51
|
Studzińska S, Buszewski B. Different approaches to quantitative structure-retention relationships in the prediction of oligonucleotide retention. J Sep Sci 2015; 38:2076-84. [PMID: 25866200 DOI: 10.1002/jssc.201401395] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 11/05/2022]
Abstract
Quantitative structure-retention relationships studies were performed for cholesterol and alkylamide stationary phases, which were previously applied in the analysis of nucleotides and oligonucleotides. An octadecyl column was also tested. Twenty-four oligonucleotides of various sequences and length were chosen; next, their structural descriptors were determined with the use of quantum-mechanics method. The sequence features were related mainly to their surface area, hydrophobicity, and the nature of nucleobases. Moreover, for the first time models employing experimentally derived descriptors (the sum of retention factor for individual nucleotides) were developed in the quantitative structure-retention relationship studies of these compounds. The retention of oligonucleotides for alkylamide and cholesterol stationary phases may be effectively predicted with the use of quantitative structure-retention relationship models based only on molecularly modeled descriptors, as well as with models employing experimentally derived descriptors. Therefore, we recommend the first approach, since descriptors may be easily and quickly calculated. However, oligonucleotide retention prediction for octadecyl phases gives better results, when individual nucleotide retention factors are known and utilized for the creation of a mathematical model.
Collapse
Affiliation(s)
- Sylwia Studzińska
- Chair of the Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland
| | - Bogusław Buszewski
- Chair of the Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
52
|
Gwinn E, Schultz D, Copp SM, Swasey S. DNA-Protected Silver Clusters for Nanophotonics. NANOMATERIALS 2015; 5:180-207. [PMID: 28347005 PMCID: PMC5312861 DOI: 10.3390/nano5010180] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/05/2015] [Indexed: 01/08/2023]
Abstract
DNA-protected silver clusters (AgN-DNA) possess unique fluorescence properties that depend on the specific DNA template that stabilizes the cluster. They exhibit peak emission wavelengths that range across the visible and near-IR spectrum. This wide color palette, combined with low toxicity, high fluorescence quantum yields of some clusters, low synthesis costs, small cluster sizes and compatibility with DNA are enabling many applications that employ AgN-DNA. Here we review what is known about the underlying composition and structure of AgN-DNA, and how these relate to the optical properties of these fascinating, hybrid biomolecule-metal cluster nanomaterials. We place AgN-DNA in the general context of ligand-stabilized metal clusters and compare their properties to those of other noble metal clusters stabilized by small molecule ligands. The methods used to isolate pure AgN-DNA for analysis of composition and for studies of solution and single-emitter optical properties are discussed. We give a brief overview of structurally sensitive chiroptical studies, both theoretical and experimental, and review experiments on bringing silver clusters of distinct size and color into nanoscale DNA assemblies. Progress towards using DNA scaffolds to assemble multi-cluster arrays is also reviewed.
Collapse
Affiliation(s)
- Elisabeth Gwinn
- Department of Physics, The University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Danielle Schultz
- Department of Chemistry and Biochemistry, The University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Stacy M Copp
- Department of Physics, The University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Steven Swasey
- Department of Chemistry and Biochemistry, The University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
53
|
Reaction profiling by ultra high-pressure liquid chromatography/time-of-flight mass spectrometry in support of the synthesis of DNA-encoded libraries. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 971:120-5. [PMID: 25282130 DOI: 10.1016/j.jchromb.2014.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/01/2014] [Accepted: 09/03/2014] [Indexed: 11/21/2022]
Abstract
An ultra high-pressure liquid chromatography/mass spectrometry (UHPLC/MS) separation and analysis method has been devised for open access analysis of synthetic reactions used in the production of DNA-encoded chemical libraries. The aqueous mobile phase is 100mM hexafluoroisopropanol and 8.6mM triethylamine; the organic mobile phase is methanol. The UHPLC separation uses a C18 OST column (50mm×2.1mm×1.7μm) at 60°C, with a flow rate of 0.6mL/min. Gradient concentration is from 10 to 40% B in 1.0min, increasing to 95% B at 1.2min. Cycle time was about 5min. This method provides a detection limit of a 20-mer oligonucleotide by mass spectrometry of better than 1pmol on-column. Linear UV response for 20-mer extends from 2 to 200pmol/μL in concentration, same-day relative average deviations are less than 5% and bias (observed minus expected) is less than 10%. Deconvoluted mass spectra are generated for components in the predicted mass range using a maximum entropy algorithm. Mass accuracy of deconvoluted spectra is typically 20ppm or better for isotopomers of oligonucleotides up to 7000Da.
Collapse
|
54
|
Gong L, McCullagh JSO. Comparing ion-pairing reagents and sample dissolution solvents for ion-pairing reversed-phase liquid chromatography/electrospray ionization mass spectrometry analysis of oligonucleotides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:339-350. [PMID: 24395501 DOI: 10.1002/rcm.6773] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/19/2013] [Accepted: 10/20/2013] [Indexed: 06/03/2023]
Abstract
RATIONALE A sensitive and selective liquid chromatography/mass spectrometry (LC/MS) method is essential for quality control of synthetic oligonucleotides. However, researchers are still searching for improvements to ion-pairing reagents for ion-pairing reversed-phase LC/MS. This study performed a comprehensive comparison of six ion-pairing reagents to determine their performance as mobile phase modifiers for oligonucleotide LC/MS. METHODS The study was performed using a Waters ultra-performance liquid chromatography (UPLC®) system coupled to a Waters LCT premier XE ESI-TOF mass spectrometer by using a UPLC® OST column (2.1 mm × 100 mm, 1.7 µm). Buffer systems containing ion-pairing reagents (triethylamine, tripropylamine, hexylamine, N,N-dimethylbutylamine, dibutylamine, N,N-diisopropylethylamine) and hexafluoro-2-propanol were compared by measuring the adduct ion formation, chromatographic separation, and MS signal intensity of four oligonucleotides (10mer to 40mer). The effect of dissolution solvents on MS signal intensity and adduct ion formation was also investigated. RESULTS Results showed that the type of dissolution solvent can have a signficiant impact on adduct ion formation with oligonucleotides. Results also showed that the maximum separation for small, medium and large oligonucleotides occured when using tripropylamine, N,N-dimethylbutylamine, and dibutylamine, respectively. However, on average 15 mM hexylamine and 50 mM hexafluoro-2-propanol provided the best chromtatographic performance (resolution values: 14.1 ± 0.34, 11.0 ± 0.17, and 6.4 ± 0.11 for the pairs of oligonucleotides T10 & T15, T15 & T25, and T25 & T40, respectively (3 replicates)). CONCLUSIONS The impact of dissolution solvent on the MS signal of oligonucleotides depends on the type of ion-pairing reagent. Buffer combining 15 mM hexylamine and 50 mM hexafluoro-2-propanol produced the highest overall performance for oligonucleotides (10mer to 40mer) with respect to chromatographic resolution and mass detection.
Collapse
Affiliation(s)
- Lingzhi Gong
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | | |
Collapse
|
55
|
Erb R, Oberacher H. Comparison of mobile-phase systems commonly applied in liquid chromatography-mass spectrometry of nucleic acids. Electrophoresis 2013; 35:1226-35. [PMID: 24123202 DOI: 10.1002/elps.201300269] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/25/2013] [Accepted: 08/12/2013] [Indexed: 11/08/2022]
Abstract
LC-MS represents an important technology for the qualitative and quantitative analysis of nucleic acids. For MS, ESI in negative ion mode is used. The chromatographic method of choice is ion-pair (IP) RP chromatography. Chromatographic separations are usually accomplished by gradients of an organic modifier in aqueous solutions of IP reagents. Commonly applied IP reagents are 2.3 mM triethylamine/400 mM 1,1,1,3,3,3-hexafluoro-2-propanol (TEA/HFIP, pH 7.0) and 10-25 mM cyclohexyldimethylammonium acetate (CycHDMAA, pH 8.4). Direct comparison of mass spectrometric performance of the two solvent systems revealed that the TEA/HFIP system offers better detection sensitivity than the CycHDMAA system. This is mainly attributable to the depletion of HFIP during droplet formation and solvent evaporation. Removal of the anionic counterion facilitates oligonucleotide ionization, and the oligonucleotides are desorbed as highly charged ions into the gas phase. TEA/HFIP-based mobile phases are recommended for developing quantitative assays targeting defined oligonucleotides. The CycHDMAA system allows the formation of cyclohexyldimethylammonium adducts. These adducts are cleaved in the gas phase, and this decomposition gives rise to charge state reduction. Ammonium adduct formation is of particular importance in preventing adducting with metal ions. Thus, adducts with metal ions are efficiently suppressed with CycHDMAA. For the TEA/HFIP system, however, such adducting represents a severe problem particularly if large oligonucleotides are analyzed. Thus, CycHDMAA-based mobile phases are recommended for qualitative assays such as LC-MS-based genotyping.
