51
|
Zaraket H, Kondo H, Hibino A, Yagami R, Odagiri T, Takemae N, Tsunekuni R, Saito T, Myint YY, Kyaw Y, Oo KY, Tin HH, Lin N, Anh NP, Hang NLK, Mai LQ, Hassan MR, Shobugawa Y, Tang J, Dbaibo G, Saito R. Full Genome Characterization of Human Influenza A/H3N2 Isolates from Asian Countries Reveals a Rare Amantadine Resistance-Conferring Mutation and Novel PB1-F2 Polymorphisms. Front Microbiol 2016; 7:262. [PMID: 27014195 PMCID: PMC4779883 DOI: 10.3389/fmicb.2016.00262] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/17/2016] [Indexed: 11/21/2022] Open
Abstract
Influenza A viruses evolve at a high rate requiring continuous monitoring to maintain the efficacy of vaccines and antiviral drugs. We performed next generation sequencing analysis of 100 influenza A/H3N2 isolates collected in four Asian countries (Japan, Lebanon, Myanmar, and Vietnam) during 2012-2015. Phylogenetic analysis revealed several reassortment events leading to the circulation of multiple clades within the same season. This was particularly evident during the 2013 and 2013/2014 seasons. Importantly, our data showed that certain lineages appeared to be fitter and were able to persist into the following season. The majority of A/H3N2 viruses continued to harbor the M2-S31N mutation conferring amantadine-resistance. In addition, an S31D mutation in the M2-protein, conferring a similar level of resistance as the S31N mutation, was detected in three isolates obtained in Japan during the 2014/2015 season. None of the isolates possessed the NA-H274Y mutation conferring oseltamivir-resistance, though a few isolates were found to contain mutations at the catalytic residue 151 (D151A/G/N or V) of the NA protein. These variations did not alter the susceptibility to neuraminidase inhibitors and were not detected in the original clinical specimens, suggesting that they had been acquired during their passage in MDCK cells. Novel polymorphisms were detected in the PB1-F2 open-reading frame resulting in truncations in the protein of 24-34 aminoacids in length. Thus, this study has demonstrated the utility of monitoring the full genome of influenza viruses to allow the detection of the potentially fittest lineages. This enhances our ability to predict the strain(s) most likely to persist into the following seasons and predict the potential degree of vaccine match or mismatch with the seasonal influenza season for that year. This will enable the public health and clinical teams to prepare for any related healthcare burden, depending on whether the vaccine match is predicted to be good or poor for that season.
Collapse
Affiliation(s)
- Hassan Zaraket
- Department of Pathology, Immunology, and Microbiology, Faculty of Medicine American University of BeirutBeirut, Lebanon
- Center for Infectious Disease Research, Faculty of Medicine American University of BeirutBeirut, Lebanon
| | - Hiroki Kondo
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
| | - Akinobu Hibino
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
| | - Ren Yagami
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
| | - Takashi Odagiri
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
| | - Nobuhiro Takemae
- Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research OrganizationIbaraki, Japan
| | - Ryota Tsunekuni
- Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research OrganizationIbaraki, Japan
| | - Takehiko Saito
- Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research OrganizationIbaraki, Japan
| | | | - Yi Yi Myint
- Department of Traditional MedicineNay Pyi Taw, Myanmar
| | | | - Khin Yi Oo
- National Health LaboratoryYangon, Myanmar
| | | | - Nay Lin
- Pyinmana Township HospitalNay Pyi Taw, Myanmar
| | | | | | - Le Quynh Mai
- National Institute of Hygiene and EpidemiologyHanoi, Vietnam
| | - Mohd R. Hassan
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
- Department of Community Health, Faculty of Medicine, UKM Medical CentreKuala Lumpur, Malaysia
| | - Yugo Shobugawa
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
| | - Julian Tang
- Clinical Microbiology, University Hospitals LeicesterLeicester, UK
- Department of Infection, Immunity and Inflammation, University of LeicesterLeceister, UK
| | - Ghassan Dbaibo
- Center for Infectious Disease Research, Faculty of Medicine American University of BeirutBeirut, Lebanon
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine and the Center for Infectious Diseases Research, American University of Beirut Medical CenterBeirut, Lebanon
| | - Reiko Saito
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
| |
Collapse
|
52
|
Takahashi T, Suzuki T. Low-pH Stability of Influenza A Virus Sialidase Contributing to Virus Replication and Pandemic. Biol Pharm Bull 2016; 38:817-26. [PMID: 26027822 DOI: 10.1248/bpb.b15-00120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spike glycoprotein neuraminidase (NA) of influenza A virus (IAV) has sialidase activity that cleaves the terminal sialic acids (viral receptors) from oligosaccharide chains of glycoconjugates. A new antigenicity of viral surface glycoproteins for humans has pandemic potential. We found "low-pH stability of sialidase activity" in NA. The low-pH stability can maintain sialidase activity under acidic conditions of pH 4-5. For human IAVs, NAs of all pandemic viruses were low-pH-stable, whereas those of almost all human seasonal viruses were not. The low-pH stability was dependent on amino acid residues near the active site, the calcium ion-binding site, and the subunit interfaces of the NA homotetramer, suggesting effects of the active site and the homotetramer on structural stability. IAVs with the low-pH-stable NA showed much higher virus replication rates than those of IAVs with low-pH-unstable NA, which was correlated with maintenance of sialidase activity under an endocytic pathway of the viral cell entry mechanism, indicating contribution of low-pH stability to high replication rates of pandemic viruses. The low-pH-stable NA of the 1968 H3N2 pandemic virus was derived from the low-pH-stable NA of H2N2 human seasonal virus, one of two types classified by both low-pH stability in N2 NA and a phylogenetic tree of N2 NA genes. The 2009 H1N1 pandemic virus acquired low-pH-stable NA by two amino acid substitutions at the early stage of the 2009 pandemic. It is thought that low-pH stability contributes to infection spread in a pandemic through enhancement of virus replication.
Collapse
Affiliation(s)
- Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences,
University of Shizuoka
| | | |
Collapse
|
53
|
Phillips AM, Shoulders MD. The Path of Least Resistance: Mechanisms to Reduce Influenza's Sensitivity to Oseltamivir. J Mol Biol 2016; 428:533-537. [PMID: 26748011 DOI: 10.1016/j.jmb.2015.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Angela M Phillips
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
54
|
Yun D, Jeong D, Cho E, Jung S. Colorimetric Detection of Some Highly Hydrophobic Flavonoids Using Polydiacetylene Liposomes Containing Pentacosa-10,12-diynoyl Succinoglycan Monomers. PLoS One 2015; 10:e0143454. [PMID: 26600071 PMCID: PMC4658141 DOI: 10.1371/journal.pone.0143454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/04/2015] [Indexed: 12/04/2022] Open
Abstract
Flavonoids are a group of plant secondary metabolites including polyphenolic molecules, and they are well known for antioxidant, anti-allergic, anti-inflammatory and anti-viral propertied. In general, flavonoids are detected with various non-colorimetric detection methods such as column liquid chromatography, thin-layer chromatography, and electrochemical analysis. For the first time, we developed a straightforward colorimetric detection system allowing recognition of some highly hydrophobic flavonoids such as alpha-naphthoflavone and beta-naphthoflavone, visually using 10,12-pentacosadiynoic acid (PCDA) derivatized with succinoglycan monomers isolated from Sinorhizobium meliloti. Besides changes in visible spectrum, we also demonstrate fluorescence changes using our detection system in the presence of those flavonoids. The succinoglycan monomers attached to PCDA molecules may function as an unstructured molecular capturer for some highly hydrophobic flavonoids by hydrophobic interactions, and transmit their molecular interactions as a color change throughout the PCDA liposome.
