 27414759 DOI: 10.1038/nprot.2016.081] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Formalin-fixed and paraffin-embedded (FFPE) tissue specimens are the gold standard for histological examination, and they provide valuable molecular information in tissue-based research. Metabolite assessment from archived tissue samples has not been extensively conducted because of a lack of appropriate protocols and concerns about changes in metabolite content or chemical state due to tissue processing. We present a protocol for the in situ analysis of metabolite content from FFPE samples using a high-mass-resolution matrix-assisted laser desorption/ionization fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FT-ICR-MSI) platform. The method involves FFPE tissue sections that undergo deparaffinization and matrix coating by 9-aminoacridine before MALDI-MSI. Using this platform, we previously detected ∼1,500 m/z species in the mass range m/z 50-1,000 in FFPE samples; the overlap compared with fresh frozen samples is 72% of m/z species, indicating that metabolites are largely conserved in FFPE tissue samples. This protocol can be reproducibly performed on FFPE tissues, including small samples such as tissue microarrays and biopsies. The procedure can be completed in a day, depending on the size of the sample measured and raster size used. Advantages of this approach include easy sample handling, reproducibility, high throughput and the ability to demonstrate molecular spatial distributions in situ. The data acquired with this protocol can be used in research and clinical practice.
Collapse
Affiliation(s)
- Alice Ly
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Achim Buck
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, the Netherlands
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Karin Gorzolka
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Gregor Weirich
- Institute of Pathology, Technische Universität München, Munich, Germany
| | | | - Rupert Langer
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Michaela Aubele
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Liam McDonnell
- Centre for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, the Netherlands.,Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
53
|
Longuespée R, Casadonte R, Kriegsmann M, Pottier C, Picard de Muller G, Delvenne P, Kriegsmann J, De Pauw E. MALDI mass spectrometry imaging: A cutting-edge tool for fundamental and clinical histopathology. Proteomics Clin Appl 2016; 10:701-19. [PMID: 27188927 DOI: 10.1002/prca.201500140] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/07/2016] [Accepted: 05/13/2016] [Indexed: 01/16/2023]
Abstract
Histopathological diagnoses have been done in the last century based on hematoxylin and eosin staining. These methods were complemented by histochemistry, electron microscopy, immunohistochemistry (IHC), and molecular techniques. Mass spectrometry (MS) methods allow the thorough examination of various biocompounds in extracts and tissue sections. Today, mass spectrometry imaging (MSI), and especially matrix-assisted laser desorption ionization (MALDI) imaging links classical histology and molecular analyses. Direct mapping is a major advantage of the combination of molecular profiling and imaging. MSI can be considered as a cutting edge approach for molecular detection of proteins, peptides, carbohydrates, lipids, and small molecules in tissues. This review covers the detection of various biomolecules in histopathological sections by MSI. Proteomic methods will be introduced into clinical histopathology within the next few years.
Collapse
Affiliation(s)
- Rémi Longuespée
- Proteopath GmbH, Trier, Germany.,Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| | | | - Mark Kriegsmann
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Charles Pottier
- Laboratory of Experimental Pathology, GIGA-Cancer, Department of Pathology, University of Liège, Liège, Belgium
| | | | - Philippe Delvenne
- Laboratory of Experimental Pathology, GIGA-Cancer, Department of Pathology, University of Liège, Liège, Belgium
| | - Jörg Kriegsmann
- Proteopath GmbH, Trier, Germany.,MVZ for Histology, Cytology and Molecular Diagnostics Trier, Trier, Germany
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| |
Collapse
|
54
|
Pietrowska M, Gawin M, Polańska J, Widłak P. Tissue fixed with formalin and processed without paraffin embedding is suitable for imaging of both peptides and lipids by MALDI-IMS. Proteomics 2016; 16:1670-7. [DOI: 10.1002/pmic.201500424] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Monika Pietrowska
- Center for Translational Research and Molecular Biology of Cancer; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch; Gliwice Poland
| | - Marta Gawin
- Center for Translational Research and Molecular Biology of Cancer; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch; Gliwice Poland
- Department of Analytical Chemistry, Faculty of Chemistry; Jagiellonian University; Kraków Poland
| | - Joanna Polańska
- Faculty of Automatic Control, Electronics and Computer Science; Silesian University of Technology; Gliwice Poland
| | - Piotr Widłak
