51
|
|
52
|
General IJ, Dragomirova R, Meirovitch H. Absolute free energy of binding of avidin/biotin, revisited. J Phys Chem B 2012; 116:6628-36. [PMID: 22300239 PMCID: PMC3383089 DOI: 10.1021/jp212276m] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The binding of biotin to avidin is one of the strongest in nature with absolute free energy of binding, ΔA(0) = -20.4 kcal/mol. Therefore, this complex became a target for a large number of computational studies, which all, however, are based on approximate techniques or simplified models and have led to a wide range of results Therefore, ΔA(0) is calculated here by rigorous statistical mechanical methods and models that consider long-range electrostatics. (1) We apply our method, "hypothetical scanning molecular dynamics with thermodynamic integration" (HSMD-TI) to avidin-biotin modeled by periodic boundary conditions with particle mesh ewald (PME). (2) We apply the double decoupling method (DDM) to this system modeled by the spherical solvent boundary potential (SSBP) and the generalized solvent boundary potential (GSBP). The corresponding results for neutral biotin, ΔA(0) = -29.1 ± 0.8 and -25.2 ± 0.5 kcal/mol are significantly lower than the experimental value; we also provide the result for a charged biotin, ΔA(0) = -33.3 ± 0.8 kcal/mol. It is plausible to suggest that this disagreement with the experiment may stem from ignoring the (positive) contribution of a mobile loop that changes its structure upon ligand binding.
Collapse
Affiliation(s)
- Ignacio J. General
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, 3059 BST3, Pittsburgh, PA 15260
| | - Ralitsa Dragomirova
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, 3059 BST3, Pittsburgh, PA 15260
| | - Hagai Meirovitch
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, 3059 BST3, Pittsburgh, PA 15260
| |
Collapse
|
53
|
Mei Y, Li YL, Zeng J, Zhang JZH. Electrostatic polarization is critical for the strong binding in streptavidin-biotin system. J Comput Chem 2012; 33:1374-82. [PMID: 22467070 DOI: 10.1002/jcc.22970] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/29/2012] [Accepted: 03/02/2012] [Indexed: 11/10/2022]
Abstract
The origin of strong affinity of biotin and its analogs binding to (strept)avidin is still the subject of an ongoing controversy. In this work, thermodynamic integration is carried out to study of the difference of binding free energies between biotin and iminobiotin to streptavidin. Three atomic charge schemes are implemented and compared. One is the traditional AMBER charge, and the other two, termed the polarized protein-specific charge, are based on a linear scaling quantum mechanical method and a continuous solvation model and have polarization effect partially or fully included. The result indicates that when nonpolarized AMBER force field is applied, the result is much underestimated. When electronic polarization is gradually included, the difference of binding affinity increases along with it. Using the linear-response approximation to eliminate the error in self-charging process, the corrected binding affinity agrees well with the experimental observation. This study is direct evidence indicating that polarization effect is critical for the strong binding in streptavidin-biotin system.
Collapse
Affiliation(s)
- Ye Mei
- State Key Laboratory of Precision Spectroscopy, Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China.
| | | | | | | |
Collapse
|
54
|
Mikulskis P, Genheden S, Wichmann K, Ryde U. A semiempirical approach to ligand-binding affinities: Dependence on the Hamiltonian and corrections. J Comput Chem 2012; 33:1179-89. [DOI: 10.1002/jcc.22949] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/10/2012] [Accepted: 01/16/2012] [Indexed: 12/30/2022]
|
55
|
Polarization effects in protein–ligand calculations extend farther than the actual induction energy. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1159-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
56
|
Ngo VA. Parallel-pulling protocol for free-energy evaluation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:036702. [PMID: 22587204 DOI: 10.1103/physreve.85.036702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/31/2011] [Indexed: 05/31/2023]
Abstract
Jarzynski's equality (JE) allows us to compute free-energy differences from distributions of work. In molecular dynamics simulations, the traditional way of constructing work distributions is to perform as many pulling simulations as possible. But reliable work distributions are not always produced in a finite number of simulations. The computational cost of using JE is not less than other commonly used methods such as thermodynamic integration and umbrella sampling methods. Here we first show a different proof of JE based on the idea of stepwise pulling procedures that is efficient in computing free energies by using JE. The key point in our proof is that the processes of turning on or off a harmonic potential to perform work are described by double Heaviside functions of time. We then show that the distributions of work performed by the potential can be easily generated from the distributions of a reaction coordinate along a pathway. Based on the proof, we propose sequential and parallel stepwise pulling protocols for generating work distributions that require suitable relaxation time at each pulling step. The criterion for reliable work distributions is that there must be sufficient mutual overlaps between the adjacent distributions of the reaction coordinate along the pathway. We arrive at an alternative formula (besides JE) to compute free-energy differences from the averaged values of the reaction coordinate. The combination of JE and the alternative formula provides a viable way to determine the accuracy of computed free-energy differences. For the stretching of a deca-alanine molecule, our approach requires 21 parallel simulations and relaxation time as small as 0.4 ns for each simulation to estimate free-energy differences with an uncertainty of about 13%.
Collapse
Affiliation(s)
- Van A Ngo
- University of Southern California, Department of Physics and Astronomy, Los Angeles, California 90089-0242, USA.
| |
Collapse
|
57
|
Genheden S, Ryde U. Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies. Proteins 2012; 80:1326-42. [PMID: 22274991 DOI: 10.1002/prot.24029] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 11/10/2022]
Abstract
We have compared the predictions of ligand-binding affinities from several methods based on end-point molecular dynamics simulations and continuum solvation, that is, methods related to MM/PBSA (molecular mechanics combined with Poisson-Boltzmann and surface area solvation). Two continuum-solvation models were considered, viz., the Poisson-Boltzmann (PB) and generalised Born (GB) approaches. The nonelectrostatic energies were also obtained in two different ways, viz., either from the sum of the bonded, van der Waals, nonpolar solvation energies, and entropy terms (as in MM/PBSA), or from the scaled protein-ligand van der Waals interaction energy (as in the linear interaction energy approach, LIE). Three different approaches to calculate electrostatic energies were tested, viz., the sum of electrostatic interaction energies and polar solvation energies, obtained either from a single simulation of the complex or from three independent simulations of the complex, the free protein, and the free ligand, or the linear-response approximation (LRA). Moreover, we investigated the effect of scaling the electrostatic interactions by an effective internal dielectric constant of the protein (ϵ(int) ). All these methods were tested on the binding of seven biotin analogues to avidin and nine 3-amidinobenzyl-1H-indole-2-carboxamide inhibitors to factor Xa. For avidin, the best results were obtained with a combination of the LIE nonelectrostatic energies with the MM+GB electrostatic energies from a single simulation, using ϵ(int) = 4. For fXa, standard MM/GBSA, based on one simulation and using ϵ(int) = 4-10 gave the best result. The optimum internal dielectric constant seems to be slightly higher with PB than with GB solvation.
