51
|
Huang Y, Wu Y, Tao H, Yuan B. Bio-Based Porous Aerogel with Bionic Structure and Hydrophobic Polymer Coating for Efficient Absorption of Oil/Organic Liquids. Polymers (Basel) 2022; 14:polym14214579. [PMID: 36365572 PMCID: PMC9658809 DOI: 10.3390/polym14214579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022] Open
Abstract
Increasing contamination risk from oil/organic liquid leakage creates strong demand for the development of absorbents with excellent hydrophobicity and absorption capacity. Herein, bagasse was carbonized to form porous char with a special structure of array-style and vertically perforated channels, and then the activation process enlarged the pore volume of the char. With the cooperation of low-surface-energy polydimethylsiloxane and diatomaceous earth particles, the modified activated carbon aerogel (MACA) was fabricated by modifying the surface coating and mastoid structure on the bagasse char. Moreover, the MACA demonstrates high porosity oil-water separation, hydrophobicity, and considerable absorption capacity (4.06–12.31 g/g) for gasoline and various organic solvents. This work converts agricultural waste into an efficient porous adsorbent, offering a scalable and commercially feasible solution to solving the leakages of oil/organic solvents.
Collapse
Affiliation(s)
- Yi Huang
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
| | - Yucheng Wu
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
| | - Hao Tao
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Bihe Yuan
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
- Correspondence: ; Tel.: +86-181-7129-6096
| |
Collapse
|
52
|
Liu X, Liu Z, Wang X, Gao Y, Zhang J, Fan T, Ning X, Ramakrishna S, Long YZ. Superhydrophobic nanofibrous sponge with hierarchically layered structure for efficient harsh environmental oil-water separation. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129790. [PMID: 36007362 DOI: 10.1016/j.jhazmat.2022.129790] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Oil leakage has posed serious threat to the environment, but still remain a great challenge to be solved especially for harsh environmental conditions. Herein, robust superhydrophobic nickel hydroxide grown by hydrothermal method and stearic acid modification on a blow-spun polyacrylonitrile (PAN)/Al2O3 nanofibrous sponge was proposed, so that the nickel hydroxide-modified polyacrylonitrile sponge (NPAS) was successfully obtained for efficient oil-water separation. The porous NPAS with a distinctive hierarchically layered structure, which exhibited excellent separation efficiency and mechanical elasticity. Due to its superhydrophobic and high porosity, the absorption capacity of NPAS could reach as high as 45 g g-1. It could not only separate a series of oil-water mixture with a high steady flux of 12,413 L m-2 h-1 (dichloromethane-water), but also separate stabilized emulsions with a superior flux 2032 L m-2 h-1 (water-in-dichloromethane) under gravity, all of that with above 99.92% separation efficiencies, which was higher than that of the most reported sponges. Most importantly, its strong acid/alkali resistance enable it is suitable for hazardous materials treatment applications in harsh environmental conditions. This novel NPAS via facile large-scale blow-spinning provide an efficient strategy for oil-containing wastewater treatment and environmental protection.
Collapse
Affiliation(s)
- Xianfeng Liu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Zhong Liu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Xueyan Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Yuan Gao
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Jun Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Tingting Fan
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China; Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Shandong Center for Engineered Nonvovens, Qingdao 2266071, China.
| | - Xin Ning
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Shandong Center for Engineered Nonvovens, Qingdao 2266071, China
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Faculty of Engineering, National University of Singapore, Singapore
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University), Qingdao 266071, China.
| |
Collapse
|
53
|
A new antifouling metal-organic framework based UF membrane for oil-water separation: A comparative study on the effect of MOF (UiO-66-NH2) ligand modification. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
54
|
Yang S, Li H, Liu S, Wang S, Li H, Li H, Qi W, Xu Q, Zhang Q, Zhu J, Zhao P, Chen L. Wodyetia bifurcate structured carbon fabrics with durable superhydrophobicity for high-efficiency oil-water separation. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129688. [PMID: 36104914 DOI: 10.1016/j.jhazmat.2022.129688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The superhydrophobic fiber-based membranes with features of high separation efficiency and low energy consumption for oil-water separation remains a formidable challenge. In this paper, a robust and durable superhydrophobic cotton-derived carbon fabric (CDCF) with wodyetia bifurcate-like structure is fabricated via in situ cobalt-nickel basic carbonate (CNC) deposition and 1 H, 1 H, 2 H, 2 H-perfluorooctyltriethoxysilane (POTS) coating. The combined action of rough surface structure and low surface energy makes CDCF/CNC/POTS with superhydrophobicity/superoleophilicity, anti-wetting, and self-cleaning performance. Intriguingly, the CDCF/CNC/POTS can keep its superhydrophobicity under of the water droplet impact pressure of 781 Pa. In addition to its robust dynamic superhydrophobicity, CDCF/CNC/POTS can also maintain its non-wetting property under harsh environmental conditions such as mechanical abrasion treatment, acidic, alkaline and salt solutions, and ultraviolet radiation. Importantly, the CDCF/CNC/POTS can separate various oil-water mixtures and emulsions under gravity with ultrahigh oil-water mixtures permeate flux (∼19,126 L/m2h), high surfactant-stabilized emulsion permeate flux (∼821 L/m2h), and high separation efficiency (> 98.60 %). Moreover, remarkable recyclability endow the CDCF/CNC/POTS with promising application in treating oily wastewater. This work may benefit the low-cost mass production of cotton-based carbon fabrics for developing eco-friendly high-efficiency separators.