- Center for Translational Research and Molecular Biology of Cancer; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch; Gliwice Poland
| |
Collapse
|
55
|
Holst S, Heijs B, de Haan N, van Zeijl RJM, Briaire-de Bruijn IH, van Pelt GW, Mehta AS, Angel PM, Mesker WE, Tollenaar RA, Drake RR, Bovée JVMG, McDonnell LA, Wuhrer M. Linkage-Specific in Situ Sialic Acid Derivatization for N-Glycan Mass Spectrometry Imaging of Formalin-Fixed Paraffin-Embedded Tissues. Anal Chem 2016; 88:5904-13. [PMID: 27145236 DOI: 10.1021/acs.analchem.6b00819] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging is a rapidly evolving field in which mass spectrometry techniques are applied directly on tissues to characterize the spatial distribution of various molecules such as lipids, protein/peptides, and recently also N-glycans. Glycans are involved in many biological processes and several glycan changes have been associated with different kinds of cancer, making them an interesting target group to study. An important analytical challenge for the study of glycans by MALDI mass spectrometry is the labile character of sialic acid groups which are prone to in-source/postsource decay, thereby biasing the recorded glycan profile. We therefore developed a linkage-specific sialic acid derivatization by dimethylamidation and subsequent amidation and transferred this onto formalin-fixed paraffin-embedded (FFPE) tissues for MALDI imaging of N-glycans. Our results show (i) the successful stabilization of sialic acids in a linkage specific manner, thereby not only increasing the detection range, but also adding biological meaning, (ii) that no noticeable lateral diffusion is induced during to sample preparation, (iii) the potential of mass spectrometry imaging to spatially characterize the N-glycan expression within heterogeneous tissues.
Collapse
Affiliation(s)
- Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center , Leiden 2333 ZA, The Netherlands
| | - Bram Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center , Leiden 2333 ZA, The Netherlands
| | - Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center , Leiden 2333 ZA, The Netherlands
| | - René J M van Zeijl
- Center for Proteomics and Metabolomics, Leiden University Medical Center , Leiden 2333 ZA, The Netherlands
| | | | - Gabi W van Pelt
- Department of Surgery, Leiden University Medical Center , Leiden 2333 ZA, The Netherlands
| | - Anand S Mehta
- Department of Microbiology and Immunology, Drexel University College of Medicine , 245 N. 15th Street, Philadelphia, Pennsylvania 19102, United States
| | - Peggy M Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina 29425, United States
| | - Wilma E Mesker
- Department of Surgery, Leiden University Medical Center , Leiden 2333 ZA, The Netherlands
| | - Rob A Tollenaar
- Department of Surgery, Leiden University Medical Center , Leiden 2333 ZA, The Netherlands
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina 29425, United States
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center , Leiden 2333 ZA, The Netherlands
| | - Liam A McDonnell
- Center for Proteomics and Metabolomics, Leiden University Medical Center , Leiden 2333 ZA, The Netherlands.,Department of Pathology, Leiden University Medical Center , Leiden 2333 ZA, The Netherlands.,Fondazione Pisana per la Scienza ONLUS, c/o Croce Rossa Italiana , via Panfilo Castaldi 2, 56121, Ospedaletto, Pisa, Italy
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center , Leiden 2333 ZA, The Netherlands
| |
Collapse
|
56
|
van de Ven SMWY, Bemis KD, Lau K, Adusumilli R, Kota U, Stolowitz M, Vitek O, Mallick P, Gambhir SS. Protein biomarkers on tissue as imaged via MALDI mass spectrometry: A systematic approach to study the limits of detection. Proteomics 2016; 16:1660-9. [PMID: 26970438 DOI: 10.1002/pmic.201500515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/23/2016] [Accepted: 03/05/2016] [Indexed: 01/05/2023]
Abstract
MALDI mass spectrometry imaging (MSI) is emerging as a tool for protein and peptide imaging across tissue sections. Despite extensive study, there does not yet exist a baseline study evaluating the potential capabilities for this technique to detect diverse proteins in tissue sections. In this study, we developed a systematic approach for characterizing MALDI-MSI workflows in terms of limits of detection, coefficients of variation, spatial resolution, and the identification of endogenous tissue proteins. Our goal was to quantify these figures of merit for a number of different proteins and peptides, in order to gain more insight in the feasibility of protein biomarker discovery efforts using this technique. Control proteins and peptides were deposited in serial dilutions on thinly sectioned mouse xenograft tissue. Using our experimental setup, coefficients of variation were <30% on tissue sections and spatial resolution was 200 μm (or greater). Limits of detection for proteins and peptides on tissue were in the micromolar to millimolar range. Protein identification was only possible for proteins present in high abundance in the tissue. These results provide a baseline for the application of MALDI-MSI towards the discovery of new candidate biomarkers and a new benchmarking strategy that can be used for comparing diverse MALDI-MSI workflows.
