52
|
Tessandier N, Melki I, Cloutier N, Allaeys I, Miszta A, Tan S, Milasan A, Michel S, Benmoussa A, Lévesque T, Côté F, McKenzie SE, Gilbert C, Provost P, Brisson AR, Wolberg AS, Fortin PR, Martel C, Boilard É. Platelets Disseminate Extracellular Vesicles in Lymph in Rheumatoid Arthritis. Arterioscler Thromb Vasc Biol 2020; 40:929-942. [PMID: 32102567 PMCID: PMC8073225 DOI: 10.1161/atvbaha.119.313698] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The lymphatic system is a circulatory system that unidirectionally drains the interstitial tissue fluid back to blood circulation. Although lymph is utilized by leukocytes for immune surveillance, it remains inaccessible to platelets and erythrocytes. Activated cells release submicron extracellular vesicles (EV) that transport molecules from the donor cell. In rheumatoid arthritis, EV accumulate in the joint where they can interact with numerous cellular lineages. However, whether EV can exit the inflamed tissue to recirculate is unknown. Here, we investigated whether vascular leakage that occurs during inflammation could favor EV access to the lymphatic system. Approach and Results: Using an in vivo model of autoimmune inflammatory arthritis, we show that there is an influx of platelet EV, but not EV from erythrocytes or leukocytes, in joint-draining lymph. In contrast to blood platelet EV, lymph platelet EV lacked mitochondrial organelles and failed to promote coagulation. Platelet EV influx in lymph was consistent with joint vascular leakage and implicated the fibrinogen receptor α2bβ3 and platelet-derived serotonin. CONCLUSIONS These findings show that platelets can disseminate their EV in fluid that is inaccessible to platelets and beyond the joint in this disease.
Collapse
Affiliation(s)
- Nicolas Tessandier
- From the Centre de recherche du CHU de Québec, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, QC, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
| | - Imene Melki
- From the Centre de recherche du CHU de Québec, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, QC, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
| | - Nathalie Cloutier
- From the Centre de recherche du CHU de Québec, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, QC, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
| | - Isabelle Allaeys
- From the Centre de recherche du CHU de Québec, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, QC, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
| | - Adam Miszta
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill (A.M., A.S.W.)
- Montreal Heart Institute, Quebec, Canada (A.M., C.M.)
| | - Sisareuth Tan
- Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS-University of Bordeaux-IPB, Allée Geoffroy Saint-Hilaire, Pessac, France (S.T., A.R.B.)
| | - Andreea Milasan
- Department of Medicine, Faculty of Medicine (A.M., C.M.), Université de Montréal, Quebec, Canada
| | - Sara Michel
- From the Centre de recherche du CHU de Québec, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, QC, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
| | - Abderrahim Benmoussa
- Department of Nutrition, CHU Sainte-Justine (A.B.), Université de Montréal, Quebec, Canada
| | - Tania Lévesque
- From the Centre de recherche du CHU de Québec, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, QC, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
| | - Francine Côté
- Institut Imagine, Inserm U1163, Laboratoire Olivier Hermine, Paris, France (F.C.)
| | - Steven E McKenzie
- Cardeza Foundation for Hematological Research, Thomas Jefferson University, Philadelphia, PA (S.E.M.)
| | - Caroline Gilbert
- From the Centre de recherche du CHU de Québec, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, QC, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
| | - Patrick Provost
- From the Centre de recherche du CHU de Québec, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, QC, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
| | - Alain R Brisson
- Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS-University of Bordeaux-IPB, Allée Geoffroy Saint-Hilaire, Pessac, France (S.T., A.R.B.)
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill (A.M., A.S.W.)
| | - Paul R Fortin
- From the Centre de recherche du CHU de Québec, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, QC, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
- Axe maladies infectieuses et inflammatoires, Centre de recherche du CHU de Québec-Université Laval, Québec, Canada (P.R.F., E.B.)
| | - Catherine Martel
- Department of Medicine, Faculty of Medicine (A.M., C.M.), Université de Montréal, Quebec, Canada
- Montreal Heart Institute, Quebec, Canada (A.M., C.M.)
| | - Éric Boilard
- From the Centre de recherche du CHU de Québec, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, QC, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
- Axe maladies infectieuses et inflammatoires, Centre de recherche du CHU de Québec-Université Laval, Québec, Canada (P.R.F., E.B.)
