51
|
Ilari A, Fiorillo A, Angelaccio S, Florio R, Chiaraluce R, van der Oost J, Consalvi V. Crystal structure of a family 16 endoglucanase from the hyperthermophile Pyrococcus furiosus--structural basis of substrate recognition. FEBS J 2008; 276:1048-58. [PMID: 19154353 DOI: 10.1111/j.1742-4658.2008.06848.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial and archaeal endo-beta-1,3-glucanases that belong to glycoside hydrolase family 16 share a beta-jelly-roll fold, but differ significantly in sequence and in substrate specificity. The crystal structure of the laminarinase (EC 3.2.1.39) from the hyperthermophilic archaeon Pyrococcus furiosus (pfLamA) has been determined at 2.1 A resolution by molecular replacement. The pfLamA structure reveals a kink of six residues (72-77) at the entrance of the catalytic cleft. This peptide is absent in the endoglucanases from alkaliphilic Nocardiopsis sp. strain F96 and Bacillus macerans, two proteins displaying an overall fold similar to that of pfLamA, but with different substrate specificity. A deletion mutant of pfLamA, lacking residues 72-75, hydrolyses the mixed-linkage beta-1,3-1,4-glucan lichenan 10 times more efficiently than the wild-type protein, indicating the importance of the kink in substrate preference.
Collapse
Affiliation(s)
- Andrea Ilari
- CNR Institute of Molecular Biology and Pathology, Italy.
| | | | | | | | | | | | | |
Collapse
|
52
|
Efficient synthesis of trans-polyisoprene compounds using two thermostable enzymes in an organic–aqueous dual-liquid phase system. Biochem Biophys Res Commun 2008; 365:118-23. [DOI: 10.1016/j.bbrc.2007.10.133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 10/24/2007] [Indexed: 11/18/2022]
|
53
|
Jelesarov I, Karshikoff A. Meet to Fold: The Peculiar Folding of Oligomeric Protens. BIOTECHNOL BIOTEC EQ 2008. [DOI: 10.1080/13102818.2008.10817519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
54
|
Koutsopoulos S, van der Oost J, Norde W. Kinetically controlled refolding of a heat-denatured hyperthermostable protein. FEBS J 2007; 274:5915-23. [PMID: 17944946 DOI: 10.1111/j.1742-4658.2007.06114.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The thermal denaturation of endo-beta-1,3-glucanase from the hyperthermophilic microorganism Pyrococcus furiosus was studied by calorimetry. The calorimetric profile revealed two transitions at 109 and 144 degrees C, corresponding to protein denaturation and complete unfolding, respectively, as shown by circular dichroism and fluorescence spectroscopy data. Calorimetric studies also showed that the denatured state did not refold to the native state unless the cooling temperature rate was very slow. Furthermore, previously denatured protein samples gave well-resolved denaturation transition peaks and showed enzymatic activity after 3 and 9 months of storage, indicating slow refolding to the native conformation over time.
Collapse
Affiliation(s)
- Sotirios Koutsopoulos
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, The Netherlands.
| | | | | |
Collapse
|
55
|
Coquelle N, Fioravanti E, Weik M, Vellieux F, Madern D. Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments. J Mol Biol 2007; 374:547-62. [PMID: 17936781 DOI: 10.1016/j.jmb.2007.09.049] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 09/17/2007] [Accepted: 09/18/2007] [Indexed: 11/19/2022]
Abstract
Lactate dehydrogenase (LDH) catalyzes the conversion of pyruvate to lactate with concomitant oxidation of NADH during the last step in anaerobic glycolysis. In the present study, we present a comparative biochemical and structural analysis of various LDHs adapted to function over a large temperature range. The enzymes were from Champsocephalus gunnari (an Antarctic fish), Deinococcus radiodurans (a mesophilic bacterium) and Thermus thermophilus (a hyperthermophilic bacterium). The thermodynamic activation parameters of these LDHs indicated that temperature adaptation from hot to cold conditions was due to a decrease in the activation enthalpy and an increase in activation entropy. The crystal structures of these LDHs have been solved. Pairwise comparisons at the structural level, between hyperthermophilic versus mesophilic LDHs and mesophilic versus psychrophilic LDHs, have revealed that temperature adaptation is due to a few amino acid substitutions that are localized in critical regions of the enzyme. These substitutions, each having accumulating effects, play a role in either the conformational stability or the local flexibility or in both. Going from hot- to cold-adapted LDHs, the various substitutions have decreased the number of ion pairs, reduced the size of ionic networks, created unfavorable interactions involving charged residues and induced strong local disorder. The analysis of the LDHs adapted to extreme temperatures shed light on how evolutionary processes shift the subtle balance between overall stability and flexibility of an enzyme.
Collapse
Affiliation(s)
- Nicolas Coquelle
- Laboratoire de Biophysique Moléculaire, Institut de Biologie Structurale J.-P. Ebel, CEA CNRS UJF, UMR 5075, 41 rue Jules Horowitz, 38027 Grenoble Cedex 01, France
| | | | | | | | | |
Collapse
|
56
|
Glutamic acid 219 is critical for the thermostability of a truncated α-amylase from alkaliphilic and thermophilic Bacillus sp. strain TS-23. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9518-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
57
|
Mechanisms for stabilisation and the maintenance of solubility in proteins from thermophiles. BMC STRUCTURAL BIOLOGY 2007; 7:18. [PMID: 17394655 PMCID: PMC1851960 DOI: 10.1186/1472-6807-7-18] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 03/29/2007] [Indexed: 01/26/2023]
Abstract
Background The database of protein structures contains representatives from organisms with a range of growth temperatures. Various properties have been studied in a search for the molecular basis of protein adaptation to higher growth temperature. Charged groups have emerged as key distinguishing factors for proteins from thermophiles and mesophiles. Results A dataset of 291 thermophile-derived protein structures is compared with mesophile proteins. Calculations of electrostatic interactions support the importance of charges, but indicate that increases in charge contribution to folded state stabilisation do not generally correlate with the numbers of charged groups. Relative propensities of charged groups vary, such as the substitution of glutamic for aspartic acid sidechains. Calculations suggest an energetic basis, with less dehydration for longer sidechains. Most other properties studied show weak or insignificant separation of proteins from moderate thermophiles or hyperthermophiles and mesophiles, including an estimate of the difference in sidechain rotameric entropy upon protein folding. An exception is increased burial of alanine and proline residues and decreased burial of phenylalanine, methionine, tyrosine and tryptophan in hyperthermophile proteins compared to those from mesophiles. Conclusion Since an increase in the number of charged groups for hyperthermophile proteins is separable from charged group contribution to folded state stability, we hypothesise that charged group propensity is important in the context of protein solubility and the prevention of aggregation. Accordingly we find some separation between mesophile and hyperthermophile proteins when looking at the largest surface patch that does not contain a charged sidechain. With regard to our observation that aromatic sidechains are less buried in hyperthermophile proteins, further analysis indicates that the placement of some of these groups may facilitate the reduction of folding fluctuations in proteins of the higher growth temperature organisms.
Collapse
|
58
|
Abstract
By far the largest proportion of the Earth's biosphere is comprised of organisms that thrive in cold environments (psychrophiles). Their ability to proliferate in the cold is predicated on a capacity to synthesize cold-adapted enzymes. These enzymes have evolved a range of structural features that confer a high level of flexibility compared to thermostable homologs. High flexibility, particularly around the active site, is translated into low-activation enthalpy, low-substrate affinity, and high specific activity at low temperatures. High flexibility is also accompanied by a trade-off in stability, resulting in heat lability and, in the few cases studied, cold lability. This review addresses the structure, function, and stability of cold-adapted enzymes, highlighting the challenges for immediate and future consideration. Because of the unique properties of cold-adapted enzymes, they are not only an important focus in extremophile biology, but also represent a valuable model for fundamental research into protein folding and catalysis.
Collapse
Affiliation(s)
- Khawar Sohail Siddiqui
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.
| | | |
Collapse
|
59
|
Foglia F, Mandrich L, Pezzullo M, Graziano G, Barone G, Rossi M, Manco G, Del Vecchio P. Role of the N-terminal region for the conformational stability of esterase 2 from Alicyclobacillus acidocaldarius. Biophys Chem 2007; 127:113-22. [PMID: 17289253 DOI: 10.1016/j.bpc.2007.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 01/10/2007] [Accepted: 01/10/2007] [Indexed: 11/16/2022]
Abstract
In order to clarify the role played by the N-terminal region for the conformational stability of the thermophilic esterase 2 (EST2) from Alicyclobacillus acidocaldarius, two mutant forms have been investigated: a variant obtained by deleting the first 35 residues at the N-terminus (EST2-36del), and a variant obtained by mutating Lys102 to Gln (K102Q) to perturb the N-terminus by destroying the salt bridge E43-K102. The temperature- and denaturant-induced unfolding of EST2 and the two mutant forms have been studied by means of circular dichroism (CD), differential scanning calorimetry (DSC) and fluorescence measurements. In line with its thermophilic origin, the denaturation temperature of EST2 is high: T(d)=91 degrees C and 86 degrees C if detected by recording the CD signal at 222 nm and 290 nm, respectively. This difference suggests that the thermal denaturation process, even though reversible, is more complex than a two-state Nright arrow over left arrowD transition. The non-two-state behaviour is more pronounced in the case of the two mutant forms. The complex DSC profiles of EST2 and both mutant forms have been analysed by means of a deconvolution procedure. The thermodynamic parameters characterizing the two transitions obtained in the case of EST2 are: T(d,1)=81 degrees C, Delta(d)H(1)=440 kJ mol(-1), Delta(d)C(p,1)=7 kJ K(-1)mol(-1), T(d,2)=86 degrees C, Delta(d)H(2)=710 kJ mol(-1), and Delta(d)C(p,2)=9 kJ K(-1)mol(-1). The first transition occurs at lower temperatures in the two mutant forms, whereas the second transition is always centred at 86 degrees C. The results indicate that EST2 possesses two structural domains whose coupling is tight in the wild-type protein, but markedly weakens in the two mutant forms as a consequence of the perturbations in the N-terminal region.