Collapse
Affiliation(s)
- Stephanie M W Y van de Ven
- Canary Center at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.,Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Kyle D Bemis
- Department of Statistics, Purdue University, West Lafayette, IN, USA
| | - Kenneth Lau
- Canary Center at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ravali Adusumilli
- Canary Center at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.,Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Uma Kota
- Canary Center at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.,Thermo Fisher Scientific, San Jose, CA, USA
| | - Mark Stolowitz
- Canary Center at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.,Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Olga Vitek
- College of Science, College of Computer and Information Science, Northeastern University, Boston, MA, USA
| | - Parag Mallick
- Canary Center at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.,Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Sanjiv S Gambhir
- Canary Center at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.,Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.,Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA.,Department of Materials Science & Engineering, Stanford, CA, USA
| |
Collapse
|
57
|
Heijs B, Abdelmoula WM, Lou S, Briaire-de Bruijn IH, Dijkstra J, Bovée JVMG, McDonnell LA. Histology-Guided High-Resolution Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging. Anal Chem 2015; 87:11978-83. [DOI: 10.1021/acs.analchem.5b03610] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Bram Heijs
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, Einthovenweg 20, 2333ZC Leiden, The Netherlands
| | - Walid M. Abdelmoula
- Division
of Image Processing, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Sha Lou
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, Einthovenweg 20, 2333ZC Leiden, The Netherlands
| | - Inge H. Briaire-de Bruijn
- Department
of Pathology, Leiden University Medical Center, Albinusdreef
2, 2333ZA Leiden, The Netherlands
| | - Jouke Dijkstra
- Division
of Image Processing, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Judith V. M. G. Bovée
- Department
of Pathology, Leiden University Medical Center, Albinusdreef
2, 2333ZA Leiden, The Netherlands
| | - Liam A. McDonnell
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, Einthovenweg 20, 2333ZC Leiden, The Netherlands
- Department
of Pathology, Leiden University Medical Center, Albinusdreef
2, 2333ZA Leiden, The Netherlands
- Fondazione Pisana per la Scienza ONLUS, 56125 Pisa, Italy
| |
Collapse
|
58
|
MALDI Imaging mass spectrometry: current frontiers and perspectives in pathology research and practice. J Transl Med 2015; 95:422-31. [PMID: 25621874 DOI: 10.1038/labinvest.2014.156] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 01/14/2023] Open
Abstract
MALDI Imaging mass spectrometry has entered the field of tissue-based research by providing unique advantages for analyzing tissue specimen in an unprecedented detail. A broad spectrum of analytes ranging from proteins, peptides, protein modification over small molecules, drugs and their metabolites as well as pharmaceutical components, endogenous cell metabolites, lipids, and other analytes are made accessible by this in situ technique in tissue. Some of them were even not accessible in tissues within the histological context before. Thereby, the great advantage of MALDI Imaging is the correlation of molecular information with traditional histology by keeping the spatial localization information of the analytes after mass spectrometric measurement. This method is label-free and allows multiplex analysis of hundreds to thousands of molecules in the very same tissue section simultaneously. Imaging mass spectrometry brings a new quality of molecular data and links the expert discipline of pathology and deep molecular mass spectrometric analysis to tissue-based research. This review will focus on state-of-the-art of MALDI Imaging mass spectrometry, its recent applications by analyzing tissue specimen and the contributions in understanding the biology of disease as well as its perspectives for pathology research and practice.