Collapse
Affiliation(s)
- Deokgyu Yun
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB) & Center for Biotechnology Research in UBITA (CBRU), Konkuk University, Seoul, South Korea
| | - Daham Jeong
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB) & Center for Biotechnology Research in UBITA (CBRU), Konkuk University, Seoul, South Korea
| | - Eunae Cho
- Institute for Ubiquitous Information Technology and Applications (UBITA) & Center for Biotechnology Research in UBITA (CBRU), Konkuk University, Seoul, South Korea
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB) & Center for Biotechnology Research in UBITA (CBRU), Konkuk University, Seoul, South Korea
| |
Collapse
|
55
|
Catalytic mechanism and novel receptor binding sites of human parainfluenza virus type 3 hemagglutinin-neuraminidase (hPIV3 HN). Antiviral Res 2015; 123:216-23. [DOI: 10.1016/j.antiviral.2015.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 12/25/2022]
|
56
|
Majid L, Zagorodnyaya T, Plant EP, Petrovskaya S, Bidzhieva B, Ye Z, Simonyan V, Chumakov K. Deep Sequencing for Evaluation of Genetic Stability of Influenza A/California/07/2009 (H1N1) Vaccine Viruses. PLoS One 2015; 10:e0138650. [PMID: 26407068 PMCID: PMC4583247 DOI: 10.1371/journal.pone.0138650] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/02/2015] [Indexed: 11/19/2022] Open
Abstract
Virus growth during influenza vaccine manufacture can lead to mutations that alter antigenic properties of the virus, and thus may affect protective potency of the vaccine. Different reassortants of pandemic "swine" H1N1 influenza A vaccine (121XP, X-179A and X-181) viruses as well as wild type A/California/07/2009(H1N1) and A/PR/8/34 strains were propagated in embryonated eggs and used for DNA/RNA Illumina HiSeq and MiSeq sequencing. The RNA sequences of these viruses published in NCBI were used as references for alignment of the sequencing reads generated in this study. Consensus sequences of these viruses differed from the NCBI-deposited sequences at several nucleotides. 121XP stock derived by reverse genetics was more heterogeneous than X-179A and X-181 stocks prepared by conventional reassortant technology. Passaged 121XP virus contained four non-synonymous mutations in the HA gene. One of these mutations (Lys226Glu) was located in the Ca antigenic site of HA (present in 18% of the population). Two non-synonymous mutations were present in HA of viruses derived from X-179A: Pro314Gln (18%) and Asn146Asp (78%). The latter mutation located in the Sa antigenic site was also detected at a low level (11%) in the wild-type A/California/07/2009(H1N1) virus, and was present as a complete substitution in X-181 viruses derived from X-179A virus. In the passaged X-181 viruses, two mutations emerged in HA: a silent mutation A1398G (31%) in one batch and G756T (Glu252Asp, 47%) in another batch. The latter mutation was located in the conservative region of the antigenic site Ca. The protocol for RNA sequencing was found to be robust, reproducible, and suitable for monitoring genetic consistency of influenza vaccine seed stocks.
Collapse
Affiliation(s)
- Laassri Majid
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
- * E-mail:
| | - Tatiana Zagorodnyaya
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Ewan P. Plant
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Svetlana Petrovskaya
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Bella Bidzhieva
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Zhiping Ye
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Vahan Simonyan
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Konstantin Chumakov
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| |
Collapse
|
57
|
Yang Y, Xu Z, Zhang Z, Yang Z, Liu Y, Wang J, Cai T, Li S, Chen K, Shi J, Zhu W. Like-Charge Guanidinium Pairing between Ligand and Receptor: An Unusual Interaction for Drug Discovery and Design? J Phys Chem B 2015; 119:11988-97. [DOI: 10.1021/acs.jpcb.5b04130] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yang Yang
- CAS
Key Laboratory of Receptor Research, Drug Discovery and Design Center,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhijian Xu
- CAS
Key Laboratory of Receptor Research, Drug Discovery and Design Center,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State
Key Laboratory of Medicinal Chemical Biology, Nankai University, 94
Weijin Road, Nankai District, Tianjin300071, China
| | - Zhengyan Zhang
- CAS
Key Laboratory of Receptor Research, Drug Discovery and Design Center,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- College
of Chemistry, Chemical Engineering and Materials Science of Soochow
University, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhuo Yang
- CAS
Key Laboratory of Receptor Research, Drug Discovery and Design Center,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yingtao Liu
- CAS
Key Laboratory of Receptor Research, Drug Discovery and Design Center,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jinan Wang
- CAS
Key Laboratory of Receptor Research, Drug Discovery and Design Center,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tingting Cai
- CAS
Key Laboratory of Receptor Research, Drug Discovery and Design Center,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shujin Li
- College
of Chemistry, Chemical Engineering and Materials Science of Soochow
University, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kaixian Chen
- CAS
Key Laboratory of Receptor Research, Drug Discovery and Design Center,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiye Shi
- Informatics
Department, UCB Pharma, 216 Bath Road, Slough SL1 4EN, United Kingdom
| | - Weiliang Zhu
- CAS
Key Laboratory of Receptor Research, Drug Discovery and Design Center,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
58
|
Wesener DA, Wangkanont K, McBride R, Song X, Kraft MB, Hodges HL, Zarling LC, Splain RA, Smith DF, Cummings RD, Paulson JC, Forest KT, Kiessling LL. Recognition of microbial glycans by human intelectin-1. Nat Struct Mol Biol 2015; 22:603-10. [PMID: 26148048 PMCID: PMC4526365 DOI: 10.1038/nsmb.3053] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/02/2015] [Indexed: 01/07/2023]
Abstract
The glycans displayed on mammalian cells can differ markedly from those on microbes. Such differences could, in principle, be 'read' by carbohydrate-binding proteins, or lectins. We used glycan microarrays to show that human intelectin-1 (hIntL-1) does not bind known human glycan epitopes but does interact with multiple glycan epitopes found exclusively on microbes: β-linked D-galactofuranose (β-Galf), D-phosphoglycerol-modified glycans, heptoses, D-glycero-D-talo-oct-2-ulosonic acid (KO) and 3-deoxy-D-manno-oct-2-ulosonic acid (KDO). The 1.6-Å-resolution crystal structure of hIntL-1 complexed with β-Galf revealed that hIntL-1 uses a bound calcium ion to coordinate terminal exocyclic 1,2-diols. N-acetylneuraminic acid (Neu5Ac), a sialic acid widespread in human glycans, has an exocyclic 1,2-diol but does not bind hIntL-1, probably owing to unfavorable steric and electronic effects. hIntL-1 marks only Streptococcus pneumoniae serotypes that display surface glycans with terminal 1,2-diol groups. This ligand selectivity suggests that hIntL-1 functions in microbial surveillance.
Collapse
Affiliation(s)
- Darryl A Wesener
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kittikhun Wangkanont
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryan McBride
- 1] Department of Cell and Molecular Biology, Scripps Research Institute, La Jolla, California, USA. [2] Department of Chemical Physiology, Scripps Research Institute, La Jolla, California, USA
| | - Xuezheng Song
- 1] Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA. [2] Glycomics Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Matthew B Kraft
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Heather L Hodges
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lucas C Zarling
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rebecca A Splain
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David F Smith
- 1] Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA. [2] Glycomics Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Richard D Cummings
- 1] Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA. [2] Glycomics Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - James C Paulson
- 1] Department of Cell and Molecular Biology, Scripps Research Institute, La Jolla, California, USA. [2] Department of Chemical Physiology, Scripps Research Institute, La Jolla, California, USA
| | - Katrina T Forest
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Laura L Kiessling
- 1] Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA. [2] Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
59
|
Abstract
The article reviews the significant contributions to, and the present status of, applications of computational methods for the characterization and prediction of protein-carbohydrate interactions. After a presentation of the specific features of carbohydrate modeling, along with a brief description of the experimental data and general features of carbohydrate-protein interactions, the survey provides a thorough coverage of the available computational methods and tools. At the quantum-mechanical level, the use of both molecular orbitals and density-functional theory is critically assessed. These are followed by a presentation and critical evaluation of the applications of semiempirical and empirical methods: QM/MM, molecular dynamics, free-energy calculations, metadynamics, molecular robotics, and others. The usefulness of molecular docking in structural glycobiology is evaluated by considering recent docking- validation studies on a range of protein targets. The range of applications of these theoretical methods provides insights into the structural, energetic, and mechanistic facets that occur in the course of the recognition processes. Selected examples are provided to exemplify the usefulness and the present limitations of these computational methods in their ability to assist in elucidation of the structural basis underlying the diverse function and biological roles of carbohydrates in their dialogue with proteins. These test cases cover the field of both carbohydrate biosynthesis and glycosyltransferases, as well as glycoside hydrolases. The phenomenon of (macro)molecular recognition is illustrated for the interactions of carbohydrates with such proteins as lectins, monoclonal antibodies, GAG-binding proteins, porins, and viruses.
Collapse
Affiliation(s)
- Serge Pérez
- Department of Molecular Pharmacochemistry, CNRS, University Grenoble-Alpes, Grenoble, France.
| | - Igor Tvaroška
- Department of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic; Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University, Nitra, Slovak Republic.
| |
Collapse
|
60
|
Influenza A(H7N9) virus acquires resistance-related neuraminidase I222T substitution when infected mallards are exposed to low levels of oseltamivir in water. Antimicrob Agents Chemother 2015; 59:5196-202. [PMID: 26077257 PMCID: PMC4538561 DOI: 10.1128/aac.00886-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/05/2015] [Indexed: 01/09/2023] Open
Abstract
Influenza A virus (IAV) has its natural reservoir in wild waterfowl, and new human IAVs often contain gene segments originating from avian IAVs. Treatment options for severe human influenza are principally restricted to neuraminidase inhibitors (NAIs), among which oseltamivir is stockpiled in preparedness for influenza pandemics. There is evolutionary pressure in the environment for resistance development to oseltamivir in avian IAVs, as the active metabolite oseltamivir carboxylate (OC) passes largely undegraded through sewage treatment to river water where waterfowl reside. In an in vivo mallard (Anas platyrhynchos) model, we tested if low-pathogenic avian influenza A(H7N9) virus might become resistant if the host was exposed to low levels of OC. Ducks were experimentally infected, and OC was added to their water, after which infection and transmission were maintained by successive introductions of uninfected birds. Daily fecal samples were tested for IAV excretion, genotype, and phenotype. Following mallard exposure to 2.5 μg/liter OC, the resistance-related neuraminidase (NA) I222T substitution, was detected within 2 days during the first passage and was found in all viruses sequenced from subsequently introduced ducks. The substitution generated 8-fold and 2.4-fold increases in the 50% inhibitory concentration (IC50) for OC (P < 0.001) and zanamivir (P = 0.016), respectively. We conclude that OC exposure of IAV hosts, in the same concentration magnitude as found in the environment, may result in amino acid substitutions, leading to changed antiviral sensitivity in an IAV subtype that can be highly pathogenic to humans. Prudent use of oseltamivir and resistance surveillance of IAVs in wild birds are warranted.
