51
|
Griffith M, Poudel BK, Malhotra K, Akla N, González-Andrades M, Courtman D, Hu V, Alarcon EI. Biosynthetic alternatives for corneal transplant surgery. EXPERT REVIEW OF OPHTHALMOLOGY 2020. [DOI: 10.1080/17469899.2020.1754798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- May Griffith
- Department of Ophthalmology, University of Montreal and Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada
| | - Bijay Kumar Poudel
- Department of Ophthalmology, University of Montreal and Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada
| | - Kamal Malhotra
- Department of Ophthalmology, University of Montreal and Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada
| | - Naoufal Akla
- Department of Ophthalmology, University of Montreal and Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada
| | - Miguel González-Andrades
- Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - David Courtman
- Department of Medicine, University of Ottawa, and Scientist, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Victor Hu
- London School of Hygiene and Tropical Medicine, International Center for Eye Health, London, UK
| | - Emilio I. Alarcon
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
| |
Collapse
|
52
|
Liau LL, Al-Masawa ME, Koh B, Looi QH, Foo JB, Lee SH, Cheah FC, Law JX. The Potential of Mesenchymal Stromal Cell as Therapy in Neonatal Diseases. Front Pediatr 2020; 8:591693. [PMID: 33251167 PMCID: PMC7672022 DOI: 10.3389/fped.2020.591693] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) can be derived from various tissue sources, such as the bone marrow (BMSCs), adipose tissue (ADSCs), umbilical cord (UC-MSCs) and umbilical cord blood (UCB-MSCs). Clinical trials have been conducted to investigate the potential of MSCs in ameliorating neonatal diseases, including bronchopulmonary dysplasia (BPD), intraventricular hemorrhage (IVH) and necrotizing enterocolitis (NEC). In preclinical studies, MSC therapy has been tested for the treatment of various neonatal diseases affecting the heart, eye, gut, and brain as well as sepsis. Up to date, the number of clinical trials using MSCs to treat neonatal diseases is still limited. The data reported thus far positioned MSC therapy as safe with positive outcomes. However, most of these trials are still preliminary and generally smaller in scale. Larger trials with more appropriate controls and a longer follow-up period need to be conducted to prove the safety and efficacy of the therapy more conclusively. This review discusses the current application of MSCs in treating neonatal diseases, its mechanism of action and future direction of this novel therapy, including the potential of using MSC-derived extracellular vesicles instead of the cells to treat various clinical conditions in the newborn.
Collapse
Affiliation(s)
- Ling Ling Liau
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Benson Koh
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Qi Hao Looi
- Future Cytohealth Sdn Bhd, Bandar Seri Petaling, Kuala Lumpur, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Fook Choe Cheah
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
53
|
Zhou Y, Chen Y, Wang S, Qin F, Wang L. MSCs helped reduce scarring in the cornea after fungal infection when combined with anti-fungal treatment. BMC Ophthalmol 2019; 19:226. [PMID: 31727008 PMCID: PMC6857224 DOI: 10.1186/s12886-019-1235-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
Background Fungal Keratitis (FK) is an infective keratopathy with extremely high blindness rate. The damaging effect of this disease is not only the destruction of corneal tissue during fungal infection, but also the cornea scar formed during the healing period after infection control, which can also seriously affect a patient’s vision. The purpose of the study was to observe the effect of umbilical cord mesenchymal stem cells (uMSCs) on corneal scar formation in FK. Methods The FK mouse model was made according to a previously reported method. Natamycin eye drops were used for antifungal treatment 24 h after modeling. There are four groups involved in the study, including control group, FK group, vehicleinj FK group and uMSCsinj FK group. Mice in uMSCsinj FK group received repeated subconjunctival injections of uMSCs for 3 times at the 1d, 4d and 7d after FK modeling. At 14d, 21d and 28d after trauma, clinical observation, histological examination, second harmonic generation and molecular assays were performed. Results The uMSCs topical administration reduced corneal scar formation area and corneal opacity, accompanying with decreased corneal thickness and inflammatory cell infiltration, following down-regulated fibrotic-related factors α-SMA, TGFβ1, CTGF, and COLI and finally inhibited phosphorylation of TGFβ1/Smad2 signaling pathway during FK corneal fibrosis. Conclusion The results confirmed that uMSCs can improve corneal opacity during the scar formation stage of FK, and exert anti-inflammatory and anti-fibrotic effects.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Yuqing Chen
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Suiyue Wang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Fangyuan Qin
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Liya Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China.
| |
Collapse
|
54
|
Abstract
The corneal stroma comprises 90% of the corneal thickness and is critical for the cornea's transparency and refractive function necessary for vision. When the corneal stroma is altered by disease, injury, or scarring, however, an irreversible loss of transparency can occur. Corneal stromal pathology is the cause of millions of cases of blindness globally, and although corneal transplantation is the standard therapy, a severe global deficit of donor corneal tissue and eye banking infrastructure exists, and is unable to meet the overwhelming need. An alternative approach is to harness the endogenous regenerative ability of the corneal stroma, which exhibits self-renewal of the collagenous extracellular matrix under appropriate conditions. To mimic endogenous stromal regeneration, however, is a challenge. Unlike the corneal epithelium and endothelium, the corneal stroma is an exquisitely organized extracellular matrix containing stromal cells, proteoglycans and corneal nerves that is difficult to recapitulate in vitro. Nevertheless, much progress has recently been made in developing stromal equivalents, and in this review the most recent approaches to stromal regeneration therapy are described and discussed. Novel approaches for stromal regeneration include human or animal corneal and/or non-corneal tissue that is acellular or is decellularized and/or re-cellularized, acellular bioengineered stromal scaffolds, tissue adhesives, 3D bioprinting and stromal stem cell therapy. This review highlights the techniques and advances that have achieved first clinical use or are close to translation for eventual therapeutic application in repairing and regenerating the corneal stroma, while the potential of these novel therapies for achieving effective stromal regeneration is discussed.
Collapse
Affiliation(s)
- Neil Lagali
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Medicine, Linköping University, Linköping, Sweden.,Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| |
Collapse
|
55
|
Ophthalmological Findings in Mucopolysaccharidoses. J Clin Med 2019; 8:jcm8091467. [PMID: 31540112 PMCID: PMC6780167 DOI: 10.3390/jcm8091467] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/02/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022] Open
Abstract
The mucopolysaccharidoses (MPS) are a heterogenous group of lysosomal storage disorders caused by the accumulation of glycosaminoglycans (GAGs). The accrual of these compounds results in phenotypically varied syndromes that produce multi-organ impairment with widespread systemic effects. The low incidence of MPS (approximately 1/25,000 live births) in conjunction with the high childhood mortality rate had limited the availability of research into certain clinical features, especially ocular manifestations. As the recent successes of hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT) have greatly increased life expectancy in these patients, they have served as a focal point for the transition of research towards improvement of quality of life. Ophthalmological findings in MPS include corneal clouding, glaucoma, optic neuropathies, and retinopathies. While corneal clouding is the most common ocular feature of MPS (especially type I, IVA, and VI), its response to HSCT and ERT is minimal. This review discusses known eye issues in the MPS subtypes, diagnosis of these ocular diseases, current clinical and surgical management, noteworthy research progress, and ultimately presents a direction for future studies.
Collapse
|
56
|
Call M, Elzarka M, Kunesh M, Hura N, Birk DE, Kao WW. Therapeutic efficacy of mesenchymal stem cells for the treatment of congenital and acquired corneal opacity. Mol Vis 2019; 25:415-426. [PMID: 31523119 PMCID: PMC6707616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/05/2019] [Indexed: 10/24/2022] Open
Abstract
Purpose Maintenance of a transparent corneal stroma is imperative for proper vision. The corneal stroma is composed of primarily collagen fibrils, small leucine-rich proteoglycans (SLRPs), as well as sparsely distributed cells called keratocytes. The lattice arrangement and spacing of the collagen fibrils that allows for transparency may be disrupted due to genetic mutations and injuries. The purpose of this study is to examine the therapeutic efficacy of human umbilical cord mesenchymal stem/stromal cells (UMSCs) in treating congenital and acquired corneal opacity associated with the loss of collagen V. Methods Experimental mice, i.e., wild-type, Col5a1f/f and Kera-Cre/Col5a1f/f (Col5a1∆st/∆st , collagen V null in the corneal stroma) mice in a C57BL/6J genetic background, were subjected to a lamellar keratectomy, and treated with or without UMSC (104 cells/cornea) transplantation via an intrastromal injection or a fibrin plug. In vivo Heidelberg retinal tomograph (HRT II) confocal microscopy, second harmonic generated (SHG) confocal microscopy, histology, and immunofluorescence microscopy were used to assess the corneal transparency of the regenerated corneas. Results Col5a1∆st/∆st mice display a cloudy cornea phenotype that is ameliorated following intrastromal transplantation of UMSCs. Loss of collagen V in Col5a1∆st/∆st corneas augments the formation of cornea scarring following the keratectomy. UMSC transplantation with a fibrin plug improves the healing of injured corneas and regeneration of transparent corneas, as determined with in vivo HRT II confocal microscopy. Second harmonic confocal microscopy revealed the improved collagen fibril lamellar architecture in the UMSC-transplanted cornea in comparison to the control keratectomized corneas. Conclusions UMSC transplantation was successful in recovering some corneal transparency in injured corneas of wild-type, Col5a1f/f and Col5a1∆st/∆st mice. The production of collagen V by transplanted UMSCs may account for the regeneration of corneal transparency, as exemplified by better collagen fiber organization, as revealed with SHG signals.