Collapse
Affiliation(s)
- Sudong Yang
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, PR China.
| | - Hongyi Li
- Guangzhou Panyu Polytechnic, Guangzhou 511483, PR China
| | - Shuai Liu
- College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Shanshan Wang
- College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Hongmei Li
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, PR China.
| | - Huiming Li
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, PR China
| | - Wensheng Qi
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, PR China
| | - Qing Xu
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, PR China
| | - Qian Zhang
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, PR China
| | - Jie Zhu
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, PR China
| | - Peng Zhao
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, PR China
| | - Lin Chen
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
55
|
Wang CF, Huang XY, Lin HP, Chen JK, Tsai HC, Hung WS, Hu CC, Lai JY. Sustainable, biocompatible, and mass-producible superwetting water caltrop shell biochars for emulsion separations. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129567. [PMID: 36104894 DOI: 10.1016/j.jhazmat.2022.129567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The separation of oily wastewater, specifically emulsions, is a crucial global issue. Possible strategies for the efficient separation of emulsified oil/water mixtures through sustainable and environmentally friendly materials have recently drawn considerable attention. In our study, we prepared superwetting water caltrop shell biochar (WCSB) via a top-lit-updraft carbonization procedure. The as-prepared WCSB was characterized by superhydrophilicity, underwater superoleophobicity, underoil superhydrophilicity, and underoil water adsorption ability. Because of its superwetting properties, WCSB was used for the separation of both surfactant-stabilized oil-in-water emulsions (SOIWEs) and surfactant-stabilized water-in-oil emulsions (SWIOEs) with very high fluxes (up to 74,700 and 241,000 L m-2 h-1 bar-1 for SOIWE and SWIOE, respectively). The separation performances were excellent, with oil contents in all SOIWE filtrates lower than 10 ppm and oil purities in all SWIOE filtrates higher than 99.99 wt%. Moreover, WCSB was applied to separate dye-spiked emulsions. Due to their high emulsion separation ability, sustainability, good biocompatibility, and ease of mass production, the as-prepared WCSBs have notable potential for utilitarian applications.
Collapse
Affiliation(s)
- Chih-Feng Wang
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Xin-Yu Huang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Hong-Ping Lin
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.
| | - Jem-Kun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Wei-Song Hung
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Chien-Chieh Hu
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan; R&D Centre for Membrane Technology, Chung Yuan University, Taoyuan 320, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan
| |
Collapse
|
56
|
|
57
|
Ahmed FU, Upadhaya D, Dhar Purkayastha D, Krishna MG. Stable hydrophilic and underwater superoleophobic ZnO nanorod decorated nanofibrous membrane and its application in wastewater treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
58
|
Mousa HM, Fahmy HS, Ali GAM, Abdelhamid HN, Ateia M. Membranes for Oil/Water Separation: A Review. ADVANCED MATERIALS INTERFACES 2022; 9:10.1002/admi.202200557. [PMID: 37593153 PMCID: PMC10428143 DOI: 10.1002/admi.202200557] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 08/19/2023]
Abstract
Recent advancements in separation and membrane technologies have shown a great potential in removing oil from wastewaters effectively. In addition, the capabilities have improved to fabricate membranes with tunable properties in terms of their wettability, permeability, antifouling, and mechanical properties that govern the treatment of oily wastewaters. Herein, authors have critically reviewed the literature on membrane technology for oil/water separation with a specific focus on: 1) membrane properties and characterization, 2) development of various materials (e.g., organic, inorganic, and hybrid membranes, and innovative materials), 3) membranes design (e.g., mixed matrix nanocomposite and multilayers), and 4) membrane fabrication techniques and surface modification techniques. The current challenges and future research directions in materials and fabrication techniques for membrane technology applications in oil/water separation are also highlighted. Thus, this review provides helpful guidance toward finding more effective, practical, and scalable solutions to tackle environmental pollution by oils.
Collapse
Affiliation(s)
- Hamouda M Mousa
- Mechanical Engineering Department, Faculty of Engineering, South Valley University, Qena 83523, Egypt
| | - Hanan S Fahmy
- Mechanical Engineering Department, Faculty of Engineering, South Valley University, Qena 83523, Egypt
| | - Gomaa A M Ali
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Mohamed Ateia
- United States Environmental Protection Agency, Center for Environmental Solutions & Emergency Response, Cincinnati, OH 45220, USA
| |
Collapse
|
59
|
Abbasi Moud A. Advanced cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF) aerogels: Bottom-up assembly perspective for production of adsorbents. Int J Biol Macromol 2022; 222:1-29. [PMID: 36156339 DOI: 10.1016/j.ijbiomac.2022.09.148] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/04/2022] [Accepted: 09/16/2022] [Indexed: 12/25/2022]
Abstract
The most common and abundant polymer in nature is the linear polysaccharide cellulose, but processing it requires a new approach since cellulose degrades before melting and does not dissolve in ordinary organic solvents. Cellulose aerogels are exceptionally porous (>90 %), have a high specific surface area, and have low bulk density (0.0085 mg/cm3), making them suitable for a variety of sophisticated applications including but not limited to adsorbents. The production of materials with different qualities from the nanocellulose based aerogels is possible thanks to the ease with which other chemicals may be included into the structure of nanocellulose based aerogels; despite processing challenges, cellulose can nevertheless be formed into useful, value-added products using a variety of traditional and cutting-edge techniques. To improve the adsorption of these aerogels, rheology, 3-D printing, surface modification, employment of metal organic frameworks, freezing temperature, and freeze casting techniques were all investigated and included. In addition to exploring venues for creation of aerogels, their integration with CNC liquid crystal formation were also explored and examined to pursue "smart adsorbent aerogels". The objective of this endeavour is to provide a concise and in-depth evaluation of recent findings about the conception and understanding of nanocellulose aerogel employing a variety of technologies and examination of intricacies involved in enhancing adsorption properties of these aerogels.