Collapse
Affiliation(s)
- Robert Erb
- Institute of Legal Medicine and Core Facility Metabolomics, Innsbruck Medical University, Innsbruck, Austria
| | | |
Collapse
|
56
|
Chen B, Bartlett MG. Evaluation of mobile phase composition for enhancing sensitivity of targeted quantification of oligonucleotides using ultra-high performance liquid chromatography and mass spectrometry: application to phosphorothioate deoxyribonucleic acid. J Chromatogr A 2013; 1288:73-81. [PMID: 23528868 DOI: 10.1016/j.chroma.2013.03.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/31/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
Abstract
LC-MS based assays are a promising approach for the bioanalysis of oligonucleotide therapeutics due to their selectivity and structure identification capabilities. However, the lack of sensitivity and complicated sample preparation procedures remain a barrier for application of LC-MS based assays to preclinical and clinical studies. Numerous studies have shown that the mobile phase composition, especially organic solvent type, has a significant impact on the MS sensitivity of oligonucleotides. In this study, we systematically investigated the type of organic solvents and concentration of organic modifiers for their effect on electrospray desorption efficiency, chromatographic separation and LC-MS signal intensity and provide mechanisms for these effects. 25mM HFIP, 15mM DIEA and the use of ethanol as an organic solvent were observed to achieve a two order of magnitude increase in LC-MS signal intensity when compared to the most commonly used LC-MS mobile phase composition. Phenol-chloroform LLE in combination with ethanol precipitation was demonstrated to be effective for quantitative bioanalysis of therapeutic oligonucleotides. Various conditions for ethanol precipitation were evaluated and >75% absolute recovery was achieved using an optimized extraction procedure. No increase in column pressure or deterioration of separation was observed for >500 injections of biological samples. The method run time was 5min and the LOQ was 2.5ng/ml. The accuracy (% error) and precision (%RSD) are <5.09% and <10.56%, respectively, over a dynamic range of 2.5-1000ng/ml. The assay was applied to a proof of concept animal study and similar PK parameters to previous studies were obtained.
Collapse
Affiliation(s)
- Buyun Chen
- Department of Pharmaceutical and Biomedical Science, College of Pharmacy, The University of Georgia, Athens, GA 30602-2352, USA
| | | |
Collapse
|
57
|
Wetzel C, Limbach PA. The global identification of tRNA isoacceptors by targeted tandem mass spectrometry. Analyst 2013; 138:6063-72. [DOI: 10.1039/c3an01224g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
58
|
Biba M, Welch CJ, Foley JP, Mao B, Vazquez E, Arvary RA. Evaluation of core-shell particle columns for ion-pair reversed-phase liquid chromatography analysis of oligonucleotides. J Pharm Biomed Anal 2012; 72:25-32. [PMID: 23146223 DOI: 10.1016/j.jpba.2012.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/05/2012] [Accepted: 09/08/2012] [Indexed: 11/16/2022]
Abstract
An investigation into the use of core-shell particle columns for separation of short (∼21 base pairs) RNA oligonucleotides by ion-pair reversed-phase liquid chromatography (IP-RPLC) showed improved resolution for a number of test analytes relative to conventional (fully-porous) reversed-phase columns. The best resolutions were obtained using columns packed with smaller sub-2μm core-shell particles.
Collapse
|
59
|
Global identification of transfer RNAs by liquid chromatography–mass spectrometry (LC–MS). J Proteomics 2012; 75:3450-64. [DOI: 10.1016/j.jprot.2011.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 09/18/2011] [Accepted: 09/21/2011] [Indexed: 11/17/2022]
|
60
|
Jiao K, Rashid A, Basu SK, Zhu S, Brown BD, Guerciolini R, Fambrough DM. Quantitative Analysis of Dicer Substrate Oligonucleotides in Mouse Liver by Ultra-High-Performance Liquid Chromatography–Electrospray Ionization Tandem Mass Spectrometry. Assay Drug Dev Technol 2012; 10:278-88. [DOI: 10.1089/adt.2011.0435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
| | - Aftab Rashid
- Dicerna Pharmaceuticals, Watertown, Massachusetts
| | | | - Shuhao Zhu
- Dicerna Pharmaceuticals, Watertown, Massachusetts
| | - Bob D. Brown
- Dicerna Pharmaceuticals, Watertown, Massachusetts
| | | | | |
Collapse
|
61
|
Liu CH, Lu DD, Deng XX, Wang Y, Zhang JY, Zhang YL, Wang SQ. The analysis of major impurities of lipophilic-conjugated phosphorothioate oligonucleotides by ion-pair reversed-phase HPLC combined with MALDI-TOF-MS. Anal Bioanal Chem 2012; 403:1333-42. [PMID: 22441199 DOI: 10.1007/s00216-012-5935-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/07/2012] [Accepted: 03/07/2012] [Indexed: 12/13/2022]
Abstract
A simple and rapid ion-pair reversed phase high-performance liquid chromatography (IP-RP-HPLC) method was developed to analyse the major impurities of lipophilic-conjugated phosphorothioate oligonucleotides (ODNs), which provided better separation performance than capillary gel electrophoresis and ion exchange chromatograph methods. The study showed that covalent conjugations of lipophilic group (docosanyl, C(22)) to ODN at 5'-termini (denoted as 5'C(22)-Flu) or 3'-termini (denoted as 3'C(22)-Flu) exhibited similar chromatographic retention behavior. Some important analytical conditions of IP-RP-HPLC, including column type, ion-pairing buffer composition, and separation temperature, were investigated for the effects on the separation of crude 5'C(22)-Flu. As expected, the method developed was successfully applied to the analysis of crude 3'C(22)-Flu and both purified products. Furthermore, the related impurities derived from the synthetic process were identified by matrix-assisted laser desorption-ionization time-of-flight mass spectrum. These MS results are of benefit to understanding the major process-related impurities in lipophilic-ODN conjugates synthesis, thereby elevating the quality of target products.
Collapse
Affiliation(s)
- Cai-Hong Liu
- Chinese PLA Postgraduate Medical School, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
62
|
Comprehensive hydrophilic interaction and ion-pair reversed-phase liquid chromatography for analysis of di- to deca-oligonucleotides. J Chromatogr A 2011; 1255:237-43. [PMID: 22204934 DOI: 10.1016/j.chroma.2011.11.062] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/24/2011] [Accepted: 11/29/2011] [Indexed: 11/22/2022]
Abstract
A comprehensive two-dimensional HPLC approach with a high degree of orthogonality was developed for analysis of di- to deca-oligonucleotides (ONs). Hydrophilic interaction liquid chromatography (HILIC) was used in the first dimension, and ion-pair reversed-phase liquid chromatography (IP-RPLC) was employed in the second dimension. The two dimensions were connected via a ten-port valve interface equipped with octadecyl silica (ODS) traps to immobilize and focus the ONs eluting from the first dimension prior to IP-RPLC separation. An aqueous make-up flow was used for effective trapping. The comprehensive two-dimensional HPLC system was optimized with a mixture consisting of 27 oligonucleotide standards. An overall chromatographic peak capacity of 500 was obtained. The use of the volatile buffer triethylamine acetate in the second dimension allowed straightforward coupling to electrospray ionization mass spectrometry (ESI-MS) and detection of each ON in the negative ionization mode.
