51
|
Shimomura A, Iizuka-Kogo A, Yamamoto N, Nomura R. A lower volume culture method for obtaining a larger yield of neuron-like cells from mesenchymal stem cells. Med Mol Morphol 2015; 49:119-26. [PMID: 26700227 DOI: 10.1007/s00795-015-0131-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/08/2015] [Indexed: 01/21/2023]
Abstract
Mesenchymal stem cells (MSCs) represent a promising cell source for stem cell therapy to replace neurons damaged by neurodegenerative diseases. A system designed for in vitro neuronal differentiation of MSCs is an indispensable technique, which provides MSC-derived functional neurons for cell-replacement therapies and valuable information in pre-clinical research. This study investigated the effects of reducing the volume of neural induction medium on cell viability and neural differentiation of MSCs. When MSCs were differentiated in low volumes of neural induction medium, rather than using the conventional method, the cell density on culture dishes significantly increased. The % cell death, including apoptosis and necrosis, was significantly lower in the lower volume method than in the conventional method. There were no significant differences between the lower volume and conventional methods in the expression levels of the neuronal marker genes. In an analysis of immunostaining for a mature neuronal marker, no significant difference was detected between the media volumes. These findings demonstrate that neuronal induction of MSCs in low volumes of differentiation medium promoted survival during differentiation and resulted in larger numbers of MSC-derived neurons, compared to the conventional method. This novel lower volume method offers both financial and cell-yield advantages over the conventional method.
Collapse
Affiliation(s)
- Atsushi Shimomura
- Department of Communication Disorders, Health Sciences University of Hokkaido School of Psychological Science, 2-5 Ainosato, Kita-ku, Sapporo, Hokkaido, 002-8072, Japan. .,Department of Communication Disorders, Health Sciences University of Hokkaido School of Rehabilitation Sciences, 1757 Kanazawa, Tobetsu, Hokkaido, 061-0293, Japan.
| | - Akiko Iizuka-Kogo
- Department of Anatomy and Cell Biology, Gunma University School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Naoki Yamamoto
- Laboratory of Molecular Biology and Histochemistry, Fujita Health University Joint Research Laboratory, 1-98 Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Ryuji Nomura
- Department of Anatomy I, Fujita Health University School of Medicine, 1-98 Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
52
|
Borodinsky LN, Belgacem YH. Crosstalk among electrical activity, trophic factors and morphogenetic proteins in the regulation of neurotransmitter phenotype specification. J Chem Neuroanat 2015; 73:3-8. [PMID: 26686293 DOI: 10.1016/j.jchemneu.2015.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/29/2015] [Accepted: 12/02/2015] [Indexed: 01/11/2023]
Abstract
Morphogenetic proteins are responsible for patterning the embryonic nervous system by enabling cell proliferation that will populate all the neural structures and by specifying neural progenitors that imprint different identities in differentiating neurons. The adoption of specific neurotransmitter phenotypes is crucial for the progression of neuronal differentiation, enabling neurons to connect with each other and with target tissues. Preliminary neurotransmitter specification originates from morphogen-driven neural progenitor specification through the combinatorial expression of transcription factors according to morphogen concentration gradients, which progressively restrict the identity that born neurons adopt. However, neurotransmitter phenotype is not immutable, instead trophic factors released from target tissues and environmental stimuli change expression of neurotransmitter-synthesizing enzymes and specific vesicular transporters modifying neuronal neurotransmitter identity. Here we review studies identifying the mechanisms of catecholaminergic, GABAergic, glutamatergic, cholinergic and serotonergic early specification and of the plasticity of these neurotransmitter phenotypes during development and in the adult nervous system. The emergence of spontaneous electrical activity in developing neurons recruits morphogenetic proteins in the process of neurotransmitter phenotype plasticity, which ultimately equips the nervous system and the whole organism with adaptability for optimal performance in a changing environment.