Collapse
Affiliation(s)
- Aref Abbasi Moud
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
60
|
Fan Q, Lu T, Deng Y, Zhang Y, Ma W, Xiong R, Huang C. Bio-based materials with special wettability for oil-water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
61
|
Chen H, Yang J, Su J, Cui Y. Facile fabrication of biobased porous material via the photocuring technique and a template-assisted approach for oil/water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
62
|
He XT, Li BY, Liu JX, Tao WQ, Li Z. Facile fabrication of 2D MOF-Based membrane with hierarchical structures for ultrafast Oil-Water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
63
|
Cellulose nanofiber assisted dispersion of hydrophobic SiO 2 nanoparticles in water and its superhydrophobic coating. Carbohydr Polym 2022; 290:119504. [PMID: 35550757 DOI: 10.1016/j.carbpol.2022.119504] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022]
Abstract
It is challenging to build a superhydrophobic coating with aqueous dispersions since hydrophobic substances are usually dispersed in pure organic or water/organic mixed solvents. In this study, hydrophobic SiO2 nanoparticles were dispersed in water assisted with cellulose nanofiber (CNF) and the superhydrophobic surface was manufactured by coating a waterborne dispersion composed of CNF, hydrophobic SiO2 nanoparticles and methyltrimethoxysilane (MTMS). It was found that the dispersion of SiO2 in water can be improved by CNF. Meanwhile, the coated paper surface retained its hydrophobicity after 10 abrasion cycles due to the adhesion of the coating surface promoted by MTMS. When SiO2 content over 0.25 wt%, the coated paper surface displayed a superhydrophobic property, and the moisture absorption decreased to 31-34%. The contact angle of the coating surface was 162°, the contact angle hysteresis was 1.96° and the rolling contact angle was 1.33° when SiO2 content was 1 wt%.
Collapse
|
64
|
Li X, Yang Z, Peng Y, Zhang F, Lin M, Zhang J, Lv Q, Dong Z. Self-powered aligned porous superhydrophobic sponge for selective and efficient absorption of highly viscous spilled oil. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129018. [PMID: 35504133 DOI: 10.1016/j.jhazmat.2022.129018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/10/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Crude oil spills have caused catastrophic damage to marine ecosystems and become a global challenge. Although various liquid absorption materials have been developed, manual operations such as pumping and electric heating are still required in the face of highly viscous spilled oils. Efficient and autonomous crude oil spill cleanup methods are urgently needed. Here, inspired by the unidirectional microstructure of tree xylem, we report a sponge (SPC-Sponge), which combines superhydrophobic property and aligned porous structures, prepared from a ternary suspension (hydrophobic silica nanoparticles, polyurethane, and cellulose nanofibers) by single-step directional freeze casting. SPC-Sponge not only effectively overcome the limitations of traditional synthetic modification methods on the shape and size of porous sponge materials, but also has excellent oil-water selection function, liquid absorption speed, and liquid absorption capacity compared with common porous materials. Moreover, the sponge can self-absorb highly viscous crude oil of around 80,000 mPa‧s on seawater without external energy and human intervention. By adding multi-walled carbon nanotubes, the sponge can implement in-situ solar heating of crude oil, and the absorption speed is further improved. Given its unique structural design and superwetting property, this SPC-Sponge provides an efficient remediation approach for viscous oil spills.
Collapse
Affiliation(s)
- Xiaochen Li
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China; CNPC Bohai Drilling Engineering Company Limited, Tianjin 300280, People's Republic of China
| | - Zihao Yang
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China
| | - Ying Peng
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China
| | - Fengfan Zhang
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China
| | - Meiqin Lin
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China
| | - Juan Zhang
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China
| | - Qichao Lv
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China
| | - Zhaoxia Dong
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China; School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China.
| |
Collapse
|
65
|
He Z, Qin M, Han C, Bai X, Wu Y, Yao D, Zheng Y. Pectin/Graphene Oxide Aerogel with Bamboo-like Structure for Enhanced Dyes Adsorption. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
66
|
Xiong C, Cao X, Zhao X, Yang S, Huang J, Feng Y, Yu G, Li J. Stability and photo demulsification of oil-in-seawater Pickering emulsion based on Fe3+ induced amphiphilic alginate. Carbohydr Polym 2022; 289:119399. [DOI: 10.1016/j.carbpol.2022.119399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 11/02/2022]
|
67
|
Xue Y, Duan S, Liu Z, Cui M, Xiong Z, Liu Z, Chen J. An autocatalytic CO hydrogenation approach for the fabrication of stable Fe-based superhydrophobic surfaces. Chem Commun (Camb) 2022; 58:8706-8709. [PMID: 35833515 DOI: 10.1039/d2cc03113b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stable Fe-based superhydrophobic surfaces are constructed via a hydrothermal method and an autocatalytic CO hydrogenation reaction. The platform molecule of syngas is proposed as an alternative to traditional low-free-energy materials. Syngas may be a powerful tool for fabricating superhydrophobic surfaces that can catalyze the CO hydrogenation reaction.
