51
|
Barton R, Palacio D, Iovine MK, Berger BW. A cytosolic juxtamembrane interface modulates plexin A3 oligomerization and signal transduction. PLoS One 2015; 10:e0116368. [PMID: 25565389 PMCID: PMC4286236 DOI: 10.1371/journal.pone.0116368] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/09/2014] [Indexed: 01/24/2023] Open
Abstract
Plexins (plxns) are transmembrane (TM) receptors involved in the guidance of vascular, lymphatic vessel, and neuron growth as well as cancer metastasis. Plxn signaling results in cytosolic GTPase-activating protein activity, and previous research implicates dimerization as important for activation of plxn signaling. Purified, soluble plxn extracellular and cytosolic domains exhibit only weak homomeric interactions, suggesting a role for the plxn TM and juxtamembrane regions in homooligomerization. In this study, we consider a heptad repeat in the Danio rerio PlxnA3 cytosolic juxtamembrane domain (JM) for its ability to influence PlxnA3 homooligomerization in TM-domain containing constructs. Site-directed mutagenesis in conjunction with the AraTM assay and bioluminescent energy transfer (BRET²) suggest an interface involving a JM heptad repeat, in particular residue M1281, regulates PlxnA3 homomeric interactions when examined in constructs containing an ectodomain, TM and JM domain. In the presence of a neuropilin-2a co-receptor and semaphorin 3F ligand, disruption to PlxnA3 homodimerization caused by an M1281F mutation is eliminated, suggesting destabilization of the PlxnA3 homodimer in the JM is not sufficient to disrupt co-receptor complex formation. In contrast, enhanced homodimerization of PlxnA3 caused by mutation M1281L remains even in the presence of ligand semaphorin 3F and co-receptor neuropilin-2a. Consistent with this pattern of PlxnA3 dimerization in the presence of ligand and co-receptor, destabilizing mutations to PlxnA3 homodimerization (M1281F) are able to rescue motor patterning defects in sidetracked zebrafish embryos, whereas mutations that enhance PlxnA3 homodimerization (M1281L) are not. Collectively, our results indicate the JM heptad repeat, in particular residue M1281, forms a switchable interface that modulates both PlxnA3 homomeric interactions and signal transduction.
Collapse
Affiliation(s)
- Rachael Barton
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Danica Palacio
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - M. Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Bryan W. Berger
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
- Program in Bioengineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
52
|
Ahlers P, Frisch H, Besenius P. Tuneable pH-regulated supramolecular copolymerisation by mixing mismatched dendritic peptide comonomers. Polym Chem 2015. [DOI: 10.1039/c5py01241d] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The co-assembly of oppositely charged phenylalanine-rich dendritic comonomers yields supramolecular alternating copolymers, whose stability and pH-triggered disassembly is tuned by mismatching a strong with a weak β-sheet encoded comonomer.
Collapse
Affiliation(s)
- P. Ahlers
- Institut für Organische Chemie
- Johannes Gutenberg-Universität Mainz
- 55128 Mainz
- Germany
- Organisch-Chemisches Institut
| | - H. Frisch
- Institut für Organische Chemie
- Johannes Gutenberg-Universität Mainz
- 55128 Mainz
- Germany
- Organisch-Chemisches Institut
| | - P. Besenius
- Institut für Organische Chemie
- Johannes Gutenberg-Universität Mainz
- 55128 Mainz
- Germany
| |
Collapse
|
53
|
Structural plasticity of 4-α-helical bundles exemplified by the puzzle-like molecular assembly of the Rop protein. Proc Natl Acad Sci U S A 2014; 111:11049-54. [PMID: 25024213 DOI: 10.1073/pnas.1322065111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The dimeric Repressor of Primer (Rop) protein, a widely used model system for the study of coiled-coil 4-α-helical bundles, is characterized by a remarkable structural plasticity. Loop region mutations lead to a wide range of topologies, folding states, and altered physicochemical properties. A protein-folding study of Rop and several loop variants has identified specific residues and sequences that are linked to the observed structural plasticity. Apart from the native state, native-like and molten-globule states have been identified; these states are sensitive to reducing agents due to the formation of nonnative disulfide bridges. Pro residues in the loop are critical for the establishment of new topologies and molten globule states; their effects, however, can be in part compensated by Gly residues. The extreme plasticity in the assembly of 4-α-helical bundles reflects the capacity of the Rop sequence to combine a specific set of hydrophobic residues into strikingly different hydrophobic cores. These cores include highly hydrated ones that are consistent with the formation of interchain, nonnative disulfide bridges and the establishment of molten globules. Potential applications of this structural plasticity are among others in the engineering of bio-inspired materials.
Collapse
|
54
|
Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Protein design: toward functional metalloenzymes. Chem Rev 2014; 114:3495-578. [PMID: 24661096 PMCID: PMC4300145 DOI: 10.1021/cr400458x] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fangting Yu
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | - Alison G. Tebo
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Leela Ruckthong
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hira Qayyum
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
55
|
Paavilainen S, Guidotti G. Interactions between the transmembrane domains of CD39: identification of interacting residues by yeast selection. SCIENCEOPEN RESEARCH 2014; 2014. [PMID: 26258004 DOI: 10.14293/s2199-1006.1.sorlife.aeeerm.v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Rat CD39, a membrane-bound ectonucleoside triphosphate diphosphohydrolase that hydrolyzes extracellular nucleoside tri- and diphosphates, is anchored to the membrane by two transmembrane domains at the two ends of the molecule. The transmembrane domains are important for enzymatic activity, as mutants lacking one or both of these domains have a fraction of the enzymatic activity of the wild-type CD39. We investigated the interactions between the transmembrane domains by using a strain of yeast that requires surface expression of CD39 for growth. Random mutagenesis of selected amino acid residues in the N-terminal transmembrane domain revealed that the presence of charged amino acids at these positions prevents expression of functional protein. Rescue of the growth of these mutants by complementary mutations on selected residues of the C-terminal transmembrane domain indicates that there is contact between particular faces of the transmembrane domains.
Collapse
Affiliation(s)
- Sari Paavilainen
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Guido Guidotti
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
56
|
Probabilistic grammatical model for helix-helix contact site classification. Algorithms Mol Biol 2013; 8:31. [PMID: 24350601 PMCID: PMC3892132 DOI: 10.1186/1748-7188-8-31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 11/28/2013] [Indexed: 11/25/2022] Open
Abstract
Background Hidden Markov Models power many state‐of‐the‐art tools in
the field of protein bioinformatics. While excelling in their tasks, these
methods of protein analysis do not convey directly information on
medium‐ and long‐range residue‐residue interactions. This
requires an expressive power of at least context‐free grammars.
However, application of more powerful grammar formalisms to protein analysis
has been surprisingly limited. Results In this work, we present a probabilistic grammatical framework for
problem‐specific protein languages and apply it to classification of
transmembrane helix‐helix pairs configurations. The core of the model
consists of a probabilistic context‐free grammar, automatically
inferred by a genetic algorithm from only a generic set of
expert‐based rules and positive training samples. The model was
applied to produce sequence based descriptors of four classes of
transmembrane helix‐helix contact site configurations. The highest
performance of the classifiers reached AUCROC of 0.70. The analysis of grammar parse trees revealed the ability
of representing structural features of helix‐helix contact sites. Conclusions We demonstrated that our probabilistic context‐free framework for
analysis of protein sequences outperforms the state of the art in the task
of helix‐helix contact site classification. However, this is achieved
without necessarily requiring modeling long range dependencies between
interacting residues. A significant feature of our approach is that grammar
rules and parse trees are human‐readable. Thus they could provide
biologically meaningful information for molecular biologists.