Collapse
Affiliation(s)
- Mindy Call
- Department of Ophthalmology, University of Cincinnati, OH
| | | | - Mary Kunesh
- Department of Ophthalmology, University of Cincinnati, OH
| | - Nanki Hura
- Department of Ophthalmology, University of Cincinnati, OH
| | - David E. Birk
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, FL
| | - Winston W. Kao
- Department of Ophthalmology, University of Cincinnati, OH
| |
Collapse
|
57
|
Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes in the Treatment of Eye Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1089:47-57. [PMID: 29774506 DOI: 10.1007/5584_2018_219] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) were, due to their immunomodulatory and pro-angiogenic characteristics, extensively explored as new therapeutic agents in cell-based therapy of uveitis, glaucoma, retinal and ocular surface diseases.Since it was recently revealed that exosomes play an important role in biological functions of MSCs, herewith we summarized current knowledge about the morphology, structure, phenotype and functional characteristics of MSC-derived exosomes emphasizing their therapeutic potential in the treatment of eye diseases.MSC-derived exosomes were as efficient as transplanted MSCs in limiting the extent of eye injury and inflammation. Immediately after intravitreal injection, MSC-derived exosomes, due to nano-dimension, diffused rapidly throughout the retina and significantly attenuated retinal damage and inflammation. MSC-derived exosomes successfully delivered trophic and immunomodulatory factors to the inner retina and efficiently promoted survival and neuritogenesis of injured retinal ganglion cells. MSC-derived exosomes efficiently suppressed migration of inflammatory cells, attenuated detrimental Th1 and Th17 cell-driven immune response and ameliorated experimental autoimmune uveitis. MSC-derived exosomes were able to fuse with the lysosomes within corneal cells, enabling delivering of MSC-derived active β-glucuronidase and consequent catabolism of accumulated glycosaminoglycans, indicating their therapeutic potential in the treatment of Mucopolysaccharidosis VII (Sly Syndrome). Importantly, beneficent effects were noticed only in animals that received MSC-derived exosomes and were not seen after therapy with fibroblasts-derived exosomes confirming specific therapeutic potential of MSCs and their products in the treatment of eye diseases.In conclusion, MSC-derived exosomes represent potentially new therapeutic agents in the therapy of degenerative and inflammatory ocular diseases.
Collapse
|
58
|
Tancini B, Buratta S, Sagini K, Costanzi E, Delo F, Urbanelli L, Emiliani C. Insight into the Role of Extracellular Vesicles in Lysosomal Storage Disorders. Genes (Basel) 2019; 10:genes10070510. [PMID: 31284546 PMCID: PMC6679199 DOI: 10.3390/genes10070510] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) have received increasing attention over the last two decades. Initially, they were considered as just a garbage disposal tool; however, it has progressively become clear that their protein, nucleic acid (namely miRNA and mRNA), and lipid contents have signaling functions. Besides, it has been established that cells release different types of vesicular structures for which characterization is still in its infancy. Many stress conditions, such as hypoxia, senescence, and oncogene activation have been associated with the release of higher levels of EVs. Further, evidence has shown that autophagic–lysosomal pathway abnormalities also affect EV release. In fact, in neurodegenerative diseases characterized by the accumulation of toxic proteins, although it has not become clear to what extent the intracellular storage of undigested materials itself has beneficial/adverse effects, these proteins have also been shown to be released extracellularly via EVs. Lysosomal storage disorders (LSDs) are characterized by accumulation of undigested substrates within the endosomal–lysosomal system, due either to genetic mutations in lysosomal proteins or to treatment with pharmacological agents. Here, we review studies investigating the role of lysosomal and autophagic dysfunction on the release of EVs, with a focus on studies exploring the release of EVs in LSD models of both genetic and pharmacological origin. A better knowledge of EV-releasing pathways activated in lysosomal stress conditions will provide information on the role of EVs in both alleviating intracellular storage of undigested materials and spreading the pathology to the neighboring tissue.
Collapse
Affiliation(s)
- Brunella Tancini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Krizia Sagini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Eva Costanzi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Federica Delo
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| |
Collapse
|
59
|
Alió JL, Alió Del Barrio JL, El Zarif M, Azaar A, Makdissy N, Khalil C, Harb W, El Achkar I, Jawad ZA, De Miguel MP. Regenerative Surgery of the Corneal Stroma for Advanced Keratoconus: 1-Year Outcomes. Am J Ophthalmol 2019; 203:53-68. [PMID: 30772348 DOI: 10.1016/j.ajo.2019.02.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE This study evaluated 1-year safety and efficacy outcomes of corneal stroma cell therapy. Therapy consisted of implanting autologous adipose-derived adult stem cells (ADASc) with or without sheets of decellularized donor human corneal stroma within the stroma of patients with advanced keratoconus. DESIGN This was a prospective interventional non-randomized series of cases. METHODS Fourteen consecutive patients were selected and divided into 3 experimental groups. Group A patients underwent implantation of autologous ADASc alone (3 × 106 cells/1 mL) (n = 5). Group B patients received decellularized donor 120-μm-thick corneal stroma lamina alone (n = 5). Group C patients had implantation of recellularized donor lamina with 1 × 106 autologous ADASc plus another 1 × 106 cells/1 mL at the time of the surgery (n = 4). Autologous ADASc were obtained by elective liposuction. Implantation was performed in the corneal stroma through a femtosecond-assisted 9.5-mm diameter lamellar dissection with the patient under topical anesthesia. Twelve months of follow-up data are presented. RESULTS No complications were observed during the 1-year follow-up, and full corneal transparency was recovered within 3 months in all patients. No patient lost lines of visual acuity. Corrected distance visual acuity improved 0.231, 0.264, and 0.094 Snellen lines in groups 1, 2, and 3, respectively. In group 1, refractive parameters showed an overall stability, whereas in groups 2 and 3, sphere improved 2.35 diopter (D) and 0.625 D, respectively. Anterior keratometry remained stable (group 1) and improved in groups 2 and 3 (mean improvement of 2D). Corneal aberrometry improved significantly. In optical coherence tomography scans, corneal thickness showed a mean improvement of 14.5 μm (group 1) and 116.4 μm (groups 2 and 3) in the central thickness, and new collagen production was observed at the surgical plane (group 1). Confocal biomicroscopy confirmed the host recellularization of the implanted laminas. CONCLUSIONS Intrastromal implantation of autologous ADASc and decellularized human corneal stroma did not show complications at 1 year of follow-up and were moderately effective for the treatment of advanced keratoconus. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
|
60
|
Current Trends and Future Perspective of Mesenchymal Stem Cells and Exosomes in Corneal Diseases. Int J Mol Sci 2019; 20:ijms20122853. [PMID: 31212734 PMCID: PMC6627168 DOI: 10.3390/ijms20122853] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/01/2019] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
The corneal functions (transparency, refractivity and mechanical strength) deteriorate in many corneal diseases but can be restored after corneal transplantation (penetrating and lamellar keratoplasties). However, the global shortage of transplantable donor corneas remains significant and patients are subject to life-long risk of immune response and graft rejection. Various studies have shown the differentiation of multipotent mesenchymal stem cells (MSCs) into various corneal cell types. With the unique properties of immunomodulation, anti-angiogenesis and anti-inflammation, they offer the advantages in corneal reconstruction. These effects are widely mediated by MSC differentiation and paracrine signaling via exosomes. Besides the cell-free nature of exosomes in circumventing the problems of cell-fate control and tumorigenesis, the vesicle content can be genetically modified for optimal therapeutic affinity. The pharmacology and toxicology, xeno-free processing with sustained delivery, scale-up production in compliant to Good Manufacturing Practice regulations, and cost-effectiveness are the current foci of research. Routes of administration via injection, topical and/or engineered bioscaffolds are also explored for its applicability in treating corneal diseases.