Collapse
Affiliation(s)
- Samuel Genheden
- Department of Theoretical Chemistry, Lund University, Chemical Centre, SE-221 00 Lund, Sweden
| | | |
Collapse
|
58
|
Affiliation(s)
- David J Huggins
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom.
| | | | | |
Collapse
|
59
|
General IJ, Dragomirova R, Meirovitch H. Calculation of the Absolute Free Energy of Binding and Related Entropies with the HSMD-TI Method: The FKBP12-L8 Complex. J Chem Theory Comput 2011; 7:4196-4207. [PMID: 22328868 DOI: 10.1021/ct2004897] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hypothetical scanning molecular dynamics (HSMD) method is used here for calculating the absolute free energy of binding, ΔA(0) of the complex of the protein FKBP12 with the ligand SB2 (also denoted L8) - a system that has been studied previously for comparing the performance of different methods. Our preliminary study suggests that considering long-range electrostatics is imperative even for a hydrophobic ligand such as L8. Therefore the system is modeled by the AMBER force field using Particle Mesh Ewald (PME). HSMD consists of three stages applied to both the ligand-solvent and ligand-protein systems. (1) A small set of system configurations (frames) is extracted from an MD trajectory. (2) The entropy of the ligand in each frame is calculated by a reconstruction procedure. (3) The contribution of water and protein to ΔA(0) is calculated for each frame by gradually increasing the ligand-environment interactions from zero to their full value using thermodynamic integration (TI). Unlike the conventional methods, the structure of the ligand is kept fixed during TI, and HSMD is thus free from the end-point problem encountered with the double annihilation method (DAM); therefore, the need for applying restraints is avoided. Furthermore, unlike the conventional methods, the entropy of the ligand and water is obtained directly as a byproduct of the simulation. In this paper, in addition to the difference in the internal entropies of the ligand in the two environments, we calculate for the first time the external entropy of the ligand, which provides a measure for the size of the active site. We obtain ΔA(0) = -10.7 ±1.0 as compared to the experimental values -10.9 and -10.6 kcal/mol. However, a protein/water system treated by periodic boundary conditions grows significantly with increasing protein size and the computation of ΔA(0) would become expensive by all methods. Therefore, we also apply HSMD to FKBP12-L8 described by the GSBP/SSBP model of Roux's group (implemented in the software CHARMM) where only part of the protein and water around the active site are considered and long-range electrostatic effects are taken into account. For comparison this model was also treated by the double decoupling method (DDM). The two methods have led to comparable results for ΔA(0) which are somewhat lower than the experimental value. The ligand was found to be more confined in the active site described by GSBP/SSBP than by PME where its entropy in solvent is larger than in the active site by 1.7 and by 5.5 kcal/mol, respectively.
Collapse
Affiliation(s)
- Ignacio J General
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, 3059 BST3, Pittsburgh, PA 15260
| | | | | |
Collapse
|
60
|
Genheden S, Ryde U. Comparison of the Efficiency of the LIE and MM/GBSA Methods to Calculate Ligand-Binding Energies. J Chem Theory Comput 2011; 7:3768-78. [DOI: 10.1021/ct200163c] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Samuel Genheden
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
61
|
How the biotin-streptavidin interaction was made even stronger: investigation via crystallography and a chimaeric tetramer. Biochem J 2011; 435:55-63. [PMID: 21241253 PMCID: PMC3062853 DOI: 10.1042/bj20101593] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The interaction between SA (streptavidin) and biotin is one of the strongest non-covalent interactions in Nature. SA is a widely used tool and a paradigm for protein–ligand interactions. We previously developed a SA mutant, termed Tr (traptavidin), possessing a 10-fold lower off-rate for biotin, with increased mechanical and thermal stability. In the present study, we determined the crystal structures of apo-Tr and biotin–Tr at 1.5 Å resolution. In apo-SA the loop (L3/4), near biotin's valeryl tail, is typically disordered and open, but closes upon biotin binding. In contrast, L3/4 was shut in both apo-Tr and biotin–Tr. The reduced flexibility of L3/4 and decreased conformational change on biotin binding provide an explanation for Tr's reduced biotin off- and on-rates. L3/4 includes Ser45, which forms a hydrogen bond to biotin consistently in Tr, but erratically in SA. Reduced breakage of the biotin–Ser45 hydrogen bond in Tr is likely to inhibit the initiating event in biotin's dissociation pathway. We generated a Tr with a single biotin-binding site rather than four, which showed a simi-larly low off-rate, demonstrating that Tr's low off-rate was governed by intrasubunit effects. Understanding the structural features of this tenacious interaction may assist the design of even stronger affinity tags and inhibitors.
Collapse
|
62
|
Hou T, Wang J, Li Y, Wang W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 2011; 51:69-82. [PMID: 21117705 PMCID: PMC3029230 DOI: 10.1021/ci100275a] [Citation(s) in RCA: 1959] [Impact Index Per Article: 139.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) and the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) methods calculate binding free energies for macromolecules by combining molecular mechanics calculations and continuum solvation models. To systematically evaluate the performance of these methods, we report here an extensive study of 59 ligands interacting with six different proteins. First, we explored the effects of the length of the molecular dynamics (MD) simulation, ranging from 400 to 4800 ps, and the solute dielectric constant (1, 2, or 4) on the binding free energies predicted by MM/PBSA. The following three important conclusions could be observed: (1) MD simulation length has an obvious impact on the predictions, and longer MD simulation is not always necessary to achieve better predictions. (2) The predictions are quite sensitive to the solute dielectric constant, and this parameter should be carefully determined according to the characteristics of the protein/ligand binding interface. (3) Conformational entropy often show large fluctuations in MD trajectories, and a large number of snapshots are necessary to achieve stable predictions. Next, we evaluated the accuracy of the binding free energies calculated by three Generalized Born (GB) models. We found that the GB model developed by Onufriev and Case was the most successful model in ranking the binding affinities of the studied inhibitors. Finally, we evaluated the performance of MM/GBSA and MM/PBSA in predicting binding free energies. Our results showed that MM/PBSA performed better in calculating absolute, but not necessarily relative, binding free energies than MM/GBSA. Considering its computational efficiency, MM/GBSA can serve as a powerful tool in drug design, where correct ranking of inhibitors is often emphasized.
Collapse
Affiliation(s)
- Tingjun Hou
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Junmei Wang
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
63
|
Laine E, Martínez L, Blondel A, Malliavin TE. Activation of the edema factor of Bacillus anthracis by calmodulin: evidence of an interplay between the EF-calmodulin interaction and calcium binding. Biophys J 2011; 99:2264-72. [PMID: 20923661 DOI: 10.1016/j.bpj.2010.07.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 07/14/2010] [Accepted: 07/23/2010] [Indexed: 11/19/2022] Open
Abstract
Calmodulin (CaM) is a remarkably flexible protein which can bind multiple targets in response to changes in intracellular calcium concentration. It contains four calcium-binding sites, arranged in two globular domains. The calcium affinity of CaM N-terminal domain (N-CaM) is dramatically reduced when the complex with the edema factor (EF) of Bacillus anthracis is formed. Here, an atomic explanation for this reduced affinity is proposed through molecular dynamics simulations and free energy perturbation calculations of the EF-CaM complex starting from different crystallographic models. The simulations show that electrostatic interactions between CaM and EF disfavor the opening of N-CaM domains usually induced by calcium binding. Relative calcium affinities of the N-CaM binding sites are probed by free energy perturbation, and dissociation probabilities are evaluated with locally enhanced sampling simulations. We show that EF impairs calcium binding on N-CaM through a direct conformational restraint on Site 1, by an indirect destabilization of Site 2, and by reducing the cooperativity between the two sites.