Collapse
|
57
|
Parry DAD. Fifty years of fibrous protein research: a personal retrospective. J Struct Biol 2013; 186:320-34. [PMID: 24148884 DOI: 10.1016/j.jsb.2013.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/09/2013] [Accepted: 10/11/2013] [Indexed: 02/02/2023]
Abstract
As a result of X-ray fiber diffraction studies on fibrous proteins and crystallographic data on fragments derived from them, new experimental techniques across the biophysical and biochemical spectra, sophisticated computer modeling and refinement procedures, widespread use of bioinformatics and improved specimen preparative procedures the structures of many fibrous proteins have now been determined to at least low resolution. In so doing these structures have yielded insight into the relationship that exists between sequence and conformation and this, in turn, has led to improved methodologies for predicting structure from sequence data alone. In this personal retrospective a selection of progress made during the past 50years is discussed in terms of events to which the author has made some contribution.
Collapse
Affiliation(s)
- David A D Parry
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand.
| |
Collapse
|
58
|
Ngo B, Hu CM, Guo XE, Ngo B, Wei R, Zhu J, Lee WH. Complementary interhelical interactions between three buried Glu-Lys pairs within three heptad repeats are essential for Hec1-Nuf2 heterodimerization and mitotic progression. J Biol Chem 2013; 288:34403-13. [PMID: 24129578 DOI: 10.1074/jbc.m113.490524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hec1 and Nuf2, core components of the NDC80 complex, are essential for kinetochore-microtubule attachment and chromosome segregation. It has been shown that both Hec1 and Nuf2 utilize their coiled-coil domains to form a functional dimer; however, details of the consequential significance and structural requirements to form the dimerization interface have yet to be elucidated. Here, we showed that Hec1 required three contiguous heptad repeats from Leu-324 to Leu-352, but not the entire first coiled-coil domain, to ensure overall stability of the NDC80 complex through direct interaction with Nuf2. Substituting the hydrophobic core residues, Leu-331, Val-338, and Ile-345, of Hec1 with alanine completely eliminated Nuf2 binding and blocked mitotic progression. Moreover, unlike most coiled-coil proteins, where the buried positions are composed of hydrophobic residues, Hec1 possessed an unusual distribution of glutamic acid residues, Glu-334, Glu-341, and Glu-348, buried within the interior dimerization interface, which complement with three Nuf2 lysine residues: Lys-227, Lys-234, and Lys-241. Substituting these corresponding residues with alanine diminished the binding affinity between Hec1 and Nuf2, compromised NDC80 complex formation, and adversely affected mitotic progression. Taken together, these findings demonstrated that three buried glutamic acid-lysine pairs, in concert with hydrophobic interactions of core residues, provide the major specificity and stability requirements for Hec1-Nuf2 dimerization and NDC80 complex formation.
Collapse
Affiliation(s)
- Bryan Ngo
- From the Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697
| | | | | | | | | | | | | |
Collapse
|
59
|
Boruah BM, Liu D, Ye D, Gu TJ, Jiang CL, Qu M, Wright E, Wang W, He W, Liu C, Gao B. Single domain antibody multimers confer protection against rabies infection. PLoS One 2013; 8:e71383. [PMID: 23977032 PMCID: PMC3748109 DOI: 10.1371/journal.pone.0071383] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/02/2013] [Indexed: 12/23/2022] Open
Abstract
Post-exposure prophylactic (PEP) neutralizing antibodies against Rabies are the most effective way to prevent infection-related fatality. The outer envelope glycoprotein of the Rabies virus (RABV) is the most significant surface antigen for generating virus-neutralizing antibodies. The small size and uncompromised functional specificity of single domain antibodies (sdAbs) can be exploited in the fields of experimental therapeutic applications for infectious diseases through formatting flexibilities to increase their avidity towards target antigens. In this study, we used phage display technique to select and identify sdAbs that were specific for the RABV glycoprotein from a naïve llama-derived antibody library. To increase their neutralizing potencies, the sdAbs were fused with a coiled-coil peptide derived from the human cartilage oligomeric matrix protein (COMP48) to form homogenous pentavalent multimers, known as combodies. Compared to monovalent sdAbs, the combodies, namely 26424 and 26434, exhibited high avidity and were able to neutralize 85-fold higher input of RABV (CVS-11 strain) pseudotypes in vitro, as a result of multimerization, while retaining their specificities for target antigen. 26424 and 26434 were capable of neutralizing CVS-11 pseudotypes in vitro by 90–95% as compared to human rabies immunoglobulin (HRIG), currently used for PEP in Rabies. The multimeric sdAbs were also demonstrated to be partially protective for mice that were infected with lethal doses of rabies virus in vivo. The results demonstrate that the combodies could be valuable tools in understanding viral mechanisms, diagnosis and possible anti-viral candidate for RABV infection.
Collapse
Affiliation(s)
- Bhargavi M. Boruah
- CAS Key Laboratory for Pathogenic Microbiology and Immunology (CASPMI), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dawei Liu
- CAS Key Laboratory for Pathogenic Microbiology and Immunology (CASPMI), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Duan Ye
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China
| | - Tie-jun Gu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China
| | - Chun-lai Jiang
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China
| | - Mingsheng Qu
- CAS Key Laboratory for Pathogenic Microbiology and Immunology (CASPMI), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Edward Wright
- Viral Pseudotype Unit, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Wei Wang
- CAS Key Laboratory for Pathogenic Microbiology and Immunology (CASPMI), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wen He
- CAS Key Laboratory for Pathogenic Microbiology and Immunology (CASPMI), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Biochemistry Teaching and Research Office, Hebei Medical University, Shijiazhuang, China
| | - Changzhen Liu
- CAS Key Laboratory for Pathogenic Microbiology and Immunology (CASPMI), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bin Gao
- CAS Key Laboratory for Pathogenic Microbiology and Immunology (CASPMI), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- China-Japan Joint Laboratory of Molecular Immunology and Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
60
|
Telkoparan P, Erkek S, Yaman E, Alotaibi H, Bayık D, Tazebay UH. Coiled-coil domain containing protein 124 is a novel centrosome and midbody protein that interacts with the Ras-guanine nucleotide exchange factor 1B and is involved in cytokinesis. PLoS One 2013; 8:e69289. [PMID: 23894443 PMCID: PMC3716640 DOI: 10.1371/journal.pone.0069289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/06/2013] [Indexed: 01/11/2023] Open
Abstract
Cytokinetic abscission is the cellular process leading to physical separation of two postmitotic sister cells by severing the intercellular bridge. The most noticeable structural component of the intercellular bridge is a transient organelle termed as midbody, localized at a central region marking the site of abscission. Despite its major role in completion of cytokinesis, our understanding of spatiotemporal regulation of midbody assembly is limited. Here, we report the first characterization of coiled-coil domain-containing protein-124 (Ccdc124), a eukaryotic protein conserved from fungi-to-man, which we identified as a novel centrosomal and midbody protein. Knockdown of Ccdc124 in human HeLa cells leads to accumulation of enlarged and multinucleated cells; however, centrosome maturation was not affected. We found that Ccdc124 interacts with the Ras-guanine nucleotide exchange factor 1B (RasGEF1B), establishing a functional link between cytokinesis and activation of localized Rap2 signaling at the midbody. Our data indicate that Ccdc124 is a novel factor operating both for proper progression of late cytokinetic stages in eukaryotes, and for establishment of Rap2 signaling dependent cellular functions proximal to the abscission site.
Collapse
Affiliation(s)
- Pelin Telkoparan
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Serap Erkek
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Elif Yaman
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Hani Alotaibi
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Defne Bayık
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Uygar H. Tazebay
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
- Department of Molecular Biology and Genetics, Gebze Institute of Technology, Kocaeli, Turkey
- * E-mail:
| |
Collapse
|
61
|
Bhattacharjee P, Banerjee A, Banerjee A, Dasgupta D, Sengupta K. Structural Alterations of Lamin A Protein in Dilated Cardiomyopathy. Biochemistry 2013; 52:4229-41. [DOI: 10.1021/bi400337t] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pritha Bhattacharjee
- Biophysics
Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Avinanda Banerjee
- Biophysics
Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Amrita Banerjee
- Biophysics
Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Dipak Dasgupta
- Biophysics
Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Kaushik Sengupta
- Biophysics
Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| |
Collapse
|
62
|
Maude S, Ingham E, Aggeli A. Biomimetic self-assembling peptides as scaffolds for soft tissue engineering. Nanomedicine (Lond) 2013; 8:823-47. [DOI: 10.2217/nnm.13.65] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tissue engineered therapies are emerging as solutions to several of the medical challenges facing aging societies. To this end, a fundamental research goal is the development of novel biocompatible materials and scaffolds. Self-assembling peptides are materials that have undergone rapid development in the last two decades and they hold promise in meeting some of these challenges. Using amino acids as building blocks enables a great versatility to be incorporated into the structures that peptides form, their physical properties and their interactions with biological systems. This review discusses several classes of short self-assembling sequences, explaining the principles that drive their self-assembly into structures with nanoscale ordering, and highlighting in vitro and in vivo studies that demonstrate the potential of these materials as novel soft tissue engineering scaffolds.