Collapse
Affiliation(s)
- Fabrizia Foglia
- Dipartimento di Chimica, Università di Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Van der Linden MG, Rêgo TG, Araújo DAM, Farias ST. Prediction of potential thermostable proteins in Xylella fastidiosa. J Theor Biol 2006; 242:421-5. [PMID: 16631209 DOI: 10.1016/j.jtbi.2006.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 03/07/2006] [Accepted: 03/17/2006] [Indexed: 11/20/2022]
Abstract
The average protein (E+K)/(Q+H) ratio in organisms has already been demonstrated to have a strong correlation with their optimal growth temperature. Employing the Thermo-Search web tool, we used this ratio as a basis to look for thermostable proteins in a mesophile, Xylella fastidiosa. Nine proteins were chosen to have their three-dimensional structures modeled by homology, using mainly proteins from mesophiles as templates. Resulting models featured a high number of hydrophobic interactions, a property that has been previously associated with thermostability. These results demonstrate the interesting possibility of using the (E+K)/(Q+H) ratio to find individual thermostable proteins in mesophilic organisms.
Collapse
Affiliation(s)
- M G Van der Linden
- Universidade Federal da Paraíba, Departamento de Biologia Molecular, João Pessoa, PB, Brazil
| | | | | | | |
Collapse
|
61
|
Karlström M, Steen IH, Madern D, Fedöy AE, Birkeland NK, Ladenstein R. The crystal structure of a hyperthermostable subfamily II isocitrate dehydrogenase from Thermotoga maritima. FEBS J 2006; 273:2851-68. [PMID: 16759231 DOI: 10.1111/j.1742-4658.2006.05298.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Isocitrate dehydrogenase (IDH) from the hyperthermophile Thermotoga maritima (TmIDH) catalyses NADP+- and metal-dependent oxidative decarboxylation of isocitrate to alpha-ketoglutarate. It belongs to the beta-decarboxylating dehydrogenase family and is the only hyperthermostable IDH identified within subfamily II. Furthermore, it is the only IDH that has been characterized as both dimeric and tetrameric in solution. We solved the crystal structure of the dimeric apo form of TmIDH at 2.2 A. The R-factor of the refined model was 18.5% (R(free) 22.4%). The conformation of the TmIDH structure was open and showed a domain rotation of 25-30 degrees compared with closed IDHs. The separate domains were found to be homologous to those of the mesophilic mammalian IDHs of subfamily II and were subjected to a comparative analysis in order to find differences that could explain the large difference in thermostability. Mutational studies revealed that stabilization of the N- and C-termini via long-range electrostatic interactions were important for the higher thermostability of TmIDH. Moreover, the number of intra- and intersubunit ion pairs was higher and the ionic networks were larger compared with the mesophilic IDHs. Other factors likely to confer higher stability in TmIDH were a less hydrophobic and more charged accessible surface, a more hydrophobic subunit interface, more hydrogen bonds per residue and a few loop deletions. The residues responsible for the binding of isocitrate and NADP+ were found to be highly conserved between TmIDH and the mammalian IDHs and it is likely that the reaction mechanism is the same.
Collapse
Affiliation(s)
- Mikael Karlström
- Center for Structural Biochemistry, Karolinska Institutet, NOVUM, Huddinge, Sweden.
| | | | | | | | | | | |
Collapse
|
62
|
Asada Y, Sawano M, Ogasahara K, Nakamura J, Ota M, Kuroishi C, Sugahara M, Yutani K, Kunishima N. Stabilization mechanism of the tryptophan synthase alpha-subunit from Thermus thermophilus HB8: X-ray crystallographic analysis and calorimetry. J Biochem 2006; 138:343-53. [PMID: 16272128 DOI: 10.1093/jb/mvi133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In order to elucidate the thermo-stabilization mechanism of the tryptophan synthase alpha-subunit from the extreme thermophile Thermus thermophilus HB8 (Tt-alpha-subunit), its crystal structure was determined and its stability was examined using DSC. The results were compared to those of other orthologs from mesophilic and hyperthermophilic organisms. The denaturation temperature of the Tt-alpha-subunit was higher than that of the alpha-subunit from S. typhimurium (St-alpha-subunit) but lower than that of the alpha-subunit from P. furiosus (Pf-alpha-subunit). Specific denaturation enthalpy and specific denaturation heat capacity values of the Tt-alpha-subunit were the lowest among the three proteins, suggesting that entropy effects are responsible for the stabilization of the Tt-alpha-subunit. Based on a structural comparison with the St-alpha-subunit, two deletions in loop regions, an increase in the number of ion pairs and a decrease in cavity volume seem to be responsible for the stabilization of the Tt-alpha-subunit. The results of structural comparison suggest that the native structure of the Tt-alpha-subunit is better adapted to an ideally stable structure than that of the St-alpha-subunit, but worse than that of the Pf-alpha-subunit. The results of calorimetry suggest that the residual structure of the Tt-alpha-subunit in the denatured state contributes to the stabilization.
Collapse
Affiliation(s)
- Yukuhiko Asada
- Advanced Protein Crystallography Research Group, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Zhang Y, Porcelli M, Cacciapuoti G, Ealick SE. The Crystal Structure of 5′-Deoxy-5′-methylthioadenosine Phosphorylase II from Sulfolobus solfataricus, a Thermophilic Enzyme Stabilized by Intramolecular Disulfide Bonds. J Mol Biol 2006; 357:252-62. [PMID: 16414070 DOI: 10.1016/j.jmb.2005.12.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 12/08/2005] [Accepted: 12/11/2005] [Indexed: 11/25/2022]
Abstract
The crystal structure of Sulfolobus solfataricus 5'-deoxy-5'-methylthioadenosine phosphorylase II (SsMTAPII) in complex with 5'-deoxy-5'-methylthioadenosine (MTA) and sulfate was determined to 1.45A resolution. The hexameric structure of SsMTAPII is a dimer-of-trimers with one active site per monomer. The oligomeric assembly of the trimer and the monomer topology of SsMTAPII are almost identical with trimeric human 5'-deoxy-5'-methylthioadenosine phosphorylase (hMTAP). SsMTAPII is the first reported hexameric member in the trimeric class of purine nucleoside phosphorylase (PNP) from Archaea. Unlike hMTAP, which is highly specific for MTA, SsMTAPII also accepts adenosine as a substrate. The residues at the active sites of SsMTAPII and hMTAP are almost identical. The broad substrate specificity of SsMTAPII may be due to the flexibility of the C-terminal loop. SsMTAPII is extremely thermoactive and thermostable. The three-dimensional structure of SsMTAPII suggests that the unique dimer-of-trimers quaternary structure, a CXC motif at the C terminus, and two pairs of intrasubunit disulfide bridges may play an important role in its thermal stability.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-1301, USA
| | | | | | | |
Collapse
|
64
|
Robinson-Rechavi M, Alibés A, Godzik A. Contribution of Electrostatic Interactions, Compactness and Quaternary Structure to Protein Thermostability: Lessons from Structural Genomics of Thermotoga maritima. J Mol Biol 2006; 356:547-57. [PMID: 16375925 DOI: 10.1016/j.jmb.2005.11.065] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 11/21/2005] [Accepted: 11/21/2005] [Indexed: 10/25/2022]
Abstract
Studies of the structural basis of protein thermostability have produced a confusing picture. Small sets of proteins have been analyzed from a variety of thermophilic species, suggesting different structural features as responsible for protein thermostability. Taking advantage of the recent advances in structural genomics, we have compiled a relatively large protein structure dataset, which was constructed very carefully and selectively; that is, the dataset contains only experimentally determined structures of proteins from one specific organism, the hyperthermophilic bacterium Thermotoga maritima, and those of close homologs from mesophilic bacteria. In contrast to the conclusions of previous studies, our analyses show that oligomerization order, hydrogen bonds, and secondary structure play minor roles in adaptation to hyperthermophily in bacteria. On the other hand, the data exhibit very significant increases in the density of salt-bridges and in compactness for proteins from T.maritima. The latter effect can be measured by contact order or solvent accessibility, and network analysis shows a specific increase in highly connected residues in this thermophile. These features account for changes in 96% of the protein pairs studied. Our results provide a clear picture of protein thermostability in one species, and a framework for future studies of thermal adaptation.