Collapse
|
61
|
Hascall VC. The journey of hyaluronan research in the Journal of Biological Chemistry. J Biol Chem 2019; 294:1690-1696. [PMID: 30710015 DOI: 10.1074/jbc.tm118.005836] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyaluronan has a very simple structure. It is a linear glycosaminoglycan composed of disaccharide units of GlcNAc and d-glucuronic acid with alternating β-1,4 and β-1,3 glycosidic bonds that can be repeated 20,000 or more times, a molecular mass >8 million Da, and a length >20 μm. However, it has a very complex biology. It is a major, ubiquitous component of extracellular matrices involved in everything from fertilization, development, inflammations, to cancer. This JBC Review highlights some of these processes that were initiated through publications in the Journal of Biological Chemistry.
Collapse
Affiliation(s)
- Vincent C Hascall
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195.
| |
Collapse
|
62
|
Harrell CR, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Molecular Mechanisms Responsible for Therapeutic Potential of Mesenchymal Stem Cell-Derived Secretome. Cells 2019; 8:cells8050467. [PMID: 31100966 PMCID: PMC6562906 DOI: 10.3390/cells8050467] [Citation(s) in RCA: 282] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cell (MSC)-sourced secretome, defined as the set of MSC-derived bioactive factors (soluble proteins, nucleic acids, lipids and extracellular vesicles), showed therapeutic effects similar to those observed after transplantation of MSCs. MSC-derived secretome may bypass many side effects of MSC-based therapy, including unwanted differentiation of engrafted MSCs. In contrast to MSCs which had to be expanded in culture to reach optimal cell number for transplantation, MSC-sourced secretome is immediately available for treatment of acute conditions, including fulminant hepatitis, cerebral ischemia and myocardial infarction. Additionally, MSC-derived secretome could be massively produced from commercially available cell lines avoiding invasive cell collection procedure. In this review article we emphasized molecular and cellular mechanisms that were responsible for beneficial effects of MSC-derived secretomes in the treatment of degenerative and inflammatory diseases of hepatobiliary, respiratory, musculoskeletal, gastrointestinal, cardiovascular and nervous system. Results obtained in a large number of studies suggested that administration of MSC-derived secretomes represents a new, cell-free therapeutic approach for attenuation of inflammatory and degenerative diseases. Therapeutic effects of MSC-sourced secretomes relied on their capacity to deliver genetic material, growth and immunomodulatory factors to the target cells enabling activation of anti-apoptotic and pro-survival pathways that resulted in tissue repair and regeneration.
Collapse
Affiliation(s)
| | | | - Nemanja Jovicic
- Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia.
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland.
| | - Nebojsa Arsenijevic
- Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia.
| | - Vladislav Volarevic
- Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia.
| |
Collapse
|
63
|
Al-Jaibaji O, Swioklo S, Connon CJ. Mesenchymal stromal cells for ocular surface repair. Expert Opin Biol Ther 2019; 19:643-653. [PMID: 30979344 DOI: 10.1080/14712598.2019.1607836] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Cornea is a transparent, robust tissue that comprises highly organized cells. Disruption of this specialized tissue can lead to scarring and subsequent blindness, making corneal damage a considerable challenge worldwide. At present, the available medical treatments are unable to address the wide range of corneal diseases. Mesenchymal stem cells (MSCs) have increasingly been investigated for their regenerative effect on ocular surface injury due to their unique ability for growth factor production, anti-inflammatory activity, immunomodulatory capacity and differentiation into multiple cell lineages. AREAS COVERED Within this review, we explore the pathogenesis of corneal disorders in response to injury and disease, and the potential for MSCs to modulate this process as a treatment. Through the review of over 25 animal studies, we investigate the common mechanisms of action by which MSCs have their effect and discuss their potential for treating and/or preventing corneal deterioration EXPERT OPINION Depending on the environmental cues, MSCs can exert a potent effect on corneal wound healing through reducing opacity and vascularization, whilst promoting re-epithelialization. Whilst their mechanism is multifactorial, it seems clear that the anti-inflammatory/immunomodulatory factors they produce in response to damage are key to their control of cellular milieu and improving healing outcomes.
Collapse
Affiliation(s)
- Olla Al-Jaibaji
- a Institute of Genetic Medicine , Newcastle University, International Centre for Life , Newcastle upon Tyne , UK
| | - Stephen Swioklo
- a Institute of Genetic Medicine , Newcastle University, International Centre for Life , Newcastle upon Tyne , UK
| | - Che J Connon
- a Institute of Genetic Medicine , Newcastle University, International Centre for Life , Newcastle upon Tyne , UK
| |
Collapse
|
64
|
Menko AS, Walker JL, Stepp MA. Fibrosis: Shared Lessons From the Lens and Cornea. Anat Rec (Hoboken) 2019; 303:1689-1702. [PMID: 30768772 PMCID: PMC6697240 DOI: 10.1002/ar.24088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/23/2018] [Accepted: 09/04/2018] [Indexed: 12/13/2022]
Abstract
Regenerative repair in response to wounding involves cell proliferation and migration. This is followed by the reestablishment of cell structure and organization and a dynamic process of remodeling and restoration of the injured cells' extracellular matrix microenvironment and the integration of the newly synthesized matrix into the surrounding tissue. Fibrosis in the lungs, liver, and heart can lead to loss of life and in the eye to loss of vision. Learning to control fibrosis and restore normal tissue function after injury repair remains a goal of research in this area. Here we use knowledge gained using the lens and the cornea to provide insight into how fibrosis develops and clues to how it can be controlled. The lens and cornea are less complex than other tissues that develop life‐threatening fibrosis, but they are well characterized and research using them as model systems to study fibrosis is leading toward an improved understanding of fibrosis. Here we summarize the current state of the literature and how it is leading to promising new treatments. Anat Rec, 2019. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- A Sue Menko
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Janice L Walker
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, George Washington University, Washington, District of Columbia
| |
Collapse
|
65
|
Alió del Barrio JL, Alió JL. Cellular therapy of the corneal stroma: a new type of corneal surgery for keratoconus and corneal dystrophies. EYE AND VISION (LONDON, ENGLAND) 2018; 5:28. [PMID: 30410944 PMCID: PMC6211455 DOI: 10.1186/s40662-018-0122-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022]
Abstract
Cellular therapy of the corneal stroma, with either ocular or extraocular stem cells, has been gaining a lot of interest over the last decade. Multiple publications from different research groups are showing its potential benefits in relation to its capacity to improve or alleviate corneal scars, improve corneal transparency in metabolic diseases by enhancing the catabolism of the accumulated molecules, generate new organized collagen within the host stroma, and its immunosuppressive and immunomodulatory properties. Autologous extraocular stem cells do not require a healthy contralateral eye and they do not involve any ophthalmic procedures for their isolation. Mesenchymal stem cells have been the most widely assayed and have the best potential to differentiate into functional adult keratocytes in vivo and in vitro. While embryonic stem cells have been partially abandoned due to ethical implications, the discovery of the induced pluripotent stem cells (iPSC) has opened a new and very promising field for future research as they are pluripotent cells with the capacity to theoretically differentiate into any cell type, with the special advantage that they are obtained from adult differentiated cells. Cellular delivery into the corneal stroma has been experimentally assayed in vivo in multiple ways: systemic versus local injections with or without a carrier. Encouraging preliminary human clinical data is already available although still very limited, and further research is necessary in order to consolidate the clinical applications of this novel therapeutic line.
Collapse
Affiliation(s)
- Jorge L. Alió del Barrio
- Cornea, Cataract and Refractive Surgery Unit, Vissum Corporación, Alicante, Spain
- Division of Ophthalmology, Universidad Miguel Hernández, Alicante, Spain
- Vissum, Instituto Oftalmologico de Alicante, Avda de Denia s/n, 03016 Alicante, Spain
| | - Jorge L. Alió
- Cornea, Cataract and Refractive Surgery Unit, Vissum Corporación, Alicante, Spain
- Division of Ophthalmology, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
66
|
Navas A, Magaña-Guerrero FS, Domínguez-López A, Chávez-García C, Partido G, Graue-Hernández EO, Sánchez-García FJ, Garfias Y. Anti-Inflammatory and Anti-Fibrotic Effects of Human Amniotic Membrane Mesenchymal Stem Cells and Their Potential in Corneal Repair. Stem Cells Transl Med 2018; 7:906-917. [PMID: 30260581 PMCID: PMC6265633 DOI: 10.1002/sctm.18-0042] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/28/2018] [Indexed: 12/13/2022] Open
Abstract
Acute ocular chemical burns are ophthalmic emergencies requiring immediate diagnosis and treatment as they may lead to permanent impairment of vision. The clinical manifestations of such burns are produced by exacerbated innate immune response via the infiltration of inflammatory cells and activation of stromal fibroblasts. New therapies are emerging that are dedicated to repair mechanisms that improve the ocular surface after damage; for example, transplantation of stem cells (SC) has been successfully reported for this purpose. The pursuit of easily accessible, noninvasive procedures to obtain SC has led researchers to focus on human tissues such as amniotic membrane. Human amniotic mesenchymal SC (hAM-MSC) inhibits proinflammatory and fibrotic processes in different diseases. hAM-MSC expresses low levels of classical MHC-I and they do not express MHC-II, making them suitable for regenerative medicine. The aim of this study was to evaluate the effect of intracameral injection of hAM-MSC on the clinical manifestations, the infiltration of inflammatory cells, and the activation of stromal fibroblasts in a corneal alkali-burn model. We also determined the in vitro effect of hAM-MSC conditioned medium (CM) on α-SMA+ human limbal myofibroblast (HLM) frequency and on release of neutrophil extracellular traps (NETs). Our results show that intracameral hAM-MSC injection reduces neovascularization, opacity, stromal inflammatory cell infiltrate, and stromal α-SMA+ cells in our model. Moreover, in in vitro assays, CM from hAM-MSC decreased the quantity of α-SMA+ HLM and the release of NETs. These results suggest that intracameral hAM-MSC injection induces an anti-inflammatory and anti-fibrotic environment that promotes corneal wound healing. Stem Cells Translational Medicine 2018;7:906-917.