Collapse
Affiliation(s)
- Steven Maude
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Eileen Ingham
- The Institute of Medical & Biological Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Amalia Aggeli
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
63
|
Brown JH. Deriving how far structural information is transmitted through parallel homodimeric coiled-coils: a correlation analysis of helical staggers. Proteins 2013. [PMID: 23180639 DOI: 10.1002/prot.24218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
How local conformation is affected by local sequence is fairly well understood for alpha-helical coiled-coils, but less is known about how local conformation is influenced by distant features. Here, I describe an approach to detect such an effect, based on computing correlation coefficients of local out-of-register alignments, or so-called "staggers" between the helices, as a function of the axial distance between the staggers. This approach requires parallel homodimers, in which each stagger can occur with two "signs," where either one helix or the other is shifted towards the N terminus. The signs of such staggers separated by up to 12 residues are strongly correlated, indicating that the conformations of the ends of coiled-coils are commonly influenced by attached structures. Thus, the structures of coiled-coil residues aberrantly attached to alternative proteins, such as those resulting from leukemogenic chromosomal rearrangements, may be distinguishable from those in normal tissues, and in turn serve as targets of selective drug design. The signs of helical staggers separated by between 13 and 30 residues are moderately yet significantly correlated, indicating that some of the coiled-coils transmit this conformational feature axially for at least 45 Å. A positive, albeit noisy, correlation also exists among tropomyosin coiled-coils for signed staggers separated by the 40-residue actin repeat distance, consistent with the semi-flexible tropomyosin filament binding F-actin and regulating skeletal muscle contraction in a partially cooperative manner. Communication of the signs of axial staggers is explained in part by minimization of main-chain hydrogen bond deformations.
Collapse
Affiliation(s)
- Jerry H Brown
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| |
Collapse
|
64
|
Costa TR, Amer AA, Fällman M, Fahlgren A, Francis MS. Coiled-coils in the YopD translocator family: A predicted structure unique to the YopD N-terminus contributes to full virulence of Yersinia pseudotuberculosis. INFECTION GENETICS AND EVOLUTION 2012; 12:1729-42. [DOI: 10.1016/j.meegid.2012.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/12/2012] [Accepted: 07/29/2012] [Indexed: 10/28/2022]
|
65
|
Steinkruger JD, Bartlett GJ, Woolfson DN, Gellman SH. Strong contributions from vertical triads to helix-partner preferences in parallel coiled coils. J Am Chem Soc 2012; 134:15652-5. [PMID: 22974448 PMCID: PMC3685169 DOI: 10.1021/ja3063088] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pairing preferences in heterodimeric coiled coils are determined by complementarities among side chains that pack against one another at the helix-helix interface. However, relationships between dimer stability and interfacial residue identity are not fully understood. In the context of the "knobs-into-holes" (KIH) packing pattern, one can identify two classes of interactions between side chains from different helices: "lateral", in which a line connecting the adjacent side chains is perpendicular to the helix axes, and "vertical", in which the connecting line is parallel to the helix axes. We have previously analyzed vertical interactions in antiparallel coiled coils and found that one type of triad constellation (a'-a-a') exerts a strong effect on pairing preferences, while the other type of triad (d'-d-d') has relatively little impact on pairing tendencies. Here, we ask whether vertical interactions (d'-a-d') influence pairing in parallel coiled-coil dimers. Our results indicate that vertical interactions can exert a substantial impact on pairing specificity, and that the influence of the d'-a-d' triad depends on the lateral a' contact within the local KIH motif. Structure-informed bioinformatic analyses of protein sequences reveal trends consistent with the thermodynamic data derived from our experimental model system in suggesting that heterotriads involving Leu and Ile are preferred over homotriads involving Leu and Ile.
Collapse
Affiliation(s)
- Jay D. Steinkruger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | - Derek N. Woolfson
- School of Chemistry, University of Bristol, Bristol, BS8 1TS UK
- School of Biochemistry, University of Bristol, Bristol BS8 1TD UK
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
66
|
Zhmurov A, Kononova O, Litvinov RI, Dima RI, Barsegov V, Weisel JW. Mechanical transition from α-helical coiled coils to β-sheets in fibrin(ogen). J Am Chem Soc 2012; 134:20396-402. [PMID: 22953986 DOI: 10.1021/ja3076428] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We characterized the α-to-β transition in α-helical coiled-coil connectors of the human fibrin(ogen) molecule using biomolecular simulations of their forced elongation and theoretical modeling. The force (F)-extension (X) profiles show three distinct regimes: (1) the elastic regime, in which the coiled coils act as entropic springs (F < 100-125 pN; X < 7-8 nm); (2) the constant-force plastic regime, characterized by a force-plateau (F ≈ 150 pN; X ≈ 10-35 nm); and (3) the nonlinear regime (F > 175-200 pN; X > 40-50 nm). In the plastic regime, the three-stranded α-helices undergo a noncooperative phase transition to form parallel three-stranded β-sheets. The critical extension of the α-helices is 0.25 nm, and the energy difference between the α-helices and β-sheets is 4.9 kcal/mol per helical pitch. The soft α-to-β phase transition in coiled coils might be a universal mechanism underlying mechanical properties of filamentous α-helical proteins.
Collapse
Affiliation(s)
- Artem Zhmurov
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | | | | | | | | | | |
Collapse
|
67
|
Gochin M. A suite of modular fluorescence assays interrogate the human immunodeficiency virus glycoprotein-41 coiled coil and assist in determining binding mechanism of low molecular weight fusion inhibitors. Assay Drug Dev Technol 2012; 10:407-16. [PMID: 22897493 DOI: 10.1089/adt.2012.464] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Several different segments of the gp41 N-heptad repeat coiled coil have been constructed using N-terminal bipyridyl modification of composite peptides and inducing trimerization by adding ferrous ions. These metallopeptides act as receptors in fluorescence-binding assays with corresponding fluorescently labeled C-peptide probes. The Fe(II) coordination complex quenches C-peptide fluorescence upon binding, and reversal of quenching by a small molecule inhibitor can be used to obtain the inhibitor-binding constant. A total of 10 peptide pairs targeting 25-46 residue segments of the coiled coil were constructed, with C-peptide probes of different lengths and binding affinities. The result is a suite of assays for exploring binding in the mM to nM range to any desired region of the coiled coil, including the hydrophobic pocket (HP), extended regions on either side of the pocket, or a region associated with T20 resistance mutations. These assays are high-throughput ready, and could be used to discover novel compounds binding along various regions of the gp41 coiled coil groove. They were used to evaluate a sub-μM low molecular weight fusion inhibitor, resulting in the finding that the molecule bound specifically to the HP and attained its potency from a low off-rate.
Collapse
Affiliation(s)
- Miriam Gochin
- Department of Basic Science, Touro University-California, Vallejo, California, USA
| |
Collapse
|
68
|
Wang PSP, Craig CJ, Schepartz A. Relationship between side-chain branching and stoichiometry in β(3)-peptide bundles. Tetrahedron 2012; 68:4342-4345. [PMID: 22822272 DOI: 10.1016/j.tet.2012.03.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The stability and stoichiometry of β(3)-peptide bundles is influenced by side-chain identity. β(3)-peptides containing β(3)-homoleucine on one helical face assemble into octamers, whereas those containing β(3)-homovaline form tetramers. From a structural perspective, the side chains of β(3)-homoleucine and β(3)-homovaline differ in terms of both side-chain length and γ-carbon branching. To evaluate the extent to which these two parameters control β(3)-peptide bundle stoichiometry, we synthesized the β(3)-peptide Acid-3Y, which contains β(3)-homoisoleucine in place of β(3)-homoleucine or β(3)-homovaline. Acid-3Y assembles into a stable tetramer whose stability resembles that of the previously characterized Acid-VY tetramer. These results suggest that β(3)-peptide bundle stoichiometry is dominated by the presence or absence of γ-carbon branching on core side chains.