Collapse
Affiliation(s)
- Yingying Xue
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China.
| | - Shengyang Duan
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China.
| | - Zihao Liu
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China.
| | - Miaomiao Cui
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China.
| | - Zhanghui Xiong
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China.
| | - Zengchen Liu
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China.
| | - Jiangang Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| |
Collapse
|
68
|
Zhou W, Hu X, Zhan B, Li S, Chen Z, Liu Y. Green and rapid fabrication of superhydrophilic and underwater superoleophobic coatings for super anti-crude oil fouling and crude oil-water separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
69
|
Ma Z, Han Y, Xing X, Zhu H, Wang Q, Wang X. Preparation of micro-convex rough interface carbon aerogels with cellulose-lithium bromide (LiBr) molten salt hydrate gelled system and application of oil-water separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
70
|
Preparation of superhydrophobic-superoleophilic ZnO nanoflower@SiC composite ceramic membranes for water-in-oil emulsion separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
71
|
Yang M, Chen K, Wang M, Chen H, Ling H, Zhao W, Liu H, Xiao C. Simple Fabrication of Polyvinylidene Fluoride/Graphene Composite Membrane with Good Lipophilicity for Oil Treatment. ACS OMEGA 2022; 7:21454-21464. [PMID: 35785275 PMCID: PMC9244927 DOI: 10.1021/acsomega.2c00764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Graphene (GE) is an emerging type of two-dimensional functional nanoparticle with a tunable passageway for oil molecules. Herein, polyvinylidene fluoride (PVDF)/GE composite membranes with controllable pore structure were fabricated with a simple non-solvent-induced phase separation method. The change of crystallinity and crystal structure (α, β, γ, etc.) generated is due to the addition of GE, which benefits the design of a suitable pore structure for oil channels. Meanwhile, the hydrophobicity and thermal stability of the composite membrane were obviously enhanced. With 3 wt % GE, the contact angle was 124.6°, which was increased greatly compared to that of the GE-0 sample. Moreover, the rate of the phase transition process was affected by the concentration of casting solution, temperature, and composition of the coagulation bath. For example, the composite membrane showed better oil-water separation properties when the coagulation bath was dioctyl phthalate. In particular, the oil flux and separation efficiencies were up to 2484.08 L/m2·h and 99.24%, respectively. Consequently, PVDF/GE composite membranes with excellent lipophilicity may have good prospects for oily wastewater treatment.
Collapse
Affiliation(s)
- Murong Yang
- School
of Materials Science and Engineering, and State Key Laboratory of
Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Kaikai Chen
- School
of Textiles and Fashion, Shanghai University
of Engineering Science, Shanghai 201620, China
| | - Mianning Wang
- School
of Materials Science and Engineering, and State Key Laboratory of
Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Huanhuan Chen
- School
of Textiles and Fashion, Shanghai University
of Engineering Science, Shanghai 201620, China
| | - Haoyang Ling
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Zhao
- School
of Materials Science and Engineering, and State Key Laboratory of
Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Haihui Liu
- School
of Materials Science and Engineering, and State Key Laboratory of
Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Changfa Xiao
- School
of Textiles and Fashion, Shanghai University
of Engineering Science, Shanghai 201620, China
| |
Collapse
|
72
|
Yue R, An C, Ye Z, Owens E, Taylor E, Zhao S. Green biomass-derived materials for oil spill response: recent advancements and future perspectives. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
73
|
In situ modification of melamine sponge by MgAl-LDH with super-hydrophobicity and excellent harsh environment tolerance for high flux emulsion separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
74
|
Shan L, Yang Z, Li W, Li H, Liu N, Wang Z. Highly antifouling porous EVAL/F127 blend membranes with hierarchical surface structures. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
75
|
Wang M, Hu DD, Li YD, Peng HQ, Zeng JB. Biobased mussel-inspired underwater superoleophobic chitosan derived complex hydrogel coated cotton fabric for oil/water separation. Int J Biol Macromol 2022; 209:279-289. [DOI: 10.1016/j.ijbiomac.2022.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/19/2022] [Accepted: 04/02/2022] [Indexed: 02/01/2023]
|
76
|
Zhang L, Zhao Y, Deng Z, Liu X, Chen Y, Zhang J, Liu Y, Zeng G. Preparation of sepiolite modified MXene composite membrane for oil/water separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lei Zhang
- College of Civil Aviation Safety Engineering Civil Aviation Flight University of China Deyang China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province Deyang China
| | - Yong Zhao
- College of Civil Aviation Safety Engineering Civil Aviation Flight University of China Deyang China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province Deyang China
| | - Zhibin Deng
- College of Civil Aviation Safety Engineering Civil Aviation Flight University of China Deyang China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province Deyang China
| | - Xiang Liu
- College of Civil Aviation Safety Engineering Civil Aviation Flight University of China Deyang China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province Deyang China
| | - Yonggang Chen
- College of Civil Aviation Safety Engineering Civil Aviation Flight University of China Deyang China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province Deyang China
| | - Jun Zhang
- College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu China
| | - Yongcong Liu
- College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu China
| | - Guangyong Zeng
- College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu China
| |
Collapse
|
77
|
Miao G, Li F, Gao Z, Xu T, Miao X, Ren G, Song Y, Li X, Zhu X. Ag/polydopamine-coated textile for enhanced liquid/liquid mixtures separation and dye removal. iScience 2022; 25:104213. [PMID: 35494223 PMCID: PMC9046229 DOI: 10.1016/j.isci.2022.104213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/16/2022] [Accepted: 04/01/2022] [Indexed: 11/03/2022] Open
Abstract
Engineering a versatile platform that enables to separate both oil/water and oil/oil mixtures and remove dye from water is not easy. To address this challenge, we have developed an Ag/polydopamine-coated textile (Ag/PDA@textile) by chemically depositing Ag particles on the textile surface using polydopamine as the binder layer. The obtained Ag/PDA@textile attracts water but repels oil in the air, underwater, and when immersed into the oil. Exploiting its water-attracting and oil resistance, the Ag/PDA@textile is acted as a separation membrane to separate oil/water mixtures with enhanced separation efficiency. The Ag/PDA@textile also possesses opposite wetting behavior to oils with different polarities, allowing it to separate oil/oil mixtures efficiently. Thanks to the catalytic performance of the Ag particle, organic dyes can be decomposed effectively by our Ag/PDA@textile under UV illustration or in the presence of NaBH4. Our Ag/PDA@textile may be valuable for applications in water purification and oil sewage treatment.