Collapse
Affiliation(s)
- Alejandro Navas
- Research Unit, Cell and Tissue Biology, Institute of Ophthalmology Conde de Valenciana, Mexico City, Mexico.,Department of Cornea and Refractive Surgery, Institute of Ophthalmology Conde de Valenciana, Mexico City, Mexico
| | - Fátima Sofía Magaña-Guerrero
- Research Unit, Cell and Tissue Biology, Institute of Ophthalmology Conde de Valenciana, Mexico City, Mexico.,Faculty of Medicine, Department of Biochemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Domínguez-López
- Research Unit, Cell and Tissue Biology, Institute of Ophthalmology Conde de Valenciana, Mexico City, Mexico.,Faculty of Medicine, Department of Biochemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - César Chávez-García
- Research Unit, Cell and Tissue Biology, Institute of Ophthalmology Conde de Valenciana, Mexico City, Mexico
| | - Graciela Partido
- Research Unit, Cell and Tissue Biology, Institute of Ophthalmology Conde de Valenciana, Mexico City, Mexico
| | - Enrique O Graue-Hernández
- Department of Cornea and Refractive Surgery, Institute of Ophthalmology Conde de Valenciana, Mexico City, Mexico
| | - Francisco Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Col Santo Tomás, Mexico
| | - Yonathan Garfias
- Research Unit, Cell and Tissue Biology, Institute of Ophthalmology Conde de Valenciana, Mexico City, Mexico.,Faculty of Medicine, Department of Biochemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
67
|
Yamashita K, Inagaki E, Hatou S, Higa K, Ogawa A, Miyashita H, Tsubota K, Shimmura S. Corneal Endothelial Regeneration Using Mesenchymal Stem Cells Derived from Human Umbilical Cord. Stem Cells Dev 2018; 27:1097-1108. [PMID: 29929442 DOI: 10.1089/scd.2017.0297] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Corneal blindness is the third leading cause of blindness in the world, and one of the main etiologies is dysfunction of the corneal endothelium. Current treatment of corneal endothelial disease is allogenic corneal transplantation, which is limited by the global shortage of donor corneas and immunological rejection. The corneal endothelium consists of a monolayer of cells derived from the neural crest and mesoderm. Its main function is to prevent corneal edema by tight junctions formed by zonular occludens-1 (ZO-1) and Na, K-ATPase pump function. The human umbilical cord (UC) is a rich source of mesenchymal stem cells (MSCs). UC-MSCs that have multi-lineage potential may be an accessible allogenic source. After inducing differentiation with medium containing glycogen synthase kinase (GSK) 3-β inhibitor, UC-MSCs formed polygonal corneal endothelial-like cells that functioned as tissue-engineered corneal endothelium (UTECE). Expressions of major corneal endothelial markers were confirmed by reverse transcription-polymerase chain reaction (RT-PCR) and quantitative RT-PCR (qRT-PCR). Western blotting confirmed the expression of Na,K-ATPase and PITX2, the functional and developmental markers of corneal endothelial cells. Immunohistochemistry revealed the localization of Na,K-ATPase and ZO-1 in cell-cell junctions, suggesting the presence of tight junctions. In vitro functional analysis revealed that UTECE had significantly high pump function compared with UC-MSCs. Moreover, UTECE transplanted into a rabbit model of bullous keratopathy successfully maintained corneal thickness and transparency. Our findings suggest that UTECE may be used as a source of allogenic cells for the treatment of corneal endothelial disease.
Collapse
Affiliation(s)
- Kazuya Yamashita
- 1 Department of Ophthalmology, Keio University School of Medicine , Tokyo, Japan
| | - Emi Inagaki
- 1 Department of Ophthalmology, Keio University School of Medicine , Tokyo, Japan
| | - Shin Hatou
- 1 Department of Ophthalmology, Keio University School of Medicine , Tokyo, Japan
| | - Kazunari Higa
- 2 Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital , Ichikawa, Japan
| | - Akiko Ogawa
- 1 Department of Ophthalmology, Keio University School of Medicine , Tokyo, Japan
| | - Hideyuki Miyashita
- 1 Department of Ophthalmology, Keio University School of Medicine , Tokyo, Japan
| | - Kazuo Tsubota
- 1 Department of Ophthalmology, Keio University School of Medicine , Tokyo, Japan
| | - Shigeto Shimmura
- 1 Department of Ophthalmology, Keio University School of Medicine , Tokyo, Japan
| |
Collapse
|
68
|
Alió Del Barrio JL, El Zarif M, de Miguel MP, Azaar A, Makdissy N, Harb W, El Achkar I, Arnalich-Montiel F, Alió JL. Cellular Therapy With Human Autologous Adipose-Derived Adult Stem Cells for Advanced Keratoconus. Cornea 2018; 36:952-960. [PMID: 28486314 DOI: 10.1097/ico.0000000000001228] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE The aim of this phase 1 study was to preliminarily evaluate the safety and efficacy of autologous adipose-derived adult stem cell (ADASC) implantation within the corneal stroma of patients with advanced keratoconus. METHODS Five consecutive patients were selected. Autologous ADASCs were obtained by elective liposuction. ADASCs (3 × 10) contained in 1 mL saline were injected into the corneal stroma through a femtosecond-assisted 9.5-mm diameter lamellar pocket under topical anesthesia. Patients were reviewed at 1 day, 1 week, 1, 3, and 6 months postoperatively. Visual function, manifest refraction, slit-lamp biomicroscopy, intraocular pressure, endothelial cell density, corneal topography, corneal optical coherence tomography, and corneal confocal biomicroscopy were recorded. RESULTS No intraoperative or postoperative complications were recorded, with full corneal transparency recovery within 24 hours. Four patients completed the full follow-up. All patients improved their visual function (mean: 1 line of unaided and spectacle-corrected distance vision and 2 lines of rigid contact lens distance vision). Manifest refraction and topographic keratometry remained stable. Corneal optical coherence tomography showed a mean improvement of 16.5 μm in the central corneal thickness, and new collagen production was observed as patchy hyperreflective areas at the level of the stromal pocket. Confocal biomicroscopy confirmed the survival of the implanted stem cells at the surgical plane. Intraocular pressure and endothelial cell density remained stable. CONCLUSIONS Cellular therapy of the human corneal stroma in vivo with autologous ADASCs appears to be safe. Stem cells survive in vivo with intrastromal new collagen production. Future studies with larger samples are required to confirm these preliminary results.