Collapse
Affiliation(s)
- Elodie Laine
- Unité de Bioinformatique Structurale, Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France.
| | | | | | | |
Collapse
|
64
|
General IJ, Dragomirova R, Meirovitch H. New method for calculating the absolute free energy of binding: the effect of a mobile loop on the avidin/biotin complex. J Phys Chem B 2011; 115:168-75. [PMID: 21158467 PMCID: PMC3042141 DOI: 10.1021/jp1076752] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hypothetical scanning molecular dynamics (HSMD) is a relatively new method for calculating the absolute free energy and entropy. HSMD is extended here for the first time for calculating the absolute free energy of binding, ΔA(0), as applied to the avidin-biotin complex. With HSMD the ligand is built (more accurately reconstructed) from nothing in solvent and in the protein, in contrast to the commonly used methods where the ligand is annihilated (by thermodynamic integration) in these environments. Therefore, the end-point problem encountered with the latter methods does not exist with HSMD and the need for restraints is avoided. Also, the entropy of the ligand and water in both environments is obtained directly as a byproduct of the simulation. The binding mechanism of biotin to avidin involves a mobile loop that is expected to be in an open conformation in unbound avidin, which is changed to a closed one upon binding, that is, the loop moves to cover biotin in the active site. The contribution of the loop's conformational change to the total free energy of binding is calculated here for the first time. Our result, ΔA(0) = -24.9 ± 7 covers the experimental value -20.7 kcal/mol within the error bars.
Collapse
Affiliation(s)
- Ignacio J. General
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, 3059 BST3, Pittsburgh, PA 15260
| | - Ralitsa Dragomirova
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, 3059 BST3, Pittsburgh, PA 15260
| | - Hagai Meirovitch
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, 3059 BST3, Pittsburgh, PA 15260
| |
Collapse
|
65
|
Gallicchio E, Levy RM. Recent theoretical and computational advances for modeling protein-ligand binding affinities. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 85:27-80. [PMID: 21920321 DOI: 10.1016/b978-0-12-386485-7.00002-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We review recent theoretical and algorithmic advances for the modeling of protein ligand binding free energies. We first describe a statistical mechanics theory of noncovalent association, with particular focus on deriving the fundamental formulas on which computational methods are based. The second part reviews the main computational models and algorithms in current use or development, pointing out the relations with each other and with the theory developed in the first part. Particular emphasis is given to the modeling of conformational reorganization and entropic effect. The methods reviewed are free energy perturbation, double decoupling, the Binding Energy Distribution Analysis Method, the potential of mean force method, mining minima and MM/PBSA. These models have different features and limitations, and their ranges of applicability vary correspondingly. Yet their origins can all be traced back to a single fundamental theory.
Collapse
Affiliation(s)
- Emilio Gallicchio
- Department of Chemistry and Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, New Jersey, USA
| | | |
Collapse
|
66
|
Genheden S, Ryde U. A comparison of different initialization protocols to obtain statistically independent molecular dynamics simulations. J Comput Chem 2010; 32:187-95. [DOI: 10.1002/jcc.21546] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
67
|
Raphael MP, Rappole CA, Kurihara LK, Christodoulides JA, Qadri SN, Byers JM. Iminobiotin Binding Induces Large Fluorescent Enhancements in Avidin and Streptavidin Fluorescent Conjugates and Exhibits Diverging pH-Dependent Binding Affinities. J Fluoresc 2010; 21:647-52. [DOI: 10.1007/s10895-010-0752-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 10/14/2010] [Indexed: 09/29/2022]
|
68
|
Computational and mutagenesis studies of the streptavidin native dimer interface. J Mol Graph Model 2010; 29:295-308. [DOI: 10.1016/j.jmgm.2010.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 08/08/2010] [Accepted: 09/15/2010] [Indexed: 11/20/2022]
|
69
|
Genheden S, Luchko T, Gusarov S, Kovalenko A, Ryde U. An MM/3D-RISM approach for ligand binding affinities. J Phys Chem B 2010; 114:8505-16. [PMID: 20524650 DOI: 10.1021/jp101461s] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have modified the popular MM/PBSA or MM/GBSA approaches (molecular mechanics for a biomolecule, combined with a Poisson-Boltzmann or generalized Born electrostatic and surface area nonelectrostatic solvation energy) by employing instead the statistical-mechanical, three-dimensional molecular theory of solvation (also known as 3D reference interaction site model, or 3D-RISM-KH) coupled with molecular mechanics or molecular dynamics ( Blinov , N. ; et al. Biophys. J. 2010 ; Luchko , T. ; et al. J. Chem. Theory Comput. 2010 ). Unlike the PBSA or GBSA semiempirical approaches, the 3D-RISM-KH theory yields a full molecular picture of the solvation structure and thermodynamics from the first principles, with proper account of chemical specificities of both solvent and biomolecules, such as hydrogen bonding, hydrophobic interactions, salt bridges, etc. We test the method on the binding of seven biotin analogues to avidin in aqueous solution and show it to work well in predicting the ligand-binding affinities. We have compared the results of 3D-RISM-KH with four different generalized Born and two Poisson-Boltzmann methods. They give absolute binding energies that differ by up to 208 kJ/mol and mean absolute deviations in the relative affinities of 10-43 kJ/mol.
Collapse
Affiliation(s)
- Samuel Genheden
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | | | | | | | | |
Collapse
|
70
|
Abstract
The molecular mechanics/generalized Born surface area (MM/GBSA) method has been investigated with the aim of achieving a statistical precision of 1 kJ/mol for the results. We studied the binding of seven biotin analogues to avidin, taking advantage of the fact that the protein is a tetramer with four independent binding sites, which should give the same estimated binding affinities. We show that it is not enough to use a single long simulation (10 ns), because the standard error of such a calculation underestimates the difference between the four binding sites. Instead, it is better to run several independent simulations and average the results. With such an approach, we obtain the same results for the four binding sites, and any desired precision can be obtained by running a proper number of simulations. We discuss how the simulations should be performed to optimize the use of computer time. The correlation time between the MM/GBSA energies is approximately 5 ps and an equilibration time of 100 ps is needed. For MM/GBSA, we recommend a sampling time of 20-200 ps for each separate simulation, depending on the protein. With 200 ps production time, 5-50 separate simulations are required to reach a statistical precision of 1 kJ/mol (800-8000 energy calculations or 1.5-15 ns total simulation time per ligand) for the seven avidin ligands. This is an order of magnitude more than what is normally used, but such a number of simulations is needed to obtain statistically valid results for the MM/GBSA method.