Collapse
Affiliation(s)
- Gan Miao
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Fangchao Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Zhongshuai Gao
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Ting Xu
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Xiao Miao
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Guina Ren
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Yuanming Song
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Xiangming Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Xiaotao Zhu
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| |
Collapse
|
78
|
Zhang X, Zhu Y, Zhang F, Mo Y, Zhang Y, Fang W, Jin J. Hydrophilic/hydrophobic nanofibres intercalated multilayer membrane with hierarchical structure for efficient oil/water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
79
|
Yao X, Hou X, Zhang R. Flexible and mechanically robust polyimide foam membranes with adjustable structure for separation and recovery of oil-water emulsions and heavy oils. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
80
|
Chen C, Chen L, Weng D, Chen S, Liu J, Wang J. Revealing the mechanism of superwetting fibrous membranes for separating surfactant-free water-in-oil emulsions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
81
|
Ma ZY, Xue YR, Yang HC, Wu J, Xu ZK. Surface and Interface Engineering of Polymer Membranes: Where We Are and Where to Go. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhao-Yu Ma
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Yu-Ren Xue
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hao-Cheng Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jian Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
82
|
Sun X, Wang X, Li J, Huang L, Sun H, Hao Y, Bai L, Pan J, Gao X. Enhanced oil–water separation via superhydrophobic electrospun carbon fiber membrane decorated with Ni nanoclusters. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
83
|
Yang J, Yu T, Wang Z, Li S, Wang L. Substrate-independent multifunctional nanostructured coating for diverse wastewater treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
84
|
Wang Q, Wang D, Cheng W, Huang J, Cao M, Niu Z, Zhao Y, Yue Y, Han G. Spider-web-inspired membrane reinforced with sulfhydryl-functionalized cellulose nanocrystals for oil/water separation. Carbohydr Polym 2022; 282:119049. [DOI: 10.1016/j.carbpol.2021.119049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022]
|
85
|
Luo Y, Li Z, Chen Y, Jin T. Esterification process of incorporation CS2 activation and its effect on the properties of hydrophobic modified cotton filter fabric via ARGET-ATRP. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
86
|
Hu YQ, Li HN, Xu ZK. Janus hollow fiber membranes with functionalized outer surfaces for continuous demulsification and separation of oil-in-water emulsions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
87
|
Qi P, Jia H, Wang Q, Su G, Xu S, Zhang M, Qu Y, Pei F. Ionic liquid-modified polyimide membranes with in-situ-grown polydopamine for separation of oil–water emulsions. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221075949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Leakage of oily industrial waste is not only a serious environmental and ecological hazard but also poses a significant health risk to people. Membrane separation, which is cost-effective and efficient, is one of the best solutions for reducing pollution discharge through oil–water separation. In this study, polydopamine (PDA) was incorporated into electrostatically spun ionic liquid-capped polyimide (IL-PI) membranes through an in situ growth method; the membranes exhibited the strong adsorption properties of PDA. The polyimide fibers were hydrophilically modified with an IL, which contains several hydrophilic groups, and PDA. Adjusting the polymerization time resulted in the formation of a composite membrane, which could effectively separate oil–water emulsions. Scanning electron microscopy analysis showed that with an increase in the PDA coating time, the PDA content in and on the surface of the composite membrane fibers significantly increased. In addition, the surface contact angle of the membrane decreased from 72.87° to 12.06° with the addition of the PDA coating, while the wettability was significantly improved. The PDA-modified fibrous membranes showed good separation of the emulsified oil–water mixtures. The maximum membrane flux and separation efficiency achieved was 280 L·m−2·h−1 and >99%, respectively. After 10 repeated cycles, the separation efficiency was maintained at >92%. This approach can be used for the design of future wastewater treatment solutions.