Collapse
Affiliation(s)
- Pam Shou-Ping Wang
- Department of Chemistry, Yale University, 275 Prospect St., New Haven, CT 06520-8107
| | | | | |
Collapse
|
69
|
Quantifying the fraction of alanine residues in an α-helical conformation in hornet silk using solid-state NMR. Polym J 2012. [DOI: 10.1038/pj.2012.93] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
70
|
Murase S, Ishino S, Ishino Y, Tanaka T. Control of enzyme reaction by a designed metal-ion-dependent α-helical coiled-coil protein. J Biol Inorg Chem 2012; 17:791-9. [PMID: 22466407 DOI: 10.1007/s00775-012-0896-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/20/2012] [Indexed: 01/01/2023]
Abstract
Regulation of protein function by external stimuli is a fascinating target for de novo design. We have constructed a peptide that assembles into a homotrimer in the presence of metal ions, such as Ni(2+), Cu(2+), and Zn(2+). We fused the peptide construct to the DNA-binding domain (DBD) of the heat shock factor from Saccharomyces cerevisiae, which binds tandem repeats of the heat shock element (HSE). However, the fusion protein bound to the natural three tandem HSEs even in the absence of metal ions, although mainly as the dimerized protein. Using "skipped" HSEs containing six additional nucleotides inserted between two adjacent HSEs, to prevent interactions between the DBDs, we found the fusion protein bound to the new DNA target in a metal-ion-dependent manner, as monitored by a HindIII protection assay. The fusion protein containing two metal binding sites in the metal-ion-controlled domain inhibited RNA transcription by T7 RNA polymerase in the presence of metal ions, in a template containing skipped HSEs downstream of the T7 promoter. The designed protein therefore regulates the functions of the enzyme in a metal-ion-dependent manner.
Collapse
Affiliation(s)
- Shigeo Murase
- Department of Material Sciences, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-chou, Nagoya, 466-8555, Japan
| | | | | | | |
Collapse
|
71
|
Steinkruger JD, Bartlett GJ, Hadley EB, Fay L, Woolfson DN, Gellman SH. The d'--d--d' vertical triad is less discriminating than the a'--a--a' vertical triad in the antiparallel coiled-coil dimer motif. J Am Chem Soc 2012; 134:2626-33. [PMID: 22296518 DOI: 10.1021/ja208855x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Elucidating relationships between the amino-acid sequences of proteins and their three-dimensional structures, and uncovering non-covalent interactions that underlie polypeptide folding, are major goals in protein science. One approach toward these goals is to study interactions between selected residues, or among constellations of residues, in small folding motifs. The α-helical coiled coil has served as a platform for such studies because this folding unit is relatively simple in terms of both sequence and structure. Amino acid side chains at the helix-helix interface of a coiled coil participate in so-called "knobs-into-holes" (KIH) packing whereby a side chain (the knob) on one helix inserts into a space (the hole) generated by four side chains on a partner helix. The vast majority of sequence-stability studies on coiled-coil dimers have focused on lateral interactions within these KIH arrangements, for example, between an a position on one helix and an a' position of the partner in a parallel coiled-coil dimer, or between a--d' pairs in an antiparallel dimer. More recently, it has been shown that vertical triads (specifically, a'--a--a' triads) in antiparallel dimers exert a significant impact on pairing preferences. This observation provides impetus for analysis of other complex networks of side-chain interactions at the helix-helix interface. Here, we describe a combination of experimental and bioinformatics studies that show that d'--d--d' triads have much less impact on pairing preference than do a'--a--a' triads in a small, designed antiparallel coiled-coil dimer. However, the influence of the d'--d--d' triad depends on the lateral a'--d interaction. Taken together, these results strengthen the emerging understanding that simple pairwise interactions are not sufficient to describe side-chain interactions and overall stability in antiparallel coiled-coil dimers; higher-order interactions must be considered as well.
Collapse
Affiliation(s)
- Jay D Steinkruger
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
72
|
Miserez A, Li Y, Cagnon J, Weaver JC, Waite JH. Four-stranded coiled-coil elastic protein in the byssus of the giant clam, Tridacna maxima. Biomacromolecules 2012; 13:332-41. [PMID: 22181348 DOI: 10.1021/bm2013394] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An elastic protein with a secondary structure distinct from all well-known load-bearing proteins is found in the byssus of the giant clam, Tridacna maxima . The byssus consists of a bundle of hundreds of individual threads, each measuring about about 100 μm in diameter, which exhibit a tendon-like mechanical response. The amino acid composition of Tridacna byssus, however, is unlike tendon collagen, lacking high glycine, proline, and hydroxyproline. Wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS) measurements suggest that the constituent nanofibrils of the byssal threads are distinct from known secondary structure motifs previously reported for elastic proteins including the collagen triple-helix, the β-sheet nanocrystalline domains of silks, or the double-stranded coiled-coil regions of intermediate filaments. Instead, X-ray diffraction data indicate a structural organization in which four coiled-coil α-helices form a stable rope-like structure, which then further pack in a pseudohexagonal lattice to form nanofibrils. Amino acid composition analysis shows unusually high concentrations of acidic as well as basic residues, suggesting that the four-helix structure is stabilized by strong ionic interactions between oppositely charged residues in neighboring strands. The composition also suggests additional stabilization by disulfide cross-linking. On a larger scale, scanning and conventional transmission electron microscope (STEM and TEM) observations indicate that the nanofibrils exhibit an alternating periodicity of about 500 nm along the axial direction. A molecular model that combines the mechanical properties with the structural characteristics of the Tridacna byssal threads is proposed.
Collapse
Affiliation(s)
- Ali Miserez
- Schools of Materials Science and Engineering and Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.
| | | | | | | | | |
Collapse
|
73
|
Knodler LA, Ibarra JA, Pérez-Rueda E, Yip CK, Steele-Mortimer O. Coiled-coil domains enhance the membrane association of Salmonella type III effectors. Cell Microbiol 2011; 13:1497-517. [PMID: 21679290 PMCID: PMC3418822 DOI: 10.1111/j.1462-5822.2011.01635.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coiled-coil domains in eukaryotic and prokaryotic proteins contribute to diverse structural and regulatory functions. Here we have used in silico analysis to predict which proteins in the proteome of the enteric pathogen, Salmonella enterica serovar Typhimurium, harbour coiled-coil domains. We found that coiled-coil domains are especially prevalent in virulence-associated proteins, including type III effectors. Using SopB as a model coiled-coil domain type III effector, we have investigated the role of this motif in various aspects of effector function including chaperone binding, secretion and translocation, protein stability, localization and biological activity. Compared with wild-type SopB, SopB coiled-coil mutants were unstable, both inside bacteria and after translocation into host cells. In addition, the putative coiled-coil domain was required for the efficient membrane association of SopB in host cells. Since many other Salmonella effectors were predicted to contain coiled-coil domains, we also investigated the role of this motif in their intracellular targeting in mammalian cells. Mutation of the predicted coiled-coil domains in PipB2, SseJ and SopD2 also eliminated their membrane localization in mammalian cells. These findings suggest that coiled-coil domains represent a common membrane-targeting determinant for Salmonella type III effectors.