Collapse
|
63
|
Beverly MB. Applications of mass spectrometry to the study of siRNA. MASS SPECTROMETRY REVIEWS 2011; 30:979-998. [PMID: 20201110 DOI: 10.1002/mas.20260] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 08/13/2009] [Accepted: 08/13/2009] [Indexed: 05/28/2023]
Abstract
RNA interference (RNAi) has quickly become a well-established laboratory tool for regulating gene expression and is currently being explored for its therapeutic potential. The design and use of double-stranded RNA oligonucleotides as therapeutics to trigger the RNAi mechanism and a greater effort to understand the RNAi pathway itself is driving the development of analytical techniques that can characterize these oligonucleotides. Electrospray (ESI) and MALDI have been used routinely to analyze oligonucleotides and their ability to provide mass and sequence information has made them ideal for this application. Reviewed here is the work done to date on the use of ESI and MALDI for the study of RNAi oligonucleotides as well as the strategies and issues associated with siRNA analysis by mass spectrometry. While there is not a large body of literature on the specific application of mass spectrometry to RNAi, the work done in this area is a good demonstration of the range of experiments that can be conducted and the value that ESI and MALDI can provide to the RNAi field.
Collapse
Affiliation(s)
- Michael B Beverly
- RNA Therapeutics Department, Merck and Co., Inc., Boulder, CO 80301, USA.
| |
Collapse
|
64
|
McGinnis AC, Chen B, Bartlett MG. Chromatographic methods for the determination of therapeutic oligonucleotides. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 883-884:76-94. [PMID: 21945211 DOI: 10.1016/j.jchromb.2011.09.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/31/2011] [Accepted: 09/05/2011] [Indexed: 11/25/2022]
Abstract
Both DNA and RNA are being explored for their therapeutic potential against a wide range of diseases. As these new drugs emerge, new demands arise for the analysis and quantitation of these biomolecules. Pharmacokinetic and pharmacodynamic analysis requirements for drug approval place enormous challenges on the methods for analyzing these therapeutics. This review will focus on bioanalytical methods for DNA antisense and aptamers as well as small-interfering RNA (siRNA) therapeutics. Chromatography methods employing ultraviolet (UV), fluorescence and mass spectrometric (MS) detection along with matrix-assisted laser desorption/ionization (MALDI) will be covered. Sample preparation from biological matrices will be reviewed as well as metabolite analysis and identification. All of these techniques are important contributions toward oligonucleotide therapeutic development. They will also be important in microRNA (miRNA) biomarker discovery and RNomics in general, as more non-coding RNAs are inevitably discovered.
Collapse
Affiliation(s)
- A Cary McGinnis
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, USA
| | | | | |
Collapse
|
65
|
Abstract
Therapeutic oligonucleotides (OGNTs) are important biopharmaceutical drugs for the future, due to their ability to selectively reduce or knockout the expression of target genes. For the development of OGNTs, reliable and relatively high-throughput bioanalytical methods are required to perform the quantitative bioanalysis of OGNTs and their metabolites in biological fluids (e.g., plasma, urine and tissue). Although immunoaffinity methods, especially ELISA, are currently widely applied for this purpose, the potential of LC-MS in OGNT analysis is under investigation. Owing to its inherent ability to monitor the individual target OGNTs as well as their metabolites, LC-MS is now evolving into the method-of-choice for the bioanalysis of OGNTs. In this paper, the state-of-the-art of bioanalytical LC-MS of OGNTs and their metabolites in biological fluids is critically reviewed and its advantages and limitations highlighted. Finally, the future perspective of bioanalytical LC-MS, that is, lower detection levels and potential generic LC-MS methodology, is discussed.
Collapse
|
66
|
Abstract
The rapid development of therapeutic oligonucleotides (ONs) has created a need for in-depth characterization of ONs, beyond previous requirements. The natural migration to LC-MS requires the use of chromatography with MS-compatible eluents to introduce the large, highly charged biopolymers into the mass spectrometer. Most frequently this employs ion-pair reversed-phase liquid chromatography, which may leave gaps in the characterization, but these can be filled with the use of high-resolution ion-exchange chromatography. Several classes of isobaric isomers are among the impurities that will require further separation prior to MS analysis. This review shows how the use of ion exchange as an additional orthogonal analytical method can be used as standalone or interfaced with MS to achieve the highest possible analytical coverage in the characterization and quantification of impurities present in single- and double-stranded ON formulations. Some of these techniques have been in use for some time and the importance of others is just being recognized.
Collapse
|
67
|
Noll B, Seiffert S, Vornlocher HP, Roehl I. Characterization of small interfering RNA by non-denaturing ion-pair reversed-phase liquid chromatography. J Chromatogr A 2011; 1218:5609-17. [PMID: 21737080 DOI: 10.1016/j.chroma.2011.06.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/31/2011] [Accepted: 06/11/2011] [Indexed: 01/27/2023]
Abstract
Small interfering RNAs (siRNA) are emerging as a novel therapeutic modality for the specific inhibition of target gene expression. siRNA are typically formed by annealing of two complementary single stranded oligoribonucleotides. Compared to purity determination of non-hybridized single strands by denaturing chromatographic methods, characterization of the hybridized duplex is challenging. Here we are reporting a non-denaturing ion pairing-reversed phase (IP-RP) chromatography method capable of separating optimal duplex (full-length single strands only) from non-optimal duplex variants (containing shortmers, longmers and 2',5'-isomers) using ultraviolet- and mass spectrometric detection. The impact of different annealing conditions on siRNA composition was investigated. Optimized annealing conditions lead to a significant increase in optimal duplex, while total duplex content remained constant. The non-denaturing method reported herein showed high mass spectrometric sensitivity and superior separation efficiencies compared to other IP-RP buffer systems. The method is useful for in-process control and release testing of therapeutic double stranded nucleic acids such as siRNA.
Collapse
|
68
|
Gong L, McCullagh JSO. Analysis of oligonucleotides by hydrophilic interaction liquid chromatography coupled to negative ion electrospray ionization mass spectrometry. J Chromatogr A 2011; 1218:5480-6. [PMID: 21741051 DOI: 10.1016/j.chroma.2011.06.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/31/2011] [Accepted: 06/09/2011] [Indexed: 01/08/2023]
Abstract
Hydrophilic interaction liquid chromatography (HILIC) is here successfully coupled to negative-ion electrospray ionization time-of-flight mass spectrometry (ESI-TOFMS) for the analysis of synthetic and chemically modified oligonucleotides. Separation was performed on a 2.1 mm × 100 mm PEEK ZIC HILIC column packed with hydrophilic stationary phase with a permanent zwitterionic functional group and a particle size of 3.5 μm with an average pore diameter of 200Å. A method was developed to separate homogeneous and heterogeneous oligonucleotides as well as methylated oligonucleotides using a quaternary pumping system containing ammonium acetate and water with an acetonitrile gradient. Analyses of oligonucleotides were performed by LC/MS with a detection limit of 2.5 picomole (20 mer) with signal to noise ratio (S/N) of 4.12. The influence of the eluent composition, type of buffer and its concentration, and organic modifier were also evaluated. The HILIC LC/MS method presented in this paper used common, 'MS friendly', mobile phases achieving sensitive and selective oligonucleotide analysis.