Collapse
|
61
|
Baker SF, Nogales A, Martínez-Sobrido L. Downregulating viral gene expression: codon usage bias manipulation for the generation of novel influenza A virus vaccines. Future Virol 2015. [PMID: 26213563 DOI: 10.2217/fvl.15.31] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vaccination represents the best option to protect humans against influenza virus. However, improving the effectiveness of current vaccines could better stifle the health burden caused by viral infection. Protein synthesis from individual genes can be downregulated by synthetically deoptimizing a gene's codon usage. With more rapid and affordable nucleotide synthesis, generating viruses that contain genes with deoptimized codons is now feasible. Attenuated, vaccine-candidate viruses can thus be engineered with hitherto uncharacterized properties. With eight gene segments, influenza A viruses with variably recoded genomes can produce a spectrum of attenuation that is contingent on the gene segment targeted and the number of codon changes. This review summarizes different targets and approaches to deoptimize influenza A virus codons for novel vaccine generation.
Collapse
Affiliation(s)
- Steven F Baker
- Department of Microbiology & Immunology, University of Rochester, Rochester, NY, USA
| | - Aitor Nogales
- Department of Microbiology & Immunology, University of Rochester, Rochester, NY, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology & Immunology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
62
|
Dobson J, Whitley RJ, Pocock S, Monto AS. Oseltamivir treatment for influenza in adults: a meta-analysis of randomised controlled trials. Lancet 2015; 385:1729-1737. [PMID: 25640810 DOI: 10.1016/s0140-6736(14)62449-1] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Despite widespread use, questions remain about the efficacy of oseltamivir in the treatment of influenza. We aimed to do an individual patient data meta-analysis for all clinical trials comparing oseltamivir with placebo for treatment of seasonal influenza in adults regarding symptom alleviation, complications, and safety. METHODS We included all published and unpublished Roche-sponsored randomised placebo-controlled, double-blind trials of 75 mg twice a day oseltamivir in adults. Trials of oseltamivir for treatment of naturally occurring influenza-like illness in adults reporting at least one of the study outcomes were eligible. We also searched Medline, PubMed, Embase, the Cochrane Central Register of Controlled Trials, and the ClinicalTrials.gov trials register for other relevant trials published before Jan 1, 2014 (search last updated on Nov 27, 2014). We analysed intention-to-treat infected, intention-to-treat, and safety populations. The primary outcome was time to alleviation of all symptoms analysed with accelerated failure time methods. We used risk ratios and Mantel-Haenszel methods to work out complications, admittances to hospital, and safety outcomes. FINDINGS We included data from nine trials including 4328 patients. In the intention-to-treat infected population, we noted a 21% shorter time to alleviation of all symptoms for oseltamivir versus placebo recipients (time ratio 0·79, 95% CI 0·74-0·85; p<0·0001). The median times to alleviation were 97·5 h for oseltamivir and 122·7 h for placebo groups (difference -25·2 h, 95% CI -36·2 to -16·0). For the intention-to-treat population, the estimated treatment effect was attenuated (time ratio 0·85) but remained highly significant (median difference -17·8 h). In the intention-to-treat infected population, we noted fewer lower respiratory tract complications requiring antibiotics more than 48 h after randomisation (risk ratio [RR] 0·56, 95% CI 0·42-0·75; p=0·0001; 4·9% oseltamivir vs 8·7% placebo, risk difference -3·8%, 95% CI -5·0 to -2·2) and also fewer admittances to hospital for any cause (RR 0·37, 95% CI 0·17-0·81; p=0·013; 0·6% oseltamivir, 1·7% placebo, risk difference -1·1%, 95% CI -1·4 to -0·3). Regarding safety, oseltamivir increased the risk of nausea (RR 1·60, 95% CI 1·29-1·99; p<0·0001; 9·9% oseltamivir vs 6·2% placebo, risk difference 3·7%, 95% CI 1·8-6·1) and vomiting (RR 2·43, 95% CI 1·83-3·23; p<0·0001; 8·0% oseltamivir vs 3·3% placebo, risk difference 4·7%, 95% CI 2·7-7·3). We recorded no effect on neurological or psychiatric disorders or serious adverse events. INTERPRETATION Our findings show that oseltamivir in adults with influenza accelerates time to clinical symptom alleviation, reduces risk of lower respiratory tract complications, and admittance to hospital, but increases the occurrence of nausea and vomiting. FUNDING Multiparty Group for Advice on Science (MUGAS) foundation.
Collapse
Affiliation(s)
- Joanna Dobson
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | - Richard J Whitley
- Department of Pediatrics, Microbiology, Medicine and Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stuart Pocock
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | - Arnold S Monto
- Department of Epidemiology, University of Michigan School of Public Health, MI, USA.
| |
Collapse
|
63
|
Parasuraman P, Murugan V, Selvin JFA, Gromiha MM, Fukui K, Veluraja K. Insights into the binding specificity of wild type and mutated wheat germ agglutinin towards Neu5Acα(2-3)Gal: a study by in silico mutations and molecular dynamics simulations. J Mol Recognit 2015; 27:482-92. [PMID: 24984865 DOI: 10.1002/jmr.2369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/02/2014] [Accepted: 02/02/2014] [Indexed: 02/06/2023]
Abstract
Wheat germ agglutinin (WGA) is a plant lectin, which specifically recognizes the sugars NeuNAc and GlcNAc. Mutated WGA with enhanced binding specificity can be used as biomarkers for cancer. In silico mutations are performed at the active site of WGA to enhance the binding specificity towards sialylglycans, and molecular dynamics simulations of 20 ns are carried out for wild type and mutated WGAs (WGA1, WGA2, and WGA3) in complex with sialylgalactose to examine the change in binding specificity. MD simulations reveal the change in binding specificity of wild type and mutated WGAs towards sialylgalactose and bound conformational flexibility of sialylgalactose. The mutated polar amino acid residues Asn114 (S114N), Lys118 (G118K), and Arg118 (G118R) make direct and water mediated hydrogen bonds and hydrophobic interactions with sialylgalactose. An analysis of possible hydrogen bonds, hydrophobic interactions, total pair wise interaction energy between active site residues and sialylgalactose and MM-PBSA free energy calculation reveals the plausible binding modes and the role of water in stabilizing different binding modes. An interesting observation is that the binding specificity of mutated WGAs (cyborg lectin) towards sialylgalactose is found to be higher in double point mutation (WGA3). One of the substituted residues Arg118 plays a crucial role in sugar binding. Based on the interactions and energy calculations, it is concluded that the order of binding specificity of WGAs towards sialylgalactose is WGA3 > WGA1 > WGA2 > WGA. On comparing with the wild type, double point mutated WGA (WGA3) exhibits increased specificity towards sialylgalactose, and thus, it can be effectively used in targeted drug delivery and as biological cell marker in cancer therapeutics.