Collapse
Affiliation(s)
- Jorge L Alió Del Barrio
- *Cornea, Cataract and Refractive Surgery Unit, Vissum Corporación, Alicante, Spain; †Division of Ophthalmology, Universidad Miguel Hernández, Alicante, Spain; ‡Optica General, Saida, Lebanon; §Cell Engineering Laboratory, IdiPAZ, La Paz Hospital Research Institute, Madrid, Spain; ¶Reviva Regenerative Medicine Center, Beirut, Lebanon; ‖Saint-Joseph University, Beirut, Lebanon; **IRYCIS, Ophthalmology Department, Ramón y Cajal University Hospital, Madrid, Spain; and ††Cornea Unit, Hospital Vissum Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Rose JS, Eldrina J, Joshua A, Amalan S, Sebastian T, Solomon S, Korah S. Objective quantification of corneal haziness using anterior segment optical coherence tomography. J Curr Ophthalmol 2018; 30:54-57. [PMID: 29564409 PMCID: PMC5859339 DOI: 10.1016/j.joco.2017.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/27/2017] [Accepted: 08/01/2017] [Indexed: 11/29/2022] Open
Abstract
Purpose To quantify normal corneal transparency by anterior segment optical coherence tomography (AS-OCT) by measuring the average pixel intensity. To analyze the variation in the average pixel intensity in mild and severe grades of corneal opacities. Methods This is an observational, cross-sectional study of 38 eyes from 19 patients with mild or severe grades of corneal opacities greater than 3 mm and a normal contralateral cornea. AS-OCT was performed centered on the opacity with a 3 mm cruciate protocol. A similar image is taken of the contralateral clear cornea in the same quadrant. The average pixel intensity was calculated in a standardized manner using MATLAB software. Result The average pixel intensity of the normal cornea was 99.6 ± 10.9 [standard deviation (SD)]. The average pixel intensity of the mild and severe corneal opacities was 115.5 ± 9.1 and 141.1 ± 10.3, respectively. The differences were statistically significant. Conclusions AS-OCT images can be used to quantify corneal transparency. Average pixel intensity is a measure that varies significantly with varying corneal opacification.
Collapse
Affiliation(s)
| | - Juliet Eldrina
- Department of Ophthalmology, Christian Medical College, Vellore, India
| | - Aarwin Joshua
- Center for Stem Cell Research, Christian Medical College, Vellore, India
| | - S Amalan
- Department of Bioengineering, Christian Medical College, Vellore, India
| | - Tunny Sebastian
- Department of Biostatistics, Christian Medical College, Vellore, India
| | - Satheesh Solomon
- Department of Ophthalmology, Christian Medical College, Vellore, India
| | - Sanita Korah
- Department of Ophthalmology, Christian Medical College, Vellore, India
| |
Collapse
|
70
|
Alió Del Barrio JL, El Zarif M, Azaar A, Makdissy N, Khalil C, Harb W, El Achkar I, Jawad ZA, de Miguel MP, Alió JL. Corneal Stroma Enhancement With Decellularized Stromal Laminas With or Without Stem Cell Recellularization for Advanced Keratoconus. Am J Ophthalmol 2018; 186:47-58. [PMID: 29103962 DOI: 10.1016/j.ajo.2017.10.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE This phase 1 study seeks to preliminarily evaluate the safety and efficacy of decellularized human corneal stromal lamina transplantation with or without autologous adipose-derived adult stem cell recellularization within the corneal stroma of patients with advanced keratoconus. DESIGN Phase 1 clinical trial. METHODS Femtosecond-assisted 120-μm thickness and 9-mm diameter laminas were obtained from the anterior stroma of human donor corneas and decellularized with a sodium dodecyl sulfate solution. Autologous adipose-derived adult stem cells were obtained by elective liposuction and cultured onto both sides of the lamina. Five patients received the decellularized lamina alone and 4 patients the recellularized lamina into a femtosecond-assisted 9.5-mm diameter lamellar pocket under topical anesthesia. The total duration of follow-up was 6 months. RESULTS No case showed clinical haze or scarring by month 3. Six months after surgery, patients showed a general improvement of all visual parameters, with a mean unaided visual acuity from 0.109 to 0.232 (P = .05) and corrected distance visual acuity from 0.22 to 0.356 (P = .068). Refractive sphere improved in all patients (from -4.55 diopters [D] to -2.69 D; P = .017), but refractive cylinder remained stable (from -2.83 to -2.61; P = .34). An improvement tendency of all anterior keratometric values was observed. A mean improvement of 120 μm in all thickness parameters was confirmed (P = .008), as well as an improvement in the spherical aberration (P = .018), coma (P = .23) and total higher order aberrations (P = .31). No significant differences among groups were detected. CONCLUSIONS Decellularized human corneal stromal laminas transplantation seems safe and moderately effective for advanced keratoconus. Potential benefits of its recellularization with autologous adipose-derived adult stem cells remains unclear.
Collapse
Affiliation(s)
- Jorge L Alió Del Barrio
- Cornea, Cataract and Refractive Surgery Unit, Vissum Corporación, Alicante, Spain; Division of Ophthalmology, Universidad Miguel Hernández, Alicante, Spain
| | | | - Albert Azaar
- Reviva Regenerative Medicine Center, Middle East Hospital, Beirut, Lebanon
| | - Nehman Makdissy
- Reviva Regenerative Medicine Center, Middle East Hospital, Beirut, Lebanon; Lebanese University, Beirut, Lebanon
| | - Charbel Khalil
- Reviva Regenerative Medicine Center, Middle East Hospital, Beirut, Lebanon
| | - Walid Harb
- Reviva Regenerative Medicine Center, Middle East Hospital, Beirut, Lebanon
| | | | | | - María P de Miguel
- Cell Engineering Laboratory, IdiPAZ, La Paz Hospital Research Institute, Madrid, Spain
| | - Jorge L Alió
- Cornea, Cataract and Refractive Surgery Unit, Vissum Corporación, Alicante, Spain; Division of Ophthalmology, Universidad Miguel Hernández, Alicante, Spain.
| |
Collapse
|
71
|
Umbilical cord stem cells in the treatment of corneal disease. Surv Ophthalmol 2017; 62:803-815. [DOI: 10.1016/j.survophthal.2017.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/13/2017] [Indexed: 12/13/2022]
|
72
|
Gesteira TF, Sun M, Coulson-Thomas YM, Yamaguchi Y, Yeh LK, Hascall V, Coulson-Thomas VJ. Hyaluronan Rich Microenvironment in the Limbal Stem Cell Niche Regulates Limbal Stem Cell Differentiation. Invest Ophthalmol Vis Sci 2017; 58:4407-4421. [PMID: 28863216 PMCID: PMC5584473 DOI: 10.1167/iovs.17-22326] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023] Open
Abstract
Purpose Limbal epithelial stem cells (LSCs), located in the basal layer of the corneal epithelium in the corneal limbus, are vital for maintaining the corneal epithelium. LSCs have a high capacity of self-renewal with increased potential for error-free proliferation and poor differentiation. To date, limited research has focused on unveiling the composition of the limbal stem cell niche, and, more important, on the role the specific stem cell niche may have in LSC differentiation and function. Our work investigates the composition of the extracellular matrix in the LSC niche and how it regulates LSC differentiation and function. Methods Hyaluronan (HA) is naturally synthesized by hyaluronan synthases (HASs), and vertebrates have the following three types: HAS1, HAS2, and HAS3. Wild-type and HAS and TSG-6 knockout mice-HAS1-/-;HAS3-/-, HAS2Δ/ΔCorEpi, TSG-6-/--were used to determine the importance of the HA niche in LSC differentiation and specification. Results Our data demonstrate that the LSC niche is composed of a HA rich extracellular matrix. HAS1-/-;HAS3-/-, HAS2Δ/ΔCorEpi, and TSG-6-/- mice have delayed wound healing and increased inflammation after injury. Interestingly, upon insult the HAS knock-out mice up-regulate HA throughout the cornea through a compensatory mechanism, and in turn this alters LSC and epithelial cell specification. Conclusions The LSC niche is composed of a specialized HA matrix that differs from that present in the rest of the corneal epithelium, and the disruption of this specific HA matrix within the LSC niche leads to compromised corneal epithelial regeneration. Finally, our findings suggest that HA has a major role in maintaining the LSC phenotype.