Collapse
Affiliation(s)
- Marc Robinson-Rechavi
- Joint Center for Structural Genomics, University of California, San Diego, La Jolla, 92093-0527, USA.
| | | | | |
Collapse
|
65
|
Koutsopoulos S, van der Oost J, Norde W. Temperature-dependent structural and functional features of a hyperthermostable enzyme using elastic neutron scattering. Proteins 2005; 61:377-84. [PMID: 16106445 DOI: 10.1002/prot.20606] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The dynamic behavior of an endoglucanase from the hyperthermophilic microorganism Pyrococcus furiosus was investigated using elastic neutron scattering. The temperature dependence of the atomic motions was correlated with conformational and functional characteristics of the enzyme. The onset of biological function at temperatures higher than approximately 25 degrees C (the hyperthermostable enzyme is essentially inactive at room temperature) was associated with a dynamical transition in the anharmonic motions domain. This transition from the nonactive to the enzymatically active conformation involved structurally similar conformational substates in the energy landscape. From the mean-square displacement of the protein atoms, the molecular flexibility and the effective force constants were calculated at different temperature zones. The results showed that the activity increases at higher temperatures where the intramolecular bonds are weakened and the overall rigidity of the protein is decreased. Further temperature increase resulted in significantly increased atomic fluctuations featuring heat denaturation of the protein.
Collapse
Affiliation(s)
- Sotirios Koutsopoulos
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Wageningen, The Netherlands.
| | | | | |
Collapse
|
66
|
Boysen RI, Jong AJO, Hearn MTW. Binding behaviour and conformational properties of globular proteins in the presence of immobilised non-polar ligands used in reversed-phase liquid chromatography. J Chromatogr A 2005; 1079:173-86. [PMID: 16038303 DOI: 10.1016/j.chroma.2005.03.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The thermodynamic and extra-thermodynamic dependencies of five types of cytochrome c in water-acetonitrile mixtures of different composition in the presence of immobilised n-octyl ligands as a function of temperature from 278 K to 338 K have been investigated. The corresponding enthalpic, entropic and heat capacity parameters, deltaHdegrees assoc, deltaS degrees assoc and delta C degrees p, have been evaluated from the observed non-linear Van't Hoff plots of these globular proteins in these heterogeneous systems. The relationships between the free energy dependencies, various molecular parameters and extra-thermodynamic dependencies (empirical correlations) of these protein-non-polar ligand interactions have also been examined. Thus, the involvement of enthalpy-entropy compensation effects has been documented for the binding of these cytochrome cs to solvated n-octyl ligands. Moreover, the results confirm that this experimental approach permits changes in molecular surface area due to the unfolding of these proteins on association with non-polar ligands as a function of temperature to be correlated with other biophysical properties. This study thus provides a general procedure whereby the corresponding free energy dependencies of globular proteins on association with solvated non-polar ligands in heterogeneous two-phase systems can be quantitatively evaluated in terms of fundamental molecular parameters.
Collapse
Affiliation(s)
- Reinhard I Boysen
- Australian Research Council Special Research Centre for Green Chemistry, Australian Centrefor Research on Separation Science, Monash University, Clayton, Vic. 3800, Australia
| | | | | |
Collapse
|
67
|
Pack SP, Yoo YJ. Packing-based difference of structural features between thermophilic and mesophilic proteins. Int J Biol Macromol 2005; 35:169-74. [PMID: 15811472 DOI: 10.1016/j.ijbiomac.2005.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 01/18/2005] [Accepted: 01/20/2005] [Indexed: 11/26/2022]
Abstract
Twenty pairs of thermophilic and mesophilic proteins were compared in terms of residue packing distribution to obtain structural features related to protein thermostability. Based on residue packing concept, structural features of residues such as residue packing distribution, inner/outer position, secondary structure and water solvation were investigated. The statistical tests revealed that higher frequency in well-packed state of residues, lower frequency in exposed state and higher frequency in well-packed state of inner positioned residues, and higher frequency in well-packed state of 3/10 helix residues could be general structural features thermophilic proteins have.
Collapse
Affiliation(s)
- Seung Pil Pack
- School of Chemical Engineering, Seoul National University, Seoul 151-742, Republic of Korea
| | | |
Collapse
|
68
|
Hamdane D, Kiger L, Dewilde S, Uzan J, Burmester T, Hankeln T, Moens L, Marden MC. Hyperthermal stability of neuroglobin and cytoglobin. FEBS J 2005; 272:2076-84. [PMID: 15819897 DOI: 10.1111/j.1742-4658.2005.04635.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neuroglobin (Ngb) and cytoglobin (Cygb), recent additions to the globin family, display a hexa-coordinated (bis-histidyl) heme in the absence of external ligands. Although these proteins have the classical globin fold they reveal a very high thermal stability with a melting temperature (Tm) of 100 degrees C for Ngb and 95 degrees C for Cygb. Moreover, flash photolysis experiments at high temperatures reveal that Ngb remains functional at 90 degrees C. Human Ngb may have a disulfide bond in the CD loop region; reduction of the disulfide bond increases the affinity of the iron atom for the distal (E7) histidine, and leads to a 3 degrees C increase in the T(m) for ferrous Ngb. A similar Tm is found for a mutant of human Ngb without cysteines. Apparently, the disulfide bond is not involved directly in protein stability, but may influence the stability indirectly because it modifies the affinity of the distal histidine. Mutation of the distal histidine leads to lower thermal stability, similar to that for other globins. Only globins with a high affinity of the distal histidine show the very high thermal stability, indicating that stable hexa-coordination is necessary for the enhanced thermal stability; the CD loop which contains the cysteines appears as a critical region in the neuroglobin thermal stability, because it may influence the affinity of the distal histidine.
Collapse
|
69
|
Karlström M, Stokke R, Steen IH, Birkeland NK, Ladenstein R. Isocitrate dehydrogenase from the hyperthermophile Aeropyrum pernix: X-ray structure analysis of a ternary enzyme-substrate complex and thermal stability. J Mol Biol 2005; 345:559-77. [PMID: 15581899 DOI: 10.1016/j.jmb.2004.10.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 10/06/2004] [Accepted: 10/11/2004] [Indexed: 10/26/2022]
Abstract
Isocitrate dehydrogenase from Aeropyrum pernix (ApIDH) is a homodimeric enzyme that belongs to the beta-decarboxylating dehydrogenase family and is the most thermostable IDH identified. It catalyzes the NADP+ and metal-dependent oxidative decarboxylation of isocitrate to alpha-ketoglutarate. We have solved the crystal structures of a native ApIDH at 2.2 A, a pseudo-native ApIDH at 2.1 A, and of ApIDH in complex with NADP+, Ca2+ and d-isocitrate at 2.3 A. The pseudo-native ApIDH is in complex with etheno-NADP+ which was located at the surface instead of in the active site revealing a novel adenine-nucleotide binding site in ApIDH. The native and the pseudo-native ApIDHs were found in an open conformation, whereas one of the subunits of the ternary complex was closed upon substrate binding. The closed subunit showed a domain rotation of 19 degrees compared to the open subunit. The binding of isocitrate in the closed subunit was identical with that of the binary complex of porcine mitochondrial IDH, whereas the binding of NADP+ was similar to that of the ternary complex of IDH from Escherichiacoli. The reaction mechanism is likely to be conserved in the different IDHs. A proton relay chain involving at least five solvent molecules, the 5'-phosphate group of the nicotinamide-ribose and a coupled lysine-tyrosine pair in the active site, is postulated as essential in both the initial and the final steps of the catalytic reaction of IDH. ApIDH was found to be highly homologous to the mesophilic IDHs and was subjected to a comparative analysis in order to find differences that could explain the large difference in thermostability. Mutational studies revealed that a disulfide bond at the N terminus and a seven-membered inter-domain ionic network at the surface are major determinants for the higher thermostability of ApIDH compared to EcIDH. Furthermore, the total number of ion pairs was dramatically higher in ApIDH compared to the mesophilic IDHs if a cutoff of 4.2 A was used. A calculated net charge of only +1 compared to -19 and -25 in EcIDH and BsIDH, respectively, suggested a high degree of electrostatic optimization, which is known to be an important determinant for increased thermostability.
Collapse
Affiliation(s)
- Mikael Karlström
- Center for Structural Biochemistry, Department of Biosciences at Novum, Karolinska Institute, S-141 57 Huddinge, Sweden.
| | | | | | | | | |
Collapse
|
70
|
Haq SK, Khan RH. Spectroscopic analysis of thermal denaturation of Cajanus cajan proteinase inhibitor at neutral and acidic pH by circular dichroism. Int J Biol Macromol 2005; 35:111-6. [PMID: 15769523 DOI: 10.1016/j.ijbiomac.2004.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 12/20/2004] [Accepted: 12/20/2004] [Indexed: 11/29/2022]
Abstract
The conformational changes accompanying thermal denaturation under neutral, acidic and reducing conditions of Cajanus cajan proteinase inhibitor were investigated using near- and far-ultraviolet circular dichroism (CD) spectroscopy. The protein inhibitor shows a reversible N<-->D transition at neutral pH with a Tm approximately equal to 63 degrees C. The negative CD band intensities at 200 nm (far-UV) and near about 280 nm (near-UV) decrease as a result of thermal stress. The effect is more pronounced at low pH and in the presence of dithiothreitol. Only partial reversibility is observed under acidic conditions. Significant changes in the near- as well as far-ultraviolet CD spectrum are observed in the presence of dithiothreitol suggestive of the importance of disulfide linkages in maintaining the structure of C. cajan proteinase inhibitor.