Collapse
Affiliation(s)
- Samuel Genheden
- Department of Theoretical Chemistry, Lund University, SE-221 00 Lund, Sweden
| | | |
Collapse
|
71
|
Söderhjelm P, Kongsted J, Ryde U. Ligand Affinities Estimated by Quantum Chemical Calculations. J Chem Theory Comput 2010; 6:1726-37. [DOI: 10.1021/ct9006986] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pär Söderhjelm
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, 221 00 Lund, Sweden, and Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Jacob Kongsted
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, 221 00 Lund, Sweden, and Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, 221 00 Lund, Sweden, and Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
72
|
Carra C, Cucinotta FA. Binding selectivity of RecA to a single stranded DNA, a computational approach. J Mol Model 2010; 17:133-50. [PMID: 20386943 DOI: 10.1007/s00894-010-0694-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 02/23/2010] [Indexed: 11/29/2022]
Abstract
Homologous recombination (HR) is the major DNA double strand break repair pathway which maintains the genomic integrity. It is fundamental for the survivability and functionality of all organisms. One of the initial steps in HR is the formation of the nucleoprotein filament composed by a single stranded DNA chain surrounded by the recombinases protein. The filament orchestrates the search for an undamaged homologue, as a template for the repair process. Our theoretical study was aimed at elucidating the selectivity of the interaction between a monomer of the recombinases enzyme in the Escherichia coli, EcRecA, the bacterial homologue of human Rad51, with a series of oligonucleotides of nine bases length. The complex, equilibrated for 20 ns with Langevian dynamics, was inserted in a periodic box with a 8 Å buffer of water molecules explicitly described by the TIP3P model. The absolute binding free energies are calculated in an implicit solvent using the Poisson-Boltzmann (PB) and the generalized Born (GB) solvent accessible surface area, using the MM-PB(GB)SA model. The solute entropic contribution is also calculated by normal mode analysis. The results underline how a significant contribution of the binding free energy is due to the interaction with the Arg196, a critical amino acid for the activity of the enzyme. The study revealed how the binding affinity of EcRecA is significantly higher toward dT₉ rather than dA₉, as expected from the experimental results.
Collapse
Affiliation(s)
- Claudio Carra
- Universities Space Research Association, 2101 NASA Parkway, Houston, TX 77058, USA.
| | | |
Collapse
|
73
|
Meirovitch H. Methods for calculating the absolute entropy and free energy of biological systems based on ideas from polymer physics. J Mol Recognit 2010; 23:153-72. [PMID: 19650071 PMCID: PMC2823937 DOI: 10.1002/jmr.973] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The commonly used simulation techniques, Metropolis Monte Carlo (MC) and molecular dynamics (MD) are of a dynamical type which enables one to sample system configurations i correctly with the Boltzmann probability, P(i)(B), while the value of P(i)(B) is not provided directly; therefore, it is difficult to obtain the absolute entropy, S approximately -ln P(i)(B), and the Helmholtz free energy, F. With a different simulation approach developed in polymer physics, a chain is grown step-by-step with transition probabilities (TPs), and thus their product is the value of the construction probability; therefore, the entropy is known. Because all exact simulation methods are equivalent, i.e. they lead to the same averages and fluctuations of physical properties, one can treat an MC or MD sample as if its members have rather been generated step-by-step. Thus, each configuration i of the sample can be reconstructed (from nothing) by calculating the TPs with which it could have been constructed. This idea applies also to bulk systems such as fluids or magnets. This approach has led earlier to the "local states" (LS) and the "hypothetical scanning" (HS) methods, which are approximate in nature. A recent development is the hypothetical scanning Monte Carlo (HSMC) (or molecular dynamics, HSMD) method which is based on stochastic TPs where all interactions are taken into account. In this respect, HSMC(D) can be viewed as exact and the only approximation involved is due to insufficient MC(MD) sampling for calculating the TPs. The validity of HSMC has been established by applying it first to liquid argon, TIP3P water, self-avoiding walks (SAW), and polyglycine models, where the results for F were found to agree with those obtained by other methods. Subsequently, HSMD was applied to mobile loops of the enzymes porcine pancreatic alpha-amylase and acetylcholinesterase in explicit water, where the difference in F between the bound and free states of the loop was calculated. Currently, HSMD is being extended for calculating the absolute and relative free energies of ligand-enzyme binding. We describe the whole approach and discuss future directions.
Collapse
Affiliation(s)
- Hagai Meirovitch
- Department of Computational Biology, University of Pittsburgh School of Medicine, 3059 BST3, Pittsburgh, PA 15260, USA.
| |
Collapse
|
74
|
Fürstenberg A, Kel O, Gradinaru J, Ward TR, Emery D, Bollot G, Mareda J, Vauthey E. Site-dependent excited-state dynamics of a fluorescent probe bound to avidin and streptavidin. Chemphyschem 2009; 10:1517-32. [PMID: 19565577 DOI: 10.1002/cphc.200900132] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The excited-state dynamics of biotin-spacer-Lucifer-Yellow (LY) constructs bound to avidin (Avi) and streptavidin (Sav) was investigated using femtosecond spectroscopy. Two different locations in the proteins, identified by molecular dynamics simulations of Sav, namely the entrance of the binding pocket and the protein surface, were probed by varying the length of the spacer. A reduction of the excited-state lifetime, stronger in Sav than in Avi, was observed with the long spacer construct. Transient absorption measurements show that this effect originates from an electron transfer quenching of LY, most probably by a nearby tryptophan residue. The local environment of the LY chromophore could be probed by measuring the time-dependent polarisation anisotropy and Stokes shift of the fluorescence. Substantial differences in both dynamics were observed. The fluorescence anisotropy decays analysed by using the wobbling-in-a-cone model reveal a much more constrained environment of the chromophore with the short spacer. Moreover, the dynamic Stokes shift is multiphasic in all cases, with a approximately 1 ps component that can be ascribed to diffusive motion of bulk-like water molecules, and with slower components with time constants varying not only with the spacer, but with the protein as well. These slow components, which depend strongly on the local environment of the probe, are ascribed to the motion of the hydration layer coupled to the conformational dynamics of the protein.
Collapse
Affiliation(s)
- Alexandre Fürstenberg
- Department of Physical Chemistry, University of Geneva, 30, quai Ernest-Ansermet, CH-1211 Geneva, 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Zanchi FB, Caceres RA, Stabeli RG, de Azevedo WF. Molecular dynamics studies of a hexameric purine nucleoside phosphorylase. J Mol Model 2009; 16:543-50. [PMID: 19669809 DOI: 10.1007/s00894-009-0557-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 06/28/2009] [Indexed: 11/30/2022]
Abstract
Purine nucleoside phosphorylase (PNP) (EC.2.4.2.1) is an enzyme that catalyzes the cleavage of N-ribosidic bonds of the purine ribonucleosides and 2-deoxyribonucleosides in the presence of inorganic orthophosphate as a second substrate. This enzyme is involved in purine-salvage pathway and has been proposed as a promising target for design and development of antimalarial and antibacterial drugs. Recent elucidation of the three-dimensional structure of PNP by X-ray protein crystallography left open the possibility of structure-based virtual screening initiatives in combination with molecular dynamics simulations focused on identification of potential new antimalarial drugs. Most of the previously published molecular dynamics simulations of PNP were carried out on human PNP, a trimeric PNP. The present article describes for the first time molecular dynamics simulations of hexameric PNP from Plasmodium falciparum (PfPNP). Two systems were simulated in the present work, PfPNP in ligand free form, and in complex with immucillin and sulfate. Based on the dynamical behavior of both systems the main results related to structural stability and protein-drug interactions are discussed.