Collapse
Affiliation(s)
- Laura N Borodinsky
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA 95817, United States.
| | - Yesser H Belgacem
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA 95817, United States
| |
Collapse
|
53
|
Rafieemehr H, Kheirandish M, Soleimani M. Improving the neuronal differentiation efficiency of umbilical cord blood-derived mesenchymal stem cells cultivated under appropriate conditions. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:1100-6. [PMID: 26949497 PMCID: PMC4764111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/30/2022]
Abstract
OBJECTIVES Umbilical cord blood-derived mesenchymal stromal cells (UCB-MSCs) are ideally suited for use in various cell-based therapies. We investigated a novel induction protocol (NIP) to improve the neuronal differentiation of human UCB-MSCs under appropriate conditions. MATERIALS AND METHODS This experimental study was performed in Iranian Blood Transfusion Organization (IBTO), Tehran, Iran. UCB-MSCs were cultured in DMEM medium supplemented with 10% FBS in a humidified incubator in equilibration with 5% CO2 at 37°C. For neuronal differentiation of UCB-MSCs, DMEM was removed and replaced with pre-induction medium containing RA, bFGF, EGF, and basal medium for two days. Then, NGF, IBMX, AsA, and Neurobasal medium were used for six days for this purpose. Real-time PCR was performed to analyze the neuronal differentiation of UCB-MSCs for the first time in Iran. RESULTS We found that the maximum and minimum levels of gene expression were related to GFAP and nestin, respectively. In addition, our study showed that compared to other neuronal inducers, RA might play the main role in neuronal differentiation and fate of MSCs compared to other neuronal inducers. CONCLUSION Our data showed that the combination of chemical (RA, IBMX, AsA) and growth factors (NGF, EGF, bFGF) in NIP may improve the efficiency of neuronal differentiation of UCB-MSCs and may provide a new method for easy and quick application of UCB-MSCs in regenerative medicine in the future. However, the functionality of neuron-like cells must be carefully assessed in animal experiments prior to use in clinical applications.
Collapse
Affiliation(s)
- Hassan Rafieemehr
- Department of Immunology, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran,Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Kheirandish
- Department of Immunology, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran,Corresponding author: Maryam Kheirandish. Department of Immunology, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran. Tel: +98-218860150130; Fax: +98-2188601555;
| | - Masoud Soleimani
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran
| |
Collapse
|
54
|
Visweswaran M, Pohl S, Arfuso F, Newsholme P, Dilley R, Pervaiz S, Dharmarajan A. Multi-lineage differentiation of mesenchymal stem cells - To Wnt, or not Wnt. Int J Biochem Cell Biol 2015; 68:139-47. [PMID: 26410622 DOI: 10.1016/j.biocel.2015.09.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 01/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent precursor cells originating from several adult connective tissues. MSCs possess the ability to self-renew and differentiate into several lineages, and are recognized by the expression of unique cell surface markers. Several lines of evidence suggest that various signal transduction pathways and their interplay regulate MSC differentiation. To that end, a critical player in regulating MSC differentiation is a group of proteins encoded by the Wnt gene family, which was previously known for influencing various stages of embryonic development and cell fate determination. As MSCs have gained significant clinical attention for their potential applications in regenerative medicine, it is imperative to unravel the mechanisms by which molecular regulators control differentiation of MSCs for designing cell-based therapeutics. It is rather coincidental that the functional outcome(s) of Wnt-induced signals share similarities with cellular redox-mediated networks from the standpoint of MSC biology. Furthermore, there is evidence for a crosstalk between Wnt and redox signalling, which begs the question whether Wnt-mediated differentiation signals involve the intermediary role of reactive oxygen species. In this review, we summarize the impact of Wnt signalling on multi-lineage differentiation of MSCs, and attempt to unravel the intricate interplay between Wnt and redox signals.