Collapse
|
59
|
Warth A, Endris V, Kriegsmann M, Stenzinger A, Penzel R, Pfarr N, Weichert W. [Molecular diagnostics of non-small cell lung cancer: New markers and technologies]. DER PATHOLOGE 2015; 36:154-63. [PMID: 25820445 DOI: 10.1007/s00292-015-0004-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung cancer is the prototypical tumor entity for the development of new diagnostic and individualized therapeutic strategies based on molecular patient stratification. Developments in this field specifically concentrate on predictive biomarkers for the response to conventional therapeutic agents, novel drugs targeting specific mutations and also new immunomodulatory drugs. The multitude of upcoming new predictive biomarkers requires the development and implementation of efficient test strategies and comprehensive technical methods, specifically when tissue restrictions inherent to lung cancer diagnostics are also taken into account. Novel procedures and technical aspects of these issues are discussed in this review.
Collapse
Affiliation(s)
- A Warth
- Institut für Pathologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Deutschland
| | | | | | | | | | | | | |
Collapse
|
60
|
De Sio G, Smith AJ, Galli M, Garancini M, Chinello C, Bono F, Pagni F, Magni F. A MALDI-Mass Spectrometry Imaging method applicable to different formalin-fixed paraffin-embedded human tissues. MOLECULAR BIOSYSTEMS 2015; 11:1507-14. [DOI: 10.1039/c4mb00716f] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The paper shows a new method for the application of Matrix Assisted Laser Desorption/Ionisation (MALDI) Mass Spectrometry Imaging (MSI) technology on formalin-fixed paraffin-embedded (FFPE) tissue samples.
Collapse
Affiliation(s)
- Gabriele De Sio
- Department of Health Sciences
- Clinical Proteomics Unit
- University Milan-Bicocca
- Milan
- Italy
| | - Andrew James Smith
- Department of Health Sciences
- Clinical Proteomics Unit
- University Milan-Bicocca
- Milan
- Italy
| | - Manuel Galli
- Department of Health Sciences
- Clinical Proteomics Unit
- University Milan-Bicocca
- Milan
- Italy
| | | | - Clizia Chinello
- Department of Health Sciences
- Clinical Proteomics Unit
- University Milan-Bicocca
- Milan
- Italy
| | - Francesca Bono
- Department of Surgery and Translational Medicine
- Section of Pathology
- University Milan-Bicocca
- Monza
- Italy
| | - Fabio Pagni
- Department of Surgery and Translational Medicine
- Section of Pathology
- University Milan-Bicocca
- Monza
- Italy
| | - Fulvio Magni
- Department of Health Sciences
- Clinical Proteomics Unit
- University Milan-Bicocca
- Milan
- Italy
| |
Collapse
|
61
|
Affiliation(s)
- Bernhard Spengler
- Justus Liebig University Giessen, Institute of Inorganic and Analytical
Chemistry, Schubertstrasse
60, Building 16, 35392 Giessen, Germany
| |
Collapse
|
62
|
Kriegsmann J, Kriegsmann M, Casadonte R. MALDI TOF imaging mass spectrometry in clinical pathology: a valuable tool for cancer diagnostics (review). Int J Oncol 2014; 46:893-906. [PMID: 25482502 DOI: 10.3892/ijo.2014.2788] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/04/2014] [Indexed: 11/06/2022] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) is an evolving technique in cancer diagnostics and combines the advantages of mass spectrometry (proteomics), detection of numerous molecules, and spatial resolution in histological tissue sections and cytological preparations. This method allows the detection of proteins, peptides, lipids, carbohydrates or glycoconjugates and small molecules.Formalin-fixed paraffin-embedded tissue can also be investigated by IMS, thus, this method seems to be an ideal tool for cancer diagnostics and biomarker discovery. It may add information to the identification of tumor margins and tumor heterogeneity. The technique allows tumor typing, especially identification of the tumor of origin in metastatic tissue, as well as grading and may provide prognostic information. IMS is a valuable method for the identification of biomarkers and can complement histology, immunohistology and molecular pathology in various fields of histopathological diagnostics, especially with regard to identification and grading of tumors.
Collapse
Affiliation(s)
- Jörg Kriegsmann
- MVZ for Histology, Cytology and Molecular Diagnostics, Trier, Germany
| | - Mark Kriegsmann
- Institute for Pathology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|