Collapse
Affiliation(s)
- Ponnusamy Parasuraman
- Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, 627 012, India
| | | | | | | | | | | |
Collapse
|
64
|
Essential domains of Anaplasma phagocytophilum invasins utilized to infect mammalian host cells. PLoS Pathog 2015; 11:e1004669. [PMID: 25658707 PMCID: PMC4450072 DOI: 10.1371/journal.ppat.1004669] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/07/2015] [Indexed: 12/01/2022] Open
Abstract
Anaplasma phagocytophilum causes granulocytic anaplasmosis, an emerging disease of humans and domestic animals. The obligate intracellular bacterium uses its invasins OmpA, Asp14, and AipA to infect myeloid and non-phagocytic cells. Identifying the domains of these proteins that mediate binding and entry, and determining the molecular basis of their interactions with host cell receptors would significantly advance understanding of A. phagocytophilum infection. Here, we identified the OmpA binding domain as residues 59 to 74. Polyclonal antibody generated against a peptide spanning OmpA residues 59 to 74 inhibited A. phagocytophilum infection of host cells and binding to its receptor, sialyl Lewis x (sLex-capped P-selectin glycoprotein ligand 1. Molecular docking analyses predicted that OmpA residues G61 and K64 interact with the two sLex sugars that are important for infection, α2,3-sialic acid and α1,3-fucose. Amino acid substitution analyses demonstrated that K64 was necessary, and G61 was contributory, for recombinant OmpA to bind to host cells and competitively inhibit A. phagocytophilum infection. Adherence of OmpA to RF/6A endothelial cells, which express little to no sLex but express the structurally similar glycan, 6-sulfo-sLex, required α2,3-sialic acid and α1,3-fucose and was antagonized by 6-sulfo-sLex antibody. Binding and uptake of OmpA-coated latex beads by myeloid cells was sensitive to sialidase, fucosidase, and sLex antibody. The Asp14 binding domain was also defined, as antibody specific for residues 113 to 124 inhibited infection. Because OmpA, Asp14, and AipA each contribute to the infection process, it was rationalized that the most effective blocking approach would target all three. An antibody cocktail targeting the OmpA, Asp14, and AipA binding domains neutralized A. phagocytophilum binding and infection of host cells. This study dissects OmpA-receptor interactions and demonstrates the effectiveness of binding domain-specific antibodies for blocking A. phagocytophilum infection. Anaplasma phagocytophilum causes the potentially deadly bacterial disease granulocytic anaplasmosis. The pathogen replicates inside white blood cells and, like all other obligate intracellular organisms, must enter host cells to survive. Multiple A. phagocytophilum surface proteins called invasins cooperatively orchestrate the entry process. Identifying these proteins’ domains that are required for function, and determining the molecular basis of their interaction with host cell receptors would significantly advance understanding of A. phagocytophilum pathogenesis. In this study, the binding domains of two A. phagocytophilum surface proteins, OmpA and Asp14, were identified. The specific OmpA residues that interact with its host cell receptor were also defined. An antibody cocktail generated against the binding domains of OmpA, Asp14, and a third invasin, AipA, blocked the ability of A. phagocytophilum to infect host cells. The data presented within suggest that binding domains of OmpA, Asp14, and AipA could be exploited to develop a vaccine for granulocytic anaplasmosis.
Collapse
|
65
|
Detection of a transient R292K mutation in influenza A/H3N2 viruses shed for several weeks by an immunocompromised patient. J Clin Microbiol 2015; 53:1415-8. [PMID: 25588658 DOI: 10.1128/jcm.02845-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We describe the case of an immunocompromised patient, positive for influenza A virus (H3N2), in whom the neuraminidase R292K mutation was transiently detected during oseltamivir treatment. The R292K mutation was identified by direct testing in 3 of 11 respiratory specimens collected throughout the patient's illness but in none of the cultures from those specimens.
Collapse
|
66
|
Wang Y, Yu M, Wang X, Zhang X, Wang X, Fang X. Jatrorrhizine hydrochloride potentiates the neuraminidase inhibitory effect of oseltamivir towards H7N9 influenza. RSC Adv 2015. [DOI: 10.1039/c5ra11697j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
By analyzing the docking result of the binding position, hydrogen bond interactions, pi–pi interaction, etc., it is likely that jatrorrhizine hydrochloride potentiates the neuraminidase inhibitory effect of oseltamivir towards H7N9 influenza.
Collapse
Affiliation(s)
- Ye Wang
- School of Life Science
- Jilin University
- Changchun 130012
- China
| | - Miao Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- Jilin University
- Changchun 130012
- China
| | - Xiaonan Wang
- The Second Affiliated Hospital of Mudanjiang Medical College
- Mudanjiang 157009
- China
| | - Xin Zhang
- Department of Pharmacy
- The First Affiliated Hospital of Jilin University
- Changchun 130021
- China
| | - Xizhu Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- Jilin University
- Changchun 130012
- China
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
67
|
Yeh HW, Lin TS, Wang HW, Cheng HW, Liu DZ, Liang PH. S-Linked sialyloligosaccharides bearing liposomes and micelles as influenza virus inhibitors. Org Biomol Chem 2015; 13:11518-28. [DOI: 10.1039/c5ob01376c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
S-Linked sialic glycoconjugates on liposome and micelle surfaces interacted with influenza virus hemagglutinin, interfering with the entry of the virus into the cell.
Collapse
Affiliation(s)
- Hsien-Wei Yeh
- School of Pharmacy
- College of Medicine
- National Taiwan University
- Taipei 100
- Taiwan
| | - Tzung-Sheng Lin
- School of Pharmacy
- College of Medicine
- National Taiwan University
- Taipei 100
- Taiwan
| | - Hsiao-Wen Wang
- School of Pharmacy
- College of Medicine
- National Taiwan University
- Taipei 100
- Taiwan
| | - Hou-Wen Cheng
- School of Pharmacy
- College of Medicine
- National Taiwan University
- Taipei 100
- Taiwan
| | - Der-Zen Liu
- Graduate Institute of Biomedical Materials and Tissue Engineering
- College of Oral Medicine
- Taipei Medical University
- Taipei 110
- Taiwan
| | - Pi-Hui Liang
- School of Pharmacy
- College of Medicine
- National Taiwan University
- Taipei 100
- Taiwan
| |
Collapse
|
68
|
Abstract
Virtual molecular screening is used to dock small-molecule libraries to a macromolecule in order to find lead compounds with desired biological function. This in silico method is well known for its application in computer-aided drug design. This chapter describes how to perform small-molecule virtual screening by docking with PyRx, which is open-source software with an intuitive user interface that runs on all major operating systems (Linux, Windows, and Mac OS). Specific steps for using PyRx, as well as considerations for data preparation, docking, and data analysis, are also described.
Collapse
Affiliation(s)
- Sargis Dallakyan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037-1000, USA,
| | | |
Collapse
|
69
|
Ilyushina NA, Donnelly RP. In vitro anti-influenza A activity of interferon (IFN)-λ1 combined with IFN-β or oseltamivir carboxylate. Antiviral Res 2014; 111:112-20. [PMID: 25245230 DOI: 10.1016/j.antiviral.2014.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/08/2014] [Accepted: 09/13/2014] [Indexed: 11/18/2022]
Abstract
Influenza viruses, which can cross species barriers and adapt to new hosts, pose a constant potential threat to human health. The influenza pandemic of 2009 highlighted the rapidity with which an influenza virus can spread worldwide. Currently available antivirals have a number of limitations against influenza, and novel antiviral strategies, including novel drugs and drug combinations, are urgently needed. Here, we evaluated the in vitro effects of interferon (IFN)-β, IFN-λ1, oseltamivir carboxylate (a neuraminidase (NA) inhibitor), and combinations of these agents against two seasonal (i.e., H1N1 and H3N2) influenza A viruses. We observed that A/California/04/09 (H1N1) and A/Panama/2007/99 (H3N2) isolates were equally sensitive to the antiviral activity of IFN-β and oseltamivir carboxylate in A549 and Calu-3 cells. In contrast, IFN-λ1 exhibited substantially lower protective potential against the H1N1 strain (64-1030-fold ↓, P<0.05), and was ineffective against H3N2 virus in both cell lines. Three dimensional analysis of drug-drug interactions revealed that IFN-λ1 interacted with IFN-β and oseltamivir carboxylate in an additive or synergistic manner, respectively, to inhibit influenza A virus replication in human airway epithelial cells. Overall, the present study demonstrated that anti-influenza agents with different mechanisms of action (e.g., a NA inhibitor combined with IFN-λ1) exerted a significantly greater (P<0.05) synergistic effect compared to co-treatment with drugs that target the same signaling pathway (i.e., IFN-β plus IFN-λ1) in vitro. Our findings provide support for the combined use of interferon plus oseltamivir as a potential means for treating influenza infections.
Collapse
Affiliation(s)
- Natalia A Ilyushina
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Raymond P Donnelly
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
70
|
Yuan XY, Wang YL, Yu KX, Zhang YX, Xu HY, Yang JX, Li F, Song MX. Isolation and genetic characterization of avian influenza virus H4N6 from ducks in China. Arch Virol 2014; 160:55-9. [DOI: 10.1007/s00705-014-2229-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/02/2014] [Indexed: 11/29/2022]
|
71
|
Multiple influenza A (H3N2) mutations conferring resistance to neuraminidase inhibitors in a bone marrow transplant recipient. Antimicrob Agents Chemother 2014; 58:7188-97. [PMID: 25246391 DOI: 10.1128/aac.03667-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Immunocompromised patients are predisposed to infections caused by influenza virus. Influenza virus may produce considerable morbidity, including protracted illness and prolonged viral shedding in these patients, thus prompting higher doses and prolonged courses of antiviral therapy. This approach may promote the emergence of resistant strains. Characterization of neuraminidase (NA) inhibitor (NAI)-resistant strains of influenza A virus is essential for documenting causes of resistance. In this study, using quantitative real-time PCR along with conventional Sanger sequencing, we identified an NAI-resistant strain of influenza A (H3N2) virus in an immunocompromised patient. In-depth analysis by deep gene sequencing revealed that various known markers of antiviral resistance, including transient R292K and Q136K substitutions and a sustained E119K (N2 numbering) substitution in the NA protein emerged during prolonged antiviral therapy. In addition, a combination of a 4-amino-acid deletion at residues 245 to 248 (Δ245-248) accompanied by the E119V substitution occurred, causing resistance to or reduced inhibition by NAIs (oseltamivir, zanamivir, and peramivir). Resistant variants within a pool of viral quasispecies arose during combined antiviral treatment. More research is needed to understand the interplay of drug resistance mutations, viral fitness, and transmission.