Collapse
Affiliation(s)
- Leigh A Knodler
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA.
| | | | | | | | | |
Collapse
|
74
|
Kushner AM, Guan Z. Modulares Design in natürlichen und biomimetischen elastischen Materialien. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006496] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
75
|
Kushner AM, Guan Z. Modular design in natural and biomimetic soft materials. Angew Chem Int Ed Engl 2011; 50:9026-57. [PMID: 21898722 DOI: 10.1002/anie.201006496] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Indexed: 11/09/2022]
Abstract
Under eons of evolutionary and environmental pressure, biological systems have developed strong and lightweight peptide-based polymeric materials by using the 20 naturally occurring amino acids as principal monomeric units. These materials outperform their man-made counterparts in the following ways: 1) multifunctionality/tunability, 2) adaptability/stimuli-responsiveness, 3) synthesis and processing under ambient and aqueous conditions, and 4) recyclability and biodegradability. The universal design strategy that affords these advanced properties involves "bottom-up" synthesis and modular, hierarchical organization both within and across multiple length-scales. The field of "biomimicry"-elucidating and co-opting nature's basic material design principles and molecular building blocks-is rapidly evolving. This Review describes what has been discovered about the structure and molecular mechanisms of natural polymeric materials, as well as the progress towards synthetic "mimics" of these remarkable systems.
Collapse
Affiliation(s)
- Aaron M Kushner
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | | |
Collapse
|
76
|
Wagner C, Polke M, Gerlach RG, Linke D, Stierhof YD, Schwarz H, Hensel M. Functional dissection of SiiE, a giant non-fimbrial adhesin of Salmonella enterica. Cell Microbiol 2011; 13:1286-301. [PMID: 21729227 DOI: 10.1111/j.1462-5822.2011.01621.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Salmonella enterica deploys the giant non-fimbrial adhesin SiiE to adhere to the apical side of polarized epithelial cells. The establishment of close contact is a prerequisite for subsequent invasion mediated by translocation of effector proteins of the Salmonella Pathogenicity Island 1 (SPI1)-encoded type III secretion system (T3SS). Although SiiE is secreted into the culture medium, the adhesin is retained on the bacterial envelope in the phase of highest bacterial invasiveness. To dissect the structural requirements for secretion, retention and adhesive properties, comprehensive deletional and functional analyses of various domains of SiiE were performed. We observed that β-sheet and coiled-coil domains in the N-terminal moiety of SiiE are required for the control of SiiE retention on the surface and co-ordinated release. These results indicate a novel molecular mechanism for the control of surface display of a T1SS-secreted adhesin that acts cooperatively with the SPI1-T3SS.
Collapse
Affiliation(s)
- Carolin Wagner
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | | | | | | | | | | | | |
Collapse
|
77
|
Alborghetti MR, Furlan AS, Kobarg J. FEZ2 has acquired additional protein interaction partners relative to FEZ1: functional and evolutionary implications. PLoS One 2011; 6:e17426. [PMID: 21408165 PMCID: PMC3050892 DOI: 10.1371/journal.pone.0017426] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/04/2011] [Indexed: 12/16/2022] Open
Abstract
Background The FEZ (fasciculation and elongation protein zeta) family designation was purposed by Bloom and Horvitz by genetic analysis of C. elegans unc-76. Similar human sequences were identified in the expressed sequence tag database as FEZ1 and FEZ2. The unc-76 function is necessary for normal axon fasciculation and is required for axon-axon interactions. Indeed, the loss of UNC-76 function results in defects in axonal transport. The human FEZ1 protein has been shown to rescue defects caused by unc-76 mutations in nematodes, indicating that both UNC-76 and FEZ1 are evolutionarily conserved in their function. Until today, little is known about FEZ2 protein function. Methodology/Principal Findings Using the yeast two-hybrid system we demonstrate here conserved evolutionary features among orthologs and non-conserved features between paralogs of the FEZ family of proteins, by comparing the interactome profiles of the C-terminals of human FEZ1, FEZ2 and UNC-76 from C. elegans. Furthermore, we correlate our data with an analysis of the molecular evolution of the FEZ protein family in the animal kingdom. Conclusions/Significance We found that FEZ2 interacted with 59 proteins and that of these only 40 interacted with FEZ1. Of the 40 FEZ1 interacting proteins, 36 (90%), also interacted with UNC-76 and none of the 19 FEZ2 specific proteins interacted with FEZ1 or UNC-76. This together with the duplication of unc-76 gene in the ancestral line of chordates suggests that FEZ2 is in the process of acquiring new additional functions. The results provide also an explanation for the dramatic difference between C. elegans and D. melanogaster unc-76 mutants on one hand, which cause serious defects in the nervous system, and the mouse FEZ1 -/- knockout mice on the other, which show no morphological and no strong behavioural phenotype. Likely, the ubiquitously expressed FEZ2 can completely compensate the lack of neuronal FEZ1, since it can interact with all FEZ1 interacting proteins and additional 19 proteins.
Collapse
Affiliation(s)
- Marcos R. Alborghetti
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
| | - Ariane S. Furlan
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
| | - Jörg Kobarg
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
- * E-mail:
| |
Collapse
|
78
|
King WJ, Murphy WL. Bioinspired conformational changes: an adaptable mechanism for bio-responsive protein delivery. Polym Chem 2011. [DOI: 10.1039/c0py00244e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
79
|
Dexter AF. Interfacial and emulsifying properties of designed β-strand peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:17997-18007. [PMID: 21058648 DOI: 10.1021/la103471j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The structural and surfactant properties of a series of amphipathic β-strand peptides have been studied as a function of pH. Each nine-residue peptide has a framework of hydrophobic proline and phenylalanine amino acid residues, alternating with acidic or basic amino acids to give a sequence closely related to known β-sheet formers. Surface activity, interfacial mechanical properties, electronic circular dichroism (ECD), droplet sizing and zeta potential measurements were used to gain an overview of the peptide behavior as the molecular charge varied from ±4 to 0 with pH. ECD data suggest that the peptides form polyproline-type helices in bulk aqueous solution when highly charged, but may fold to β-hairpins rather than β-sheets when uncharged. In the uncharged state, the peptides adsorb readily at a macroscopic fluid interface to form mechanically strong interfacial films, but tend to give large droplet sizes on emulsification, apparently due to flocculation at a low droplet zeta potential. In contrast, highly charged peptide states gave a low interfacial coverage, but retained good emulsifying activity as judged by droplet size. Best emulsification was generally seen for intermediate charged states of the peptides, possibly representing a compromise between droplet zeta potential and interfacial binding affinity. The emulsifying properties of β-strand peptides have not been previously reported. Understanding the interfacial properties of such peptides is important to their potential development as biosurfactants.
Collapse
Affiliation(s)
- Annette F Dexter
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia QLD 4072, Australia.
| |
Collapse
|
80
|
Zaytsev DV, Xie F, Mukherjee M, Bludin A, Demeler B, Breece RM, Tierney DL, Ogawa MY. Nanometer to millimeter scale peptide-porphyrin materials. Biomacromolecules 2010; 11:2602-9. [PMID: 20804210 PMCID: PMC2952671 DOI: 10.1021/bm100540t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AQ-Pal14 is a 30-residue polypeptide that was designed to form an α-helical coiled coil that contains a metal-binding 4-pyridylalanine residue on its solvent-exposed surface. However, characterization of this peptide shows that it exists as a three-stranded coiled coil, not a two-stranded one as predicted from its design. Reaction with cobalt(III) protoporphyrin IX (Co-PPIX) produces a six-coordinate Co-PPIX(AQ-Pal14)(2) species that creates two coiled-coil oligomerization domains coordinated to opposite faces of the porphyrin ring. It is found that this species undergoes a buffer-dependent self-assembly process: nanometer-scale globular materials were formed when these components were reacted in unbuffered H(2)O, while millimeter-scale, rod-like materials were prepared when the reaction was performed in phosphate buffer (20 mM, pH 7). It is suggested that assembly of the globular material is dictated by the conformational properties of the coiled-coil forming AQ-Pal14 peptide, whereas that of the rod-like material involves interactions between Co-PPIX and phosphate ion.