Collapse
Affiliation(s)
- Peng Qi
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Heilongjiang province Key Laboratory of Polymeric Composition, Qiqihar University, Qiqihar, China
| | - Hongge Jia
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Heilongjiang province Key Laboratory of Polymeric Composition, Qiqihar University, Qiqihar, China
| | - Qingji Wang
- CNPC Research Institute Of Safety&Environment Technology, Beijing, China
| | - Guiming Su
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, China
| | - Shuangping Xu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Heilongjiang province Key Laboratory of Polymeric Composition, Qiqihar University, Qiqihar, China
| | - Mingyu Zhang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Heilongjiang province Key Laboratory of Polymeric Composition, Qiqihar University, Qiqihar, China
| | - Yanqing Qu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Heilongjiang province Key Laboratory of Polymeric Composition, Qiqihar University, Qiqihar, China
| | - Fuying Pei
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Heilongjiang province Key Laboratory of Polymeric Composition, Qiqihar University, Qiqihar, China
| |
Collapse
|
88
|
Wang Y, Huang JT. Large-Scale Fabrication of Graded Convex Structure for Superhydrophobic Coating Inspired by Nature. MATERIALS 2022; 15:ma15062179. [PMID: 35329632 PMCID: PMC8948839 DOI: 10.3390/ma15062179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 01/25/2023]
Abstract
The addition of toxic substances and poor durability severely limit the market applications of superhydrophobic coatings in the oil−water-separation industry, anti-icing, and self-cleaning surfaces. In order to solve the above problems, a stable, strong, fluorine-free superhydrophobic coating was prepared according to natural inspiration. In this study, polydivinylbenzene (PDVB) was produced by the hydrothermal method, and micro-nanoparticle clusters composed of PDVB particles of different sizes were prepared by controlling the ratio of raw materials, which was then attached to the substrate surface by a simple spraying technique. A rough coating with a lotus-leaf-like layered protruding structure was constructed by depositing particle clusters of different sizes. In the end, the prepared coating showed attractive superhydrophobicity, with a maximum contact angle (CA) that reached up to 160°. In addition, the coating had long-lasting superhydrophobic properties in various environments, such as common liquid and acidic and alkaline solutions. Moreover, in the oil−water-separation process, the superhydrophobic filter paper was still able to obtain a separation efficiency of more than 85% after being used 50 times, and it maintained a contact angle of >150°. At the same time, the coating had excellent dye resistance and self-cleaning performance.
Collapse
|
89
|
Li X, Yang Z, Peng Y, Zhang F, Lin M, Zhang J, Lv Q, Dong Z. Wood-Inspired Compressible Superhydrophilic Sponge for Efficient Removal of Micron-Sized Water Droplets from Viscous Oils. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11789-11802. [PMID: 35195410 DOI: 10.1021/acsami.2c00785] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Efficient micron-sized droplet separation materials have become a new demand for environmental protection and economic development. However, existing separation methods are difficult to be effectively used for micron-sized water droplets surrounded by viscous oil, and common materials have difficulty maintaining hydrophilicity underoil. Here, inspired by the microstructure of tree xylem, we report a cellulose-polyurethane sponge (CP-Sponge) with wood-like pores and underoil superhydrophilicity using directional freeze-casting. The CP-Sponge has an excellent selective water absorption capacity underoil and compression resilience. This preparation strategy can flexibly control the sponge's dimensional morphology. The designed cylindrical CP-Sponge can be easily installed in the silicone tube of a peristaltic pump. During pump operation, with a simple absorption, compression, and recovery process, the CP-Sponge continuously and effectively removes micron-sized water from crude oil and lubricating oil, reducing residual water in the oil to less than 2 ppm. The absorption-saturated sponge can be dried to continue recycling. Eco-friendly, recyclable, and sustainable artificial porous sponges provide new ideas and inspiration for the practical application of deep dehydration of viscous oils.
Collapse
Affiliation(s)
- Xiaochen Li
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China
| | - Zihao Yang
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China
| | - Ying Peng
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China
| | - Fengfan Zhang
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China
| | - Meiqin Lin
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China
| | - Juan Zhang
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China
| | - Qichao Lv
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China
| | - Zhaoxia Dong
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China
- School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| |
Collapse
|
90
|
|
91
|
Kim KY, Srivastava RP, Khang DY. Oleophilic to oleophobic wettability switching of isoporous through-hole membranes by surface structure control for low-voltage electrowetting-based oil-water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
92
|
|
93
|
Wang C, Liu Y, Shao Y, Tang Z, Wen Z, Liang F, Yang Z. Zwitterionic Polymer Hairy Coating onto Mesh toward Easy Oil/Water Separation. Macromol Rapid Commun 2022; 43:e2200016. [PMID: 35218095 DOI: 10.1002/marc.202200016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/27/2022] [Indexed: 11/11/2022]
Abstract
