51
|
Lee C. Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus. Virol J 2015; 12:193. [PMID: 26689811 PMCID: PMC4687282 DOI: 10.1186/s12985-015-0421-2] [Citation(s) in RCA: 375] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/10/2015] [Indexed: 12/22/2022] Open
Abstract
The enteric disease of swine recognized in the early 1970s in Europe was initially described as “epidemic viral diarrhea” and is now termed “porcine epidemic diarrhea (PED)”. The coronavirus referred to as PED virus (PEDV) was determined to be the etiologic agent of this disease in the late 1970s. Since then the disease has been reported in Europe and Asia, but the most severe outbreaks have occurred predominantly in Asian swine-producing countries. Most recently, PED first emerged in early 2013 in the United States that caused high morbidity and mortality associated with PED, remarkably affecting US pig production, and spread further to Canada and Mexico. Soon thereafter, large-scale PED epidemics recurred through the pork industry in South Korea, Japan, and Taiwan. These recent outbreaks and global re-emergence of PED require urgent attention and deeper understanding of PEDV biology and pathogenic mechanisms. This paper highlights the current knowledge of molecular epidemiology, diagnosis, and pathogenesis of PEDV, as well as prevention and control measures against PEDV infection. More information about the virus and the disease is still necessary for the development of effective vaccines and control strategies. It is hoped that this review will stimulate further basic and applied studies and encourage collaboration among producers, researchers, and swine veterinarians to provide answers that improve our understanding of PEDV and PED in an effort to eliminate this economically significant viral disease, which emerged or re-emerged worldwide.
Collapse
Affiliation(s)
- Changhee Lee
- Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
52
|
Chen F, Zhu Y, Wu M, Ku X, Ye S, Li Z, Guo X, He Q. Comparative Genomic Analysis of Classical and Variant Virulent Parental/Attenuated Strains of Porcine Epidemic Diarrhea Virus. Viruses 2015; 7:5525-38. [PMID: 26512689 PMCID: PMC4632399 DOI: 10.3390/v7102891] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 11/16/2022] Open
Abstract
Since 2010, the variant porcine epidemic diarrhea virus (PEDV) has been the etiological agent responsible for the outbreak of porcine epidemic diarrhea (PED) worldwide. In this study, a variant PEDV strain YN1 was isolated, serially propagated on the Vero cells and was characterized for 200 passages. To better elucidate the molecular basis of Vero cell adaptation of variant PEDV strains, we sequenced, compared, and analyzed the full-genome sequences of parental YN1 and passages 15, 30, 60, 90, 144, and 200. The results showed that the variations increased with the viral passage. The nucleotides sequences of non-structural protein (NSP)2, NSP4-7, NSP10, NSP12 and NSP13 genes did not change during the Vero cell adaptation process. After comparison of the variation characteristic of classical, variant virulent/attenuated strains, it was found that attenuation of PEDV virus was associated with 9−26 amino acid (aa) changes in open reading frames (ORF) 1a/b and S protein, early termination in ORF3, 1–3 aa changes in E, M and N protein and some nucleotide sequences’ synonymous mutations. The aa deletion at about 144 aa of S protein could be the attenuation marker for the PEDV. The pig study showed that the early termination in ORF3 was more important for virus cell adaptation than virus attenuation.
Collapse
Affiliation(s)
- Fangzhou Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yinxing Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Meizhou Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xugang Ku
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shiyi Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhonghua Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaozhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
53
|
Ye S, Shao K, Li Z, Guo N, Zuo Y, Li Q, Lu Z, Chen L, He Q, Han H. Antiviral Activity of Graphene Oxide: How Sharp Edged Structure and Charge Matter. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21571-9. [PMID: 26370151 DOI: 10.1021/acsami.5b06876] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Graphene oxide and its derivatives have been widely explored for their antimicrobial properties due to their high surface-to-volume ratios and unique chemical and physical properties. However, little information is available on their effects on viruses. In this study, we report the broad-spectrum antiviral activity of GO against pseudorabies virus (PRV, a DNA virus) and porcine epidemic diarrhea virus (PEDV, an RNA virus). Our results showed that GO significantly suppressed the infection of PRV and PEDV for a 2 log reduction in virus titers at noncytotoxic concentrations. The potent antiviral activity of both GO and rGO can be attributed to the unique single-layer structure and negative charge. First, GO exhibited potent antiviral activity when conjugated with PVP, a nonionic polymer, but not when conjugated with PDDA, a cationic polymer. Additionally, the precursors Gt and GtO showed much weaker antiviral activity than monolayer GO and rGO, suggesting that the nanosheet structure is important for antiviral properties. Furthermore, GO inactivated both viruses by structural destruction prior to viral entry. The overall results suggest the potential of graphene oxide as a novel promising antiviral agent with a broad and potent antiviral activity.