Collapse
Affiliation(s)
- Soghra Khatun Haq
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202 002, India
| | | |
Collapse
|
71
|
Middaugh CR, Edwards KL. Recent advances in our understanding of protein conformational stability from a pharmaceutical perspective. Expert Opin Investig Drugs 2005; 7:1493-500. [PMID: 15992046 DOI: 10.1517/13543784.7.9.1493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The marginal conformational stability of proteins has made them in some cases less than ideal candidates for pharmaceutical agents. Recent progress in our understanding of protein structure and stability has provided the opportunity to design the desired degree of stability into protein drug candidates. Modifications such as the optimisation of interior side-chain packing, the introduction of new ion-pairs, as well as the design of stabilising disulfide bridges and ligand binding sites, all offer the opportunity to produce proteins with enhanced stability properties.
Collapse
Affiliation(s)
- C R Middaugh
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | | |
Collapse
|
72
|
Pack SP, Yoo YJ. Protein thermostability: structure-based difference of amino acid between thermophilic and mesophilic proteins. J Biotechnol 2004; 111:269-77. [PMID: 15246663 DOI: 10.1016/j.jbiotec.2004.01.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 12/10/2003] [Accepted: 01/19/2004] [Indexed: 11/29/2022]
Abstract
Structural distributions of each amino acid were compared between 20 pairs of thermophilic and mesophilic proteins to obtain thermostable factors. Five kinds of residual structure states such as fully-exposed, exposed, partially exposed (or partially buried), buried, well-buried states were considered for analyzing the structural patterns of amino acids. The statistical tests revealed that lower frequency in partially exposed state of SER, lower frequency in exposed state and higher frequency in well-buried state of ALA, higher frequency in buried state of GLU, higher frequency in exposed state of ARG, etc. could be critical factors related with protein thermostability.
Collapse
Affiliation(s)
- Seung Pil Pack
- School of Chemical Engineering, Seoul National University, Seoul 151-742, South Korea
| | | |
Collapse
|
73
|
Chen L, Chen LR, Zhou XE, Wang Y, Kahsai MA, Clark AT, Edmondson SP, Liu ZJ, Rose JP, Wang BC, Meehan EJ, Shriver JW. The hyperthermophile protein Sso10a is a dimer of winged helix DNA-binding domains linked by an antiparallel coiled coil rod. J Mol Biol 2004; 341:73-91. [PMID: 15312764 DOI: 10.1016/j.jmb.2004.05.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 03/19/2004] [Accepted: 05/18/2004] [Indexed: 01/01/2023]
Abstract
Sso10a is a member of a group of DNA-binding proteins thought to be important in chromatin structure and regulation in the hyperthermophilic archaeon Sulfolobus solfataricus. We have determined the structure of Sso10a to 1.47A resolution directly with unlabelled native crystals by a novel approach using sulfur single-wavelength anomalous scattering (SAS) from a chromium X-ray source. The 95 amino acid residue protein contains a winged helix DNA-binding domain with an extended C-terminal alpha-helix that leads to dimerization by forming a two-stranded, antiparallel coiled-coil rod. The winged helix domains are at opposite ends of the extended coiled coil with two putative DNA-recognition helices separated by 55A and rotated by 83 degrees. Formation of stable dimers in solution is demonstrated by both analytical ultracentrifugation and differential scanning calorimetry. With a T0 of 109 degrees C, Sso10a is one of the most stable two-stranded coiled coils known. The coiled coil contains a rare aspartate residue (D69) in the normally hydrophobic d position of the heptad repeat, with two aspartate-lysine (d-g') interhelical ion pairs in the symmetrical dimer. Mutation of D69 to alanine resulted in an increase in thermal stability, indicating that destabilization resulting from the partially buried aspartate residue cannot be offset by ion pair formation. Possible DNA-binding interactions are discussed on the basis of comparisons to other winged helix proteins. The structure of Sso10a provides insight into the structures of the conserved domain represented by COG3432, a group of more than 20 hypothetical transcriptional regulators coded in the genomic sequences of both crenarchaeota and euryarchaeota.
Collapse
Affiliation(s)
- Liqing Chen
- Laboratory for Structural Biology, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Tanaka Y, Tsumoto K, Yasutake Y, Umetsu M, Yao M, Fukada H, Tanaka I, Kumagai I. How Oligomerization Contributes to the Thermostability of an Archaeon Protein. J Biol Chem 2004; 279:32957-67. [PMID: 15169774 DOI: 10.1074/jbc.m404405200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To study how oligomerization may contribute to the thermostability of archaeon proteins, we focused on a hexameric protein, protein L-isoaspartyl-O-methyltransferase from Sulfolobus tokodaii (StoPIMT). The crystal structure shows that StoPIMT has a distinctive hexameric structure composed of monomers consisting of two domains: an S-adenosylmethionine-dependent methyltransferase fold domain and a C-terminal alpha-helical domain. The hexameric structure includes three interfacial contact regions: major, minor, and coiled-coil. Several C-terminal deletion mutants were constructed and characterized. The hexameric structure and thermostability were retained when the C-terminal alpha-helical domain (Tyr(206)-Thr(231)) was deleted, suggesting that oligomerization via coiled-coil association using the C-terminal alpha-helical domains did not contribute critically to hexamerization or to the increased thermostability of the protein. Deletion of three additional residues located in the major contact region, Tyr(203)-Asp(204)-Asp(205), led to a significant decrease in hexamer stability and chemico/thermostability. Although replacement of Thr(146) and Asp(204), which form two hydrogen bonds in the interface in the major contact region, with Ala did not affect hexamer formation, these mutations led to a significant decrease in thermostability, suggesting that two residues in the major contact region make significant contributions to the increase in stability of the protein via hexamerization. These results suggest that cooperative hexamerization occurs via interactions of "hot spot" residues and that a couple of interfacial hot spot residues are responsible for enhancing thermostability via oligomerization.
Collapse
Affiliation(s)
- Yoshikazu Tanaka
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba-yama 07, Aoba-ku, Sendai 980-8579, Japan
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Irimia A, Vellieux FMD, Madern D, Zaccaï G, Karshikoff A, Tibbelin G, Ladenstein R, Lien T, Birkeland NK. The 2.9A resolution crystal structure of malate dehydrogenase from Archaeoglobus fulgidus: mechanisms of oligomerisation and thermal stabilisation. J Mol Biol 2004; 335:343-56. [PMID: 14659762 DOI: 10.1016/j.jmb.2003.10.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The crystal structure of malate dehydrogenase from the hyperthermophilic archaeon Archeoglobus fulgidus, in complex with its cofactor NAD, was solved at 2.9A resolution. The crystal structure shows a compact homodimer with one coenzyme bound per subunit. The substrate binding site is occupied by a sulphate ion. In order to gain insight into adaptation mechanisms, which allow the protein to be stable and active at high temperatures, the 3D structure was compared to those of several thermostable and hyperthermostable homologues, and to halophilic malate dehydrogenase. The hyperthermostable A. fulgidus MalDH protein displays a reduction of the solvent-exposed surface, an optimised compact hydrophobic core, a high number of hydrogen bonds, and includes a large number of ion pairs at the protein surface. These features occur concomitantly with a reduced number of residues in the protein subunit, due to several deletions in loop regions. The loops are further stiffened by ion pair links with secondary structure elements. A. fulgidus malate dehydrogenase is the only dimeric protein known to date that belongs to the [LDH-like] MalDH family. All the other known members of this family are homo-tetramers. The crystal structures revealed that the association of the dimers to form tetramers is prevented by several deletions, taking place at the level of two loops that are known to be essential for the tetramerisation process within the LDH and [LDH-like] MalDH enzymes.
Collapse
Affiliation(s)
- Adriana Irimia
- Laboratoire de Biophysique Moléculaire, Institut de Biologie Structurale J.-P. Ebel CEA CNRS UJF, UMR-5075, 41 rue Jules Horowitz, 38027 Cedex 01, Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Thomas AS, Elcock AH. Molecular Simulations Suggest Protein Salt Bridges Are Uniquely Suited to Life at High Temperatures. J Am Chem Soc 2004; 126:2208-14. [PMID: 14971956 DOI: 10.1021/ja039159c] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of explicit solvent molecular dynamics simulations has been performed to investigate the temperature dependence of salt bridge interactions between two freely diffusing amino acids. The simulations, performed at 25, 50, 75, and 100 degrees C, allow a large number of distinct association and dissociation events to be directly observed, without the imposition of additional forces to drive association. Analysis of contact frequencies for atom pairs demonstrates that the number of salt bridge contacts between the two molecules is unaffected by temperature, whereas the numbers of hydrophobic and polar contacts are greatly diminished. A second, independent set of simulations-using rigid, prototypical molecule types-allows the differing temperature dependences of hydrophobic, polar, and salt bridge interactions to be unambiguously examined. In the prototype molecule simulations, the salt bridge interaction is found to substantially increase in stability at 100 degrees C relative to 25 degrees C. This difference in behavior between flexible amino acids and rigid prototype molecules is perhaps a direct manifestation of the effects of conformational entropy on association thermodynamics. Overall, the results demonstrate that salt bridge interactions are extremely resilient to temperature increases and, as such, are uniquely suited to promoting protein stability at high temperatures.