A zwitterionic polymeric hair coated stainless steel mesh membrane is fabricated, which demonstrates efficient separation of oil/water mixtures and the emulsions. The hairy coating of poly(divinylbenzene-co-vinylbenzene chloride) (P(DVB-co-VBC)) is generated by precipitation cationic polymerization, and subsequent grafting a zwitterionic polymer layer by atom transfer radical polymerization (ATRP) of sulfobetaine methacrylate (SBMA). Microstructure of the hairy coating is tunable from array of individual nanofibers to porous network by interweaving of the hairs. The long-range attraction of zwitterionic polymer with water renders the coated mesh with excellent superhydrophilic and underwater superoleophobic performance. The coated mesh is highly antifouling to avoid the pre-hydration in conventional methods. Moreover, the microstructure is demonstrated to be responsible for the high separation efficiency of oil/water emulsion. Therefore, separation of oil/water mixtures and emulsions becomes easier by the coated mesh, which is promising in industrial oil field sewage treatment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chunyu Wang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yingze Liu
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yue Shao
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zian Tang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhendong Wen
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Fuxin Liang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
94
|
Tian N, Wu S, Han G, Zhang Y, Li Q, Dong T. Biomass-derived oriented neurovascular network-like superhydrophobic aerogel as robust and recyclable oil droplets captor for versatile oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127393. [PMID: 34656938 DOI: 10.1016/j.jhazmat.2021.127393] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/18/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Using tubular kapok fibers (KF) and sodium alginate (SA) as the natural building block, we put forward a novel oriented neurovascular network-like superhydrophobic aerogel with robust dry and wet compression resilience by directional freeze-drying and chemical vapor deposition. In the block, SA forms aligned channel structures providing space for rapid oil transmission, while KF serves as vascular-like capillaries acting as instant "tentacle" to capture the tiny oil droplets in water, facilitating fascinating oil capture efficiency for versatile oil/water separation, The aerogel after dry and wet compression (under a strain of 60%) can recover 96.0% and 97.3% its original, respectively, facilitating stable oil recovery (81.1-89.8%) by squeezing, high separation efficiency (99.04-99.64%) and permeation flux separating oil contaminants from water. A pump-supported experiment shows the aerogel efficiently collecting oil contaminants from the water's surface and bottom by 11503-25611 L·m-2·h-1. Particularly, the aerogel as robust oil droplets captor facilely achieves isolation of 99.39-99.68% emulsified oils from oil/water emulsions by novel oil trapping mechanism which simply involves exerting kinetic energy on emulsified oils through repeated oscillation, potentially indicating a simple and efficient alternative to membrane-based oily wastewater remediation via filtration.
Collapse
Affiliation(s)
- Na Tian
- College of Textile and Clothing, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, #308 Ningxia Road, Qingdao, PR China
| | - Shaohua Wu
- College of Textile and Clothing, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, #308 Ningxia Road, Qingdao, PR China
| | - Guangting Han
- College of Textile and Clothing, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao, PR China
| | - Yuanming Zhang
- College of Textile and Clothing, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao, PR China
| | - Qiang Li
- College of Textile and Clothing, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao, PR China
| | - Ting Dong
- College of Textile and Clothing, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao, PR China.
| |
Collapse
|
95
|
Long-Term Durability of Robust Super-Hydrophobic Co–Ni-Based Coatings Produced by Electrochemical Deposition. COATINGS 2022. [DOI: 10.3390/coatings12020222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The long-term durability for two kinds of Co–Ni-based robust coatings, the Co–Ni super-hydrophobic (Co–Ni SHPB) coating and Co–Ni/WC super-hydrophobic (Co–Ni/WC SHPB) coating, was analyzed through an immersion test in 3.5 wt.% NaCl solution. The evolution of their surface properties was characterized by scanning electron microscope (SEM) images, energy-dispersive spectrometry (EDS), a wettability measurement and X-ray photoelectron spectrometer (XPS), and the evolution of anti-corrosion mechanisms was evaluated with electrochemical measurements. The results show that as-prepared two kinds of robust coatings display a good long-term durability, with the Co–Ni SHPB coating and Co–Ni/WC SHPB coating losing their super-hydrophobicity after being immersed for more than 10 days. Additionally, both kinds of coatings present efficient corrosion protection even after long-term immersion.
Collapse
|
96
|
Wang L, Zang L, Zhang S, Chang J, Shen F, Zhang Y, Sun L. Superhydrophobic fibers with strong adhesion to water for oil/water separation. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
97
|
Liu H, Zhang L, Huang J, Mao J, Chen Z, Mao Q, Ge M, Lai Y. Smart surfaces with reversibly switchable wettability: Concepts, synthesis and applications. Adv Colloid Interface Sci 2022; 300:102584. [PMID: 34973464 DOI: 10.1016/j.cis.2021.102584] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
As a growing hot research topic, manufacturing smart switchable surfaces has attracted much attention in the past a few years. The state-of-the-art study on reversibly switchable wettability of smart surfaces has been presented in this systematic review. External stimuli are brought about to render the alteration in chemical conformation and surface morphology to drive the wettability switch. Here, starting from the fundamental theories related to the surfaces wetting principles, highlights on different triggers for switchable wettability, such as pH, light, ions, temperature, electric field, gas, mechanical force, and multi-stimuli are discussed. Different applications that have various wettability requirement are targeted, including oil-water separation, droplets manipulation, patterning, liquid transport, and so on. This review aims to provide a deep insight into responsive interfacial science and offer guidance for smart surface engineering. It ends with a summary of current challenges, future opportunities, and potential solutions on smart switch of wettability on superwetting surfaces.