Collapse
Affiliation(s)
- Daniil V. Zaytsev
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403
| | - Fei Xie
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403
| | - Madmuhita Mukherjee
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403
| | - Alexey Bludin
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403
| | - Borries Demeler
- Center for Analytical Ultracentrifugation of Macromolecular Assemblies, University of Texas Health Science Center, San Antonio, TX 78229
| | - Robert M. Breece
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - David L. Tierney
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Michael Y. Ogawa
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403
| |
Collapse
|
81
|
Brown JH. How sequence directs bending in tropomyosin and other two-stranded alpha-helical coiled coils. Protein Sci 2010; 19:1366-75. [PMID: 20506487 PMCID: PMC2974828 DOI: 10.1002/pro.415] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 04/15/2010] [Accepted: 05/02/2010] [Indexed: 12/31/2022]
Abstract
A quantitative analysis of the direction of bending of two-stranded alpha-helical coiled coils in crystal structures has been carried out to help determine how the amino acid sequence of the coiled coil influences its shape and function. Change in the axial staggering of the coiled coil, occurring at the boundaries of either clusters of core alanines in tropomyosin or of clusters of core bulky residues in the myosin rod, causes bending within the plane of the local dimer. The results also reveal that large gaps in the core of the coiled coil, which are seen for small core residues near large core residues or for unbranched core residues near canonical branched core residues, are correlated with bending out of the local dimeric plane. Comparison of tropomyosin structures determined in independent crystal environments provides further evidence for the concept that sequence directs the bending of the coiled coil, but that crystal environment is at least as important as sequence for determining the magnitude of bending. Tropomyosin thus appears to consist of more directionally restrained hinge-like joints rather than directionally variable universal joints, which helps account for and predicts the geometric and dynamic nature of its binding to F-actin.
Collapse
Affiliation(s)
- Jerry H Brown
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| |
Collapse
|
82
|
Steinkruger JD, Woolfson DN, Gellman SH. Side-chain pairing preferences in the parallel coiled-coil dimer motif: insight on ion pairing between core and flanking sites. J Am Chem Soc 2010; 132:7586-8. [PMID: 20465308 PMCID: PMC2898205 DOI: 10.1021/ja100080q] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new strategy for rapid evaluation of sequence-stability relationships in the parallel coiled-coil motif is described. The experimental design relies upon thiol-thioester exchange equilibria, an approach that is particularly well suited to examination of heterodimeric systems. Our model system has been benchmarked by demonstrating that it can quantitatively reproduce previously reported trends in interhelical a-a' side-chain pairing preferences at the coiled-coil interface. This new tool has been used to explore the role of Coulombic interactions between a core position on one helix and a flanking position on the other helix (a-g'). This type of interhelical contact has received relatively little attention to date. Our results indicate that such interactions can influence coiled-coil partner preferences.
Collapse
Affiliation(s)
- Jay D. Steinkruger
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 and School of Chemistry, University of Bristol, Bristol, BS8 1TS UK and Department of Biochemistry, University of Bristol, Bristol, BS8 1TD UK
| | - Derek N. Woolfson
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 and School of Chemistry, University of Bristol, Bristol, BS8 1TS UK and Department of Biochemistry, University of Bristol, Bristol, BS8 1TD UK
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 and School of Chemistry, University of Bristol, Bristol, BS8 1TS UK and Department of Biochemistry, University of Bristol, Bristol, BS8 1TD UK
| |
Collapse
|
83
|
|
84
|
|
85
|
Pedmale UV, Celaya RB, Liscum E. Phototropism: mechanism and outcomes. THE ARABIDOPSIS BOOK 2010; 8:e0125. [PMID: 22303252 PMCID: PMC3244944 DOI: 10.1199/tab.0125] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plants have evolved a wide variety of responses that allow them to adapt to the variable environmental conditions in which they find themselves growing. One such response is the phototropic response - the bending of a plant organ toward (stems and leaves) or away from (roots) a directional blue light source. Phototropism is one of several photoresponses of plants that afford mechanisms to alter their growth and development to changes in light intensity, quality and direction. Over recent decades much has been learned about the genetic, molecular and cell biological components involved in sensing and responding to phototropic stimuli. Many of these advances have been made through the utilization of Arabidopsis as a model for phototropic studies. Here we discuss such advances, as well as studies in other plant species where appropriate to the discussion of work in Arabidopsis.
Collapse
Affiliation(s)
- Ullas V. Pedmale
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - R. Brandon Celaya
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- Department of Molecular, Cellular and Developmental Biology, University of California — Los Angeles, 3206 Life Science Bldg, 621 Charles E Young Dr, Los Angeles, CA 90095
| | - Emmanuel Liscum
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- Address correspondence to
| |
Collapse
|
86
|
Shiga D, Nakane D, Inomata T, Masuda H, Oda M, Noda M, Uchiyama S, Fukui K, Takano Y, Nakamura H, Mizuno T, Tanaka T. The effect of the side chain length of Asp and Glu on coordination structure of Cu(2+) in a de novo designed protein. Biopolymers 2009; 91:907-16. [PMID: 19598226 DOI: 10.1002/bip.21277] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Metal ions in proteins are important not only for the formation of the proper structures but also for various biological activities. For biological functions such as hydrolysis and oxidation, metal ions often adopt unusual coordination structures. We constructed a stable scaffold for metal binding to create distorted metal coordination structures. A stable four stranded alpha-helical coiled-coil structure was used as the scaffold, and the metal binding site was in the cavity created at the center of the structure. Two His residues and one Asp or Glu residue were used to coordinate the metal ions, AM2D and AM2E, respectively. Cu(2+) bound to AM2D with an equatorial planar coordination structure with two His, one Asp, and H(2)O as detected by electron spin resonance and UV spectral analyzes. On the other hand, Cu(2+) had a slightly distorted square planar structure when it bound two His and Glu in AM2E, due to the longer side-chain of the Glu residue as compared to the Asp residue. Computational analysis also supported the distorted coordination structure of Cu(2+) in AM2E. This construct should be useful to create various coordinations of metal ions for catalytic functions.
Collapse
Affiliation(s)
- Daigo Shiga
- Department of Material Sciences, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-chou, Nagoya 466-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Xu Q, Minor DL. Crystal structure of a trimeric form of the K(V)7.1 (KCNQ1) A-domain tail coiled-coil reveals structural plasticity and context dependent changes in a putative coiled-coil trimerization motif. Protein Sci 2009; 18:2100-14. [PMID: 19693805 DOI: 10.1002/pro.224] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Coiled-coils are widespread protein-protein interaction motifs typified by the heptad repeat (abcdefg)(n) in which "a" and "d" positions are hydrophobic residues. Although identification of likely coiled-coil sequences is robust, prediction of strand order remains elusive. We present the X-ray crystal structure of a short form (residues 583-611), "Q1-short," of the coiled-coil assembly specificity domain from the voltage-gated potassium channel Kv7.1 (KCNQ1) determined at 1.7 A resolution. Q1-short lacks one and half heptads present in a previously studied tetrameric coiled-coil construct, Kv7.1 585-621, "Q1-long." Surprisingly, Q1-short crystallizes as a trimer. In solution, Q1-short self-assembles more poorly than Q1-long and depends on an R-h-x-x-h-E motif common to trimeric coiled-coils. Addition of native sequences that include "a" and "d" positions C-terminal to Q1-short overrides the R-h-x-x-h-E motif influence and changes assembly state from a weakly associated trimer to a strongly associated tetramer. These data provide a striking example of a naturally occurring amino sequence that exhibits context-dependent folding into different oligomerization states, a three-stranded versus a four-stranded coiled-coil. The results emphasize the degenerate nature of coiled-coil energy landscapes in which small changes can have drastic effects on oligomerization. Discovery of these properties in an ion channel assembly domain and prevalence of the R-h-x-x-h-E motif in coiled-coil assembly domains of a number of different channels that are thought to function as tetrameric assemblies raises the possibility that such sequence features may be important for facilitating the assembly of intermediates en route to the final native state.