Collapse
|
76
|
Li Q, Gusarov S, Evoy S, Kovalenko A. Electronic Structure, Binding Energy, and Solvation Structure of the Streptavidin−Biotin Supramolecular Complex: ONIOM and 3D-RISM Study. J Phys Chem B 2009; 113:9958-67. [DOI: 10.1021/jp902668c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qingbin Li
- National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada, and Department of Mechanical Engineering and Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Sergey Gusarov
- National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada, and Department of Mechanical Engineering and Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Stephane Evoy
- National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada, and Department of Mechanical Engineering and Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Andriy Kovalenko
- National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada, and Department of Mechanical Engineering and Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| |
Collapse
|
77
|
Freddolino PL, Park S, Roux B, Schulten K. Force field bias in protein folding simulations. Biophys J 2009; 96:3772-80. [PMID: 19413983 PMCID: PMC2711430 DOI: 10.1016/j.bpj.2009.02.033] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 02/12/2009] [Accepted: 02/19/2009] [Indexed: 10/20/2022] Open
Abstract
Long timescale (>1 micros) molecular dynamics simulations of protein folding offer a powerful tool for understanding the atomic-scale interactions that determine a protein's folding pathway and stabilize its native state. Unfortunately, when the simulated protein fails to fold, it is often unclear whether the failure is due to a deficiency in the underlying force fields or simply a lack of sufficient simulation time. We examine one such case, the human Pin1 WW domain, using the recently developed deactivated morphing method to calculate free energy differences between misfolded and folded states. We find that the force field we used favors the misfolded states, explaining the failure of the folding simulations. Possible further applications of deactivated morphing and implications for force field development are discussed.
Collapse
Affiliation(s)
- Peter L. Freddolino
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Sanghyun Park
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
| | - Klaus Schulten
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
78
|
Söderhjelm P, Ryde U. How accurate can a force field become? A polarizable multipole model combined with fragment-wise quantum-mechanical calculations. J Phys Chem A 2009; 113:617-27. [PMID: 19093829 DOI: 10.1021/jp8073514] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A new method to accurately estimate the interaction energy between a large molecule and a smaller ligand is presented. The method approximates the electrostatic and induction contributions classically by multipole and polarizability expansions, but uses explicit quantum-mechanical fragment calculations for the remaining (nonclassical) contributions, mainly dispersion and exchange repulsion. Thus, it represents a limit of how accurate a force field can ever become for interaction energies if pairwise additivity of the nonclassical term is assumed (e.g., all general-purpose force fields). The accuracy is tested by considering protein-ligand model systems for which the true MP2/6-31G* interaction energies can be computed. The method is shown to be more accurate than related fragmentation approaches. The remaining error (2-5 and approximately10 kJ/mol for neutral and charged ligands, respectively) can be decreased by including the polarizing effect from surrounding fragments in the quantum-mechanical calculations.
Collapse
Affiliation(s)
- Pär Söderhjelm
- Department of Theoretical Chemistry, Lund University, Chemical Center, POB 124, SE-22100 Lund, Sweden.
| | | |
Collapse
|
79
|
Mahajan A, Yuan C, Lee H, Chen ESW, Wu PY, Tsai MD. Structure and function of the phosphothreonine-specific FHA domain. Sci Signal 2008; 1:re12. [PMID: 19109241 DOI: 10.1126/scisignal.151re12] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The forkhead-associated (FHA) domain is the only known phosphoprotein-binding domain that specifically recognizes phosphothreonine (pThr) residues, distinguishing them from phosphoserine (pSer) residues. In contrast to its very strict specificity toward pThr, the FHA domain recognizes very diverse patterns in the residues surrounding the pThr residue. For example, the FHA domain of Ki67, a protein associated with cellular proliferation, binds to an extended target surface involving residues remote from the pThr, whereas the FHA domain of Dun1, a DNA damage-response kinase, specifically recognizes a doubly phosphorylated Thr-Gln (TQ) cluster by virtue of its possessing two pThr-binding sites. The FHA domain exists in various proteins with diverse functions and is particularly prevalent among proteins involved in the DNA damage response. Despite a very short history, a number of unique structural and functional properties of the FHA domain have been uncovered. This review highlights the diversity of biological functions of the FHA domain-containing proteins and the structural bases for the novel binding specificities and multiple binding modes of FHA domains.
Collapse
Affiliation(s)
- Anjali Mahajan
- Biophysics Program, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
80
|
Levy M, Ellington A. Directed evolution of streptavidin variants using in vitro compartmentalization. CHEMISTRY & BIOLOGY 2008; 15:979-89. [PMID: 18804035 PMCID: PMC2615486 DOI: 10.1016/j.chembiol.2008.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 07/14/2008] [Accepted: 07/18/2008] [Indexed: 10/21/2022]
Abstract
We have developed and implemented an in vitro compartmentalization (IVC) selection scheme for the identification of streptavidin (SA) variants with altered specificities for the biotin analog desthiobiotin. Wild-type SA and selected variants bind desthiobiotin with similar affinities (approximately 10(-13) M), but the variants have off rates almost 50 times slower and a half-life for dissociation of 24 hr at 25 degrees C. The utility of streptavidin variants with altered specificities and kinetic properties was shown by constructing protein microarrays that could be used to differentially organize and immobilize DNAs bearing these ligands. The methods we have developed should prove to be generally useful for generating a variety of novel SA reagents and for evolving other extremely high-affinity protein:ligand couples.
Collapse
Affiliation(s)
| | - A.D. Ellington
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
81
|
An improved method to predict the entropy term with the MM/PBSA approach. J Comput Aided Mol Des 2008; 23:63-71. [PMID: 18781280 DOI: 10.1007/s10822-008-9238-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 08/12/2008] [Indexed: 10/21/2022]
Abstract
A method is suggested to calculate improved entropies within the MM/PBSA approach (molecular mechanics combined with Poisson-Boltzmann and surface area calculations) to estimate protein-ligand binding affinities. In the conventional approach, the protein is truncated outside ~8 A from the ligand. This system is freely minimised using a distance-dependent dielectric constant (to simulate the removed protein and solvent). However, this can lead to extensive changes in the molecular geometry, giving rise to a large standard deviation in this term. In our new approach, we introduce a buffer region approximately 4 A outside the truncated protein (including solvent molecules) and keep it fixed during the minimisation. Thereby, we reduce the standard deviation by a factor of 2-4, ensuring that the entropy term no longer limits the precision of the MM/PBSA predictions. The new method is tested for the binding of seven biotin analogues to avidin, eight amidinobenzyl-indole-carboxamide inhibitors to factor Xa, and two substrates to cytochrome P450 3A4 and 2C9. It is shown that it gives more stable results and often improved predictions of the relative binding affinities.
Collapse
|
82
|
Wu P, Castner DG, Grainger DW. Diagnostic devices as biomaterials: a review of nucleic acid and protein microarray surface performance issues. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2008; 19:725-53. [PMID: 18534094 DOI: 10.1163/156856208784522092] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review of current DNA and protein microarray diagnostic and bio-analytical technologies focuses on the different surface chemistries used in these miniaturized surface-capture formats. Description of current strategies in bio-immobilization and coupling to create multiplexed affinity bioassays in micrometer-sized printed spots, problems with current formats and review of some detection methods are included. Recommendations for improving long-standing challenges in DNA- and protein-based arrays are forwarded. The biomaterials community can contribute relevant expertise to these formidable bio-interfacial problems that represent significant barriers to clinical implementation of microarray assays.