Collapse
Affiliation(s)
- Malini Visweswaran
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Sebastian Pohl
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Philip Newsholme
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Rodney Dilley
- Ear Sciences Centre, University of Western Australia and Ear Science Institute Australia, Perth, Western Australia 6008, Australia
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
55
|
Shimomura A, Patel D, Wilson SM, Koehler KR, Khanna R, Hashino E. Tlx3 promotes glutamatergic neuronal subtype specification through direct interactions with the chromatin modifier CBP. PLoS One 2015; 10:e0135060. [PMID: 26258652 PMCID: PMC4530954 DOI: 10.1371/journal.pone.0135060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 07/17/2015] [Indexed: 12/31/2022] Open
Abstract
Nervous system development relies on the generation of precise numbers of excitatory and inhibitory neurons. The homeodomain transcription factor, T-cell leukemia 3 (Tlx3), functions as the master neuronal fate regulator by instructively promoting the specification of glutamatergic excitatory neurons and suppressing the specification of gamma-aminobutyric acid (GABAergic) neurons. However, how Tlx3 promotes glutamatergic neuronal subtype specification is poorly understood. In this study, we found that Tlx3 directly interacts with the epigenetic co-activator cyclic adenosine monophosphate (cAMP)-response element-binding protein (CREB)-binding protein (CBP) and that the Tlx3 homeodomain is essential for this interaction. The interaction between Tlx3 and CBP was enhanced by the three amino acid loop extension (TALE)-class homeodomain transcription factor, pre-B-cell leukemia transcription factor 3 (Pbx3). Using mouse embryonic stem (ES) cells stably expressing Tlx3, we found that the interaction between Tlx3 and CBP became detectable only after these Tlx3-expressing ES cells were committed to a neural lineage, which coincided with increased Pbx3 expression during neural differentiation from ES cells. Forced expression of mutated Tlx3 lacking the homeodomain in ES cells undergoing neural differentiation resulted in significantly reduced expression of glutamatergic neuronal subtype markers, but had little effect on the expression on pan neural markers. Collectively, our results strongly suggest that functional interplay between Tlx3 and CBP plays a critical role in neuronal subtype specification, providing novel insights into the epigenetic regulatory mechanism that modulates the transcriptional efficacy of a selective set of neuronal subtype-specific genes during differentiation.
Collapse
Affiliation(s)
- Atsushi Shimomura
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; School of Psychological Science, Health Sciences University of Hokkaido, Sapporo, Hokkaido, Japan
| | - Dharmeshkumar Patel
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sarah M Wilson
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Karl R Koehler
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Rajesh Khanna
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Pharmacology, University of Arizona School of Medicine, Tucson, Arizona, United States of America
| | - Eri Hashino
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
56
|
Zhang S, Li J, Lea R, Vleminckx K, Amaya E. Fezf2 promotes neuronal differentiation through localised activation of Wnt/β-catenin signalling during forebrain development. Development 2015; 141:4794-805. [PMID: 25468942 PMCID: PMC4299278 DOI: 10.1242/dev.115691] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Brain regionalisation, neuronal subtype diversification and circuit connectivity are crucial events in the establishment of higher cognitive functions. Here we report the requirement for the transcriptional repressor Fezf2 for proper differentiation of neural progenitor cells during the development of the Xenopus forebrain. Depletion of Fezf2 induces apoptosis in postmitotic neural progenitors, with concomitant reduction in forebrain size and neuronal differentiation. Mechanistically, we found that Fezf2 stimulates neuronal differentiation by promoting Wnt/β-catenin signalling in the developing forebrain. In addition, we show that Fezf2 promotes activation of Wnt/β-catenin signalling by repressing the expression of two negative regulators of Wnt signalling, namely lhx2 and lhx9. Our findings suggest that Fezf2 plays an essential role in controlling when and where neuronal differentiation occurs within the developing forebrain and that it does so by promoting local Wnt/β-catenin signalling via a double-repressor model.
Collapse
Affiliation(s)
- Siwei Zhang
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Jingjing Li
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Robert Lea
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Kris Vleminckx
- Department for Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Enrique Amaya
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
57
|
Pujato M, Kieken F, Skiles AA, Tapinos N, Fiser A. Prediction of DNA binding motifs from 3D models of transcription factors; identifying TLX3 regulated genes. Nucleic Acids Res 2014; 42:13500-12. [PMID: 25428367 PMCID: PMC4267649 DOI: 10.1093/nar/gku1228] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Proper cell functioning depends on the precise spatio-temporal expression of its genetic material. Gene expression is controlled to a great extent by sequence-specific transcription factors (TFs). Our current knowledge on where and how TFs bind and associate to regulate gene expression is incomplete. A structure-based computational algorithm (TF2DNA) is developed to identify binding specificities of TFs. The method constructs homology models of TFs bound to DNA and assesses the relative binding affinity for all possible DNA sequences using a knowledge-based potential, after optimization in a molecular mechanics force field. TF2DNA predictions were benchmarked against experimentally determined binding motifs. Success rates range from 45% to 81% and primarily depend on the sequence identity of aligned target sequences and template structures, TF2DNA was used to predict 1321 motifs for 1825 putative human TF proteins, facilitating the reconstruction of most of the human gene regulatory network. As an illustration, the predicted DNA binding site for the poorly characterized T-cell leukemia homeobox 3 (TLX3) TF was confirmed with gel shift assay experiments. TLX3 motif searches in human promoter regions identified a group of genes enriched in functions relating to hematopoiesis, tissue morphology, endocrine system and connective tissue development and function.