Collapse
MESH Headings
- Animals
- Burns, Chemical/metabolism
- Cell Differentiation/physiology
- Cellular Microenvironment/physiology
- Disease Models, Animal
- Epithelium, Corneal/metabolism
- Eye Burns/chemically induced
- Glucuronosyltransferase/metabolism
- Hyaluronan Synthases
- Hyaluronic Acid/genetics
- Hyaluronic Acid/metabolism
- Immunohistochemistry
- Limbus Corneae/cytology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Sodium Hydroxide
- Stem Cell Niche/physiology
- Stem Cells/metabolism
- Wound Healing/physiology
Collapse
Affiliation(s)
| | - Mingxia Sun
- College of Optometry, University of Houston, Houston, Texas, United States
| | | | - Yu Yamaguchi
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States
| | - Lung-Kun Yeh
- Department of Ophthalmology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Linko, Taiwan
| | | | | |
Collapse
|
73
|
Zhang Q, Yuan XF, Lu Y, Li ZZ, Bao SQ, Zhang XL, Yang YY, Fan DM, Zhang YZ, Wu CX, Guo HX, Zhang YJ, Ye Z, Xiong DS. Surface expression of anti-CD3scfv stimulates locoregional immunotherapy against hepatocellular carcinoma depending on the E1A-engineered human umbilical cord mesenchymal stem cells. Int J Cancer 2017. [PMID: 28643325 DOI: 10.1002/ijc.30846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tumor antigens is at the core of cancer immunotherapy, however, the ideal antigen selection is difficult especially in poorly immunogenic tumors. In this study, we designed a strategy to modify hepatocellular carcinoma (HCC) cells by surface expressing anti-CD3scfv within the tumor site strictly, which depended on the E1A-engineered human umbilical cord mesenchymal stem cells (HUMSC.E1A) delivery system. Subsequently, membrane-bound anti-CD3scfv actived the lymphocytes which lysed HCC cells bypassing the expression of antigens or MHC restriction. First, we constructed the anti-CD3scfv gene driven by human α-fetoprotein (AFP) promoter into an adenoviral vector and the E1A gene into the lentiviral vector. Our results showed that anti-CD3scfv could specifically express on the surface of HCC cells and activate the lymphocytes to kill target cells effectively in vitro. HUMSC infected by AdCD3scfv followed by LentiR.E1A could support the adenoviral replication and packaging in vitro 36 h after LentiR.E1A infection. Using a subcutaneous HepG2 xenograft model, we confirmed that AdCD3scfv and LentiR.E1A co-transfected HUMSC could migrate selectively to the tumor site and produce considerable adenoviruses. The new generated AdCD3scfv infected and modified tumor cells successfully. Mice injected with the MSC.E1A.AdCD3scfv and lymphocytes significantly inhibited the tumor growth compared with control groups. Furthermore, 5-fluorouracil (5-FU) could sensitize adenovirus infection at low MOI resulting in improved lymphocytes cytotoxicity in vitro and in vivo. In summary, this study provides a promising strategy for solid tumor immunotherapy.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiang-Fei Yuan
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.,Institute of Integrative Medicine for Acute Abdominal Diseases, Nankai Hospital, Tianjin, 300100, China
| | - Yang Lu
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Zhen-Zhen Li
- National-Local Joint Engineering Research Center of Biodiagnostics & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shi-Qi Bao
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiao-Long Zhang
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yuan-Yuan Yang
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Dong-Mei Fan
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yi-Zhi Zhang
- Central Hospital of Karamay, Karamay, Xinjiang, 834000, China
| | - Chen-Xuan Wu
- the Third Central Hospital of Tianjin Medical University, Tianjin, 300170, China
| | - Hong-Xing Guo
- the Third Central Hospital of Tianjin Medical University, Tianjin, 300170, China
| | - Yan-Jun Zhang
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Zhou Ye
- Central Hospital of Karamay, Karamay, Xinjiang, 834000, China
| | - Dong-Sheng Xiong
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| |
Collapse
|
74
|
Rodriguez NS, Yanuaria L, Parducho KMR, Garcia IM, Varghese BA, Grubbs BH, Miki T. Liver-Directed Human Amniotic Epithelial Cell Transplantation Improves Systemic Disease Phenotype in Hurler Syndrome Mouse Model. Stem Cells Transl Med 2017; 6:1583-1594. [PMID: 28585336 PMCID: PMC5689764 DOI: 10.1002/sctm.16-0449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/13/2017] [Accepted: 04/04/2017] [Indexed: 12/18/2022] Open
Abstract
Mucopolysaccharidosis type 1 (MPS1) is an inherited lysosomal storage disorder caused by a deficiency in the glycosaminoglycan (GAG)‐degrading enzyme α‐l‐iduronidase (IDUA). In affected patients, the systemic accumulation of GAGs results in skeletal dysplasia, neurological degeneration, multiple organ dysfunction, and early death. Current therapies, including enzyme replacement and bone marrow transplant, improve life expectancy but the benefits to skeletal and neurological phenotypes are limited. In this study, we tested the therapeutic efficacy of liver‐directed transplantation of a placental stem cell, which possesses multilineage differentiation potential, low immunogenicity, and high lysosomal enzyme activity. Unfractionated human amniotic epithelial cells (hAECs) were transplanted directly into the liver of immunodeficient Idua knockout mouse neonates. The hAECs engraftment was immunohistochemically confirmed with anti‐human mitochondria staining. Enzyme activity assays indicated that hAECs transplantation restored IDUA function in the liver and significantly decreased urinary GAG excretion. Histochemical and micro‐computed tomography analyses revealed reduced GAG deposition in the phalanges joints and composition/morphology improvement of cranial and facial bones. Neurological assessment in the hAEC treated mice showed significant improvement of sensorimotor coordination in the hAEC treated mice compared to untreated mice. Results confirm that partial liver cell replacement with placental stem cells can provide long‐term (>20 weeks) and systemic restoration of enzyme function, and lead to significant phenotypic improvement in the MPS1 mouse model. This preclinical data indicate that liver‐directed placental stem cell transplantation may improve skeletal and neurological phenotypes of MPS1 patients. Stem Cells Translational Medicine2017;6:1583–1594
Collapse
Affiliation(s)
| | - Lisa Yanuaria
- Department of SurgeryBiochemistry & Molecular Biology
| | | | | | | | - Brendan H. Grubbs
- Department of Obstetrics and GynecologyKeck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Toshio Miki
- Department of SurgeryBiochemistry & Molecular Biology
| |
Collapse
|
75
|
Abstract
Mesenchymal stem cells isolated from connective tissues are pluripotent and differentiate into phenotypes of connective tissue cell lineages (osteoblasts, chondrocytes, and adipocytes) in vitro and in vivo. They have been used to treat mouse models of connective tissue disease such as lumican-null (Lum) and mucopolysaccharidosis (Gusb) mice. Mesenchymal stem cells have unique immunosuppressive properties allowing evasion of host rejection; thus, they are valuable tools for cell therapy of congenital and acquired diseases involving immune dysfunction of multiple tissues including ocular surface tissues (cornea). We previously showed that human umbilical mesenchymal stem cells (UMSCs) modulated host immune responses, enabling them to survive xenograft transplantation. In vitro, UMSCs modulated inflammatory cells by inhibiting adhesion and invasion, and inducing cell death. UMSCs also regulated M1/M2 macrophage polarization and induced T-regulatory cell maturation from naive intraperitoneal cavity lavage cells. UMSCs exposed to inflammatory cells synthesized a rich extracellular glycocalyx composed of hyaluronan (HA) bound to the heavy chains (HCs) of inter-alpha-trypsin inhibitor (HC-HA), which contains tumor necrosis factor-α-stimulated gene 6 (TSG6) that catalyzes the transfer of HCs to HA, versican, and pentraxin-3. Our in vivo and in vitro results showed that the glycocalyx regulated inflammatory cells, allowing UMSCs to survive host immune rejection. Administration of antibodies against glycocalyx constituents or digestion with hyaluronidase and chondroitinase ABC abolished the UMSCs' ability to modulate immune responses. Treatment with anti-CD44 antibodies also diminished modulation of M2 macrophages by UMSCs, indicating that cell surface CD44 is required for correct UMSC glycocalyx assembly to modulate inflammatory cells.
Collapse
|
76
|
Rocca CJ, Kreymerman A, Ur SN, Frizzi KE, Naphade S, Lau A, Tran T, Calcutt NA, Goldberg JL, Cherqui S. Treatment of Inherited Eye Defects by Systemic Hematopoietic Stem Cell Transplantation. Invest Ophthalmol Vis Sci 2016; 56:7214-23. [PMID: 26540660 DOI: 10.1167/iovs.15-17107] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Cystinosis is caused by a deficiency in the lysosomal cystine transporter, cystinosin (CTNS gene), resulting in cystine crystal accumulation in tissues. In eyes, crystals accumulate in the cornea causing photophobia and eventually blindness. Hematopoietic stem progenitor cells (HSPCs) rescue the kidney in a mouse model of cystinosis. We investigated the potential for HSPC transplantation to treat corneal defects in cystinosis. METHODS We isolated HSPCs from transgenic DsRed mice and systemically transplanted irradiated Ctns-/- mice. A year posttransplantation, we investigated the fate and function of HSPCs by in vivo confocal and fluorescence microscopy (IVCM), quantitative RT-PCR (RT-qPCR), mass spectrometry, histology, and by measuring the IOP. To determine the mechanism by which HSPCs may rescue disease cells, we transplanted Ctns-/- mice with Ctns-/- DsRed HSPCs virally transduced to express functional CTNS-eGFP fusion protein. RESULTS We found that a single systemic transplantation of wild-type HSPCs prevented ocular pathology in the Ctns-/- mice. Engraftment-derived HSPCs were detected within the cornea, and also in the sclera, ciliary body, retina, choroid, and lens. Transplantation of HSPC led to substantial decreases in corneal cystine crystals, restoration of normal corneal thickness, and lowered IOP in mice with high levels of donor-derived cell engraftment. Finally, we found that HSPC-derived progeny differentiated into macrophages, which displayed tunneling nanotubes capable of transferring cystinosin-bearing lysosomes to diseased cells. CONCLUSIONS To our knowledge, this is the first demonstration that HSPCs can rescue hereditary corneal defects, and supports a new potential therapeutic strategy for treating ocular pathologies.