Collapse
Affiliation(s)
- Lingzhi Gong
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | | |
Collapse
|
69
|
Levin DS, Shepperd BT, Gruenloh CJ. Combining ion pairing agents for enhanced analysis of oligonucleotide therapeutics by reversed phase-ion pairing ultra performance liquid chromatography (UPLC). J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:1587-95. [PMID: 21514903 DOI: 10.1016/j.jchromb.2011.03.051] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 03/21/2011] [Accepted: 03/25/2011] [Indexed: 02/06/2023]
Abstract
The burgeoning field of oligonucleotide therapeutics is based upon synthetically derived biopolymers comprised of relatively simple RNA and DNA building blocks. Significant gains in knowledge around mechanisms of action (RNA interference, RNA splicing, etc.) and oligonucleotide design (ASO, siRNA, DsiRNA, miRNA, locked nucleic acid, etc.) have been the main drivers of recent investment for this field [1,2]. As therapeutics, there is currently great interest in oligonucleotides due to the reduced time required to achieve lead molecules and to their potential for treating previously untractable diseases. One of the more challenging areas for the field of oligonucleotide therapeutics is the development of high-quality analysis schemes for the determination of purity in drug substance and product. This, in part, is due to the fact that the synthesis of oligonucleotides results in a significant number of closely related impurities that are not easily removed during purification [1]. As a result, these macromolecules (4000-8000 MW on average, depending on chain length) and their soup of closely related impurities are typically not well resolved from one another via conventional chromatographic approaches. One of the more common chromatographic techniques used for oligonucleotide analysis is reversed phase-ion pairing liquid chromatography (RP-IP). Our research led us to the discovery that the use of multiple ion pairing agents combined in the mobile phase can improve the overall chromatographic resolution and peak shape of the oligonucleotide analytes over the use of a single ion pairing agent alone, resulting in enhanced purity analysis and the opportunity to identify related impurities with greater certainty. In addition, the use of combined ion pairing agents allowed for the development of a "universal" method which has provided superior chromatography for several different oligonucleotide compounds and their related impurities regardless of differences in nucleotide sequence. The RP-IP UPLC method conditions are ESI-MS compatible and have allowed for the mass identification of five positional isomeric impurities chromatographically resolved and present at less than 1% of the nominal parent peak area.
Collapse
Affiliation(s)
- Daren S Levin
- Exploratory Development Sciences, GlaxoSmithKline, RTP, NC 27709, USA.
| | | | | |
Collapse
|
70
|
Seiffert S, Debelak H, Hadwiger P, Jahn-Hofmann K, Roehl I, Vornlocher HP, Noll B. Characterization of side reactions during the annealing of small interfering RNAs. Anal Biochem 2011; 414:47-57. [PMID: 21376008 DOI: 10.1016/j.ab.2011.02.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/25/2011] [Accepted: 02/25/2011] [Indexed: 10/18/2022]
Abstract
Small interfering RNAs (siRNAs) are emerging as a novel therapeutic modality for the specific inhibition of target gene expression. The development of siRNA-based therapeutics requires in-depth knowledge of the manufacturing process as well as adequate analytical methods to characterize this class of molecules. Here the impurity formation during the annealing of siRNA was investigated. Two siRNAs containing common chemical RNA modifications (2'-O-methyl, 2'-deoxy-2'-fluoro, 2'-deoxy-ribose, and phosphorothioate linkages) were used to determine major side reactions-such as 2',3'-isomerization, strand scission, and HF elimination-depending on annealing parameters such as RNA concentration, presence of cations, temperature, and time. Individual impurities were characterized using analytical size exclusion chromatography, denaturing and nondenaturing ion-pair reversed-phase high-performance liquid chromatography, differential scanning calorimetry, and ultraviolet spectrometry. The degradation pathways described in this work can lead to significantly reduced product quality and compromised drug activity. The data reported here provide background to successfully address challenges associated with the manufacture of siRNAs and other nucleic acid therapeutics such as aptamers, spiegelmers, and decoy and antisense oligonucleotides.
Collapse
|
71
|
Ivleva VB, Yu YQ, Gilar M. Ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) and UPLC/MS(E) analysis of RNA oligonucleotides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:2631-2640. [PMID: 20740540 DOI: 10.1002/rcm.4683] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Fast and efficient ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) analysis of short interfering RNA oligonucleotides was used for identity confirmation of the target sequence-related impurities. Multiple truncated oligonucleotides and metabolites were identified based on the accurate mass, and their presumed sequence was confirmed by MS/MS and MS(E) (alternating low and elevated collision energy scanning modes) methods. Based on the resulting fragmentation of native and chemically modified oligonucleotides, it was found that the MS(E) technique is as efficient as the traditional MS/MS method, yet MS(E) is more general, faster, and capable of producing higher signal intensities of fragment ions. Fragmentation patterns of modified oligonucleotides were investigated using RNA 2'-ribose substitutions, phosphorothioate RNA, and LNA modifications. The developed sequence confirmation method that uses the MS(E) approach was applied to the analysis of in vitro hydrolyzed RNA oligonucleotide. The target RNA and metabolites, including the structural isomers, were resolved by UPLC, and their identity was confirmed by MS(E). Simultaneous RNA truncations from both termini were observed. The UPLC quadrupole time-of-flight (QTOF) MS/MS and MS(E) methods were shown to be an effective tool for the analysis and sequence confirmation of complex oligonucleotide mixtures.
Collapse
Affiliation(s)
- Vera B Ivleva
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | | | | |
Collapse
|
72
|
Li S, Lu DD, Zhang YL, Wang SQ. An Improved Ion-Pair Reversed Phase LC Method for Analysis of Major Impurities of Phosphorothioate Oligonucleotide Cantide. Chromatographia 2010. [DOI: 10.1365/s10337-010-1655-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
73
|
Oberacher H. Frontiers of mass spectrometry in nucleic acids analysis. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2010; 16:351-365. [PMID: 20530841 DOI: 10.1255/ejms.1045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Nucleic acids research is a highly competitive field of research. A number of well established methods are available. The current output of high throughput ("next generation") sequencing technologies is impressive, and still technologies are continuing to make progress regarding read lengths, bp per second, accuracy and costs. Although in the 1990s MS was considered as an analytical platform for sequencing, it was soon realized that MS will never be competitive. Thus, the focus shifted from de novo sequencing towards other areas of application where MS has proven to be a powerful analytical tool. Potential niches for the application of MS in nucleic acids research include genotyping of genetic markers (single nucleotide polymorphisms, short tandem repeats, and combinations thereof), quality control of synthetic oligonucleotides, metabolic profiling of therapeutics, characterization of modified nucleobases in DNA and RNA molecules, and the study of non covalent interactions among nucleic acids as well as interactions of nucleic acids with drugs and proteins. The diversity of possible applications for MS highlights its significance for nucleic acid research.
Collapse
Affiliation(s)
- Herbert Oberacher
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|
74
|
McCarthy SM, Gilar M, Gebler J. Reversed-phase ion-pair liquid chromatography analysis and purification of small interfering RNA. Anal Biochem 2009; 390:181-8. [PMID: 19345196 DOI: 10.1016/j.ab.2009.03.042] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 03/27/2009] [Accepted: 03/27/2009] [Indexed: 10/20/2022]
Abstract
Small interfering RNA (siRNA)-induced gene silencing shows great promise in genomic research and therapeutic applications. siRNA duplexes are typically assembled from complementary synthetic oligonucleotides. High-purity single-stranded species are required for in vivo applications. Methods for separation, characterization, and purification of short RNA strands have been developed based on reversed-phase ion-pair liquid chromatography. The purification strategies were developed for both single-stranded and duplex RNA species. The method of duplex purification uses on-column annealing of complementary RNA strands, followed by separation of the target duplex from truncated duplexes and single-stranded RNA forms. The proposed method significantly reduces the purification time of synthetic siRNA.
Collapse
|
75
|
Kang JI, Sowers LC. Examination of hypochlorous acid-induced damage to cytosine residues in a CpG dinucleotide in DNA. Chem Res Toxicol 2008; 21:1211-8. [PMID: 18826175 DOI: 10.1021/tx800037h] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inflammation-mediated, neutrophil-derived hypochlorous acid can damage DNA and result in the chlorination damage products 5-chlorocytosine and 5-chlorouracil as well as the oxidation damage products 5-hydroxycytosine and 5-hydroxyuracil. While 5-chlorocytosine could potentially perturb epigenetic signals if formed at a CpG dinucleotide, the remaining products are miscoding and could result in transition mutations. In this article, we have investigated the reaction of hypochlorous acid with an oligonucleotide site-specifically enriched with 15N to probe the reactivity of cytosine at CpG. These experiments demonstrate directly the formation of 5-chlorocytosine at a CpG dinucleotide in duplex DNA. We observe that chlorination relative to oxidation damage is greater at CpG by a factor of approximately two, whereas similar amounts of 5-chlorocytosine and 5-hydroxycytosine are formed at two non-CpG sites examined. The relative amounts of deamination of the cytosine to uracil derivatives are similar at CpG and non-CpG sites. Overall, we observe that the reactivity of cytosine at CpG and non-CpG sites toward hypochlorous acid induced damage is similar (5-chlorocytosine > 5-hydroxycytosine > 5-hydroxyuracil > 5-chlorouracil), with a greater proportion of chlorination damage at CpG sites. These results are in accord with the potential of inflammation-mediated DNA damage to both induce transition mutations and to perturb epigenetic signals.