Collapse
Affiliation(s)
- Peng Wu
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada T6G 2G2
| | | | | |
Collapse
|
83
|
Oron A, Wolfson H, Gunasekaran K, Nussinov R. Using DelPhi to compute electrostatic potentials and assess their contribution to interactions. ACTA ACUST UNITED AC 2008; Chapter 8:Unit 8.4. [PMID: 18428711 DOI: 10.1002/0471250953.bi0804s02] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There is a general agreement that electrostatic interactions play a significant role in the structure and function of biological molecules. However, obtaining quantitative estimation of the electrostatic energy requires computational models that capture the microscopic nature of the heterogeneous environment of macromolecules. This protocol offers elaboration on one of the common methods to calculate the electrostatic energetic contributions using continuum electrostatics. The method involves solving the Poisson-Boltzmann (PB) equation numerically and regarding the solute as having a homogenous dielectric constant. In order to apply this method, a three dimensional structure of the molecule derived from experimental data (crystallography, NMR) or modeling techniques is required. The protocol will focus on the DelPhi program (Accelrys Inc. San Diego), which is one of the most common programs used for the estimation of electrostatic free energy contribution. A simple procedure of assigning criteria and parameters (charge distribution, solvent and solute dielectric constants, iterations, grid resolution, etc) enables one to illustrate an electrostatic potential map and estimate the electrostatic free energy, although with limited accuracy.
Collapse
|
84
|
Lee J, Seok C. A statistical rescoring scheme for protein-ligand docking: Consideration of entropic effect. Proteins 2008; 70:1074-83. [PMID: 18076034 DOI: 10.1002/prot.21844] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Computational prediction of protein-ligand binding modes provides useful information on the relationship between structure and activity needed for drug design. A statistical rescoring method that incorporates entropic effect is proposed to improve the accuracy of binding mode prediction. A probability function for two sampled conformations to belong to the same broad basin in the potential energy surface is introduced to estimate the contribution of the state represented by a sampled conformation to the configurational integral. The rescoring function is reduced to the colony energy introduced by Xiang et al. (Proc Natl Acad Sci USA 2002;99:7432-7437) when a particular functional form for the probability function is used. The scheme is applied to rescore protein-ligand complex conformations generated by AutoDock. It is demonstrated that this simple rescoring improves prediction accuracy substantially when tested on 163 protein-ligand complexes with known experimental structures. For example, the percentage of complexes for which predicted ligand conformations are within 1 A root-mean-square deviation from the native conformations is doubled from about 20% to more than 40%. Rescoring with 11 different scoring functions including AutoDock scoring functions were also tested using the ensemble of conformations generated by Wang et al. (J Med Chem 2003;46:2287-2303). Comparison with other methods that use clustering and estimation of conformational entropy is provided. Examination of the docked poses reveals that the rescoring corrects the predictions in which ligands are tightly fit into the binding pockets and have low energies, but have too little room for conformational freedom and thus have low entropy.
Collapse
Affiliation(s)
- Juyong Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | | |
Collapse
|
85
|
Yan C, Xiu Z, Li X, Li S, Hao C, Teng H. Comparative molecular dynamics simulations of histone deacetylase-like protein: Binding modes and free energy analysis to hydroxamic acid inhibitors. Proteins 2008; 73:134-49. [PMID: 18398905 DOI: 10.1002/prot.22047] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chunli Yan
- Department of Bioscience and Biotechnology, School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China
| | | | | | | | | | | |
Collapse
|
86
|
Steinbrecher T, Hrenn A, Dormann KL, Merfort I, Labahn A. Bornyl (3,4,5-trihydroxy)-cinnamate - An optimized human neutrophil elastase inhibitor designed by free energy calculations. Bioorg Med Chem 2008; 16:2385-90. [DOI: 10.1016/j.bmc.2007.11.070] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 11/20/2007] [Accepted: 11/23/2007] [Indexed: 12/01/2022]
|
87
|
Palmowski M, Morgenstern B, Hauff P, Reinhardt M, Huppert J, Maurer M, Woenne EC, Doerk S, Ladewig G, Jenne JW, Delorme S, Grenacher L, Hallscheidt P, Kauffmann GW, Semmler W, Kiessling F. Pharmacodynamics of streptavidin-coated cyanoacrylate microbubbles designed for molecular ultrasound imaging. Invest Radiol 2008; 43:162-9. [PMID: 18301312 DOI: 10.1097/rli.0b013e31815a251b] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To assess the pharmacodynamic behavior of cyanoacrylate, streptavidin-coated microbubbles (MBs) and to investigate their suitability for molecular ultrasound imaging. MATERIALS AND METHODS Biodistribution of MBs was analyzed in tumor-bearing mice using gamma-counting, immunohistochemistry, flow cytometry, and ultrasound. Further, vascular endothelial growth factor receptor 2-antibody coupled MBs were used to image tumor neovasculature. RESULTS After 1 minute >90% of MBs were cleared from the blood and pooled in the lungs, liver, and spleen. Subsequently, within 1 hour a decent reincrease of MB-concentration was observed in the blood. The remaining MBs were removed by liver and spleen macrophages. About 30% of the phagocytosed MBs were intact after 48 hours. Shell fragments were found in the kidneys only. No relevant MB-accumulation was observed in tumors. In contrast, vascular endothelial growth factor receptor 2-specific MBs accumulated significantly within the tumor vasculature (P < 0.05). CONCLUSIONS The pharmacokinetic behavior of streptavidin-coated cyanoacrylate MBs has been studied. In this context, the low amount of MBs in tumors after >5 minutes is beneficial for specific targeting of angiogenesis.
Collapse
Affiliation(s)
- Moritz Palmowski
- Department of Diagnostic Radiology, Ruprecht-Karls University, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Molecular Dynamics Free Energy Simulation Study to Rationalize the Relative Activities of PPAR δ Agonists. B KOREAN CHEM SOC 2008. [DOI: 10.5012/bkcs.2008.29.2.363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
89
|
Acevedo O, Jorgensen WL. Medium effects on the decarboxylation of a biotin model in pure and mixed solvents from QM/MM simulations. J Org Chem 2007; 71:4896-902. [PMID: 16776519 DOI: 10.1021/jo060533b] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The decarboxylation of imidazolidin-2-one-1-carboxylate anion 2 has been investigated via combined quantum and statistical mechanics methodology. Monte Carlo statistical mechanics simulations utilizing free-energy perturbation theory and PDDG/PM3 for the QM method yielded free-energy profiles for the reaction in water, methanol, acetonitrile, and mixed solvents. The results for free energies of activation are uniformly in close accord with experimental data and reflect large rate accelerations in progressing from protic to dipolar aprotic media. Structural and energetic analyses confirm that the rate retardation in protic solvents comes from loss of hydrogen bonding in progressing from the carboxylate anion 2 to the more charge-delocalized transition state (TS). The structure of the TS is found to be significantly affected by the reaction medium; it occurs at a 0.2-A shorter C-N separation in protic solvents than in acetonitrile. Characterization of the hydrogen bonding for 2 and the TS also provided insights for design of decarboxylase catalysts, namely, it is desirable to have three hydrogen-bond donating groups positioned to interact with the ureido oxygen along with two hydrogen-bond donors positioned to interact with the ureido nitrogen of the breaking C-N bond.