Collapse
Affiliation(s)
- Mario Pujato
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Fabien Kieken
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA Macromolecular Therapeutics Development, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Amanda A Skiles
- Molecular Neuroscience Laboratory, Geisinger Clinic, 100 North Academy Avenue, Danville, PA 17822, USA
| | - Nikos Tapinos
- Molecular Neuroscience Laboratory, Geisinger Clinic, 100 North Academy Avenue, Danville, PA 17822, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| |
Collapse
|
58
|
Tsai HL, Deng WP, Lai WFT, Chiu WT, Yang CB, Tsai YH, Hwang SM, Renshaw PF. Wnts enhance neurotrophin-induced neuronal differentiation in adult bone-marrow-derived mesenchymal stem cells via canonical and noncanonical signaling pathways. PLoS One 2014; 9:e104937. [PMID: 25170755 PMCID: PMC4149376 DOI: 10.1371/journal.pone.0104937] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 07/16/2014] [Indexed: 01/01/2023] Open
Abstract
Wnts were previously shown to regulate the neurogenesis of neural stem or progenitor cells. Here, we explored the underlying molecular mechanisms through which Wnt signaling regulates neurotrophins (NTs) in the NT-induced neuronal differentiation of human mesenchymal stem cells (hMSCs). NTs can increase the expression of Wnt1 and Wnt7a in hMSCs. However, only Wnt7a enables the expression of synapsin-1, a synaptic marker in mature neurons, to be induced and triggers the formation of cholinergic and dopaminergic neurons. Human recombinant (hr)Wnt7a and general neuron makers were positively correlated in a dose- and time-dependent manner. In addition, the expression of synaptic markers and neurites was induced by Wnt7a and lithium, a glycogen synthase kinase-3β inhibitor, in the NT-induced hMSCs via the canonical/β-catenin pathway, but was inhibited by Wnt inhibitors and frizzled-5 (Frz5) blocking antibodies. In addition, hrWnt7a triggered the formation of cholinergic and dopaminergic neurons via the non-canonical/c-jun N-terminal kinase (JNK) pathway, and the formation of these neurons was inhibited by a JNK inhibitor and Frz9 blocking antibodies. In conclusion, hrWnt7a enhances the synthesis of synapse and facilitates neuronal differentiation in hMSCS through various Frz receptors. These mechanisms may be employed widely in the transdifferentiation of other adult stem cells.
Collapse
Affiliation(s)
- Hung-Li Tsai
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Wing-Ping Deng
- Graduate Institute of Biomedical Materials and Engineering, Taipei Medical University, Taipei, Taiwan
| | - Wen-Fu Thomas Lai
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
- McLean Imaging Center, McLean Hospital/Harvard Medical School, Belmont, Massachusetts, United States of America
- Center for Nano-Tissue Engineering and Image Research, Taipei Medical University Hospital, Taipei, Taiwan
- * E-mail:
| | - Wen-Ta Chiu
- Center for Nano-Tissue Engineering and Image Research, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University-Shuan-Ho Hospital, Taipei, Taiwan
| | - Charn-Bing Yang
- Department of Orthopedics, Taipei County Hospital, Taipei, Taiwan
| | - Yu-Hui Tsai
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Shiaw-Min Hwang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Perry F. Renshaw
- Department of Psychiatry and The Brain Institute, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
59
|
Gunewardene N, Bergen NV, Crombie D, Needham K, Dottori M, Nayagam BA. Directing human induced pluripotent stem cells into a neurosensory lineage for auditory neuron replacement. Biores Open Access 2014; 3:162-75. [PMID: 25126480 PMCID: PMC4120935 DOI: 10.1089/biores.2014.0019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Emerging therapies for sensorineural hearing loss include replacing damaged auditory neurons (ANs) using stem cells. Ultimately, it is important that these replacement cells can be patient-matched to avoid immunorejection. As human induced pluripotent stem cells (hiPSCs) can be obtained directly from the patient, they offer an opportunity to generate patient-matched neurons for transplantation. Here, we used an established neural induction protocol to differentiate two hiPSC lines (iPS1 and iPS2) and one human embryonic stem cell line (hESC; H9) toward a neurosensory lineage in vitro. Immunocytochemistry and qRT-PCR were used to analyze the expression of key markers involved in AN development at defined time points of differentiation. The hiPSC- and hESC-derived neurosensory progenitors expressed the dorsal hindbrain marker (PAX7), otic placodal marker (PAX2), proneurosensory marker (SOX2), ganglion neuronal markers (NEUROD1, BRN3A, ISLET1, ßIII-tubulin, Neurofilament kDa 160), and sensory AN markers (GATA3 and VGLUT1) over the time course examined. The hiPSC- and hESC-derived neurosensory progenitors had the highest expression levels of the sensory neural markers at 35 days in vitro. Furthermore, the neurons generated from this assay were found to be electrically active. While all cell lines analyzed produced functional neurosensory-like progenitors, variabilities in the levels of marker expression were observed between hiPSC lines and within samples of the same cell line, when compared with the hESC controls. Overall, these findings indicate that this neural assay was capable of differentiating hiPSCs toward a neurosensory lineage but emphasize the need for improving the consistency in the differentiation of hiPSCs into the required lineages.