Collapse
Affiliation(s)
- Andrew S Thomas
- Department of Biochemistry, University of Iowa, 51 Newton Road, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
77
|
Palackal N, Brennan Y, Callen WN, Dupree P, Frey G, Goubet F, Hazlewood GP, Healey S, Kang YE, Kretz KA, Lee E, Tan X, Tomlinson GL, Verruto J, Wong VWK, Mathur EJ, Short JM, Robertson DE, Steer BA. An evolutionary route to xylanase process fitness. Protein Sci 2004; 13:494-503. [PMID: 14718652 PMCID: PMC2286715 DOI: 10.1110/ps.03333504] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Directed evolution technologies were used to selectively improve the stability of an enzyme without compromising its catalytic activity. In particular, this article describes the tandem use of two evolution strategies to evolve a xylanase, rendering it tolerant to temperatures in excess of 90 degrees C. A library of all possible 19 amino acid substitutions at each residue position was generated and screened for activity after a temperature challenge. Nine single amino acid residue changes were identified that enhanced thermostability. All 512 possible combinatorial variants of the nine mutations were then generated and screened for improved thermal tolerance under stringent conditions. The screen yielded eleven variants with substantially improved thermal tolerance. Denaturation temperature transition midpoints were increased from 61 degrees C to as high as 96 degrees C. The use of two evolution strategies in combination enabled the rapid discovery of the enzyme variant with the highest degree of fitness (greater thermal tolerance and activity relative to the wild-type parent).
Collapse
Affiliation(s)
- Nisha Palackal
- Diversa Corp., 4955 Directors Place, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Mandrich L, Pezzullo M, Del Vecchio P, Barone G, Rossi M, Manco G. Analysis of Thermal Adaptation in the HSL Enzyme Family. J Mol Biol 2004; 335:357-69. [PMID: 14659763 DOI: 10.1016/j.jmb.2003.10.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The recently solved three-dimensional (3D) structures of two thermostable members of the carboxylesterase/lipase HSL family, namely the Alicyclobacillus (formerly Bacillus) acidocaldarius and Archaeoglobus fulgidus carboxylesterases (EST2 and AFEST, respectively) were compared with that of the mesophilic homologous counterpart Brefeldine A esterase from Bacillus subtilis. Since the 3D homology models of other members of the HSL family were also available, we performed a structural alignment with all these sequences. The resulting alignment was used to assess the amino acid "traffic rule" in the HSL family. Quite surprisingly, the data were in very good agreement with those recently reported from two independent groups and based on the comparison of a huge number of homologous sequences from the genus Bacillus, Methanococcus and Deinococcus/Thermus. Taken as a whole, the data point to the statistical meaning of defined amino acid conversions going from psychrophilic to hyperthermophilic sequences. We identified and mapped several such changes onto the EST2 structure and observed that such mutations were localized mostly in loops regions or alpha-helices and were mostly excluded from the active site. A site-directed mutagenesis of two of the identified residues confirmed they were involved in thermal stability.
Collapse
Affiliation(s)
- L Mandrich
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131, Naples, Italy
| | | | | | | | | | | |
Collapse
|
79
|
Febbraio F, Andolfo A, Tanfani F, Briante R, Gentile F, Formisano S, Vaccaro C, Scirè A, Bertoli E, Pucci P, Nucci R. Thermal stability and aggregation of sulfolobus solfataricus beta-glycosidase are dependent upon the N-epsilon-methylation of specific lysyl residues: critical role of in vivo post-translational modifications. J Biol Chem 2003; 279:10185-94. [PMID: 14660666 DOI: 10.1074/jbc.m308520200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methylation in vivo is a post-translational modification observed in several organisms belonging to eucarya, bacteria, and archaea. Although important implications of this modification have been demonstrated in several eucaryotes, its biological role in hyperthermophilic archaea is far from being understood. The aim of this work is to clarify some effects of methylation on the properties of beta-glycosidase from Sulfolobus solfataricus, by a structural comparison between the native, methylated protein and its unmethylated counterpart, recombinantly expressed in Escherichia coli. Analysis by Fourier transform infrared spectroscopy indicated similar secondary structure contents for the two forms of the protein. However, the study of temperature perturbation by Fourier transform infrared spectroscopy and turbidimetry evidenced denaturation and aggregation events more pronounced in recombinant than in native beta-glycosidase. Red Nile fluorescence analysis revealed significant differences of surface hydrophobicity between the two forms of the protein. Unlike the native enzyme, which dissociated into SDS-resistant dimers upon exposure to the detergent, the recombinant enzyme partially dissociated into monomers. By electrospray mapping, the methylation sites of the native protein were identified. A computational analysis of beta-glycosidase three-dimensional structure and comparisons with other proteins from S. solfataricus revealed analogies in the localization of methylation sites in terms of secondary structural elements and overall topology. These observations suggest a role for the methylation of lysyl residues, located in selected domains, in the thermal stabilization of beta-glycosidase from S. solfataricus.
Collapse
MESH Headings
- Amino Acids/chemistry
- Coloring Agents/pharmacology
- Detergents/pharmacology
- Dimerization
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/metabolism
- Glucosidases/chemistry
- Hydrogen Bonding
- Hydrogen-Ion Concentration
- Hydrolysis
- Lysine/chemistry
- Mass Spectrometry
- Methylation
- Models, Chemical
- Models, Molecular
- Oxazines/pharmacology
- Protein Binding
- Protein Conformation
- Protein Denaturation
- Protein Processing, Post-Translational
- Protein Structure, Secondary
- Recombinant Proteins/chemistry
- Software
- Spectrometry, Fluorescence
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Spectrophotometry, Infrared
- Spectroscopy, Fourier Transform Infrared
- Sulfolobus/enzymology
- Temperature
Collapse
|
80
|
Pack SP, Yoo YJ. Protein thermostability: structure-based difference of residual properties between thermophilic and mesophilic proteins. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/j.molcatb.2003.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
81
|
Ragone R. Phenomenological similarities between protein denaturation and small-molecule dissolution: Insights into the mechanism driving the thermal resistance of globular proteins. Proteins 2003; 54:323-32. [PMID: 14696194 DOI: 10.1002/prot.10574] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This article shows that the stability profiles of thermophilic proteins are significantly displaced toward higher temperatures as compared to those of mesophilic proteins. A similar trend characterizes the aqueous transfer of N-alkyl amides. In fact, as a general feature of transfer processes, liquid dissolution profiles are centered at temperatures higher than those of solid ones. This behavior is governed by packing contributions. A partition of the unfolding thermodynamics based on the analysis of phenomenological temperatures common to dissolution and unfolding phenomena provides a clue to understanding the mechanism of thermal stabilization. In fact, the position of stability profiles along the temperature axis does not appear to depend on solvation of internal residues. Instead, it is notably affected by solidlike components, whose progressive decrease appears to drive the heat denaturation temperature increase of most thermostable proteins. As a corollary, it is shown that there are actually two limiting mechanisms of thermal stabilization.
Collapse
Affiliation(s)
- Raffaele Ragone
- Dipartimento di Biochimica e Biofisica-CRISCEB, Second University of Naples, Naples, Italy.
| |
Collapse
|
82
|
|
83
|
Gentile F, Amodeo P, Febbraio F, Picaro F, Motta A, Formisano S, Nucci R. SDS-resistant active and thermostable dimers are obtained from the dissociation of homotetrameric beta-glycosidase from hyperthermophilic Sulfolobus solfataricus in SDS. Stabilizing role of the A-C intermonomeric interface. J Biol Chem 2002; 277:44050-60. [PMID: 12213823 DOI: 10.1074/jbc.m206761200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Glycosidases are fundamental, widely conserved enzymes. Those from hyperthermophiles exhibit unusual stabilities toward various perturbants. Previous work with homotetrameric beta-glycosidase from hyperthermophilic Sulfolobus solfataricus (M(r) 226,760) has shown that addition of 0.05-0.1% SDS was associated with minimal secondary structure perturbations and increased activity. This work addresses the effects of SDS on beta-glycosidase quaternary structure. In 0.1-1% SDS, the enzyme was dimeric, as determined by Ferguson analysis of transverse-gradient polyacrylamide gels. The catalytic activity of the beta-glycosidase dimer in SDS was determined by in-gel assay. A minor decrease of thermal stability in SDS was observed after exposure to temperatures up to 80 degrees C for 1 h. An analysis of beta-glycosidase crystal structure showed different changes in solvent-accessible surface area on going from the tetramer to the two possible dimers (A-C and A-D). Energy minimization and molecular dynamics calculations showed that the A-C dimer, exhibiting the lowest exposed surface area, was more stabilized by a network of polar interactions. The charge distribution around the A-C interface was characterized by a local short range anisotropy, resulting in an unfavorable interaction with SDS. This paper provides a detailed description of an SDS-resistant inter-monomeric interface, which may help understand similar interfaces involved in important biological processes.