Collapse
Affiliation(s)
- Shiyi Ye
- State Key Laboratory of Agricultural Microbiology, College of Science and ‡Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P.R. China
| | - Kang Shao
- State Key Laboratory of Agricultural Microbiology, College of Science and ‡Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P.R. China
| | - Zhonghua Li
- State Key Laboratory of Agricultural Microbiology, College of Science and ‡Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P.R. China
| | - Nan Guo
- State Key Laboratory of Agricultural Microbiology, College of Science and ‡Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P.R. China
| | - Yunpeng Zuo
- State Key Laboratory of Agricultural Microbiology, College of Science and ‡Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P.R. China
| | - Qin Li
- State Key Laboratory of Agricultural Microbiology, College of Science and ‡Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P.R. China
| | - Zhicheng Lu
- State Key Laboratory of Agricultural Microbiology, College of Science and ‡Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P.R. China
| | - Lu Chen
- State Key Laboratory of Agricultural Microbiology, College of Science and ‡Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P.R. China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Science and ‡Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P.R. China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Science and ‡Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P.R. China
| |
Collapse
|
54
|
Guo X, Hu H, Chen F, Li Z, Ye S, Cheng S, Zhang M, He Q. iTRAQ-based comparative proteomic analysis of Vero cells infected with virulent and CV777 vaccine strain-like strains of porcine epidemic diarrhea virus. J Proteomics 2015; 130:65-75. [PMID: 26361011 PMCID: PMC7102838 DOI: 10.1016/j.jprot.2015.09.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 08/28/2015] [Accepted: 09/02/2015] [Indexed: 12/24/2022]
Abstract
The re-emerging porcine epidemic diarrhea virus (PEDV) variant related diarrhea has been documented in China since late 2010 and now with global distribution. Currently, a virulent PEDV CH/YNKM-8/2013 and a CV777 vaccine strain-like AH-M have been successfully isolated from the clinical samples. To dissect out the underlying pathogenic mechanism of virulent PEDV and clarify the differences between virulent and CV777 vaccine strain-like PEDV infections, we performed an iTRAQ-based comparative quantitative proteomic study of Vero cells infected with both PEDV strains. A total of 661 and 474 differentially expressed proteins were identified upon virulent and CV777 vaccine strain-like isolates infection, respectively. Ingenuity Pathway Analysis was employed to investigate the canonical pathways and functional networks involved in both PEDV infections. Comprehensive studies have revealed that the PEDV virulent strain suppressed protein synthesis of Vero cells through down-regulating mTOR as well as its downstream targets 4EBP1 and p70S6K activities, which were validated by immunoblotting. In addition, the virulent strain could activate NF-κB pathway more intensively than the CV777 vaccine strain-like isolate, and elicit stronger inflammatory cascades as well. These data might provide new insights for elucidating the specific pathogenesis of PEDV infection, and pave the way for the development of effective therapeutic strategies. Biological significance Porcine epidemic diarrhea is now worldwide distributed and causing huge economic losses to swine industry. The immunomodulation and pathogenesis between PEDV and host, as well as the difference between virulent and attenuated strains of PEDV infections are still largely unknown. In this study, we presented for the first application of proteomic analysis to compare whole cellular protein alterations induced by virulent and CV777 vaccine strain-like PEDV infections, which might contribute to understand the pathogenesis of PEDV and anti-viral strategy development. Vero cells proteome was individually analyzed upon virulent and attenuated PEDV infections. Many pathways and interactive networks were constructed based on differentially expressed proteins. Virulent PEDV strain suppressed mTOR as well as its downstream targets 4EBP1 and p70S6K activities. Virulent PEDV strain activated NF-κB pathway more intensively than the attenuated isolate.
Collapse
Affiliation(s)
- Xiaozhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Han Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangzhou Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhonghua Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyi Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuang Cheng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430070, China
| | - Mengjia Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
55
|
Sun D, Shi H, Guo D, Chen J, Shi D, Zhu Q, Zhang X, Feng L. Analysis of protein expression changes of the Vero E6 cells infected with classic PEDV strain CV777 by using quantitative proteomic technique. J Virol Methods 2015; 218:27-39. [PMID: 25783682 PMCID: PMC7113725 DOI: 10.1016/j.jviromet.2015.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 02/20/2015] [Accepted: 03/07/2015] [Indexed: 01/07/2023]
Abstract
Recent outbreaks of porcine epidemic diarrhea virus (PEDV) have caused widespread concern. The identification of proteins associated with PEDV infection might provide insight into PEDV pathogenesis and facilitate the development of novel antiviral strategies. We analyzed the differential protein profile of PEDV-infected Vero E6 cells using mass spectrometry and an isobaric tag for relative and absolute quantification. A total of 126 proteins were identified that were differentially expressed between the PEDV-infected and mock-infected groups (P<0.05, quantitative ratio ≥1.2), among which the expression of 58 proteins was up-regulated and that of 68 proteins was down-regulated in the PEDV-infected Vero E6 cells, involving in integrin β2/β3, cystatin-C. The Gene Ontology analysis indicated that the molecular function of the differentially expressed proteins (DEPs) was primarily related to binding and catalytic activity, and that the biological functions in which the DEPs are involved included metabolism, organismal systems, cellular processes, genetic information processing, environmental information processing, and diseases. Among the disease-related functions, certain anti-viral pathways and proteins, such as the RIG-I-like receptor, Rap1, autophagy, mitogen-activated protein kinase, PI3K-Akt and Jak-STAT signaling pathways, and integrin β2/β3 and cystatin-C proteins, represented potential factors in PEDV infection. Our findings provide valuable insight into PEDV-Vero E6 cell interactions.
Collapse
Affiliation(s)
- Dongbo Sun
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin 150001, PR China; College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing 163319, PR China.
| | - Hongyan Shi
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin 150001, PR China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing 163319, PR China
| | - Jianfei Chen
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin 150001, PR China
| | - Da Shi
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin 150001, PR China
| | - Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing 163319, PR China
| | - Xin Zhang
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin 150001, PR China
| | - Li Feng
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin 150001, PR China.
| |
Collapse
|