Collapse
Affiliation(s)
- Qiang Xu
- Cardiovascular Research Institute, University of California, San Francisco, 94158-2330, USA
| | | |
Collapse
|
88
|
McFarlane AA, Orriss GL, Stetefeld J. The use of coiled-coil proteins in drug delivery systems. Eur J Pharmacol 2009; 625:101-7. [PMID: 19835864 PMCID: PMC7094320 DOI: 10.1016/j.ejphar.2009.05.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/08/2009] [Accepted: 05/19/2009] [Indexed: 11/17/2022]
Abstract
The coiled-coil motif is found in approximately 10% of all protein sequences and is responsible for the oligomerization of proteins in a highly specific manner. Coiled-coil proteins exhibit a large diversity of function (e.g. gene regulation, cell division, membrane fusion, drug extrusion) thus demonstrating the significance of oligomerization in biological systems. The classical coiled-coil domain comprises a series of consecutive heptad repeats in the protein sequence that are readily identifiable by the location of hydrophobic residues at the 'a' and 'd' positions. This gives rise to an alpha-helical structure in which between 2 and 7 helices are wound around each other in the form of a left-handed supercoil. More recently, structures of coiled-coil domains have been solved that have an 11 residue (undecad) or a 15 residue (pentadecad) repeat, which show the formation of a right-handed coiled-coil structure. The high stability of coiled coils, together with the presence of large internal cavities in the pentameric coiled-coil domain of cartilage oligomerization matrix protein (COMPcc) and the tetrameric right-handed coiled coil of Staphylothermus marinus (RHCC) has led us and others to look for therapeutic applications. In this review, we present evidence in support of a vitamin A and vitamin D(3) binding activity for the pentameric COMPcc molecule. In addition, we will discuss exciting new developments which show that the RHCC tetramer is capable of binding the major anticancer drug cisplatin and the ability to fuse it to an antigenic epitope for the development of a new generation of vaccines.
Collapse
Affiliation(s)
- Ainsley A McFarlane
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2.
| | | | | |
Collapse
|
89
|
De Greef TFA, Smulders MMJ, Wolffs M, Schenning APHJ, Sijbesma RP, Meijer EW. Supramolecular Polymerization. Chem Rev 2009; 109:5687-754. [DOI: 10.1021/cr900181u] [Citation(s) in RCA: 1841] [Impact Index Per Article: 115.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Tom F. A. De Greef
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Maarten M. J. Smulders
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Martin Wolffs
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Albert P. H. J. Schenning
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Rint P. Sijbesma
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - E. W. Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
90
|
Abstract
Chromosomal aberrations occur with great frequency and some specificity in leukemia and other hematologic malignancies. The most common outcome of these rearrangements is the formation of a fusion gene, comprising portions of 2 genes normally present in the cell. These fusion proteins are presumed to be oncogenic; in many cases, animal models have proven them to be oncogenic. One of the most promiscuous fusion partner genes is the newly identified NUP98 gene, located on chromosome 11p15.5, which to date has been observed fused to 15 different fusion partners. NUP98 encodes a 98 kD protein that is an important component of the nuclear pore complex, which mediates nucleo-cytoplasmic transport of protein and RNA. The fusion partners of NUP98 form 2 distinct groups: homeobox genes and non-homeobox genes. All NUP98 fusions join the N-terminal GLFG repeats of NUP98 to the C-terminal portion of the partner gene, which, in the case of the homeobox gene partners, includes the homeodomain. Clinical findings are reviewed here, along with the findings of several in vivo and in vitro models have been employed to investigate the mechanisms by which NUP98 fusion genes contribute to the pathogenesis of leukemia.
Collapse
MESH Headings
- Acute Disease
- Antineoplastic Agents/pharmacology
- Cell Transformation, Neoplastic/genetics
- Chromosome Breakage
- Chromosomes, Human, Pair 11/genetics
- DNA Topoisomerases, Type II/physiology
- Enzyme Inhibitors/pharmacology
- Genes, Homeobox
- Hematologic Neoplasms/genetics
- Hematologic Neoplasms/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/physiology
- Humans
- Leukemia/genetics
- Leukemia/metabolism
- Models, Genetic
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Nuclear Pore/physiology
- Nuclear Pore Complex Proteins/genetics
- Nuclear Pore Complex Proteins/physiology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Protein Structure, Tertiary
- Topoisomerase II Inhibitors
- Translocation, Genetic
Collapse
Affiliation(s)
- Christopher Slape
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Navy 8, Room 5101, Bethesda, Maryland, MD 20889-5105, USA
| | | |
Collapse
|
91
|
Wise JG, Vogel PD. Accommodating discontinuities in dimeric left-handed coiled coils in ATP synthase external stalks. Biophys J 2009; 96:2823-31. [PMID: 19348765 DOI: 10.1016/j.bpj.2008.12.3938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 11/19/2008] [Accepted: 12/17/2008] [Indexed: 11/16/2022] Open
Abstract
ATP synthases from coupling membranes are complex rotary motors that convert the energy of proton gradients across coupling membranes into the chemical potential of the beta-gamma anhydride bond of ATP. Proton movement within the ring of c subunits localized in the F(0)-sector drives gamma and epsilon rotation within the F(1)alpha(3)beta(3) catalytic core where substrates are bound and products are released. An external stalk composed of homodimeric subunits b(2) in Escherichia coli or heterodimeric bb' in photosynthetic synthases connects F(0) subunit a with F(1) subunits delta and most likely alpha. The external stalk resists rotation, and is of interest both functionally and structurally. Hypotheses that the external stalk contributes to the overall efficiency of the reaction through elastic coupling of rotational substeps, and that stalks form staggered, right-handed coiled coils, are investigated here. We report on different structures that accommodate heptad discontinuities with either local or global underwinding. Analyses of the knob-and-hole packing of the E. coli b(2) and Synechocystis bb' stalks strongly support the possibility that these proteins can adopt conventional left-handed coiled coils.
Collapse
Affiliation(s)
- John G Wise
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275, USA.
| | | |
Collapse
|
92
|
Jang SB, Kwon AR, Son WS, Park SJ, Lee BJ. Crystal Structure of Hypothetical Protein HP0062 (O24902_HELPY) from Helicobacter pylori at 1.65 A Resolution. J Biochem 2009; 146:535-40. [DOI: 10.1093/jb/mvp098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
93
|
Hayakawa T, Ito T, Wakamatsu J, Nishimura T, Hattori A. Myosin is solubilized in a neutral and low ionic strength solution containing l-histidine. Meat Sci 2009; 82:151-4. [DOI: 10.1016/j.meatsci.2009.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 12/10/2008] [Accepted: 01/04/2009] [Indexed: 10/21/2022]
|
94
|
Sharma G, Mavroidis C, Rege K, Yarmush ML, Budil D. Computational Studies of a Protein-based Nanoactuator for Nanogripping Applications. Int J Rob Res 2009. [DOI: 10.1177/0278364908100278] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The design hypothesis, architectures, and computational modeling of a novel peptide-based nanoactuator are presented in this paper. We engineered the α-helical coiled-coil portion of the yeast transcriptional activator peptide called GCN4 to obtain an environmentally responsive nanoactuator. The dimeric coiled-coil peptide consists of two identical approximately 4.5 nm long and approximately 3 nm wide polypeptide chains. The actuation mechanism depends on the modification of electrostatic charges along the peptide by varying the pH of the solution resulting in the reversible movement of helices and, therefore, creating the motion of an actuator. Using molecular dynamics simulations we showed that pH changes led to a reversible opening of up to 1.5 nm which is approximately 150% of the initial separation of the nanoactuator. We also investigated the forces generated by the nanoactuator upon pH actuation, using a new method based on a modified steered molecular dynamics technique. Owing to its open and close motion resembling that of tweezers, the new nanoactuator can potentially be used as a nanogripper in various nanomanipulation tasks such as detection and removal of heavy metal ions during nanofabrication processes or as a molecular switch.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Mechanical and Industrial Engineering, 360 Huntington Avenue, Northeastern University, Boston, MA 02115, USA
| | - Constantinos Mavroidis
- Department of Mechanical and Industrial Engineering, 360 Huntington Avenue, Northeastern University, Boston, MA 02115, USA,
| | - Kaushal Rege
- The Center for Engineering in Medicine (CEM), Massachusetts General Hospital and Harvard Medical School, 51 Blossom Street, Boston, MA 02114, USA, Department of Chemical Engineering, Arizona State University, Tempe, AZ, USA
| | - Martin L. Yarmush
- The Center for Engineering in Medicine (CEM), Massachusetts General Hospital and Harvard Medical School, 51 Blossom Street, Boston, MA 02114, USA
| | - David Budil
- Department of Chemistry and Chemical Biology, 60 Huntington Avenue, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
95
|
Tsai CW, Duggan PF, Jin AJ, MacDonald NJ, Kotova S, Lebowitz J, Hurt DE, Shimp RL, Lambert L, Miller LH, Long CA, Saul A, Narum DL. Characterization of a protective Escherichia coli-expressed Plasmodium falciparum merozoite surface protein 3 indicates a non-linear, multi-domain structure. Mol Biochem Parasitol 2009; 164:45-56. [PMID: 19073223 PMCID: PMC3633458 DOI: 10.1016/j.molbiopara.2008.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 09/09/2008] [Accepted: 11/07/2008] [Indexed: 11/25/2022]
Abstract
Immunization with a recombinant yeast-expressed Plasmodium falciparum merozoite surface protein 3 (MSP3) protected Aotus nancymai monkeys against a virulent challenge infection. Unfortunately, the production process for this yeast-expressed material was not optimal for human trials. In an effort to produce a recombinant MSP3 protein in a scaleable manner, we expressed and purified near-full-length MSP3 in Escherichia coli (EcMSP3). Purified EcMSP3 formed non-globular dimers as determined by analytical size-exclusion HPLC with in-line multi-angle light scatter and quasi-elastic light scatter detection and velocity sedimentation (R(h) 7.6+/-0.2nm and 6.9nm, respectively). Evaluation by high-resolution atomic force microscopy revealed non-linear asymmetric structures, with beaded domains and flexible loops that were recognized predominantly as dimers, although monomers and larger multimers were observed. The beaded substructure corresponds to predicted structural domains, which explains the velocity sedimentation results and improves the conceptual model of the protein. Vaccination with EcMSP3 in Freund's adjuvant-induced antibodies that recognized native MSP3 in parasitized erythrocytes by an immunofluorescence assay and gave delayed time to treatment in a group of Aotus monkeys in a virulent challenge infection with the FVO strain of P. falciparum. Three of the seven monkeys vaccinated with EcMSP3 had low peak parasitemias. EcMSP3, which likely mimics the native MSP3 structure located on the merozoite surface, is a viable candidate for inclusion in a multi-component malaria vaccine.