Collapse
Affiliation(s)
- Fabrizio Gentile
- Istituto di Endocrinologia e Oncologia Sperimentale del CNR and Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II, Via Pansini 5, 80131 Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
84
|
Del Vecchio P, Graziano G, Granata V, Barone G, Mandrich L, Rossi M, Manco G. Denaturing action of urea and guanidine hydrochloride towards two thermophilic esterases. Biochem J 2002; 367:857-63. [PMID: 12160466 PMCID: PMC1222942 DOI: 10.1042/bj20020695] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2002] [Revised: 07/25/2002] [Accepted: 08/02/2002] [Indexed: 11/17/2022]
Abstract
The stability of two thermophilic esterases, AFEST from Archaeoglobus fulgidus and EST2 from Alicyclobacillus acidocaldarius, against the denaturing action of urea and guanidine hydrochloride has been investigated by means of steady-state fluorescence and circular dichroism measurements. Experimental results indicate that the two enzymes, even though very resistant to temperature and urea, show a resistance to guanidine hydrochloride weaker than expected on the basis of data collected so far for a large set of globular proteins. Structural information available for AFEST and EST2 and ideas that emerged from studies on the molecular origin of the greater thermal stability of thermophiles allow the suggestion of a reliable rationale. The present results may be an indication that the optimization of charge-charge interactions on the protein surface is a key factor for the stability of the two esterases.
Collapse
Affiliation(s)
- Pompea Del Vecchio
- Department of Chemistry, University of Naples Federico II, Via Cintia, 45-80126 Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
85
|
Das R, Junker J, Greenbaum D, Gerstein MB. Global perspectives on proteins: comparing genomes in terms of folds, pathways and beyond. THE PHARMACOGENOMICS JOURNAL 2002; 1:115-25. [PMID: 11911438 DOI: 10.1038/sj.tpj.6500021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The sequencing of complete genomes provides us with a global view of all the proteins in an organism. Proteomic analysis can be done on a purely sequence-based level, with a focus on finding homologues and grouping them into families and clusters of orthologs. However, incorporating protein structure into this analysis provides valuable simplification; it allows one to collect together very distantly related sequences, thus condensing the proteome into a minimal number of 'parts.' We describe issues related to surveying proteomes in terms of structural parts, including methods for fold assignment and formats for comparisons (eg top-10 lists and whole-genome trees), and show how biases in the databases and in sampling can affect these surveys. We illustrate our main points through a case study on the unique protein properties evident in many thermophile genomes (eg more salt bridges). Finally, we discuss metabolic pathways as an even greater simplification of genomes. In comparison to folds these allow the organization of many more genes into coherent systems, yet can nevertheless be understood in many of the same terms.
Collapse
Affiliation(s)
- R Das
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
86
|
FUJIWARA SHINSUKE. Extremophiles: Developments of Their Special Functions and Potential Resources. J Biosci Bioeng 2002. [DOI: 10.1263/jbb.94.518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
87
|
De Simone G, Menchise V, Manco G, Mandrich L, Sorrentino N, Lang D, Rossi M, Pedone C. The crystal structure of a hyper-thermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus. J Mol Biol 2001; 314:507-18. [PMID: 11846563 DOI: 10.1006/jmbi.2001.5152] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of AFEST, a novel hyper-thermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus, complexed with a sulphonyl derivative, has been determined and refined to 2.2 A resolution. This enzyme, which has recently been classified as a member of the hormone- sensitive-lipase (H) group of the esterase/lipase superfamily, presents a canonical alpha/beta hydrolase core, shielded on the C-terminal side by a cap region composed of five alpha-helices. It contains the catalytic triad Ser160, His285 and Asp255, whereby the nucleophile is covalently modified and the oxyanion hole formed by Gly88, Gly89 and Ala161. A structural comparison of AFEST with its mesophilic and thermophilic homologues, Brefeldin A esterase from Bacillus subtilis (BFAE) and EST2 from Alicyclobacillus acidocaldarius, reveals an increase in the number of intramolecular ion pairs and secondary structure content, as well as a significant reduction in loop extensions and ratio of hydrophobic to charged surface area. The variety of structural differences suggests possible strategies for thermostabilization of lipases and esterases with potential industrial applications.
Collapse
Affiliation(s)
- G De Simone
- Centro di Studio di Biocristallografia- CNR, University of Naples "Federico II", via Mezzocannone 6/8, Naples, 80134, Italy
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Karshikoff A, Ladenstein R. Ion pairs and the thermotolerance of proteins from hyperthermophiles: a "traffic rule" for hot roads. Trends Biochem Sci 2001; 26:550-6. [PMID: 11551792 DOI: 10.1016/s0968-0004(01)01918-1] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The proteins from hyperthermophilic organisms maintain their biologically active structure at temperatures that are significantly higher than the denaturation temperatures of their mesophilic counterparts. The fact that there is usually a high degree of sequence and structural homology between these two classes of proteins suggests that the source of this extreme thermal tolerance is hidden in the delicate balance of the non-covalent interactions. Among the large number of factors identified in the literature as being responsible for the thermostability of these proteins, this article focuses on electrostatic interactions. It demonstrates that the optimization of electrostatic interactions by increasing of the number of salt bridges is a driving force for enhancement of the thermotolerance of proteins from hyperthermophilic microorganisms. This feature is less evident in proteins from thermophilic organisms and is absent from mesophile-derived proteins.
Collapse
Affiliation(s)
- A Karshikoff
- Centre for Structural Biochemistry, Karolinska Institutet, NOVUM, 14157 Huddinge, Sweden.
| | | |
Collapse
|
89
|
Moczygemba C, Guidry J, Jones KL, Gomes CM, Teixeira M, Wittung-Stafshede P. High stability of a ferredoxin from the hyperthermophilic archaeon A. ambivalens: involvement of electrostatic interactions and cofactors. Protein Sci 2001; 10:1539-48. [PMID: 11468351 PMCID: PMC2374097 DOI: 10.1110/ps.49401] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The ferredoxin from the thermophilic archaeon Acidianus ambivalens is a small monomeric seven-iron protein with a thermal midpoint (T(m)) of 122 degrees C (pH 7). To gain insight into the basis of its thermostability, we have characterized unfolding reactions induced chemically and thermally at various pHs. Thermal unfolding of this ferredoxin, in the presence of various guanidine hydrochloride (GuHCl) concentrations, yields a linear correlation between unfolding enthalpies (DeltaH[T(m)]) and T(m) from which an upper limit for the heat capacity of unfolding (DeltaC(P)) was determined to be 3.15 +/- 0.1 kJ/(mole * K). Only by the use of the stronger denaturant guanidine thiocyanate (GuSCN) is unfolding of A. ambivalens ferredoxin at pH 7 (20 degrees C) observed ([GuSCN](1/2) = 3.1 M; DeltaG(U)[H(2)O] = 79 +/- 8 kJ/mole). The protein is, however, less stable at low pH: At pH 2.5, T(m) is 64 +/- 1 degrees C, and GuHCl-induced unfolding shows a midpoint at 2.3 M (DeltaG(U)[H(2)O] = 20 +/- 1 kJ/mole). These results support that electrostatic interactions contribute significantly to the stability. Analysis of the three-dimensional molecular model of the protein shows that there are several possible ion pairs on the surface. In addition, ferredoxin incorporates two iron-sulfur clusters and a zinc ion that all coordinate deprotonated side chains. The zinc remains bound in the unfolded state whereas the iron-sulfur clusters transiently form linear three-iron species (in pH range 2.5 to 10), which are associated with the unfolded polypeptide, before their complete degradation.
Collapse
Affiliation(s)
- C Moczygemba
- Chemistry Department, Tulane University, New Orleans, Louisiana 70118, USA
| | | | | | | | | | | |
Collapse
|
90
|
Shiraki K, Nishikori S, Fujiwara S, Hashimoto H, Kai Y, Takagi M, Imanaka T. Comparative analyses of the conformational stability of a hyperthermophilic protein and its mesophilic counterpart. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4144-50. [PMID: 11488906 DOI: 10.1046/j.1432-1327.2001.02324.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Comparison of the conformational stability of an O(6)-methylguanine-DNA methyltransferase (MGMT) from the hyperthermophilic archaeon Thermococcus kodakaraensis strain KOD1 (Tk-MGMT), and its mesophilic counterpart C-terminal Ada protein from Escherichia coli (Ec-AdaC) was performed in order to obtain information about the relationship between thermal stability and other factors, such as thermodynamic parameters, thermodynamic stability and other unfolding conditions. Tk-MGMT unfolded at Tm = 98.6 degrees C, which was 54.8 degrees C higher than the unfolding temperature of Ec-AdaC. The maximum free energy (DeltaG(max)) of the proteins were different; the value of Tk-MGMT (42.9 kJ.mol-1 at 29.5 degrees C) was 2.6 times higher than that of Ec-AdaC (16.6 kJ.mol-1 at 7.4 degrees C). The high conformational stability of Tk-MGMT was attributed to a 1.6-fold higher enthalpy value than that of Ec-AdaC. In addition, the DeltaG(max) temperature of Tk-MGMT was considerably higher (by 22.1 degrees C). The apparent heat capacity of denaturation (DeltaC(p)) of Tk-MGMT was 0.7-fold lower than that of Ec-AdaC. These three synergistic effects, increasing DeltaGmax, shifted DeltaG vs. temperature curve, and low DeltaC(p), give Tk-MGMT its thermal stability. Unfolding profiles of the two proteins, tested with four alcohols and three denaturants, showed that Tk-MGMT possessed higher stability than Ec-AdaC in all conditions studied. These results indicate that the high stability of Tk-MGMT gives resistance to chemical unfolding, in addition to thermal unfolding.