Collapse
|
72
|
Smutova V, Albohy A, Pan X, Korchagina E, Miyagi T, Bovin N, Cairo CW, Pshezhetsky AV. Structural basis for substrate specificity of mammalian neuraminidases. PLoS One 2014; 9:e106320. [PMID: 25222608 PMCID: PMC4164519 DOI: 10.1371/journal.pone.0106320] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/24/2014] [Indexed: 12/21/2022] Open
Abstract
The removal of sialic acid (Sia) residues from glycoconjugates in vertebrates is mediated by a family of neuraminidases (sialidases) consisting of Neu1, Neu2, Neu3 and Neu4 enzymes. The enzymes play distinct physiological roles, but their ability to discriminate between the types of linkages connecting Sia and adjacent residues and between the identity and arrangement of the underlying sugars has never been systematically studied. Here we analyzed the specificity of neuraminidases by studying the kinetics of hydrolysis of BODIPY-labeled substrates containing common mammalian sialylated oligosaccharides: 3′Sia-LacNAc, 3′SiaLac, SiaLex, SiaLea, SiaLec, 6′SiaLac, and 6′SiaLacNAc. We found significant differences in substrate specificity of the enzymes towards the substrates containing α2,6-linked Sia, which were readily cleaved by Neu3 and Neu1 but not by Neu4 and Neu2. The presence of a branching 2-Fuc inhibited Neu2 and Neu4, but had almost no effect on Neu1 or Neu3. The nature of the sugar residue at the reducing end, either glucose (Glc) or N-acetyl-D-glucosamine (GlcNAc) had only a minor effect on all neuraminidases, whereas core structure (1,3 or 1,4 bond between D-galactose (Gal) and GlcNAc) was found to be important for Neu4 strongly preferring β3 (core 1) to β4 (core 2) isomer. Neu3 and Neu4 were in general more active than Neu1 and Neu2, likely due to their preference for hydrophobic substrates. Neu2 and Neu3 were examined by molecular dynamics to identify favorable substrate orientations in the binding sites and interpret the differences in their specificities. Finally, using knockout mouse models, we confirmed that the substrate specificities observed in vitro were recapitulated in enzymes found in mouse brain tissues. Our data for the first time provide evidence for the characteristic substrate preferences of neuraminidases and their ability to discriminate between distinct sialoside targets.
Collapse
Affiliation(s)
- Victoria Smutova
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center, University of Montreal, Montréal, Canada
| | - Amgad Albohy
- Alberta Glycomics Center, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xuefang Pan
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center, University of Montreal, Montréal, Canada
| | - Elena Korchagina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Taeko Miyagi
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan
| | - Nicolai Bovin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Christopher W. Cairo
- Alberta Glycomics Center, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Alexey V. Pshezhetsky
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center, University of Montreal, Montréal, Canada
- * E-mail:
| |
Collapse
|
73
|
Evolution of oseltamivir resistance mutations in Influenza A(H1N1) and A(H3N2) viruses during selection in experimentally infected mice. Antimicrob Agents Chemother 2014; 58:6398-405. [PMID: 25114143 DOI: 10.1128/aac.02956-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The evolution of oseltamivir resistance mutations during selection through serial passages in animals is still poorly described. Herein, we assessed the evolution of neuraminidase (NA) and hemagglutinin (HA) genes of influenza A/WSN/33 (H1N1) and A/Victoria/3/75 (H3N2) viruses recovered from the lungs of experimentally infected BALB/c mice receiving suboptimal doses (0.05 and 1 mg/kg of body weight/day) of oseltamivir over two generations. The traditional phenotypic and genotypic methods as well as deep-sequencing analysis were used to characterize the potential selection of mutations and population dynamics of oseltamivir-resistant variants. No oseltamivir-resistant NA or HA changes were detected in the recovered A/WSN/33 viruses. However, we observed a positive selection of the I222T NA substitution in the recovered A/Victoria/3/75 viruses, with a frequency increasing over time and with an oseltamivir concentration from 4% in the initial pretherapy inoculum up to 28% after two lung passages. Although the presence of mixed I222T viral populations in mouse lungs only led to a minimal increase in oseltamivir 50% enzyme-inhibitory concentrations (IC50s) (by a mean of 5.7-fold) compared to that of the baseline virus, the expressed recombinant A/Victoria/3/75 I222T NA protein displayed a 16-fold increase in the oseltamivir IC50 level compared to that of the recombinant wild type (WT). In conclusion, the combination of serial in vivo passages under neuraminidase inhibitor (NAI) pressure and temporal deep-sequencing analysis enabled, for the first time, the identification and selection of the oseltamivir-resistant I222T NA mutation in an influenza H3N2 virus. Additional in vivo selection experiments with other antivirals and drug combinations might provide important information on the evolution of antiviral resistance in influenza viruses.
Collapse
|
74
|
|
75
|
Abstract
Biomolecular crystallography underpins contemporary drug discovery. The author’s experiences in early (influenza) and recent (cancer) examples mark progress in the sophistication of approaches that have enabled a shift from simpler problems, as in enzyme inhibition, to complex problems, as in blocking protein–protein interactions.
Collapse
|
76
|
Abstract
A review of known small molecule inhibitors and substrates of the human neuraminidase enzymes.
Collapse
Affiliation(s)
- Christopher W. Cairo
- Alberta Glycomics Centre
- Department of Chemistry
- University of Alberta
- Edmonton Alberta
- Canada
| |
Collapse
|
77
|
Identification of neuraminidase inhibitors by structure-based screening: promising new leads for influenza. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0862-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
78
|
Mutation effects of neuraminidases and their docking with ligands: a molecular dynamics and free energy calculation study. J Comput Aided Mol Des 2013; 27:935-50. [DOI: 10.1007/s10822-013-9691-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 11/05/2013] [Indexed: 01/15/2023]
|
79
|
Woods CJ, Malaisree M, Long B, McIntosh-Smith S, Mulholland AJ. Analysis and Assay of Oseltamivir-Resistant Mutants of Influenza Neuraminidase via Direct Observation of Drug Unbinding and Rebinding in Simulation. Biochemistry 2013; 52:8150-64. [DOI: 10.1021/bi400754t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Christopher J. Woods
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Maturos Malaisree
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Benjamin Long
- Department
of Computer Science, University of Bristol, Bristol BS8 1TS, U.K
| | | | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| |
Collapse
|
80
|
Characterization of two distinct neuraminidases from avian-origin human-infecting H7N9 influenza viruses. Cell Res 2013; 23:1347-55. [PMID: 24165891 PMCID: PMC3847574 DOI: 10.1038/cr.2013.144] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 12/15/2022] Open
Abstract
An epidemic of an avian-origin H7N9 influenza virus has recently emerged in China, infecting 134 patients of which 45 have died. This is the first time that an influenza virus harboring an N9 serotype neuraminidase (NA) has been known to infect humans. H7N9 viruses are divergent and at least two distinct NAs and hemagglutinins (HAs) have been found, respectively, from clinical isolates. The prototypes of these viruses are A/Anhui/1/2013 and A/Shanghai/1/2013. NAs from these two viruses are distinct as the A/Shanghai/1/2013 NA has an R294K substitution that can confer NA inhibitor oseltamivir resistance. Oseltamivir is by far the most commonly used anti-influenza drug due to its potency and high bioavailability. In this study, we show that an R294K substitution results in multidrug resistance with extreme oseltamivir resistance (over 100 000-fold) using protein- and virus-based assays. To determine the molecular basis for the inhibitor resistance, we solved high-resolution crystal structures of NAs from A/Anhui/1/2013 N9 (R294-containing) and A/Shanghai/1/2013 N9 (K294-containing). R294K substitution results in an unfavorable E276 conformation for oseltamivir binding, and consequently loss of inhibitor carboxylate interactions, which compromises the binding of all classical NA ligands/inhibitors. Moreover, we found that R294K substitution results in reduced NA catalytic efficiency along with lower viral fitness. This helps to explain why K294 has predominantly been found in clinical cases of H7N9 infection under the selective pressure of oseltamivir treatment and not in the dominant human-infecting viruses. This implies that oseltamivir can still be efficiently used in the treatment of H7N9 infections.