Collapse
Affiliation(s)
- Niliksha Gunewardene
- Department of Otolaryngology, University of Melbourne , East Melbourne, Victoria, Australia
| | - Nicole Van Bergen
- Centre for Eye Research Australia, University of Melbourne , East Melbourne, Victoria, Australia
| | - Duncan Crombie
- Centre for Eye Research Australia, University of Melbourne , East Melbourne, Victoria, Australia
| | - Karina Needham
- Department of Otolaryngology, University of Melbourne , East Melbourne, Victoria, Australia
| | - Mirella Dottori
- Centre for Neural Engineering, University of Melbourne , Parkville, Victoria, Australia
| | - Bryony A Nayagam
- Centre for Eye Research Australia, University of Melbourne , East Melbourne, Victoria, Australia . ; Department of Audiology and Speech Pathology, University of Melbourne , Parkville, Victoria, Australia . ; Bionics Institute, University of Melbourne , East Melbourne, Victoria, Australia
| |
Collapse
|
60
|
Inner ear stem cells derived feeder layer promote directional differentiation of amniotic fluid stem cells into functional neurons. Hear Res 2014; 316:57-64. [PMID: 25124154 DOI: 10.1016/j.heares.2014.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 07/15/2014] [Accepted: 07/29/2014] [Indexed: 01/15/2023]
Abstract
Intact spiral ganglion neurons are required for cochlear implantation or conventional hearing amplification as an intervention for sensorineural hearing loss. Treatment strategies to replace the loss of spiral ganglion neurons are needed. Recent reports have suggested that amniotic fluid-derived stem cells are capable of differentiating into neuron-like cells in response to cytokines and are not tumorigenic. Amniotic fluid stem cells represent a potential resource for cellular therapy of neural deafness due to spiral ganglion pathology. However, the directional differentiation of amniotic fluid stem cells is undetermined in the absence of cytokines and the consequence of inner ear supporting cells from the mouse cochlea organ of Corti on the differentiation of amniotic fluid stem cells remains to be defined. In an effort to circumvent these limitations, we investigated the effect of inner ear stem cells derived feeder layer on amniotic fluid stem cells differentiation in vitro. An inner ear stem cells derived feeder layer direct contact system was established to induce differentiation of amniotic fluid stem cells. Our results showed that inner ear stem cells derived feeder layer successfully promoted directional differentiation of amniotic fluid stem cells into neurons with characteristics of functionality. Furthermore, we showed that Wnt signaling may play an essential role in triggering neurogenesis. These findings indicate the potential use of inner ear stem cells derived feeder layer as a nerve-regenerative scaffold. A reliable and effective amniotic fluid stem cell differentiation support structure provided by inner ear stem cells derived feeder layer should contribute to efforts to translate cell-based strategies to the clinic.