Collapse
Affiliation(s)
- Chiawei W. Tsai
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, United States
| | - Peter F. Duggan
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, United States
| | - Albert J. Jin
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, United States
| | - Nicholas J. MacDonald
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, United States
| | - Svetlana Kotova
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, United States
| | - Jacob Lebowitz
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, United States
| | - Darrell E. Hurt
- Bioinformatics and Scientific IT Program, Office of Technology Information Systems, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, United States
| | - Richard L. Shimp
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, United States
| | - Lynn Lambert
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, United States
| | - Louis H. Miller
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, United States
| | - Carole A. Long
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, United States
| | - Allan Saul
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, United States
| | - David L. Narum
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, United States
| |
Collapse
|
96
|
Pouthier V, Tsybin YO. Amide-I relaxation-induced hydrogen bond distortion: An intermediate in electron capture dissociation mass spectrometry of alpha-helical peptides? J Chem Phys 2009; 129:095106. [PMID: 19044894 DOI: 10.1063/1.2965525] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Electron capture dissociation (ECD) of peptides and proteins in the gas phase is a powerful tool in tandem mass spectrometry whose current description is not sufficient to explain many experimental observations. Here, we attempt to bridge the current understanding of the vibrational dynamics in alpha-helices with the recent experimental results on ECD of alpha-helical peptides through consideration of amide-I relaxation-induced hydrogen bond distortion. Based on a single spine of H-bonded peptide units, we assume that charge neutralization upon electron capture by a charged alpha-helix excites a nearby amide-I mode, which relaxes over a few picoseconds due to Fermi resonances with intramolecular normal modes. The amide-I population plays the role of an external force, which drives the displacements of each peptide unit. It induces a large immobile contraction of the H bonds surrounding the excited site whose lifetime is about the amide-I lifetime. In addition, it creates two lattice deformations describing H bond stretchings, which propagate from the excited region toward both termini of the alpha-helix, get reflected at the termini and yield H bond contractions which move back to the excited region. Consequently, we show that H bonds experience rather large contractions whose amplitude depends on general features such as the position of the amide-I mode, the peptide length and the H bond force constants. When an H bond contraction is sufficiently large, it may promote a hydrogen atom transfer between two neighboring peptide units leading to the formation of a radical at charge site remote carbonyl carbon which is known to be a precursor to the rupture of the corresponding N[Single Bond]C(alpha) bond. The introduced here way of excitation energy generation and transfer may significantly advance ECD understanding and complement existing ECD mechanisms.
Collapse
Affiliation(s)
- Vincent Pouthier
- Institut UTINAM, Universite de Franche-Comte, UMR CNRS 6213, 25030 Besancon cedex, France.
| | | |
Collapse
|
97
|
Sakurai Y, Mizuno T, Hiroaki H, Oku JI, Tanaka T. Optimization of aromatic side chain size complementarity in the hydrophobic core of a designed coiled-coil. ACTA ACUST UNITED AC 2008; 66:387-94. [PMID: 16316455 DOI: 10.1111/j.1399-3011.2005.00304.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The coiled-coil structure plays an important roles, especially in protein assembly. Previously we constructed AAB-type heterotrimeric coiled-coils by manipulating the packing in the hydrophobic core using Trp and Ala residues, where one Trp and two Ala residues were placed in the hydrophobic core instead of three Ile residues. To optimize the packing complementarity in the hydrophobic core, we investigated the effects of introducing various aromatic amino acids on the formation of an AAB-type heterotrimeric coiled-coil, by circular dichroism, thermal stability, and nuclear magnetic resonance (NMR) studies. We found that the Phe residue was more suitable for heterotrimeric coiled-coil formation than the Trp residue, when combined with two Ala residues, whereas the Tyr and His residues did not induce the coiled-coil structure efficiently.
Collapse
Affiliation(s)
- Y Sakurai
- Department of Material Sciences, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-chou, Nagoya 466-8555, Japan
| | | | | | | | | |
Collapse
|
98
|
Kashiwada A, Matsuda K, Mizuno T, Tanaka T. Construction of a pH-Responsive Artificial Membrane Fusion System by Using Designed Coiled-Coil Polypeptides. Chemistry 2008; 14:7343-50. [DOI: 10.1002/chem.200701726] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
99
|
Steven A, Belnap D. Electron microscopy and image processing: an essential tool for structural analysis of macromolecules. ACTA ACUST UNITED AC 2008; Chapter 17:17.2.1-17.2.39. [PMID: 18429276 DOI: 10.1002/0471140864.ps1702s42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Macromolecular electron microscopy (EM) deals with macromolecular complexes and their placement within the cell-linking the molecular and cellular worlds as a bridge between atomic-resolution X-ray crystallographic or NMR studies and lower resolution light microscopy. The amount of specimen required is typically 10(2) to 10(3) times less than for X-ray crystallography or NMR. Electron micrographs of frozen-hydrated specimens portray native structures. Computer averaging yields enhanced images with reduced noise. Three-dimensional reconstructions may be computed from multiple views. Under favorable circumstances, resolutions of 7 to 10 A are achieved. Fitting atomic-resolution coordinates of components into three-dimensional density maps gives pseudo-atomic models of a complex's structure and interactions. Time-resolved experiments describe conformational changes. Electron tomography allows reconstruction of pleiomorphic complexes and sub-cellular structures. Electron crystallography has produced near-atomic resolution models of two-dimensional arrays, notably of membrane proteins.
Collapse
|
100
|
Motré A, Li Y, Kong H. Enhancing helicase-dependent amplification by fusing the helicase with the DNA polymerase. Gene 2008; 420:17-22. [DOI: 10.1016/j.gene.2008.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 04/16/2008] [Accepted: 04/25/2008] [Indexed: 10/22/2022]
|