Collapse
Affiliation(s)
- Celine J Rocca
- Department of Pediatrics Division of Genetics, University of California, San Diego, La Jolla, California, United States
| | - Alexander Kreymerman
- Shiley Eye Center, University of California, San Diego, California, United States
| | - Sarah N Ur
- Department of Pediatrics Division of Genetics, University of California, San Diego, La Jolla, California, United States
| | - Katie E Frizzi
- Department of Pathology, University of California, San Diego, California, United States
| | - Swati Naphade
- Department of Pediatrics Division of Genetics, University of California, San Diego, La Jolla, California, United States
| | - Athena Lau
- Department of Pediatrics Division of Genetics, University of California, San Diego, La Jolla, California, United States
| | - Tammy Tran
- Shiley Eye Center, University of California, San Diego, California, United States
| | - Nigel A Calcutt
- Department of Pathology, University of California, San Diego, California, United States
| | - Jeffrey L Goldberg
- Shiley Eye Center, University of California, San Diego, California, United States 4Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Stephanie Cherqui
- Department of Pediatrics Division of Genetics, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
77
|
Arnalich-Montiel F, Alió Del Barrio JL, Alió JL. Corneal surgery in keratoconus: which type, which technique, which outcomes? EYE AND VISION 2016; 3:2. [PMID: 26783544 PMCID: PMC4716637 DOI: 10.1186/s40662-016-0033-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/09/2016] [Indexed: 12/13/2022]
Abstract
Keratoconus is a disease characterized by progressive thinning, bulging, and distortion of the cornea. Advanced cases usually present with loss of vision due to high irregular astigmatism. A majority of these cases require surgical intervention. This review provides an update on the current treatment modalities of corneal surgery available for the management of advanced corneal ectasias.
Collapse
Affiliation(s)
- Francisco Arnalich-Montiel
- IRYCIS. Ophthalmology Department, Ramón y Cajal University Hospital, Madrid, Spain ; Cornea Unit, Hospital Vissum Madrid, Madrid, Spain
| | - Jorge L Alió Del Barrio
- Cornea and External Diseases Service, Moorfields Eye Hospital, London, UK ; Cornea, Cataract and Refractive Surgery Unit, Vissum Corporación, Alicante, Spain
| | - Jorge L Alió
- Cornea, Cataract and Refractive Surgery Unit, Vissum Corporación, Alicante, Spain ; Division of Ophthalmology, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
78
|
Coulson-Thomas VJ, Coulson-Thomas YM, Gesteira TF, Kao WWY. Extrinsic and Intrinsic Mechanisms by Which Mesenchymal Stem Cells Suppress the Immune System. Ocul Surf 2016; 14:121-34. [PMID: 26804815 DOI: 10.1016/j.jtos.2015.11.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/12/2015] [Accepted: 11/23/2015] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are a group of fibroblast-like multipotent mesenchymal stromal cells that have the ability to differentiate into osteoblasts, adipocytes, and chondrocytes. Recent studies have demonstrated that MSCs possess a unique ability to exert suppressive and regulatory effects on both adaptive and innate immunity in an autologous and allogeneic manner. A vital step in stem cell transplantation is overcoming the potential graft-versus-host disease, which is a limiting factor to transplantation success. Given that MSCs attain powerful differentiation capabilities and also present immunosuppressive properties, which enable them to survive host immune rejection, MSCs are of great interest. Due to their ability to differentiate into different cell types and to suppress and modulate the immune system, MSCs are being developed for treating a plethora of diseases, including immune disorders. Moreover, in recent years, MSCs have been genetically engineered to treat and sometimes even cure some diseases, and the use of MSCs for cell therapy presents new perspectives for overcoming tissue rejection. In this review, we discuss the potential extrinsic and intrinsic mechanisms that underlie MSCs' unique ability to modulate inflammation, and both innate and adaptive immunity.
Collapse
Affiliation(s)
- Vivien J Coulson-Thomas
- Department of Ophthalmology, University of Cincinnati, Ohio, USA; John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
| | | | | | - Winston W-Y Kao
- Department of Ophthalmology, University of Cincinnati, Ohio, USA.
| |
Collapse
|
79
|
Zhang L, Coulson-Thomas VJ, Ferreira TG, Kao WWY. Mesenchymal stem cells for treating ocular surface diseases. BMC Ophthalmol 2015; 15 Suppl 1:155. [PMID: 26818606 PMCID: PMC4895295 DOI: 10.1186/s12886-015-0138-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cells (MSC) have become a promising tool for cell therapy in regenerative medicine. They are readily available, demonstrate powerful differentiation capabilities and present immunosuppressive properties that aid them in surviving from host immune rejection for its great potential use in allograft. Currently clinical trials are underway using MSC, both culture-expanded allogeneic and autologous, for the treatment of a range of diseases not treatable by conventional therapies. A vast array of studies has dedicated towards the use of MSC for treating corneal diseases with very promising outcomes. MSC have successfully differentiated into keratocytes both in vitro and in vivo, and corneal epithelial cells in vitro, but it is uncertain if MSC can assume corneal epithelial cells in vivo. However, to date few studies have unequivocally established the efficacy of MSC for treating corneal endothelial defects. Currently, the diversity in protocols of the isolation and expansion of MSC are hindering to the assessment of cell treatment ability and the further development of treatment regimens. Therefore, future studies should develop international standards for MSC isolation and characterization. In this review, we discuss recent advances in MSC for treating ocular surface diseases.
Collapse
Affiliation(s)
- Liyun Zhang
- Department of Ophthalmology, University of Cincinnati, Ohio, USA.
| | | | | | - Winston W Y Kao
- Department of Ophthalmology, University of Cincinnati, Ohio, USA.
| |
Collapse
|
80
|
Harkin DG, Foyn L, Bray LJ, Sutherland AJ, Li FJ, Cronin BG. Concise reviews: can mesenchymal stromal cells differentiate into corneal cells? A systematic review of published data. Stem Cells 2015; 33:785-91. [PMID: 25400018 DOI: 10.1002/stem.1895] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/18/2014] [Accepted: 10/28/2014] [Indexed: 12/31/2022]
Abstract
The majority of stem cell therapies for corneal repair are based upon the use of progenitor cells isolated from corneal tissue, but a growing body of literature suggests a role for mesenchymal stromal cells (MSC) isolated from noncorneal tissues. While the mechanism of MSC action seems likely to involve their immuno-modulatory properties, claims have emerged of MSC transdifferentiation into corneal cells. Substantial differences in methodology and experimental outcomes, however, have prompted us to perform a systematic review of the published data. Key questions used in our analysis included: the choice of markers used to assess corneal cell phenotype, the techniques used to detect these markers, adequate reporting of controls, and tracking of MSC when studied in vivo. Our search of the literature revealed 28 papers published since 2006, with half appearing since 2012. MSC cultures established from bone marrow and adipose tissue have been best studied (22 papers). Critically, only 11 studies used appropriate markers of corneal cell phenotype, along with necessary controls. Ten out of these eleven papers, however, contained positive evidence of corneal cell marker expression by MSC. The clearest evidence is observed with respect to expression of markers for corneal stromal cells by MSC. In comparison, the evidence for MSC conversion into either corneal epithelial cells or corneal endothelial cells is often inconsistent or inconclusive. Our analysis clarifies this emerging body of literature and provides guidance for future studies of MSC differentiation within the cornea as well as other tissues.
Collapse
Affiliation(s)
- Damien G Harkin
- School of Biomedical Sciences; Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Queensland Eye Institute, South Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
81
|
Smith PD, Coulson-Thomas VJ, Foscarin S, Kwok JCF, Fawcett JW. "GAG-ing with the neuron": The role of glycosaminoglycan patterning in the central nervous system. Exp Neurol 2015; 274:100-14. [PMID: 26277685 DOI: 10.1016/j.expneurol.2015.08.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/17/2015] [Accepted: 08/06/2015] [Indexed: 01/17/2023]
Abstract
Proteoglycans (PGs) are a diverse family of proteins that consist of one or more glycosaminoglycan (GAG) chains, covalently linked to a core protein. PGs are major components of the extracellular matrix (ECM) and play critical roles in development, normal function and damage-response of the central nervous system (CNS). GAGs are classified based on their disaccharide subunits, into the following major groups: chondroitin sulfate (CS), heparan sulfate (HS), heparin (HEP), dermatan sulfate (DS), keratan sulfate (KS) and hyaluronic acid (HA). All except HA are modified by sulfation, giving GAG chains specific charged structures and binding properties. While significant neuroscience research has focused on the role of one PG family member, chondroitin sulfate proteoglycan (CSPG), there is ample evidence in support of a role for the other PGs in regulating CNS function in normal and pathological conditions. This review discusses the role of all the identified PG family members (CS, HS, HEP, DS, KS and HA) in normal CNS function and in the context of pathology. Understanding the pleiotropic roles of these molecules in the CNS may open the door to novel therapeutic strategies for a number of neurological conditions.