Collapse
|
61
|
Bas E, Van De Water TR, Lumbreras V, Rajguru S, Goss G, Hare JM, Goldstein BJ. Adult human nasal mesenchymal-like stem cells restore cochlear spiral ganglion neurons after experimental lesion. Stem Cells Dev 2013; 23:502-14. [PMID: 24172073 DOI: 10.1089/scd.2013.0274] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A loss of sensory hair cells or spiral ganglion neurons from the inner ear causes deafness, affecting millions of people. Currently, there is no effective therapy to repair the inner ear sensory structures in humans. Cochlear implantation can restore input, but only if auditory neurons remain intact. Efforts to develop stem cell-based treatments for deafness have demonstrated progress, most notably utilizing embryonic-derived cells. In an effort to bypass limitations of embryonic or induced pluripotent stem cells that may impede the translation to clinical applications, we sought to utilize an alternative cell source. Here, we show that adult human mesenchymal-like stem cells (MSCs) obtained from nasal tissue can repair spiral ganglion loss in experimentally lesioned cochlear cultures from neonatal rats. Stem cells engraft into gentamicin-lesioned organotypic cultures and orchestrate the restoration of the spiral ganglion neuronal population, involving both direct neuronal differentiation and secondary effects on endogenous cells. As a physiologic assay, nasal MSC-derived cells engrafted into lesioned spiral ganglia demonstrate responses to infrared laser stimulus that are consistent with those typical of excitable cells. The addition of a pharmacologic activator of the canonical Wnt/β-catenin pathway concurrent with stem cell treatment promoted robust neuronal differentiation. The availability of an effective adult autologous cell source for inner ear tissue repair should contribute to efforts to translate cell-based strategies to the clinic.
Collapse
Affiliation(s)
- Esperanza Bas
- 1 Department of Otolaryngology, University of Miami Miller School of Medicine , Miami, Florida
| | | | | | | | | | | | | |
Collapse
|
62
|
Feng X, Xing J, Feng G, Sang A, Shen B, Xu Y, Jiang J, Liu S, Tan W, Gu Z, Li L. Age-dependent impaired neurogenic differentiation capacity of dental stem cell is associated with Wnt/β-catenin signaling. Cell Mol Neurobiol 2013; 33:1023-31. [PMID: 24043508 DOI: 10.1007/s10571-013-9965-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 07/15/2013] [Indexed: 02/08/2023]
Abstract
Two kinds of dental stem cells (DSCs), dental pulp stem cells (DPSCs) and stem cells from human-exfoliated deciduous teeth (SHED), have been identified as novel populations of mesenchymal stem cells that can be induced to differentiate into osteoblasts, chondrocytes, adipocytes, and neuron-like cells in vitro. As we know, both of them originate from the neural crest, but have distinct characteristics and functions in vitro and in vivo. The regeneration potential of DSCs declines with advanced age; however, the mechanism of the impaired potential in DSCs has not been fully explored. In this study, we investigated whether declined neurogenic differentiation capacity is associated with an altered expression of Wnt signaling-related proteins in vitro. We compared stem cells isolated from human dental pulp in two age groups: the exfoliated deciduous teeth (5-12 years), and the third permanent teeth (45-50 years). We found that the expression levels of neuron markers, such as βIII-tubulin, microtubule-associated protein 2(MAP2), tyrosine hydroxylase (TH), and Nestin were lower in the DPSCs group compared with that in the SHED group; however, in supplementation with human recombinant Wnt1 in the medium, the DPSCs were prone to neural differentiation and expressed higher levels of neurogenic markers. In summary, our study demonstrated that Wnt/β-catenin signaling may play a vital role in the age-dependent neural differentiation of DSCs. Therefore, DSCs may provide an ideal source of stem cells that can further extend their therapeutic application in nerve injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Yu Q, Liu L, Duan Y, Wang Y, Xuan X, Zhou L, Liu W. Wnt/β-catenin signaling regulates neuronal differentiation of mesenchymal stem cells. Biochem Biophys Res Commun 2013; 439:297-302. [DOI: 10.1016/j.bbrc.2013.08.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 11/26/2022]
|
64
|
Boddy SL, Chen W, Romero-Guevara R, Kottam L, Bellantuono I, Rivolta MN. Inner ear progenitor cells can be generated in vitro from human bone marrow mesenchymal stem cells. Regen Med 2013; 7:757-67. [PMID: 23164077 DOI: 10.2217/rme.12.58] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM Mouse mesenchymal stem cells (MSCs) can generate sensory neurons and produce inner ear hair cell-like cells. An equivalent source from humans is highly desirable, given their potential application in patient-specific regenerative therapies for deafness. In this study, we explored the ability of human MSCs (hMSCs) to differentiate into otic lineages. MATERIALS & METHODS hMSCs were exposed to culture media conditioned by human fetal auditory stem cells. RESULTS Conditioned media induced the expression of otic progenitor markers PAX8, PAX2, GATA3 and SOX2. After 4 weeks, cells coexpressed ATOH1, MYO7A and POU4F3 (indicators of hair cell lineage) or neuronal markers NEUROG1, POU4F1 and NEFH. Inhibition of WNT signaling prevented differentiation into otic progenitors, while WNT activation partially phenocopied results seen with the conditioned media. CONCLUSION This study demonstrates that hMSCs can be driven to express key genes found in the otic lineages and thereby promotes their status as candidates for regenerative therapies for deafness.