Collapse
Affiliation(s)
- Joseph I Kang
- Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, California 92350, USA
| | | |
Collapse
|
76
|
|
77
|
Zou Y, Tiller P, Chen IW, Beverly M, Hochman J. Metabolite identification of small interfering RNA duplex by high-resolution accurate mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:1871-1881. [PMID: 18470869 DOI: 10.1002/rcm.3561] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
On-line liquid chromatography/electrospray ionization high-resolution mass spectrometry (LC/ESI-HRMS) using an LTQ-Orbitrap mass spectrometer was employed to investigate the metabolite profiles of a model siRNA duplex designated HBV263. The HBV263 duplex was incubated in rat and human serum and liver microsomes in vitro. The siRNA drug and its metabolites were then extracted using a liquid-liquid extraction followed by solid-phase extraction (LLE-SPE), and analyzed by LC/ESI-MS. High-resolution accurate mass data enabled differentiation between two possible metabolite sequences with a monoisotopic molecular mass difference of less than 1 Da. ProMass deconvolution software was used to provide semi-automated data processing. In vitro serum and liver microsome incubation samples afforded different metabolite patterns: the antisense strand of the duplex was degraded preferentially in rat and human serum, while the sense strand of the duplex was less stable in rat and human liver microsomes.
Collapse
Affiliation(s)
- Yan Zou
- Department of Drug Metabolism and Pharmacokinetics, Merck Research Laboratories, West Point, PA 19486, USA.
| | | | | | | | | |
Collapse
|
78
|
Ghisaidoobe AB, de Koning MC, Duynstee HI, Ten Kortenaar PB, Overkleeft HS, Filippov DV, van der Marel GA. A two-step sulfurization for efficient solution-phase synthesis of phosphorothioate oligonucleotides. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
79
|
On the use of different mass spectrometric techniques for characterization of sequence variability in genomic DNA. Anal Bioanal Chem 2008; 391:135-49. [DOI: 10.1007/s00216-008-1929-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/25/2008] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
|
80
|
Willems A, Deforce DL, Van Bocxlaer J. Analysis of oligonucleotides using capillary zone electrophoresis and electrospray mass spectrometry. Methods Mol Biol 2008; 384:401-414. [PMID: 18392576 DOI: 10.1007/978-1-59745-376-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This chapter illustrates the usefulness of capillary zone electrophoresis (CZE) coupled to high-resolution electrospray ionization quadrupole time-of-flight mass spectrometry for the single-step desalting, and separation, as well as characterization of oligonucleotides in the framework of quality control after synthesis. Separation is performed using a 25 mM ammonium carbonate buffer supplemented with 0.2 mM trans-1,2-diaminocyclohexane-N, N, N', N' id (CDTA) (pH 9.7). During the electrophoretic process, sodium and potassium ions are removed from the polyanionic backbone of the oligonucleotides by exchange of these ions with ammonium ions or by chelation on CDTA, thus eliminating a sample preparation step. A sample stacking procedure used to concentrate the samples on the CZE capillary is described. After analysis, the obtained spectrum is deconvoluted to the zero charge spectrum to yield the molecular mass of the oligonucleotide. A misincorporation of one nucleotide can be detected by a difference in mass.
Collapse
Affiliation(s)
- An Willems
- Laboratory of Medical Biochemisty and Clinical Analysis, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
81
|
Forensic DNA fingerprinting by liquid chromatography-electrospray ionization mass spectrometry. Biotechniques 2007; 43:vii-xiii. [PMID: 18019345 DOI: 10.2144/000112581] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The determination of the molecular mass of a DNA sequence has several benefits over conventional fragment-length analysis that are advantageous to the forensic field: (i) sequence variation is captured that increases the power of discrimination compared with that obtained by conventional fragment-length analysis. First experiments showed that this increase makes up to 20%-30% for STR analysis. The new technical approach does not invalidate established developments and data, but adds to this information with additional discriminative categories. (ii) ICEMS is faster and cheaper than electrophoresis, does not require internal size standards, allelic ladders, or spectral calibration, which are necessary for fluorescence-based electrophoresis. (iii) ICEMS can unequivocally detect any single sequence variation in DNA molecules with lengths up to 250 nucleotides. This allows for maximum discrimination of forensically relevant DNA fragments, covering all sorts of STRs, SNPs, and also the analysis of the hypervariable segments of mtDNA. More effort, however, needs to be put into software development that escorts the analysis and data interpretation processes to make this technology manageable for the practical user.
Collapse
|
82
|
Van Meter DS, Sun Y, Parker KM, Stalcup AM. Retention characteristics of a new butylimidazolium-based stationary phase. Part II: anion exchange and partitioning. Anal Bioanal Chem 2007; 390:897-905. [PMID: 18040667 DOI: 10.1007/s00216-007-1739-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 10/31/2007] [Accepted: 11/05/2007] [Indexed: 12/01/2022]
Abstract
A surface-confined ionic liquid (SCIL) and a commercial quaternary amine silica-based stationary phase were characterized employing the linear solvation energy relationship (LSER) method in binary methanol/water mobile phases. The retention properties of the stationary phases were evaluated in terms of intermolecular interactions between 28 test solutes and the stationary phases. The comparison reveals a difference in the hydrophobic and hydrogen bond acceptance interaction properties between the two phases. The anion exchange retention mechanism of the SCIL phase was demonstrated using nucleotides. The utility of the SCIL phase in predicting logk (IL/water) values by chromatographic methods is also discussed.
Collapse
Affiliation(s)
- David S Van Meter
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | | | | | | |
Collapse
|
83
|
Gilar M, Neue UD. Peak capacity in gradient reversed-phase liquid chromatography of biopolymers. Theoretical and practical implications for the separation of oligonucleotides. J Chromatogr A 2007; 1169:139-50. [PMID: 17897658 DOI: 10.1016/j.chroma.2007.09.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 09/05/2007] [Accepted: 09/06/2007] [Indexed: 11/20/2022]
Abstract
Reversed-phase ultra-performance liquid chromatography was used for biopolymer separations in isocratic and gradient mode. The gradient elution mode was employed to estimate the optimal mobile phase flow rate to obtain the best column efficiency and the peak capacity for three classes of analytes: peptides, oligonucleotides and proteins. The results indicate that the flow rate of the Van Deemter optimum for 2.1 mm I.D. columns packed with a porous 1.7 microm C18 sorbent is below 0.2 mL/min for our analytes. However, the maximum peak capacity is achieved at flow rates between 0.15 and 1.0 mL/min, depending on the molecular weight of the analyte. The isocratic separation mode was utilized to measure the dependence of the retention factor on the mobile phase composition. Constants derived from isocratic experiments were utilized in a mathematical model based on gradient theory. Column peak capacity was predicted as a function of flow rate, gradient slope and column length. Predicted peak capacity trends were compared to experimental results.