| |
Collapse
|
53
|
Meyer AD, Rishmawi AR, Kamucheka R, Lafleur C, Batchinsky AI, Mackman N, Cap AP. Effect of blood flow on platelets, leukocytes, and extracellular vesicles in thrombosis of simulated neonatal extracorporeal circulation. J Thromb Haemost 2020; 18:399-410. [PMID: 31628728 PMCID: PMC7350929 DOI: 10.1111/jth.14661] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/10/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Extracorporeal membrane oxygenation (ECMO) has frequent and sometimes lethal thrombotic complications. The role that activated platelets, leukocytes, and small (0.3-micron to 1-micron) extracellular vesicles (EVs) play in ECMO thrombosis is not well understood. OBJECTIVES To test the effect of blood flow rate on the generation of activated platelets, leukocytes, and EVs in a simulated neonatal ECMO circuit using heparinized human whole blood. METHODS Simulated neonatal roller pump circuits circulated whole blood at low, nominal, and high flow rates (0.3, 0.5, and 0.7 L/min) for 6 h. Coagulopathy was defined by thromboelastography (TEG), STA® -procoagulant phospholipid clot time (STA®- Procoag-PPL), and calibrated automated thrombogram. High-resolution flow cytometry measured the cellular expression of prothrombotic phospholipids and proteins on platelets, leukocytes, and EV. RESULTS Despite heparinization, occlusive thrombosis halted flow in two of five circuits at 0.3 L/min and three of five circuits at 0.7 L/min. None of the five circuits at 0.5 L/min exhibited occlusive thrombosis. Phosphatidylserine (PS)-positive platelets and EVs increased at all flow rates more than blood under static conditions (P < .0002). Tissue factor (TF)-positive leukocytes and EVs increased only in low-flow and high-flow circuits (P < .0001). Tissue factor pathway inhibitor (TFPI), at 50 times more than the concentration in healthy adults, failed to suppress thrombin initiation in low-flow and high-flow circuits. CONCLUSIONS This in vitro study informs ECMO specialists to avoid low and high blood flow that increases TF expression on leukocytes and EVs, which likely initiate clot formation. Interventions to decrease TF generated by ECMO may be an effective approach to decrease thrombosis.
Collapse
Affiliation(s)
- Andrew D. Meyer
- Division of Pediatric Critical Care, Department of Pediatrics, University of Texas Health, San Antonio, Texas
- Coagulation and Blood Research, U.S. Army Institute of Surgical Research (USAISR), Ft. Sam Houston, Texas
| | - Anjana R. Rishmawi
- Division of Pediatric Critical Care, Department of Pediatrics, University of Texas Health, San Antonio, Texas
| | - Robin Kamucheka
- Coagulation and Blood Research, U.S. Army Institute of Surgical Research (USAISR), Ft. Sam Houston, Texas
| | - Crystal Lafleur
- Coagulation and Blood Research, U.S. Army Institute of Surgical Research (USAISR), Ft. Sam Houston, Texas
| | - Andriy I. Batchinsky
- Extracorporeal Life Support, U.S. Army Institute of Surgical Research (USAISR), Ft. Sam Houston, Texas
| | - Nigel Mackman
- Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Andrew P. Cap
- Coagulation and Blood Research, U.S. Army Institute of Surgical Research (USAISR), Ft. Sam Houston, Texas
| |
Collapse
|
54
|
Vallier L, Bouriche T, Bonifay A, Judicone C, Bez J, Franco C, Guervilly C, Hisada Y, Mackman N, Houston R, Poncelet P, Dignat-George F, Lacroix R. Increasing the sensitivity of the human microvesicle tissue factor activity assay. Thromb Res 2019; 182:64-74. [PMID: 31450010 DOI: 10.1016/j.thromres.2019.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/10/2019] [Accepted: 07/14/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The TF-FVIIa complex is the primary activator of coagulation. Elevated levels of microvesicle (MV) bearing tissue factor (TF)-dependent procoagulant activity are detectable in patients with an increased risk of thrombosis. Several methods have been described to measure MV TF activity but they are hampered by limited sensitivity and specificity. The aim of this work was to increase the sensitivity of the MV TF activity assay (called Chapel Hill assay). MATERIAL AND METHODS Improvements of the MV TF activity assay included i/ speed and time of centrifugation, ii/ use of a more potent inhibitory anti-TF antibody iii/ use of FVII and a fluorogenic substrate to increase specificity. RESULTS The specificity of the MV TF activity assay was demonstrated by the absence of activity on MV derived from a knock-out-TF cell line using an anti-human TF monoclonal antibody called SBTF-1, which shows a higher TF inhibitory effect than the anti-human TF monoclonal antibody called HTF-1. Experiments using blood from healthy individuals, stimulated or not by LPS, or plasma spiked with 3 different levels of MV, demonstrated that the new assay was more sensitive and this allowed detection of MV TF activity in platelet free plasma (PFP) samples from healthy individuals. However, the assay was limited by an inter-assay variability, mainly due to the centrifugation step. CONCLUSIONS We have improved the sensitivity of the MV TF activity assay without losing specificity. This new assay could be used to evaluate levels of TF-positive MV as a potential biomarker of thrombotic risk in patients.
Collapse
Affiliation(s)
- Loris Vallier
- Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France
| | - Tarik Bouriche
- Research and Technology Department, BioCytex, Marseille, France
| | | | - Coralie Judicone
- Research and Technology Department, BioCytex, Marseille, France; Department of Hematology and Vascular Biology, CHU La Conception, APHM, Marseille, France
| | - Jeremy Bez
- Research and Technology Department, BioCytex, Marseille, France
| | - Corentin Franco
- Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France; Research and Technology Department, BioCytex, Marseille, France
| | | | - Yohei Hisada
- Division of Hematology and Oncology, Thrombosis and Hemostasis Program, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Nigel Mackman
- Division of Hematology and Oncology, Thrombosis and Hemostasis Program, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Reaves Houston
- Division of Hematology and Oncology, Thrombosis and Hemostasis Program, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | | | - Françoise Dignat-George
- Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France; Department of Hematology and Vascular Biology, CHU La Conception, APHM, Marseille, France.
| | - Romaric Lacroix
- Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France; Department of Hematology and Vascular Biology, CHU La Conception, APHM, Marseille, France
| |
Collapse
|