Collapse
Affiliation(s)
- Hui Liu
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile & Clothing, Nantong University, Nantong 226019, PR China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271000, PR China
| | - Li Zhang
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile & Clothing, Nantong University, Nantong 226019, PR China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271000, PR China
| | - Jianying Huang
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou 350116, PR China
| | - Jiajun Mao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, PR China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore
| | - Qinghui Mao
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile & Clothing, Nantong University, Nantong 226019, PR China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271000, PR China.
| | - Mingzheng Ge
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile & Clothing, Nantong University, Nantong 226019, PR China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271000, PR China.
| | - Yuekun Lai
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou 350116, PR China.
| |
Collapse
|
98
|
Jin L, Gao Y, Huang Y, Ou M, Liu Z, Zhang X, He C, Su B, Zhao W, Zhao C. Mussel-Inspired and In Situ Polymerization-Modified Commercial Sponge for Efficient Crude Oil and Organic Solvent Adsorption. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2663-2673. [PMID: 34984908 DOI: 10.1021/acsami.1c16230] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oil spills and pollution of oily wastewater from the industrial field have not only caused serious economic losses but also imposed a huge threat to human beings. To solve these issues, the development of advanced materials and technologies for the purification of oily wastewater has garnered great concern and become a central topic. Hence, a superhydrophobic polyurethane (PU) sponge adsorbent is designed via mussel-inspired coatings by double bonds to PU sponge, followed by in situ polymerization with 1-hexadecene. The prepared PU sponge adsorbent (PU@DB@16ene sponge) showed outstanding mechanical properties including low density, high porosity, and compression recovery ability. Moreover, the prepared PU@DB@16ene sponge showed excellent adsorption of oils and organic solvents (up to 187 g g-1) and exhibited superior recyclability. Particularly, when the PU@DB@16ene sponge was applied in the continuous and rapid separation of oils and organic solvents, it still showed desired properties at a rapid velocity of 8.3 L m-3 s-1. Additionally, the PU@DB@16ene sponge could not only adsorb organic solvents in laboratories but also adsorb crude oil and industrial waxy oil in practice. Therefore, we proposed a simple and convenient method to construct PU sponge absorbents with great application prospects, which would be highly valuable for crude oil and organic solvents cleanup.
Collapse
Affiliation(s)
- Lunqiang Jin
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610207, People's Republic of China.,College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yusha Gao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yanping Huang
- College of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Minghui Ou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Zhen Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Baihai Su
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610207, People's Republic of China.,Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China.,Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China.,College of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China.,Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
99
|
Lu Y, Li S, Chen F, Ma H, Gao C, Xue L. Development of coin-shaped ZIF-7 functionalized superhydrophobic polysulfone composite foams for continuous removal of oily contaminants from water. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126788. [PMID: 34364204 DOI: 10.1016/j.jhazmat.2021.126788] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Development of efficient absorbent materials for oil spillage clean-up and environmental pollution remediation is highly desired but remains a challenge. In this work, superhydrophobic/superoleophilic polysulfone based ZIF-7 composite (SPZ) foams were fabricated via chemical modification of polysulfone and integrating with hydrophobic coin-shaped ZIF-7 particles. The synergistic approaches provided the SPZ foams with high porosity, low density and superhydrophobic/superoleophilic features (θwater=162.3°, θoil=0°) and outstanding self-cleaning property. The as-prepared SPZ foams exhibited highly selective absorption capacity (up to 3800 wt%) for various kinds of oils and organic solvents. Furthermore, the SPZ foams still maintained 95.2% of its pristine absorption capacity and the θwater remained at 143.6° after ten absorption/distillation cycles. The SPZ foam showed outstanding separation ability towards different types of emulsions with separation efficiency all above 97%. The high oil/water separation efficiency and robust reusability made the SPZ foams promising absorbent in dealing with practical oil spills.
Collapse
Affiliation(s)
- Yeqiang Lu
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province 310014, China.
| | - Shiyang Li
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province 310014, China
| | - Fuyou Chen
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province 310014, China
| | - Hui Ma
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province 310014, China
| | - Congjie Gao
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province 310014, China; Huzhou Research Institute, Zhejiang Center for Membrane Separation and Water Treatment, Huzhou, Zhejiang Province 313000, China
| | - Lixin Xue
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province 310014, China; Huzhou Research Institute, Zhejiang Center for Membrane Separation and Water Treatment, Huzhou, Zhejiang Province 313000, China.
| |
Collapse
|
100
|
Wang X, Sun K, Zhang G, Yang F, Lin S, Dong Y. Robust zirconia ceramic membrane with exceptional performance for purifying nano-emulsion oily wastewater. WATER RESEARCH 2022; 208:117859. [PMID: 34801820 DOI: 10.1016/j.watres.2021.117859] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/23/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
While membrane-based oil-water separation has been widely explored, using conventional membranes to treat oily wastewaters remains practically challenging especially when such wastewaters contain more stable nano-sized oil droplets and are of high oil content, and harsh chemical conditions. Herein, we report a novel protocol of efficiently separating both synthetic and real oil nano-emulsions via specially designed robust zirconia membranes. The best-performing zirconia membrane, fabricated at low sintering temperature, has relatively uniform sub-100 nm pores and is underwater superoleophobic. Such zirconia membranes possess not only outstanding separation performance under long-term operation but robust structural stability at harsh conditions. At different cross-flow velocities, a combined model of intermediate pore blocking and cake filtration dominated membrane fouling behavior. Specifically, at high pH value (especially > pH(IEP)), membrane fouling was effectively mitigated due to a dominant role of electrostatic repulsion interaction at membrane-oil interface. Compared with conventional and commercial ceramic membranes, our zirconia membrane is the first reported in literature that can effectively reject nano-sized oil droplets (∼18 nm) with over 99% rejection. Moreover, the zirconia membrane has also been challenged with real degreasing wastewater with very high oil content (∼4284 mg L-1) and pH (∼12.4) and delivered consistently high separation performance over many operation cycles.
Collapse
Affiliation(s)
- Xueling Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Kuo Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Guoquan Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China.
| |
Collapse
|