Collapse
Affiliation(s)
- Patrice D Smith
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK; Department of Neuroscience, Carleton University, Ottawa, ON, Canada.
| | - Vivien J Coulson-Thomas
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | - Simona Foscarin
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | - Jessica C F Kwok
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | - James W Fawcett
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK.
| |
Collapse
|
82
|
Ahmed SK, Soliman AA, Omar SMM, Mohammed WR. Bone Marrow Mesenchymal Stem Cell Transplantation in a Rabbit Corneal Alkali Burn Model (A Histological and Immune Histo-chemical Study). Int J Stem Cells 2015; 8:69-78. [PMID: 26019756 PMCID: PMC4445711 DOI: 10.15283/ijsc.2015.8.1.69] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 12/18/2014] [Indexed: 12/13/2022] Open
Abstract
Background Alkali-burned corneas can seldom heal properly to restore corneal transparency. Treatment of this severe disorder of the ocular surface remains a challenge. Aim of the Work was to investigate whether systemically transplanted bone marrow mesenchymal stem cells (BM-MSCs) can promote corneal wound healing after alkali burn. Material and Methods Thirty five male New Zealand rabbits were used in this study. The animals were divided into three groups. Group I; the control group was sham operated. Group II; corneal alkali burn was created. Group III; underwent corneal alkali burn then treated with BM-MSCs. All corneas were collected after fourteen and twenty eight days. Evaluation using H&E, PAS & alkaline phosphatase reaction was carried out. Immune histo-chemical staining for CD44 and vimentin was performed as well. Results the corneal epithelium of (Group II) showed marked alterations. Vascularization, cellular infiltration and irregularity of the collagen fibers were also seen in the substantia propria. Increase in the thickness of the Descemet’s membrane was noticed as well. On the other hand, at the time of 28 days, Group III rabbits showed best histological results with nearly healed corneas compared to other groups. Meanwhile, vimentin was more strongly expressed in Group III assessing the differentiating ability of BM-MSCs. Conclusion BM-MSCs could effectively promote corneal alkali burn healing.
Collapse
Affiliation(s)
- Soheir Kamal Ahmed
- Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amel Ali Soliman
- Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sahar M M Omar
- Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Wafaa Rabee Mohammed
- Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
83
|
Sati A, Shukla S, Lal I, Sangwan VS. Treating limbal stem cell deficiency: current and emerging therapies. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1035253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
84
|
Jackson M, Derrick Roberts A, Martin E, Rout-Pitt N, Gronthos S, Byers S. Mucopolysaccharidosis enzyme production by bone marrow and dental pulp derived human mesenchymal stem cells. Mol Genet Metab 2015; 114:584-93. [PMID: 25748347 DOI: 10.1016/j.ymgme.2015.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 12/25/2022]
Abstract
Mucopolysaccharidoses (MPS) are inherited metabolic disorders that arise from a complete loss or a reduction in one of eleven specific lysosomal enzymes. MPS children display pathology in multiple cell types leading to tissue and organ failure and early death. Mesenchymal stem cells (MSCs) give rise to many of the cell types affected in MPS, including those that are refractory to current treatment protocols such as hematopoietic stem cell (HSC) based therapy. In this study we compared multiple MPS enzyme production by bone marrow derived (hBM) and dental pulp derived (hDP) MSCs to enzyme production by HSCs. hBM MSCs produce significantly higher levels of MPS I, II, IIIA, IVA, VI and VII enzyme than HSCs, while hDP MSCs produce significantly higher levels of MPS I, IIIA, IVA, VI and VII enzymes. Higher transfection efficiency was observed in MSCs (89%) compared to HSCs (23%) using a lentiviral vector. Over-expression of four different lysosomal enzymes resulted in up to 9303-fold and up to 5559-fold greater levels in MSC cell layer and media respectively. Stable, persistent transduction of MSCs and sustained over-expression of MPS VII enzyme was observed in vitro. Transduction of MSCs did not affect the ability of the cells to differentiate down osteogenic, adipogenic or chondrogenic lineages, but did partially delay differentiation down the non-mesodermal neurogenic lineage.
Collapse
Affiliation(s)
- Matilda Jackson
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, South Australia, Australia; Department of Genetics, The University of Adelaide, South Australia, Australia
| | - Ainslie Derrick Roberts
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, South Australia, Australia; Department of Paediatrics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ellenore Martin
- Department of Genetics, The University of Adelaide, South Australia, Australia
| | - Nathan Rout-Pitt
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, South Australia, Australia; Department of Paediatrics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Sharon Byers
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, South Australia, Australia; Department of Paediatrics, The University of Adelaide, Adelaide, South Australia, Australia; Department of Genetics, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
85
|
Jadalannagari S, Aljitawi OS. Ectodermal Differentiation of Wharton's Jelly Mesenchymal Stem Cells for Tissue Engineering and Regenerative Medicine Applications. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:314-22. [PMID: 25517045 DOI: 10.1089/ten.teb.2014.0404] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) from Wharton's jelly (WJ) of the human umbilical cord are perinatal stem cells that have self-renewal ability, extended proliferation potential, immunosuppressive properties, and are accordingly excellent candidates for tissue engineering. These MSCs are unique, easily accessible, and a noncontroversial cell source of regeneration in medicine. Wharton's jelly mesenchymal stem cells (WJMSCs) are multipotent and capable of multilineage differentiation into cells like adipocytes, bone, cartilage, and skeletal muscle upon exposure to appropriate conditions. The ectoderm is one of the three primary germ layers found in the very early embryo that differentiates into the epidermis, nervous system (spine, peripheral nerves, brain), and exocrine glands (mammary, sweat, salivary, and lacrimal glands). Accumulating evidence shows that MSCs obtained from WJ have an ectodermal differentiation potential. The current review examines this differentiation potential of WJMSC into the hair follicle, skin, neurons, and sweat glands along with discussing the potential utilization of such differentiation in regenerative medicine.
Collapse
Affiliation(s)
| | - Omar S Aljitawi
- 1Department of Bioengineering, University of Kansas, Lawrence, Kansas.,2Department of Hematology/Oncology, Blood and Marrow Transplant Program, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
86
|
Coulson-Thomas VJ, Gesteira TF, Hascall V, Kao W. Umbilical cord mesenchymal stem cells suppress host rejection: the role of the glycocalyx. J Biol Chem 2014; 289:23465-81. [PMID: 24986866 DOI: 10.1074/jbc.m114.557447] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Umbilical cord mesenchymal stem cells (UMSCs) have unique immunosuppressive properties enabling them to evade host rejection and making them valuable tools for cell therapy. We previously showed that human UMSCs survive xenograft transplantation and successfully correct the corneal clouding defects associated with the mouse model for the congenital metabolic disorder mucopolysaccharidosis VII. However, the precise mechanism by which UMSCs suppress the immune system remains elusive. This study aimed to determine the key components involved in the ability of the UMSCs to modulate the inflammatory system and to identify the inflammatory cells that are regulated by the UMSCs. Our results show that human UMSCs transplanted into the mouse stroma 24 h after an alkali burn suppress the severe inflammatory response and enable the recovery of corneal transparency within 2 weeks. Furthermore, we demonstrated in vitro that UMSCs inhibit the adhesion and invasion of inflammatory cells and also the polarization of M1 macrophages. UMSCs also induced the maturation of T-regulatory cells and led to inflammatory cell death. Moreover, UMSCs exposed to inflammatory cells synthesize a rich extracellular glycocalyx composed of the chondroitin sulfate-proteoglycan versican bound to a heavy chain (HC)-modified hyaluronan (HA) matrix (HC-HA). This matrix also contains TNFα-stimulated gene 6 (TSG6), the enzyme that transfers HCs to HA, and pentraxin-3, which further stabilizes the matrix. Our results, both in vivo and in vitro, show that this glycocalyx confers the ability for UMSCs to survive the host immune system and to regulate the inflammatory cells.
Collapse
Affiliation(s)
| | - Tarsis Ferreira Gesteira
- From the Department of Ophthalmology, University of Cincinnati, Cincinnati, Ohio 45267-0838, the Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio 45229, and
| | - Vincent Hascall
- the Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195
| | - Winston Kao
- From the Department of Ophthalmology, University of Cincinnati, Cincinnati, Ohio 45267-0838
| |
Collapse
|