Collapse
Affiliation(s)
- Martin Gilar
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA.
| | | |
Collapse
|
84
|
Zhang G, Lin J, Srinivasan K, Kavetskaia O, Duncan JN. Strategies for bioanalysis of an oligonucleotide class macromolecule from rat plasma using liquid chromatography-tandem mass spectrometry. Anal Chem 2007; 79:3416-24. [PMID: 17394287 DOI: 10.1021/ac0618674] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Electrospray ionization (ESI) liquid chromatography-tandem mass spectrometry (LC/MS/MS) assays provide high-throughput and selective methods for quantitation of small molecules. Use of LC/MS/MS assays for macromolecules, like oligonucleotides, is challenging due to lack of sensitivity and low analyte recovery from biomatrixes. Due to this fact, the method of choice for oligonucleotides quantitation remains hybridization-based ligand-binding assays. These biological assays usually possess high sensitivity but low selectivity and narrow dynamic range. They also require optimizing suitable "capture and detection" probes, which can be prohibitively time-consuming and expensive in a drug discovery lead-optimization scenario. In this paper, we present a unique LC/MS/MS assay for a model phosphorothioate backbone oligodeoxynucleotide (ODN) drug (7692 amu) from rat plasma. Multiple analytical challenges were encountered. The strategies used to solve these challenges should prove useful to scientists pursuing mass spectrometry (MS) to quantitate oligonucleotides. The challenges include analyte multiple charging and cation adduction (reduced sensitivity), oxidation of analyte on drying and high protein binding (low recovery), ODN affinity to exposed silica (low chromatographic reproducibility and high carryover), nonspecific binding of analyte to containers (low storage stability), and optimization/synthesis of an appropriate internal standard (interference and cross-talk). A buffer (7 mM triethylamine and 3 mM ammonium formate)/methanol, 50:50 (v/v), was used as an ESI-MS infusion solvent and produced a sharp multiple charge-state distribution. The sample extraction method combined a phenol/chloroform liquid-liquid extraction and solid-phase extraction steps, which improved the absolute recovery to >70%. The method was validated in the range of 5-2000 ng/mL and had precision (percent relative standard deviation)<10.1% and accuracy (percent relative error)<11.4%.
Collapse
Affiliation(s)
- Guodong Zhang
- College of Pharmacy, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
85
|
Lin ZJ, Li W, Dai G. Application of LC-MS for quantitative analysis and metabolite identification of therapeutic oligonucleotides. J Pharm Biomed Anal 2007; 44:330-41. [PMID: 17339091 DOI: 10.1016/j.jpba.2007.01.042] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 01/21/2007] [Accepted: 01/22/2007] [Indexed: 01/22/2023]
Abstract
Therapeutic oligonucleotides (OGNs) have been studied extensively in the recent years as novel agents designed to selectively and specifically inhibit target gene expression in cell culture, in animal disease models and in human. This review summarizes applications of liquid chromatography coupled with mass spectrometry or tandem mass spectrometry (LC-MS or LC-MS/MS) for quantitative analysis of therapeutic OGNs and characterization of their metabolism in vitro and in vivo described in the literature over the past 10 years. Although the applications of LC-MS or LC-MS/MS to the molecular mass measurement, sequence determination, DNA adducts identification, detection of mutations and characterization of covalent and/or noncovalent DNA/RNA complexes have been comprehensively reviewed in a few excellent review papers. The quantitative bioanalysis and metabolite identification of therapeutic OGNs using LC-MS or LC-MS/MS have not been covered. This review covers technical issues, current approaches and applications of LC-MS or LC-MS/MS for quantitative analysis of OGNs in biological matrices and characterization of their in vitro and in vivo metabolism. Finally, some conclusions are drawn and prospects of LC-MS in quantitative analysis and metabolism characterization of therapeutic OGNs are discussed.
Collapse
Affiliation(s)
- Zhongping John Lin
- AstraZeneca Pharmaceuticals LP, Global Development DMPK and Bioanalysis, 1800 Concord Pike, Wilmington, DE 19850, USA.
| | | | | |
Collapse
|
86
|
Lu B, Jonsson P, Blomberg S. Reversed phase ion-pair high performance liquid chromatographic gradient separation of related impurities in 2,4-disulfonic acid benzaldehyde di-sodium salt. J Chromatogr A 2006; 1119:270-6. [PMID: 16378614 DOI: 10.1016/j.chroma.2005.11.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 11/22/2005] [Accepted: 11/28/2005] [Indexed: 11/17/2022]
Abstract
A reversed phase ion-pair gradient liquid chromatographic method has been developed and validated for purity determination of the hydrophilic compound 2,4-disulfonic acid benzaldehyde di-sodium salt (2,4-DSAD) containing both hydrophilic and more lipophilic related impurities. Mixtures of acetonitrile-phosphate buffer containing tetrahexylammonium hydrogen sulfate as the ion-pairing reagent were used as the mobile phase. A linear gradient, which generated simultaneous change in the concentration of organic modifier, buffer concentration and the concentration of ion-pairing reagent, was applied. The method allows detection of impurities at low levels (0.01% w/w). Excellent repeatability for both retention time (RSD< or =0.3%, n = 6) and detector response (RSD = 0.03%, n = 6 for the main peak and RSD = 6%, n = 6, for an impurity at 0.01 area% level) was obtained. The method was shown to be robust for routine analysis and has been successfully transferred to the quality control laboratory.
Collapse
Affiliation(s)
- Bing Lu
- Analytical Chemistry, Process R&D, AstraZenca R&D, Södertälje, Sweden.
| | | | | |
Collapse
|
87
|
Beverly M, Hartsough K, Machemer L, Pavco P, Lockridge J. Liquid chromatography electrospray ionization mass spectrometry analysis of the ocular metabolites from a short interfering RNA duplex. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 835:62-70. [PMID: 16574504 DOI: 10.1016/j.jchromb.2006.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 01/27/2006] [Accepted: 03/05/2006] [Indexed: 10/24/2022]
Abstract
The ocular metabolism of an siRNA duplex, SIRNA-027, was examined by ion-pair reversed-phase liquid chromatography (IP-RP-LC) coupled to electrospray ionization mass spectrometry (ESI-MS). The RNA duplex was injected intraocularly into the eyes of New Zealand white rabbits. Rabbits were sacrificed at different timepoints and the vitreous and retina/choroid tissue analyzed for siRNA by IP-RP-LC-MS. The method used a hexafluoroisopropanol (HFIP)/triethylamine (TEA) ion-pairing buffer with a methanol gradient. Using electrospray ionization, the duplex was preserved in the gas phase for analysis by a triple quadrupole mass spectrometer. With this methodology metabolites from rabbit ocular vitreous humor and retina/choroid tissue were identified and a pattern of siRNA degradation was established. Results showed that the duplex was metabolized predominantly from one end. This end of the siRNA duplex was calculated to have the weakest binding energy of the two ends indicating that the ability of the siRNA to split into single strands is a factor in its degradation.
Collapse
Affiliation(s)
- Michael Beverly
- Sirna Therapeutics Inc., 2950 Wilderness Place, Boulder, CO 80301, USA.
| | | | | | | | | |
Collapse
|
88
|
Gao S, Bhoopathy S, Zhang ZP, Wright DS, Jenkins R, Karnes HT. Evaluation of volatile ion-pair reagents for the liquid chromatography–mass spectrometry analysis of polar compounds and its application to the determination of methadone in human plasma. J Pharm Biomed Anal 2006; 40:679-88. [PMID: 16029944 DOI: 10.1016/j.jpba.2005.05.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 05/19/2005] [Accepted: 05/20/2005] [Indexed: 10/25/2022]
Abstract
A liquid chromatography method using volatile ion-pairing reagents and tandem mass spectrometry was developed to obviate observed matrix effect for ionizable polar compounds. The present study investigated the addition of volatile ion-pair reagents to the reconstitution solution instead of the mobile phase to enhance the efficiency of chromatographic separation and minimize the sensitivity loss due to the formation of ion-pairs. The volatile ion-pair reagents used were perfluorinated carboxylic acids with n-alkyl chains: heptafluorobutanoic acid (HFBA), nonafluoropentanoic acid (NFPA), tridecafluoroheptanoic acid (TDFHA) and pentadecafluorooctanoic acid (PDFOA). The model analytes evaluated were N-methylnicotinamide (MNA) chloride, N-methyl 2-pyridone 5-carboxamide (2PY) and phenylephrine. The effects of alkyl chain length and the concentrations of the ion-pair reagents on the retention of analytes were studied, as well as the effect of pH on the retention of phenylephrine. The volatile ion-pair reagents in the reconstitution solution showed significant effect on the retention of the ionizable polar compounds, and the sensitivity of detection was improved for plasma samples through decreasing the matrix effect. This methodology was successfully applied to establish a quantitative assay for the polar drug substance methadone in human plasma with a concentration range from 0.1 to 50 ng/mL. Ion-pair reagents not only shifted the retention time but also reduced the carry-over peak for methadone.