Collapse
Affiliation(s)
- K Shiraki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Japan
| | | | | | | | | | | | | |
Collapse
|
91
|
Ogasahara K, Khechinashvili NN, Nakamura M, Yoshimoto T, Yutani K. Thermal stability of pyrrolidone carboxyl peptidases from the hyperthermophilic Archaeon, Pyrococcus furiosus. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3233-42. [PMID: 11389725 DOI: 10.1046/j.1432-1327.2001.02220.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The temperature adaptation of pyrrolidone carboxyl peptidase (PCP) from a hyperthermophile, Pyrococcus furiosus (Pf PCP), was characterized in the context of an assembly form of the protein which is a homotetramer at neutral pH. The Pf PCP exhibited maximal catalytic activity at 90-95 degrees C and its activity was higher in the temperature range 30-100 degrees C than its counterpart from the mesophilic Bacillus amyloliquefaciens (BaPCP). Thermal stability was monitored by differential scanning calorimetry (DSC). Two clearly separated peaks appeared on the DSC curves for Pf PCP at alkaline and acidic pH. Using the oxidized Pf PCP and two mutant proteins (Pf C188S and Pf C142/188S), it was found that the peaks on the high and low temperature sides of the DSC curve of Pf PCP were produced by the forms with an intersubunit disulfide bridge between the two subunits and without the bridge, respectively, indicating the stabilization effect of intersubunit disulfide bridges. The denaturation temperature (Td) of Pf PCP with intersubunit disulfide bridges was higher by 53 degrees C at pH 9.0 than that of BaPCP. An analysis of the equilibrium ultracentrifugation patterns showed that the tetrameric Pf C142/188S dissociated into dimers with decreasing pH in the acidic region and became monomer subunits at pH 2.5. The heat denaturation of Pf PCP and its two Cys mutants was highly reversible in the dimeric forms, but completely irreversible in the tetrameric form. The Td of Pf C142/188S decreased as the enzyme became dissociated, but the monomeric form of the protein was still folded at pH 2.5, although BaPCP was completely denatured at acidic pH. These results indicate that subunit interaction plays an important role in stabilizing PCP from P. furiosus in addition to the intrinsic enhanced stability of its monomer.
Collapse
Affiliation(s)
- K Ogasahara
- Institute for Protein Research, Osaka University, Suita City, Osaka, Japan
| | | | | | | | | |
Collapse
|
92
|
Abstract
The number of reports on enzymes from cold adapted organisms has increased significantly over the past years, and reveals that adaptive strategies for functioning at low temperature varies among enzymes. However, the high catalytic efficiency at low temperature seems, for the majority of cold active enzymes, to be accompanied by a reduced thermal stability. Increased molecular flexibility to compensate for the low working temperature, is therefore still the most dominating theory for cold adaptation, although there also seem to be other adaptive strategies. The number of experimentally determined 3D structures of enzymes possessing cold adaptation features is still limited, and restricts a structural rationalization for cold activity. The present summary of structural characteristics, based on comparative studies on crystal structures (7), homology models (7), and amino acid sequences (24), reveals that there are no common structural feature that can account for the low stability, increased catalytic efficiency, and proposed molecular flexibility. Analysis of structural features that are thought to be important for stability (e.g. intra-molecular hydrogen bonds and ion-pairs, proline-, methionine-, glycine-, or arginine content, surface hydrophilicity, helix stability, core packing), indicates that each cold adapted enzyme or enzyme system use different small selections of structural adjustments for gaining increased molecular flexibility that in turn give rise to increased catalytic efficiency and reduced stability. Nevertheless, there seem to be a clear correlation between cold adaptation and reduced number of interactions between structural domains or subunits. Cold active enzymes also seem, to a large extent, to increase their catalytic activity by optimizing the electrostatics at and around the active site.
Collapse
Affiliation(s)
- A O Smalås
- Protein Crystallography Group, Department of Chemistry, Faculty of Science, University of Tromsø, N-9037 Tromsø, Norway.
| | | | | | | |
Collapse
|
93
|
Zhang X, Meining W, Fischer M, Bacher A, Ladenstein R. X-ray structure analysis and crystallographic refinement of lumazine synthase from the hyperthermophile Aquifex aeolicus at 1.6 A resolution: determinants of thermostability revealed from structural comparisons. J Mol Biol 2001; 306:1099-114. [PMID: 11237620 DOI: 10.1006/jmbi.2000.4435] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An open reading frame optimized for expression of 6,7-dimethyl-8-ribityl-lumazine synthase of the hyperthermophilic bacterium Aquifex aeolicus in Escherichia coli was synthesized and expressed in a recombinant E. coli strain to a level of around 15 %. The recombinant protein was purified by heat-treatment and gel-filtration. The protein was crystallized in the cubic space group I23 with the cell dimensions a = b = c = 180.8 A, and diffraction data were collected to 1.6 A resolution. The structure was solved by molecular replacement using lumazine synthase from Bacillus subtilis as search model. The structure of the A. aeolicus enzyme was refined to a resolution of 1.6 A. The spherical protein consists of 60 identical subunits with strict icosahedral 532 symmetry. The subunit fold is closely related to that of the B. subtilis enzyme (rmsd 0.80 A). The extremely thermostable lumazine synthase from A. aeolicus has a melting temperature of 119.9 degrees C. Compared to other icosahedral and pentameric lumazine synthases, the A. aeolicus enzyme has the largest accessible surface presented by charged residues and the smallest surface presented by hydrophobic residues. It also has the largest number of ion-pairs per subunit. Two ion-pair networks involving two, respectively three, stacking arginine residues assume a distinct role in linking adjacent subunits. The findings indicate the influence of the optimization of hydrophobic and ionic contacts in gaining thermostability.
Collapse
Affiliation(s)
- X Zhang
- Södertörns Högskola, Huddinge, S-14104, Sweden
| | | | | | | | | |
Collapse
|
94
|
Christova P, Cox JA, Craescu CT. Ion-induced conformational and stability changes in Nereis sarcoplasmic calcium binding protein: evidence that the APO state is a molten globule. Proteins 2000; 40:177-84. [PMID: 10842334 DOI: 10.1002/(sici)1097-0134(20000801)40:2<177::aid-prot10>3.0.co;2-t] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nereis sarcoplasmic Ca(2+)-binding protein (NSCP) is a calcium buffer protein that binds Ca(2+) ions with high affinity but is also able to bind Mg(2+) ions with high positive cooperativity. We investigated the conformational and stability changes induced by the two metal ions. The thermal reversible unfolding, monitored by circular dichroism spectroscopy, shows that the thermal stability is maximum at neutral pH and increases in the order apo < Mg(2+) < Ca(2+). The stability against chemical denaturation (urea, guanidinium chloride) studied by circular dichroism or intrinsic fluorescence was found to have a similar ion dependence. To explore in more detail the structural basis of stability, we used the fluorescent probes to evaluate the hydrophobic surface exposure in the different ligation states. The apo-NSCP exhibits accessible hydrophobic surfaces, able to bind fluorescent probes, in clear contrast with denatured or Ca(2+)/Mg(2+)-bound states. Gel filtration experiments showed that, although the metal-bound NSCP has a hydrodynamic volume in agreement with the molecular mass, the volume of the apo form is considerably larger. The present results demonstrate that the apo state has many properties in common with the molten globule. The possible factors of the metal-dependent structural changes and stability are discussed.
Collapse
Affiliation(s)
- P Christova
- INSERM U350 & Institut Curie-Recherche, Orsay, France
| | | | | |
Collapse
|
95
|
Consalvi V, Chiaraluce R, Giangiacomo L, Scandurra R, Christova P, Karshikoff A, Knapp S, Ladenstein R. Thermal unfolding and conformational stability of the recombinant domain II of glutamate dehydrogenase from the hyperthermophile Thermotoga maritima. PROTEIN ENGINEERING 2000; 13:501-7. [PMID: 10906345 DOI: 10.1093/protein/13.7.501] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Domain II (residues 189-338, M(r) = 16 222) of glutamate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima was used as a model system to study reversible unfolding thermodynamics of this hyperthermostable enzyme. The protein was produced in large quantities in E.COLI: using a T7 expression system. It was shown that the recombinant domain is monomeric in solution and that it comprises secondary structural elements similar to those observed in the crystal structure of the hexameric enzyme. The recombinant domain is thermostable and undergoes reversible and cooperative thermal unfolding in the pH range 5.90-8.00 with melting temperatures between 75.1 and 68.0 degrees C. Thermal unfolding of the protein was studied using differential scanning calorimetry and circular dichroism spectroscopy. Both methods yielded comparable values. The analysis revealed an unfolding enthalpy at 70 degrees C of 70.2 +/- 4.0 kcal/mol and a DeltaC(p) value of 1.4 +/- 0.3 kcal/mol K. Chemical unfolding of the recombinant domain resulted in m values of 3.36 +/- 0.10 kcal/mol M for unfolding in guanidinium chloride and 1.46 +/- 0.04 kcal/mol M in urea. The thermodynamic parameters for thermal and chemical unfolding equilibria indicate that domain II from T.MARITIMA: glutamate dehydrogenase is a thermostable protein with a DeltaG(max) of 3.70 kcal/mol. However, the thermal and chemical stabilities of the domain are lower than those of the hexameric protein, indicating that interdomain interactions must play a significant role in the stabilization of T. MARITIMA: domain II glutamate dehydrogenase.