Collapse
|
81
|
Burnham AJ, Baranovich T, Govorkova EA. Neuraminidase inhibitors for influenza B virus infection: efficacy and resistance. Antiviral Res 2013; 100:520-34. [PMID: 24013000 DOI: 10.1016/j.antiviral.2013.08.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/17/2013] [Accepted: 08/25/2013] [Indexed: 01/28/2023]
Abstract
Many aspects of the biology and epidemiology of influenza B viruses are far less studied than for influenza A viruses, and one of these aspects is efficacy and resistance to the clinically available antiviral drugs, the neuraminidase (NA) inhibitors (NAIs). Acute respiratory infections are one of the leading causes of death in children and adults, and influenza is among the few respiratory infections that can be prevented and treated by vaccination and antiviral treatment. Recent data has suggested that influenza B virus infections are of specific concern to pediatric patients because of the increased risk of severe disease. Treatment of influenza B is a challenging task for the following reasons: This review presents current knowledge of the efficacy of NAIs for influenza B virus and antiviral resistance in clinical, surveillance, and experimental studies.
Collapse
Affiliation(s)
- Andrew J Burnham
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | | | | |
Collapse
|
82
|
Abstract
Sialic acids are involved in a plethora of important biological events; among these the most known certainly is the binding of N-acetylneuraminic acid (Neu5Ac) with influenza virus sialidase. Considering Neu5Ac as the template that led to the structure-based development of the two potent antiviral agents zanamivir and oseltamivir, we developed the synthesis of the sialylexoenitol, a new class of sialyl derivative that was used as precursor in powerful hetero-Diels–Alder reactions to form the corresponding spiroketals. Docking calculations employing the crystallographic structure of influenza virus sialidase indicate that these scaffolds could probably interact with most of the active site residues that stabilize Neu5Ac. In addition, their reduced polar nature with respect to Neu5Ac derivatives might provide inhibitors with increased bioavailability.
Collapse
|
83
|
Yen HL, McKimm-Breschkin JL, Choy KT, Wong DDY, Cheung PPH, Zhou J, Ng IH, Zhu H, Webby RJ, Guan Y, Webster RG, Peiris JSM. Resistance to neuraminidase inhibitors conferred by an R292K mutation in a human influenza virus H7N9 isolate can be masked by a mixed R/K viral population. mBio 2013; 4:e00396-13. [PMID: 23860768 PMCID: PMC3735122 DOI: 10.1128/mbio.00396-13] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 06/10/2013] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED We characterized the A/Shanghai/1/2013 virus isolated from the first confirmed human case of A/H7N9 disease in China. The A/Shanghai/1/2013 isolate contained a mixed population of R (65%; 15/23 clones) and K (35%; 8/23 clones) at neuraminidase (NA) residue 292, as determined by clonal sequencing. A/Shanghai/1/2013 with mixed R/K at residue 292 exhibited a phenotype that is sensitive to zanamivir and oseltamivir carboxylate by the enzyme-based NA inhibition assay. The plaque-purified A/Shanghai/1/2013 with dominant K292 (94%; 15/16 clones) showed sensitivity to zanamivir that had decreased by >30-fold and to oseltamivir carboxylate that had decreased by >100-fold compared to its plaque-purified wild-type counterpart possessing dominant R292 (93%, 14/15 clones). In Madin-Darby canine kidney (MDCK) cells, the plaque-purified A/Shanghai/1/2013-NAK292 virus exhibited no reduction in viral titer under conditions of increasing concentrations of oseltamivir carboxylate (range, 0 to 1,000 µM) whereas the replication of the plaque-purified A/Shanghai/1/2013-NAR292 and the A/Shanghai/2/2013 viruses was completely inhibited at 250 µM and 31.25 µM of oseltamivir carboxylate, respectively. Although the plaque-purified A/Shanghai/1/2013-NAK292 virus exhibited lower NA enzyme activity and a higher Km for 2'-(4-methylumbelliferryl)-α-d-N-acetylneuraminic acid than the wild-type A/Shanghai/1/2013-NAR292 virus, the A/Shanghai/1/2013-NAK292 virus formed large plaques and replicated efficiently in vitro. Our results confirmed that the NA R292K mutation confers resistance to oseltamivir, peramivir, and zanamivir in the novel human H7N9 viruses. Importantly, detection of the resistance phenotype may be masked in the clinical samples containing a mixed population of R/K at NA residue 292 in the enzyme-based NA inhibition assay. IMPORTANCE The neuraminidase (NA) inhibitors oseltamivir and zanamivir are currently the front-line therapeutic options against the novel H7N9 influenza viruses, which possess an S31N mutation that confers resistance to the M2 ion channel blockers. It is therefore important to evaluate the sensitivity of the clinical isolates to NA inhibitors and to monitor for the emergence of resistant variants. We characterized the A/Shanghai/1/2013 (H7N9) isolate which contained a mixed population of R/K at NA residue 292. While the clinical isolate exhibited a phenotype of sensitivity to NA inhibitors using the enzyme-based NA inhibition assay, the plaque-purified A/Shanghai/1/2013 virus with dominant K292 was resistant to zanamivir, peramivir, and oseltamivir. Resistance to NA inhibitors conferred by the R292K mutation in a human influenza virus H7N9 isolate can be masked by a mixed R/K viral population, and this should be taken into consideration while monitoring antiviral resistance in patients with H7N9 infection.
Collapse
Affiliation(s)
- H.-L. Yen
- Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong SAR
| | | | - K.-T. Choy
- Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong SAR
| | - D. D. Y. Wong
- Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong SAR
| | - P. P. H. Cheung
- Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong SAR
| | - J. Zhou
- Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong SAR
| | - I. H. Ng
- Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong SAR
| | | | - R. J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - R. G. Webster
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - J. S. M. Peiris
- Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong SAR
| |
Collapse
|
84
|
McKimm-Breschkin JL. Influenza neuraminidase inhibitors: antiviral action and mechanisms of resistance. Influenza Other Respir Viruses 2013; 7 Suppl 1:25-36. [PMID: 23279894 DOI: 10.1111/irv.12047] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are two major classes of antivirals available for the treatment and prevention of influenza, the M2 inhibitors and the neuraminidase inhibitors (NAIs). The M2 inhibitors are cheap, but they are only effective against influenza A viruses, and resistance arises rapidly. The current influenza A H3N2 and pandemic A(H1N1)pdm09 viruses are already resistant to the M2 inhibitors as are many H5N1 viruses. There are four NAIs licensed in some parts of the world, zanamivir, oseltamivir, peramivir, and a long-acting NAI, laninamivir. This review focuses on resistance to the NAIs. Because of differences in their chemistry and subtle differences in NA structures, resistance can be both NAI- and subtype specific. This results in different drug resistance profiles, for example, the H274Y mutation confers resistance to oseltamivir and peramivir, but not to zanamivir, and only in N1 NAs. Mutations at E119, D198, I222, R292, and N294 can also reduce NAI sensitivity. In the winter of 2007-2008, an oseltamivir-resistant seasonal influenza A(H1N1) strain with an H274Y mutation emerged in the northern hemisphere and spread rapidly around the world. In contrast to earlier evidence of such resistant viruses being unfit, this mutant virus remained fully transmissible and pathogenic and became the major seasonal A(H1N1) virus globally within a year. This resistant A(H1N1) virus was displaced by the sensitive A(H1N1)pdm09 virus. Approximately 0.5-1.0% of community A(H1N1)pdm09 isolates are currently resistant to oseltamivir. It is now apparent that variation in non-active site amino acids can affect the fitness of the enzyme and compensate for mutations that confer high-level oseltamivir resistance resulting in minimal impact on enzyme function.
Collapse
|
85
|
Design, synthesis, functional and structural characterization of an inhibitor of N-acetylneuraminate-9-phosphate phosphatase: Observation of extensive dynamics in an enzyme/inhibitor complex. Bioorg Med Chem Lett 2013; 23:4107-11. [DOI: 10.1016/j.bmcl.2013.05.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/10/2013] [Accepted: 05/14/2013] [Indexed: 11/18/2022]
|
86
|
I222 Neuraminidase mutations further reduce oseltamivir susceptibility of Indonesian Clade 2.1 highly pathogenic Avian Influenza A(H5N1) viruses. PLoS One 2013; 8:e66105. [PMID: 23776615 PMCID: PMC3679007 DOI: 10.1371/journal.pone.0066105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 05/01/2013] [Indexed: 12/17/2022] Open
Abstract
We have tested the susceptibility to neuraminidase inhibitors of 155 clade 2.1 H5N1 viruses from Indonesia, isolated between 2006-2008 as well as 12 clade 1 isolates from Thailand and Cambodia from 2004-2007 using a fluorometric MUNANA-based enzyme inhibition assay. The Thailand and Cambodian clade 1 isolates tested here were all susceptible to oseltamivir and zanamivir, and sequence comparison indicated that reduced oseltamivir susceptibility we observed previously with clade 1 Cambodian isolates correlated with an S246G neuraminidase mutation. Eight Indonesian viruses (5%), all bearing I222 neuraminidase mutations, were identified as mild to extreme outliers for oseltamivir based on statistical analysis by box plots. IC50s were from 50 to 500-fold higher than the reference clade 1 virus from Viet Nam, ranging from 43-75 nM for I222T/V mutants and from 268-349 nM for I222M mutants. All eight viruses were from different geographic locales; all I222M variants were from central Sumatra. None of the H5N1 isolates tested demonstrated reduced susceptibility to zanamivir (IC50s all <5 nM). All I222 mutants showed loss of slow binding specifically for oseltamivir in an IC50 kinetics assay. We identified four other Indonesian isolates with higher IC50s which also demonstrated loss of slow binding, including one virus with an I117V mutation. There was a minimal effect on the binding of zanamivir and peramivir for all isolates tested. As H5N1 remains a potential pandemic threat, the incidence of mutations conferring reduced oseltamivir susceptibility is concerning and emphasizes the need for greater surveillance of drug susceptibility.