Collapse
Affiliation(s)
- Orlando Acevedo
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, USA
| | | |
Collapse
|
90
|
DeChancie J, Houk K. The origins of femtomolar protein-ligand binding: hydrogen-bond cooperativity and desolvation energetics in the biotin-(strept)avidin binding site. J Am Chem Soc 2007; 129:5419-29. [PMID: 17417839 PMCID: PMC2527462 DOI: 10.1021/ja066950n] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unusually strong reversible binding of biotin by avidin and streptavidin has been investigated by density functional and MP2 ab initio quantum mechanical methods. The solvation of biotin by water has also been studied through QM/MM/MC calculations. The ureido moiety of biotin in the bound state hydrogen bonds to five residues, three to the carbonyl oxygen and one for each--NH group. These five hydrogen bonds act cooperatively, leading to stabilization that is larger than the sum of individual hydrogen-bonding energies. The charged aspartate is the key residue that provides the driving force for cooperativity in the hydrogen-bonding network for both avidin and streptavidin by greatly polarizing the urea of biotin. If the residue is removed, the network is disrupted, and the attenuation of the energetic contributions from the neighboring residues results in significant reduction of cooperative interactions. Aspartate is directly hydrogen-bonded with biotin in streptavidin and is one residue removed in avidin. The hydrogen-bonding groups in streptavidin are computed to give larger cooperative hydrogen-bonding effects than avidin. However, the net gain in electrostatic binding energy is predicted to favor the avidin-bicyclic urea complex due to the relatively large penalty for desolvation of the streptavidin binding site (specifically expulsion of bound water molecules). QM/MM/MC calculations involving biotin and the ureido moiety in aqueous solution, featuring PDDG/PM3, show that water interactions with the bicyclic urea are much weaker than (strept)avidin interactions due to relatively low polarization of the urea group in water.
Collapse
Affiliation(s)
- Jason DeChancie
- Contribution from the Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| | - K.N. Houk
- Contribution from the Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| |
Collapse
|
91
|
Zajac A, Song D, Qian W, Zhukov T. Protein microarrays and quantum dot probes for early cancer detection. Colloids Surf B Biointerfaces 2007; 58:309-14. [PMID: 17408931 DOI: 10.1016/j.colsurfb.2007.02.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/19/2007] [Accepted: 02/22/2007] [Indexed: 11/20/2022]
Abstract
We describe here a novel approach for detection of cancer markers using quantum dot protein microarrays. Both relatively new technologies; quantum dots and protein microarrays, offer very unique features that together allow detection of cancer markers in biological specimens (serum, plasma, body fluids) at pg/ml concentration. Quantum dots offer remarkable photostability and brightness. They do not exhibit photobleaching common to organic fluorophores. Moreover, the high emission amplitude for QDs results in a marked improvement in the signal to noise ratio of the final image. Protein microarrays allow highly parallel quantitation of specific proteins in a rapid, low-cost and low sample volume format. Furthermore the multiplexed assay enables detection of many proteins at once in one sample, making it a powerful tool for biomarker analysis and early cancer diagnostics. In a series of multiplexing experiments we investigated ability of the platform to detect six different cytokines in protein solution. We were able to detect TNF-alpha, IL-8, IL-6, MIP-1beta, IL-13 and IL-1beta down to picomolar concentration, demonstrating high sensitivity of the investigated detection system. We have also constructed and investigated two different models of quantum dot probes. One by conjugation of nanocrystals to antibody specific to the selected marker--IL-10, and the second by use of streptavidin coated quantum dots and biotinylated detector antibody. Comparison of those two models showed better performance of streptavidin QD-biotinylated detector antibody model. Data quantitated using custom designed computer program (CDAS) show that proposed methodology allows monitoring of changes in biomarker concentration in physiological range.
Collapse
Affiliation(s)
- Aleksandra Zajac
- Division of Cancer Prevention and Control, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
92
|
Free Energy Calculations: Approximate Methods for Biological Macromolecules. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/978-3-540-38448-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
93
|
Weis A, Katebzadeh K, Söderhjelm P, Nilsson I, Ryde U. Ligand Affinities Predicted with the MM/PBSA Method: Dependence on the Simulation Method and the Force Field. J Med Chem 2006; 49:6596-606. [PMID: 17064078 DOI: 10.1021/jm0608210] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The free energy of binding between avidin and seven biotin analogues has been calculated with the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) method. We have studied how the force field and the method to generate geometries affect the calculated binding free energies. Four different force fields were compared, but we saw no significant difference in the results. However, mixing the force fields used for the geometry generation and energy calculations is not recommended. In the molecular dynamics simulations, explicit water molecules must be used, but the size of the simulated system and the boundary conditions are less important. In fact, nonperiodic simulations with a fixed protein outside a relatively small simulated system (18 A) seem to be a proper approach. The mean absolute error was 9-19 kJ/mol, with a standard error of 5-15 kJ/mol, which arises mainly from the entropy term.
Collapse
Affiliation(s)
- Aaron Weis
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | | | | | | | | |
Collapse
|
94
|
Abstract
The outcome of a self-assembly process is not only determined by the specified connections between building blocks, but also by the means of bringing building blocks into contact and of testing for the formation of an intended connection. Endowing each building block with the ability to actively move overcomes some limitations of diffusion-driven molecular and nanoscale self-assembly by accelerating transport, reducing unwanted connections, and introducing self-organization phenomena with desirable consequences. Proof-of-principle experiments utilizing biomolecular motors, motor proteins, to propel nanostructures and the underlying concepts are reviewed, and the potential impact for nanomanufacturing is discussed.
Collapse
Affiliation(s)
- Henry Hess
- 160 Rhines Hall, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
95
|
Abstract
We have performed Langevin dynamics and Poisson-Nernst-Planck calculations to simulate detection of proteins by genetically engineered alpha-hemolysin channels. In the recent stochastic sensing experiments, one end of a flexible polymer chain is permanently anchored inside the protein channel at a specified location, and the other end undergoes complexation with an analyte. Our simulations, using coarse-grained modeling, reproduce all essential qualitative results of the electrophysiology measurements of stochastic sensing. In addition, the underlying macromolecular mechanisms behind stochastic sensing are revealed in vivid details. The entropic fluctuations of the conformations of the tethered polymer chain dictate crucially the unique signatures of the ionic current trace of the channel and provide design rules for successful stochastic sensing. The origin of strong fluctuations in the ionic current of the channel is found to arise from the obstruction of the entrance at the beta-barrel of the channel by the fluctuating segments of the tether. Silencing of the pore is due to the suppression of conformational fluctuations of the chain, and the permanent blockade of ionic current is due to the threading of the tether through the channel. The onset of silencing and permanent blockade of the channel current cannot necessarily be attributed to the capture of analytes. In order for detection events to be timed accurately, the length and anchoring location of the tether must be tuned appropriately.