Collapse
Affiliation(s)
- V Consalvi
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Università 'La Sapienza', Piazzale A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Szilágyi A, Závodszky P. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure 2000; 8:493-504. [PMID: 10801491 DOI: 10.1016/s0969-2126(00)00133-7] [Citation(s) in RCA: 489] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Proteins from thermophilic organisms usually show high intrinsic thermal stability but have structures that are very similar to their mesophilic homologues. From prevous studies it is difficult to draw general conclusions about the structural features underlying the increased thermal stability of thermophilic proteins. RESULTS In order to reveal the general evolutionary strategy for changing the heat stability of proteins, a non-redundant data set was compiled comprising all high-quality structures of thermophilic proteins and their mesophilic homologues from the Protein Data Bank. The selection (quality) criteria were met by 64 mesophilic and 29 thermophilic protein subunits, representing 25 protein families. From the atomic coordinates, 13 structural parameters were calculated, compared and evaluated using statistical methods. This study is distinguished from earlier ones by the strict quality control of the structures used and the size of the data set. CONCLUSIONS Different protein families adapt to higher temperatures by different sets of structural devices. Regarding the structural parameters, the only generally observed rule is an increase in the number of ion pairs with increasing growth temperature. Other parameters show just a trend, whereas the number of hydrogen bonds and the polarity of buried surfaces exhibit no clear-cut tendency to change with growth temperature. Proteins from extreme thermophiles are stabilized in different ways to moderately thermophilic ones. The preferences of these two groups are different with regards to the number of ion pairs, the number of cavities, the polarity of exposed surface and the secondary structural composition.
Collapse
Affiliation(s)
- A Szilágyi
- Department of Biological Physics, Institute of Enzymology, Biological Research Centre, Hungarian Academy of Sciences, Eötvös Loránd University, Budapest, H-1518 Pf. 7, H-1117, Hungary
| | | |
Collapse
|
97
|
Lamosa P, Burke A, Peist R, Huber R, Liu MY, Silva G, Rodrigues-Pousada C, LeGall J, Maycock C, Santos H. Thermostabilization of proteins by diglycerol phosphate, a new compatible solute from the hyperthermophile Archaeoglobus fulgidus. Appl Environ Microbiol 2000; 66:1974-9. [PMID: 10788369 PMCID: PMC101442 DOI: 10.1128/aem.66.5.1974-1979.2000] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diglycerol phosphate accumulates under salt stress in the archaeon Archaeoglobus fulgidus (L. O. Martins, R. Huber, H. Huber, K. O. Stetter, M. S. da Costa, and H. Santos, Appl. Environ. Microbiol. 63:896-902, 1997). This solute was purified after extraction from the cell biomass. In addition, the optically active and the optically inactive (racemic) forms of the compound were synthesized, and the ability of the solute to act as a protecting agent against heating was tested on several proteins derived from mesophilic or hyperthermophilic sources. Diglycerol phosphate exerted a considerable stabilizing effect against heat inactivation of rabbit muscle lactate dehydrogenase, baker's yeast alcohol dehydrogenase, and Thermococcus litoralis glutamate dehydrogenase. Highly homologous and structurally well-characterized rubredoxins from Desulfovibrio gigas, Desulfovibrio desulfuricans (ATCC 27774), and Clostridium pasteurianum were also examined for their thermal stabilities in the presence or absence of diglycerol phosphate, glycerol, and inorganic phosphate. These proteins showed different intrinsic thermostabilities, with half-lives in the range of 30 to 100 min. Diglycerol phosphate exerted a strong protecting effect, with approximately a fourfold increase in the half-lives for the loss of the visible spectra of D. gigas and C. pasteurianum rubredoxins. In contrast, the stability of D. desulfuricans rubredoxin was not affected. These different behaviors are discussed in the light of the known structural features of rubredoxins. The data show that diglycerol phosphate is a potentially useful protein stabilizer in biotechnological applications.
Collapse
Affiliation(s)
- P Lamosa
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-156 Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Wahl MC, Huber R, Marinkoviç S, Weyher-Stingl E, Ehlert S. Structural investigations of the highly flexible recombinant ribosomal protein L12 from Thermotoga maritima. Biol Chem 2000; 381:221-9. [PMID: 10782993 DOI: 10.1515/bc.2000.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ribosomal protein L7/L12, the only multicopy component of the ribosome, is involved in translation factor binding and in the ribosomal GTPase center. The gene for L7/L12 from Thermotoga maritima was cloned and the protein expressed at high levels in Escherichia coli. Purification of L7/L12 was achieved under non-denaturing conditions via heat treatment and two chromatographic steps. Circular dichroism melting profiles were monitored at 222 nm, showing the melting temperature of the protein at pH 7.5 around 110 degrees C, compared to approximately 60 degrees C for the highly homologous Escherichia coli protein. The unfolding was reversible and renaturation closely followed the path of the thermal melting. Dynamic light scattering, gel filtration chromatography, and crosslinking experiments suggested that under physiological buffer conditions Thermotoga maritima L7/L12 exists as a tetramer. The protein was crystallized under two conditions, yielding an orthorhombic (C222(1)) and a cubic (12(1)3) space group with an estimated two and three to four L7/L12 molecules per asymmetric unit, respectively. The crystals contained the full-length protein, and cryogenic buffers were developed which improved the mosaic spreads and the resolution limits. For the structure solution isoleucine was mutated to methionine at two separate positions, the mutant forms expressed as selenomethionine variants and crystallized.
Collapse
Affiliation(s)
- M C Wahl
- Max-Planck-Institut für Biochemie, Abteilung Strukturforschung, Martinsried, Germany
| | | | | | | | | |
Collapse
|
99
|
Wahl MC, Bourenkov GP, Bartunik HD, Huber R. Flexibility, conformational diversity and two dimerization modes in complexes of ribosomal protein L12. EMBO J 2000; 19:174-86. [PMID: 10637222 PMCID: PMC305552 DOI: 10.1093/emboj/19.2.174] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein L12, the only multicopy component of the ribosome, is presumed to be involved in the binding of translation factors, stimulating factor-dependent GTP hydrolysis. Crystal structures of L12 from Thermotogamaritima have been solved in two space groups by the multiple anomalous dispersion method and refined at 2.4 and 2.0 A resolution. In both crystal forms, an asymmetric unit comprises two full-length L12 molecules and two N-terminal L12 fragments that are associated in a specific, hetero-tetrameric complex with one non-crystallographic 2-fold axis. The two full-length proteins form a tight, symmetric, parallel dimer, mainly through their N-terminal domains. Each monomer of this central dimer additionally associates in a different way with an N-terminal L12 fragment. Both dimerization modes are unlike models proposed previously and suggest that similar complexes may occur in vivo and in situ. The structures also display different L12 monomer conformations, in accord with the suggested dynamic role of the protein in the ribosomal translocation process. The structures have been submitted to the Protein Databank (http://www.rcsb.org/pdb) under accession numbers 1DD3 and 1DD4.
Collapse
Affiliation(s)
- M C Wahl
- Max-Planck-Institut für Biochemie, Abteilung Strukturforschung, Am Klopferspitz 18a, D-82152 Martinsried, Germany.
| | | | | | | |
Collapse
|
100
|
Hasegawa J, Shimahara H, Mizutani M, Uchiyama S, Arai H, Ishii M, Kobayashi Y, Ferguson SJ, Sambongi Y, Igarashi Y. Stabilization of Pseudomonas aeruginosa cytochrome c(551) by systematic amino acid substitutions based on the structure of thermophilic Hydrogenobacter thermophilus cytochrome c(552). J Biol Chem 1999; 274:37533-7. [PMID: 10608805 DOI: 10.1074/jbc.274.53.37533] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A heterologous overexpression system for mesophilic Pseudomonas aeruginosa holocytochrome c(551) (PA c(551)) was established using Escherichia coli as a host organism. Amino acid residues were systematically substituted in three regions of PA c(551) with the corresponding residues from thermophilic Hydrogenobacter thermophilus cytochrome c(552) (HT c(552)), which has similar main chain folding to PA c(551), but is more stable to heat. Thermodynamic properties of PA c(551) with one of three single mutations (Phe-7 to Ala, Phe-34 to Tyr, or Val-78 to Ile) showed that these mutants had increased thermostability compared with that of the wild-type. Ala-7 and Ile-78 may contribute to the thermostability by tighter hydrophobic packing, which is indicated by the three dimensional structure comparison of PA c(551) with HT c(552). In the Phe-34 to Tyr mutant, the hydroxyl group of the Tyr residue and the guanidyl base of Arg-47 formed a hydrogen bond, which did not exist between the corresponding residues in HT c(552). We also found that stability of mutant proteins to denaturation by guanidine hydrochloride correlated with that against the thermal denaturation. These results and others described here suggest that significant stabilization of PA c(551) can be achieved through a few amino acid substitutions determined by molecular modeling with reference to the structure of HT c(552). The higher stability of HT c(552) may in part be attributed to some of these substitutions.
Collapse
Affiliation(s)
- J Hasegawa
- Daiichi Pharmaceutical Co., Ltd., Edogawa-ku, Tokyo 134-8630, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|