Collapse
|
87
|
McKimm-Breschkin JL, Williams J, Barrett S, Jachno K, McDonald M, Mohr PG, Saito T, Tashiro M. Reduced susceptibility to all neuraminidase inhibitors of influenza H1N1 viruses with haemagglutinin mutations and mutations in non-conserved residues of the neuraminidase. J Antimicrob Chemother 2013; 68:2210-21. [PMID: 23759505 DOI: 10.1093/jac/dkt205] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES We characterized human H1N1 influenza isolate A/Hokkaido/15/02, which has haemagglutinin and neuraminidase mutations that reduce drug susceptibility to oseltamivir, zanamivir and peramivir. METHODS One wild-type and three mutant viruses were isolated by plaque purification. Viruses were tested in MUNANA-based enzyme assays, cell culture and receptor binding assays. RESULTS Two viruses had a neuraminidase Y155H mutation that reduced susceptibility in the enzyme inhibition assay to all inhibitors by 30-fold to >100-fold. The Y155H mutation reduced plaque size and affected the stability, Km and pH activity profile of the enzyme. In contrast to previous mutants, this neuraminidase demonstrated a slower rate of inhibitor binding in the IC50 kinetics assay. One virus had both the Y155H mutation and a haemagglutinin D225G mutation that rescued the small-plaque phenotype of the Y155H virus and affected receptor binding and drug susceptibility in cell culture and binding assays. We also isolated a third mutant virus, with both neuraminidase V114I and haemagglutinin D225N mutations, which affected susceptibility in the enzyme inhibition assay and receptor binding, respectively, but to lesser extents than the Y155H and D225G mutations. CONCLUSIONS Neither Y155 nor V114 is conserved across neuraminidase subtypes. Furthermore, Y155 is not conserved even among avian and swine N1 viruses. Structurally, both residues reside far from the neuraminidase active site. D225 forms part of the receptor binding site of the haemagglutinin. We believe this is the first demonstration of a specific haemagglutinin mutation correlating with reduced drug susceptibility in plaque assays in both Madin Darby Canine Kidney and SIAT cells.
Collapse
|
88
|
Mutations at the monomer-monomer interface away from the active site of influenza B virus neuraminidase reduces susceptibility to neuraminidase inhibitor drugs. J Infect Chemother 2013; 19:891-5. [PMID: 23529501 DOI: 10.1007/s10156-013-0589-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/12/2013] [Indexed: 10/27/2022]
Abstract
Amino acid changes in or near the active site of neuraminidase (NA) in influenza viruses reduce the susceptibility to NA inhibitor drugs. Here, we report the recovery of three influenza B viruses with reduced susceptibilities to NA inhibitors from human patients with no history of antiviral drug treatment. The three viruses were isolated by inoculating Madin-Darby canine kidney (MDCK) cells with respiratory specimens from the patients. NA inhibition assays demonstrated that two of the three isolates showed a highly reduced susceptibility to peramivir and moderately reduced susceptibility to oseltamivir, zanamivir, and laninamivir. The remaining one isolate exhibited moderately reduced sensitivity to peramivir, zanamivir, and laninamivir but was susceptible to oseltamivir. A sequence analysis of viruses propagated in MDCK cells revealed that all three isolates contained a single mutation (Q138R, P139S, or G140R) in NA not previously associated with reduced susceptibility to NA inhibitors. However, pyrosequencing analyses showed that the Q138R and G140R mutations were below a detectable level in the original clinical specimens; the P139S mutation was detected at a very low level, suggesting that the mutant viruses may be preferably selected during propagation in MDCK cells. The NA crystallographic structure showed that these mutations were located at the interface between the two monomers of the NA tetramer, away from the NA active site. In addition to amino acid substitutions around the active site of NA, these observations suggest that alterations in the monomer-monomer interface region of NA may contribute to reduced sensitivity to NA inhibitors.
Collapse
|
89
|
Ambroggio X, Jiang L, Aebig J, Obiakor H, Lukszo J, Narum DL. The epitope of monoclonal antibodies blocking erythrocyte invasion by Plasmodium falciparum map to the dimerization and receptor glycan binding sites of EBA-175. PLoS One 2013; 8:e56326. [PMID: 23457550 PMCID: PMC3574135 DOI: 10.1371/journal.pone.0056326] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/08/2013] [Indexed: 01/08/2023] Open
Abstract
The malaria parasite, Plasmodium falciparum, and related parasites use a variety of proteins with Duffy-Binding Like (DBL) domains to bind glycoproteins on the surface of host cells. Among these proteins, the 175 kDa erythrocyte binding antigen, EBA-175, specifically binds to glycophorin A on the surface of human erythrocytes during the process of merozoite invasion. The domain responsible for glycophorin A binding was identified as region II (RII) which contains two DBL domains, F1 and F2. The crystal structure of this region revealed a dimer that is presumed to represent the glycophorin A binding conformation as sialic acid binding sites and large cavities are observed at the dimer interface. The dimer interface is largely composed of two loops from within each monomer, identified as the F1 and F2 β-fingers that contact depressions in the opposing monomers in a similar manner. Previous studies have identified a panel of five monoclonal antibodies (mAbs) termed R215 to R218 and R256 that bind to RII and inhibit invasion of erythrocytes to varying extents. In this study, we predict the F2 β-finger region as the conformational epitope for mAbs, R215, R217, and R256, and confirm binding for the most effective blocking mAb R217 and R215 to a synthetic peptide mimic of the F2 β-finger. Localization of the epitope to the dimerization and glycan binding sites of EBA-175 RII and site-directed mutagenesis within the predicted epitope are consistent with R215 and R217 blocking erythrocyte invasion by Plasmodium falciparum by preventing formation of the EBA-175– glycophorin A complex.
Collapse
Affiliation(s)
- Xavier Ambroggio
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lubin Jiang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Joan Aebig
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Harold Obiakor
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jan Lukszo
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - David L. Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
90
|
Walvoort MTC, van der Marel GA, Overkleeft HS, Codée JDC. On the reactivity and selectivity of donor glycosides in glycochemistry and glycobiology: trapped covalent intermediates. Chem Sci 2013. [DOI: 10.1039/c2sc21610h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
91
|
van der Vries E, Schutten M, Fraaij P, Boucher C, Osterhaus A. Influenza virus resistance to antiviral therapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 67:217-46. [PMID: 23886002 DOI: 10.1016/b978-0-12-405880-4.00006-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antiviral drugs for influenza therapy and prophylaxis are either of the adamantane or neuraminidase inhibitor (NAI) class. However, the NAIs are mainly prescribed nowadays, because of widespread adamantane resistance among influenza A viruses and ineffectiveness of adamantanes against influenza B. Emergence and spread of NAI resistance would further limit our therapeutic options. Taking into account the previous spread of oseltamivir-resistant viruses during the 2007/2008 season preceding the last pandemic, emergence of yet another naturally NAI-resistant influenza virus may not be an unlikely event. This previous incident also underlines the importance of resistance surveillance and asks for a better understanding of the mechanisms underlying primary resistance development. We provide an overview of the major influenza antiviral resistance mechanisms and future therapies for influenza. Here, we call for a better understanding of the effect of virus mutations upon antiviral treatment and for a tailored antiviral approach to severe influenza virus infections.
Collapse
|
92
|
Gu S, Yin N, Pei J, Lai L. Understanding molecular mechanisms of traditional Chinese medicine for the treatment of influenza viruses infection by computational approaches. MOLECULAR BIOSYSTEMS 2013; 9:2696-700. [DOI: 10.1039/c3mb70268e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
93
|
Colman PM. Early days in drug discovery by crystallography – personal recollections. Acta Crystallogr A 2012; 69:60-2. [DOI: 10.1107/s0108767312050441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 11/10/2022] Open
|
94
|
Pandemic 2009 H1N1 influenza A virus carrying a Q136K mutation in the neuraminidase gene is resistant to zanamivir but exhibits reduced fitness in the guinea pig transmission model. J Virol 2012. [PMID: 23192869 DOI: 10.1128/jvi.02507-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Resistance of influenza A viruses to neuraminidase inhibitors can arise through mutations in the neuraminidase (NA) gene. We show here that a Q136K mutation in the NA of the 2009 pandemic H1N1 virus confers a high degree of resistance to zanamivir. Resistance is accompanied by reduced numbers of NA molecules in viral particles and reduced intrinsic enzymatic activity of mutant NA. Interestingly, the Q136K mutation strongly impairs viral fitness in the guinea pig transmission model.