Collapse
Affiliation(s)
- Songmei Gao
- Department of Pharmaceutics, Medical College of Virginia, Virginia Commonwealth University, P.O. Box 980533, Richmond, VA 23298-0533, USA
| | | | | | | | | | | |
Collapse
|
89
|
Willems AV, Deforce DL, Van Peteghem CH, Van Bocxlaer JF. Development of a quality control method for the characterization of oligonucleotides by capillary zone electrophoresis-electrospray ionization-quadrupole time of flight-mass spectrometry. Electrophoresis 2005; 26:1412-23. [PMID: 15765471 DOI: 10.1002/elps.200406201] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A capillary zone electrophoresis-negative electrospray ionization-quadrupole time of flight-mass spectrometric method was developed for the characterization of oligonucleotides after synthesis, using model compounds. The major difficulty is the adduction of metal cations to the polyanionic backbone of the oligonucleotide sample, resulting in complex spectra and decreased sensitivity. Several approaches were investigated to circumvent this problem. Separation was performed in an ammonium carbonate buffer. During separation, the interfering metal ions were exchanged for ammonium ions, which are less tightly bound to the oligonucleotide when ionized. The influence of the addition of piperidine and imidazole or trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) to the running buffer for further reduction of cation adduction was investigated. Addition of CDTA to the buffer system resulted in a deconvoluted spectrum with very little adducts. On-line sample stacking proved vital to preconcentrate the samples. The pH and the concentration of the ammonium carbonate buffer as well as the electrophoresis voltage were optimized to achieve the best signal response for the oligonucleotides and a maximum reduction of the cation adducts as well as a short analysis time. Finally, the sheath liquid composition was examined for further improvement of the signal. The developed method was used to analyze different oligonucleotides (5000-9200 Da) in light of its use as a final quality control method for oligonucleotides in terms of purity and sequence homogeneity of the synthesized products. In all cases, very little adducts were observed in the deconvoluted spectra, and the relative errors of the measured molecular masses ranged from 3 to 35 ppm.
Collapse
Affiliation(s)
- An V Willems
- Laboratory of Medical Biochemistry & Clinical Analysis, Ghent University, Belgium
| | | | | | | |
Collapse
|
90
|
Balaz M, Holmes AE, Benedetti M, Proni G, Berova N. Porphyrin substituted phosphoramidites: new building blocks for porphyrin-oligonucleotide syntheses. Bioorg Med Chem 2005; 13:2413-21. [PMID: 15755643 DOI: 10.1016/j.bmc.2005.01.045] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2004] [Revised: 01/22/2005] [Accepted: 01/25/2005] [Indexed: 10/25/2022]
Abstract
Thymidine phosphoramidites containing trispyridylphenyl and tetraphenylporphyrin chromophores attached via a short amide linker in the 3'-position have been synthesized and used as building blocks in solid-phase synthesis of self-complementary 8-mer oligonucleotides 3'-T-5'-GCGCGCA-3' and 5'-ACGCGCGT-3'. To our knowledge, these are the first porphyrin-oligonucleotide conjugates carrying the porphyrin chromophores in the 3'-position. Chain assembly was achieved by automated solid-phase synthesis and by inexpensive straightforward 'in flask' modification of commercially available solid supported oligonucleotides. This approach allows the synthesis of modified oligonucleotides without using costly instrumentation for automated DNA synthesis. Porphyrin-containing self-complementary oligonucleotides are expected to be a valuable model for drug binding studies and determination of conformational changes in DNA sequences using circular dichroism.
Collapse
Affiliation(s)
- Milan Balaz
- Columbia University, Department of Chemistry, 3000 Broadway, New York, NY 10027, USA
| | | | | | | | | |
Collapse
|
91
|
Bunček M, Bačkovská V, Holasová Š, Radilová H, Šafářová M, Kunc F, Haluza R. Retention Behavior of Oligonucleotides on a Glycidyl Methacrylate-Based DEAE-Modified Sorbent. Chromatographia 2005. [DOI: 10.1365/s10337-005-0620-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
92
|
Oberacher H, Niederstätter H, Parson W. Characterization of synthetic nucleic acids by electrospray ionization quadrupole time-of-flight mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:932-45. [PMID: 15918177 DOI: 10.1002/jms.870] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The potential of electrospray ionization quadrupole-quadrupole-time-of-flight mass spectrometry (ESI-QqTOF-MS) for the characterization of synthetic nucleic acids was evaluated. Oligonucleotides ranging in size from 12 up to 51 nucleotides were analyzed via direct infusion MS as well as via liquid chromatography (LC) online hyphenated to MS. These experiments proved the outstanding mass spectrometric performance of the TOF mass analyzer in regard of accuracy, reproducibility, resolution, and sensitivity. During a 1-min run, the monoisotopic mass of (dT)(24) was measured with a maximum relative mass deviation of 7.64 ppm proving the high mass accuracy of the TOF analyzer. Over a period of 1 h, mean deviations were determined in the range between -3.58 ppm and 3.06 ppm demonstrating the high stability of the applied external calibration. The molecular mass of a 51-mer was measured with a deviation smaller than 3.23 ppm from the theoretical value. The resolution exceeded a value of m/Deltam = 20 000 (m is the measured mass and Deltam the full peak width at half-maximum), which enabled the separation of the isotopic peaks of all investigated oligonucleotides. Because of the outstanding transmission and detection efficiency of the TOF mass analyzer, detection limits in the amol/microl to low fmol/microl range were reached. The usability of LC-ESI-QqTOF-MS for the qualitative and quantitative analysis of synthetic oligonucleotide mixtures was demonstrated.
Collapse
Affiliation(s)
- Herbert Oberacher
- Institute of Legal Medicine, Innsbruck Medical University, Muellerstrasse 44, 6020 Innsbruck, Austria.
| | | | | |
Collapse
|
93
|
Gilar M, Fountain KJ, Budman Y, Holyoke JL, Davoudi H, Gebler JC. Characterization of therapeutic oligonucleotides using liquid chromatography with on-line mass spectrometry detection. Oligonucleotides 2005; 13:229-43. [PMID: 15000838 DOI: 10.1089/154545703322460612] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A method for the analysis and characterization of therapeutic and diagnostic oligonucleotides has been developed using a combination of liquid chromatography and mass spectrometry (LC-MS). The optimized ion-pairing buffers permit a highly efficient separation of native and chemically modified antisense oligonucleotides (AS-ODNs) from their metabolites or failure synthetic products. The mobile phases were MS compatible, allowing for direct and sensitive analysis of components eluting from the column. The method was applied for the quantitation and characterization of AS-ODNs, including phosphorothioates and 2'-O-methyl-modified phosphorothioates. Tandem LC-MS analysis confirmed the identity of the oligonucleotide metabolites, failure products, the presence of protection groups not removed after synthesis, and the extent of depurination or phosphorothioate backbone oxidation.