Collapse
Affiliation(s)
- Chung Yin Kong
- Department of Polymer Science and Engineering, University of Massachusetts at Amherst, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
96
|
Steinbrecher T, Case DA, Labahn A. A Multistep Approach to Structure-Based Drug Design: Studying Ligand Binding at the Human Neutrophil Elastase. J Med Chem 2006; 49:1837-44. [PMID: 16539369 DOI: 10.1021/jm0505720] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study we show that a combination of different theoretical methods is a viable approach to calculate the binding affinities of new ligands for the human neutrophile elastase. This protease degrades elastin and likely aids neutrophils in fulfilling their immunological functions. Abnormally high human neutrophil elastase (HNE) levels are involved in several diseases; therefore, inhibitors of HNE are of interest as targets for drug design. A recent study has revealed that cinnamic acid and bornyl ester derivatives bind to HNE, but DeltaG0 values from ligand docking results exhibited no correlation with those calculated from the IC50 values. To accurately compute binding affinities, we generated possible protein ligand complex structures by ligand docking calculations. For each of the ligands, the 30 most likely placements were used as starting points of nanosecond length molecular dynamics simulations. The binding free energies for these complex structures were estimated using a continuum solvent (MM-PBSA) approach. These results, along with structural data from the molecular dynamics runs, allowed the identification of a group of similar placements that serve as a model for the natural protein ligand complex structure. This structural model was used to perform thermodynamic integration (TI) calculations to obtain the relative binding free energies of similar ligands to HNE. The TI results were in quantitative agreement with the measured binding affinities. Thus, the presented approach can be used to generate a probable complex structure for known ligands to HNE and to use such a structure to calculate the effects of small ligand modifications on ligand binding, possibly leading to new inhibitors with improved binding affinities.
Collapse
Affiliation(s)
- Thomas Steinbrecher
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 23a, 79104 Freiburg, Germany
| | | | | |
Collapse
|
97
|
Abstract
Biotin (1), a water-soluble B series vitamin, distributes widely in microorganisms, plants, and animals. Biosynthesis of 1 involves five steps sequence starting from pimelic acid. The last step, a transformation from dethiobiotin (DTB) to 1, includes an iron clusters-mediated radical process. The compound 1 is a cofactor of carboxylation enzymes and plays crucial roles in the metabolism of fatty acids, sugars, and alpha-amino acids. In addition to the increasing application to feed additives, recent reports have revealed that 1 enhances insulin secretion in animals, suggesting it for a promising therapeutic candidate for an anti-diabetes drug. The remarkably strong affinity of 1 with avidin and streptavidin has been extensively applied for such technologies as photoaffinity labeling. Among the number of approaches to 1 so far developed in 50 years, a synthesis using L-cysteine and thiolactone as a starting material and a key intermediate, respectively, represents one of the best routes leading to 1, because of short steps, high yield, use of inexpensive reagents, and ease of operation.
Collapse
Affiliation(s)
- Masahiko Seki
- Tanabe Seiyaku Co., Ltd., 3-2-10, Dosho-Machi, Osaka 541-8505, Japan.
| |
Collapse
|
98
|
Prabhu NV, Zhu P, Sharp KA. Implementation and testing of stable, fast implicit solvation in molecular dynamics using the smooth-permittivity finite difference Poisson-Boltzmann method. J Comput Chem 2004; 25:2049-64. [PMID: 15481091 DOI: 10.1002/jcc.20138] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A fast stable finite difference Poisson-Boltzmann (FDPB) model for implicit solvation in molecular dynamics simulations was developed using the smooth permittivity FDPB method implemented in the OpenEye ZAP libraries. This was interfaced with two widely used molecular dynamics packages, AMBER and CHARMM. Using the CHARMM-ZAP software combination, the implicit solvent model was tested on eight proteins differing in size, structure, and cofactors: calmodulin, horseradish peroxidase (with and without substrate analogue bound), lipid carrier protein, flavodoxin, ubiquitin, cytochrome c, and a de novo designed 3-helix bundle. The stability and accuracy of the implicit solvent simulations was assessed by examining root-mean-squared deviations from crystal structure. This measure was compared with that of a standard explicit water solvent model. In addition we compared experimental and calculated NMR order parameters to obtain a residue level assessment of the accuracy of MD-ZAP for simulating dynamic quantities. Overall, the agreement of the implicit solvent model with experiment was as good as that of explicit water simulations. The implicit solvent method was up to eight times faster than the explicit water simulations, and approximately four times slower than a vacuum simulation (i.e., with no solvent treatment).
Collapse
Affiliation(s)
- Ninad V Prabhu
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, 37th and Hamilton Walk, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
99
|
Hamelberg D, McCammon JA. Standard free energy of releasing a localized water molecule from the binding pockets of proteins: double-decoupling method. J Am Chem Soc 2004; 126:7683-9. [PMID: 15198616 DOI: 10.1021/ja0377908] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Localized water molecules in the binding pockets of proteins play an important role in noncovalent association of proteins and small drug compounds. At times, the dominant contribution to the binding free energy comes from the release of localized water molecules in the binding pockets of biomolecules. Therefore, to quantify the energetic importance of these water molecules for drug design purposes, we have used the double-decoupling approach to calculate the standard free energy of tying up a water molecule in the binding pockets of two protein complexes. The double-decoupling approach is based on the underlying principle of statistical thermodynamics. We have calculated the standard free energies of tying up the water molecule in the binding pockets of these complexes to be favorable. These water molecules stabilize the protein-drug complexes by interacting with the ligands and binding pockets. Our results offer ideas that could be used in optimizing protein-drug interactions, by designing ligands that are capable of targeting localized water molecules in protein binding sites. The resulting free energy of ligand binding could benefit from the potential free energy gain accompanying the release of these water molecules. Furthermore, we have examined the theoretical background of the double-decoupling method and its connection to the molecular dynamics thermodynamic integration techniques.
Collapse
Affiliation(s)
- Donald Hamelberg
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0365, USA.
| | | |
Collapse
|
100
|
Abstract
Several methodologies were employed to calculate the Gibbs standard free energy of binding for a collection of protein-ligand complexes, where the ligand is a peptide and the protein is representative for various protein families. Almost 40 protein-ligand complexes were employed for a continuum approach, which considers the protein and the peptide at the atomic level, but includes solvent as a polarizable continuum. Five protein-ligand complexes were employed for an all-atom approach that relies on a combination of the double decoupling method with thermodynamic integration and molecular dynamics. These affinities were also computed by means of the linear interaction energy method. Although it generally proved rather difficult to predict the absolute free energies correctly, for some protein families the experimental ranking order was correctly reproduced by the continuum and all-atom approach. Considerable attention has also been given to correctly analyze the affinities of charged peptides, where it is required to judge the effect of one or more ions that are being decoupled in an all-atom approach to preserve electroneutrality. The various methods are further judged upon their merits.
Collapse
Affiliation(s)
- Serena Donnini
- The Biocenter and the Department of Biochemistry, University of Oulu, P.O. Box 3000, FIN-90014 University of Oulu, Finland
| | | |
Collapse
|