Collapse
|
95
|
Fujisaki S, Takashita E, Yokoyama M, Taniwaki T, Xu H, Kishida N, Sato H, Tashiro M, Imai M, Odagiri T. A single E105K mutation far from the active site of influenza B virus neuraminidase contributes to reduced susceptibility to multiple neuraminidase-inhibitor drugs. Biochem Biophys Res Commun 2012; 429:51-6. [PMID: 23131559 DOI: 10.1016/j.bbrc.2012.10.095] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 10/24/2012] [Indexed: 11/28/2022]
Abstract
Drugs inhibiting the enzymatic activity of influenza virus neuraminidase (NA) are the cornerstone of therapy for influenza virus infection. The emergence of drug-resistant variants may limit the benefits of antiviral therapy. Here we report the recovery of an influenza B virus with reduced susceptibilities to NA inhibitors from a human patient with no history of antiviral drug treatment. The virus, designated B/Kochi/61/2011, was isolated by inoculating Madin-Darby canine kidney (MDCK) cells with respiratory specimens from the patient. NA inhibition assays demonstrated that the B/Kochi/61/2011 isolate showed a remarkable reduction in susceptibility to peramivir. The isolate also exhibited low to moderately reduced sensitivity to oseltamivir, laninamivir, and zanamivir. A sequence analysis of viruses propagated in MDCK cells revealed that the isolate contained a mutation (E105K) not previously associated with reduced susceptibility to NA inhibitors. However, pyrosequencing analysis showed that the NA E105K mutation was below a detectable level in the original clinical specimens, suggesting that the mutant virus may be preferably selected during propagation in MDCK cells. Analysis of the three-dimensional model of E105 and K105 NAs with peramivir suggested that the E105K mutation at the monomer-monomer interface of the NA tetramer may destabilize the tetrameric form of NA, leading to decreased susceptibility to NA inhibitors. These results have implications for understanding the mechanism of resistance against NA-inhibitor drugs.
Collapse
Affiliation(s)
- Seiichiro Fujisaki
- Laboratory of Influenza Virus Surveillance, Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Chen W, Zhong Y, Qin Y, Sun S, Li Z. The evolutionary pattern of glycosylation sites in influenza virus (H5N1) hemagglutinin and neuraminidase. PLoS One 2012; 7:e49224. [PMID: 23133677 PMCID: PMC3486865 DOI: 10.1371/journal.pone.0049224] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 10/04/2012] [Indexed: 11/21/2022] Open
Abstract
Two glycoproteins, hemagglutinin (HA) and neuraminidase (NA), on the surface of influenza viruses play crucial roles in transfaunation, membrane fusion and the release of progeny virions. To explore the distribution of N-glycosylation sites (glycosites) in these two glycoproteins, we collected and aligned the amino acid sequences of all the HA and NA subtypes. Two glycosites were located at HA0 cleavage sites and fusion peptides and were strikingly conserved in all HA subtypes, while the remaining glycosites were unique to their subtypes. Two to four conserved glycosites were found in the stalk domain of NA, but these are affected by the deletion of specific stalk domain sequences. Another highly conserved glycosite appeared at the top center of tetrameric global domain, while the others glycosites were distributed around the global domain. Here we present a detailed investigation of the distribution and the evolutionary pattern of the glycosites in the envelope glycoproteins of IVs, and further focus on the H5N1 virus and conclude that the glycosites in H5N1 have become more complicated in HA and less influential in NA in the last five years.
Collapse
Affiliation(s)
- Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Yannan Qin
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Shisheng Sun
- Department of Pathology, Clinical Chemistry Division, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| |
Collapse
|
97
|
Influenza virus neuraminidases with reduced enzymatic activity that avidly bind sialic Acid receptors. J Virol 2012; 86:13371-83. [PMID: 23015718 DOI: 10.1128/jvi.01426-12] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Influenza virus neuraminidase (NA) cleaves off sialic acid from cellular receptors of hemagglutinin (HA) to enable progeny escape from infected cells. However, NA variants (D151G) of recent human H3N2 viruses have also been reported to bind receptors on red blood cells, but the nature of these receptors and the effect of the mutation on NA activity were not established. Here, we compare the functional and structural properties of a human H3N2 NA from A/Tanzania/205/2010 and its D151G mutant, which supports HA-independent receptor binding. While the wild-type NA efficiently cleaves sialic acid from both α2-6- and α2-3-linked glycans, the mutant exhibits much reduced enzymatic activity toward both types of sialosides. Conversely, while wild-type NA shows no detectable binding to sialosides, the D151G NA exhibits avid binding with broad specificity toward α2-3 sialosides. D151G NA binds the 3' sialyllactosamine (3'-SLN) and 6'-SLN sialosides with equilibrium dissociation constant (K(D)) values of 30.0 μM and 645 μM, respectively, which correspond to much higher affinities than the corresponding affinities (low mM) of HA to these glycans. Crystal structures of wild-type and mutant NAs reveal the structural basis for glycan binding in the active site by exclusively impairing the glycosidic bond hydrolysis step. The general significance of D151 among influenza virus NAs was further explored by introducing the D151G mutation into three N1 NAs and one N2 NA, which all exhibited reduced enzymatic activity and preferential binding to α2-3 sialosides. Since the enzymatic and binding activities of NAs are not routinely assessed, the potential for NA receptor binding to contribute to influenza virus biology may be underappreciated.
Collapse
|
98
|
Structural and functional characterization of neuraminidase-like molecule N10 derived from bat influenza A virus. Proc Natl Acad Sci U S A 2012; 109:18897-902. [PMID: 23012237 DOI: 10.1073/pnas.1211037109] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recent discovery of the unique genome of influenza virus H17N10 in bats raises considerable doubt about the origin and evolution of influenza A viruses. It also identifies a neuraminidase (NA)-like protein, N10, that is highly divergent from the nine other well-established serotypes of influenza A NA (N1-N9). The structural elucidation and functional characterization of influenza NAs have illustrated the complexity of NA structures, thus raising a key question as to whether N10 has a special structure and function. Here the crystal structure of N10, derived from influenza virus A/little yellow-shouldered bat/Guatemala/153/2009 (H17N10), was solved at a resolution of 2.20 Å. Overall, the structure of N10 was found to be similar to that of the other known influenza NA structures. In vitro enzymatic assays demonstrated that N10 lacks canonical NA activity. A detailed structural analysis revealed dramatic alterations of the conserved active site residues that are unfavorable for the binding and cleavage of terminally linked sialic acid receptors. Furthermore, an unusual 150-loop (residues 147-152) was observed to participate in the intermolecular polar interactions between adjacent N10 molecules of the N10 tetramer. Our study of influenza N10 provides insight into the structure and function of the sialidase superfamily and sheds light on the molecular mechanism of bat influenza virus infection.
Collapse
|
99
|
Khedri Z, Li Y, Cao H, Qu J, Yu H, Muthana MM, Chen X. Synthesis of selective inhibitors against V. cholerae sialidase and human cytosolic sialidase NEU2. Org Biomol Chem 2012; 10:6112-20. [PMID: 22641268 PMCID: PMC11302589 DOI: 10.1039/c2ob25335f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sialidases or neuraminidases catalyze the hydrolysis of terminal sialic acid residues from sialyl oligosaccharides and glycoconjugates. Despite successes in developing potent inhibitors specifically against influenza virus neuraminidases, the progress in designing and synthesizing selective inhibitors against bacterial and human sialidases has been slow. Guided by sialidase substrate specificity studies and sialidase crystal structural analysis, a number of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA or Neu5Ac2en) analogues with modifications at C9 or at both C5 and C9 were synthesized. Inhibition studies of various bacterial sialidases and human cytosolic sialidase NEU2 revealed that Neu5Gc9N(3)2en and Neu5AcN(3)9N(3)2en are selective inhibitors against V. cholerae sialidase and human NEU2, respectively.
Collapse
Affiliation(s)
| | | | | | - Jingyao Qu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, USA
| | - Musleh M. Muthana
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, USA
| |
Collapse
|
100
|
Cianci C, Gerritz SW, Deminie C, Krystal M. Influenza nucleoprotein: promising target for antiviral chemotherapy. Antivir Chem Chemother 2012; 23:77-91. [PMID: 22837443 DOI: 10.3851/imp2235] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2012] [Indexed: 12/25/2022] Open
Abstract
In the search for new anti-influenza agents, the viral polymerase has often been targeted due to the involvement of multiple conserved proteins and their distinct activities. Polymerase associates with each of the eight singled-stranded negative-sense viral RNA segments. These transcriptionally competent segments are coated with multiple copies of nucleoprotein (NP) to form the ribonucleoprotein. NP is an abundant essential protein, possessing operative and structural functions, and participating in genome organization, nuclear trafficking and RNA transcription and replication. This review examines the NP structure and function, and explores NP as an emerging target for anti-influenza drug development, focusing on recently discovered aryl piperazine amide inhibitor chemotypes.
Collapse
|