Collapse
Affiliation(s)
- Martin Gilar
- Life Sciences Chemistry R&D, Waters Corporation, Milford, MA 01757, USA.
| | | | | | | | | | | |
Collapse
|
94
|
Banoub JH, Newton RP, Esmans E, Ewing DF, Mackenzie G. Recent developments in mass spectrometry for the characterization of nucleosides, nucleotides, oligonucleotides, and nucleic acids. Chem Rev 2005; 105:1869-915. [PMID: 15884792 DOI: 10.1021/cr030040w] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joseph H Banoub
- Fisheries and Oceans Canada, Science Branch, Special Projects, P.O. Box 5667, St. John's NL A1C 5X1, Canada.
| | | | | | | | | |
Collapse
|
95
|
Willems AV, Deforce DL, Lambert WE, Van Peteghem CH, Van Bocxlaer JF. Rapid characterization of oligonucleotides by capillary liquid chromatography-nano electrospray quadrupole time-of-flight mass spectrometry. J Chromatogr A 2005; 1052:93-101. [PMID: 15527125 DOI: 10.1016/j.chroma.2004.08.108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A fast quality control method is developed allowing the desalting and characterization of oligonucleotides by capillary liquid chromatography and on-line nano-electrospray ionization quadrupole time-of-flight mass spectrometry using column switching. The influence of addition of ammonium acetate, trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid, formic acid or acetic acid to the sample, addition of ammonium acetate to the trapping solvent and variation of the trapping time on the further reduction of cation adduction was studied. Final conditions were the addition of 0.1 M ammonium acetate to the sample, the use of a trapping solvent consisting of 0.4 M aqueous 1,1,1,3,3,3-hexafluoro-2-propanol (HFLP) adjusted to pH 7.0 with triethylamine plus 10 mM ammonium acetate during 8 min and the elution of the oligonucleotides with 0.4 M HFIP in 50% methanol. The potential of the optimized procedure is demonstrated for different synthetic oligonucleotides.
Collapse
Affiliation(s)
- An V Willems
- Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | | | | | | |
Collapse
|
96
|
Song R, Zhang W, Chen H, Ma H, Dong Y, Sheng G, Zhou Z, Fu J. Comparison of A+T-rich oligonucleotides with and without self-complementary sequence using ion-pair reversed-phase high-performance liquid chromatography/tandem electrospray ionization mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2005; 11:83-91. [PMID: 15947447 DOI: 10.1255/ejms.717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Both A+T-rich oligonucleotides with and without self-complementary sequences were analyzed using ion- pair reversed-phase liquid chromatography/electrospray ionization mass spectrometry (IP-RP-HPLC/ESI-MS) by tryethylammonium acetate (TEAA) and hexafluoroisopropanol (HFIP) buffer systems to study the characteristics of their retention behavior and electrospray ionization tandem mass spectrometry (ESI-MS/MS) response. The results indicated that the chain length had the same effect on the retention of A+T-rich oligonucleotides in both of TEAA and HFIP buffer systems but the sequence had a different impact on the retention in the two buffer systems. A+T- rich oligonucleotides with a self-complementary sequence were much shorter than those without in the TEAA buffer system whereas a slight difference was observed in the HFIP buffer system. Similar total ion current (TIC) intensity was observed both in oligonucleotides with or without self-complementary sequence. The opposite trend of a change in the TIC intensities with increasing chain length were observed in both the TEAA and HFIP buffer systems. A lower charge state was predominant in the TEAA buffer system whereas a higher charge state was mainly distributed in the HFIP buffer system. The oligonucleotides without self-complementary sequences had a higher charge state than those with self-complementary sequences. A- and T- are more esily formed at a higher charge state whereas the sequence fragments will be formed more easily at a lower charge state in both A+T-rich oligonucleotides with and without self-complementary sequences.
Collapse
Affiliation(s)
- Renfang Song
- State Key Laboratory of Organic Geochemistry, Guangzhou Research Center of Mass Spectrometry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Murphy AT, Brown-Augsburger P, Yu RZ, Geary RS, Thibodeaux S, Ackermann BL. Development of an ion-pair reverse-phase liquid chromatographic/tandem mass spectrometry method for the determination of an 18-mer phosphorothioate oligonucleotide in mouse liver tissue. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2005; 11:209-15. [PMID: 16046805 DOI: 10.1255/ejms.674] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A quantitative method for the determination of a partially modified, 2'-ribose alkoxy 18-mer phosphorothioate oligonucleotide, in liver tissue has been developed. A liquid:liquid extraction, ion-pair reverse phase chromatographic separation, and tandem mass spectrometry were used to achieve a quantitation range of 125 to 10,000 ng g(-1) mouse liver tissue. A total cycle time of 5 min was obtained while maintaining separation of three potential impurities. Separations were performed using a Discovery RP-Amide C16, 100 x 2 mm column packed with 5 microm particles. The separation was facilitated by the use of triethylamine (TEA) and hexafluoroisopropanol (HFIP) as ion-pair agents. The method has subsequently been used for the determination of other phosphorothioate oligonucleotides in support of discovery research.
Collapse
Affiliation(s)
- Anthony T Murphy
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | | | | | | | | | |
Collapse
|
98
|
Beverly M, Hartsough K, Machemer L. Liquid chromatography/electrospray mass spectrometric analysis of metabolites from an inhibitory RNA duplex. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:1675-82. [PMID: 15912467 DOI: 10.1002/rcm.1972] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Liquid chromatography/mass spectrometry (LC/MS) was used as a method for analyzing the metabolites of a model short interfering RNA (siRNA) duplex. The model siRNA duplex incorporated oligonucleotide stabilizing and protecting chemistries as these have been shown to increase the half-life of oligonucleotides. Two complementary 23 nucleotide single strands were joined to form the duplex. The intact duplex was analyzed using ion-pair reversed-phase chromatography coupled to electrospray ionization mass spectrometry (ESI-MS). The method used a hexafluoroisopropanol/triethylamine ion-pairing buffer with a methanol gradient to separate single-stranded oligonucleotide components from the duplex. This buffer system with ESI also preserved the duplex in the gas phase for analysis by a triple quadrupole mass spectrometer. Using this methodology, in vitro and in vivo metabolites from urine and rabbit ocular vitreous humor were determined and a pattern of duplex siRNA degradation was established. The masses of the metabolites were determined by ESI-MS and used with the known sequence of the siRNA duplex to identify the metabolites. Over the time course of the metabolism experiments it was shown that the breakdown products of the siRNA are consistent with the nuclease protection given by chemical modifications and that the duplex structure adds additional stability compared to the single strands alone. This study demonstrates that the ability of LC/MS to analyze duplex oligonucleotides has unique benefits for the study of siRNA metabolism.
Collapse
Affiliation(s)
- Michael Beverly
- Sirna Therapeutics, Inc., 2950 Wilderness Place, Boulder, CO 80301, USA.
| | | | | |
Collapse
|
99
|
Song R, Zhang W, Chen H, Ma H, Dong Y, Sheng G, Zhou Z, Fu J. Characterization of G-rich and T-rich oligonucleotides using ion-pair reversed-phase high-performance liquid chromatography/tandem electrospray ionization mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2004; 10:705-713. [PMID: 15531805 DOI: 10.1255/ejms.666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Characteristics of G-rich and T-rich oligonucleotides were investigated to compare their retention time, total ion current (TIC) intensity, charge-state distribution and product ion using ion-pair reversed-phase high- performance liquid chromatography/tandem electrospray ionization mass spectrometry (IP-RP-HPLC/ESI-MS) at room temperature. Three commonly used mobile phases for the analysis of oligonucleotides, triethylammonium acetate (TEAA), triethylammonium bicarbonate (TEAB) and triethylammonium hexafluoroisopropanol (HFIP) have been utilized. Retention time of G-rich and T-rich oligonucleotides was significantly different in TEAA and TEAB buffer systems, while in the HFIP buffer system it was affected more by the length of oligonucleotides. On the other hand, the ESI-MS ion abundance in the HFIP buffer system was higher than that in both TEAA and TEAB buffers. The TIC intensity of T-rich oligonucleotides was much higher than that of G-rich oligonucleotides in all mobile phases. In addition, much higher charge-state fragments were observed in HFIP buffer system than that in the case of TEAA and TEAB buffer systems. Product ions of both G-rich and T-rich oligonucleotides were affected by charge state of parent ions and collision energy.
Collapse
Affiliation(s)
- Renfang Song
- State Key Laboratory of Organic Geochemistry, Guangzhou Research Center of Mass Spectrometry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2003; 38:781-792. [PMID: 12898659 DOI: 10.1002/jms.410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|