Collapse
Affiliation(s)
- Sarah L Boddy
- Centre for Stem Cell Biology & Department of Biomedical Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | | | |
Collapse
|
65
|
Liu AR, Liu L, Chen S, Yang Y, Zhao HJ, Liu L, Guo FM, Lu XM, Qiu HB. Activation of canonical wnt pathway promotes differentiation of mouse bone marrow-derived MSCs into type II alveolar epithelial cells, confers resistance to oxidative stress, and promotes their migration to injured lung tissue in vitro. J Cell Physiol 2013; 228:1270-83. [PMID: 23154940 DOI: 10.1002/jcp.24282] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 11/02/2012] [Indexed: 01/31/2023]
Abstract
The differentiation of mesenchymal stem cells (MSCs) into type II alveolar epithelial (AT II) cells in vivo and in vitro, is critical for reepithelization and recovery in acute lung injury (ALI), but the mechanisms responsible for differentiation are unclear. In the present study, we investigated the role of the canonical wnt pathway in the differentiation of mouse bone marrow-derived MSCs (mMSCs) into AT II cells. Using a modified co-culture system with murine lung epithelial-12 (MLE-12) cells and small airway growth media (SAGM) to efficiently drive mMSCs differentiation, we found that GSK 3β and β-catenin in the canonical wnt pathway were up-regulated during differentiation. The levels of surfactant protein (SP) C, SPB, and SPD, the specific markers of AT II cells, correspondingly increased in mMSCs when Wnt3a or LiCl was added to the co-culture system to activate wnt/β-catenin signaling. The expression of these factors was depressed to some extent by inhibiting the pathway with the addition of DKK 1. The differentiation rate of mMSCs also depends on their abilities to accumulate and survive in inflammatory tissue. Our results suggested that the activation of wnt/β-catenin signaling promoted mMSCs migration towards ALI mouse-derived lung tissue in a Transwell assay, and ameliorated the cell death and the reduction of Bcl-2/Bax induced by H(2) O(2), which simultaneously caused reduced GSK 3β and β-catenin in mMSCs. These data supports a potential mechanism for the differentiation of mMSCs into AT II cells involving canonical wnt pathway activation, which may be significant to their application in ALI.
Collapse
Affiliation(s)
- Ai-Ran Liu
- Department of Critical Care Medicine, Zhong-da Hospital, School of Medicine, Southeast University, Nanjing, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Neirinckx V, Coste C, Rogister B, Wislet-Gendebien S. Concise review: adult mesenchymal stem cells, adult neural crest stem cells, and therapy of neurological pathologies: a state of play. Stem Cells Transl Med 2013; 2:284-96. [PMID: 23486833 PMCID: PMC3659839 DOI: 10.5966/sctm.2012-0147] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/16/2013] [Indexed: 12/14/2022] Open
Abstract
Adult stem cells are endowed with in vitro multilineage differentiation abilities and constitute an attractive autologous source of material for cell therapy in neurological disorders. With regard to lately published results, the ability of adult mesenchymal stem cells (MSCs) and neural crest stem cells (NCSCs) to integrate and differentiate into neurons once inside the central nervous system (CNS) is currently questioned. For this review, we collected exhaustive data on MSC/NCSC neural differentiation in vitro. We then analyzed preclinical cell therapy experiments in different models for neurological diseases and concluded that neural differentiation is probably not the leading property of adult MSCs and NCSCs concerning neurological pathology management. A fine analysis of the molecules that are secreted by MSCs and NCSCs would definitely be of significant interest regarding their important contribution to the clinical and pathological recovery after CNS lesions.
Collapse
Affiliation(s)
| | | | - Bernard Rogister
- Neurosciences Unit and
- Development, Stem Cells and Regenerative Medicine Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée, University of Liège, Liège, Belgium
- Neurology Department, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | | |
Collapse
|
67
|
Inhibition of GSK-3β enhances neural differentiation in unrestricted somatic stem cells. Cell Biol Int 2013; 36:967-72. [PMID: 22775567 DOI: 10.1042/cbi20110541] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
GSK-3β is a key molecule in several signalling pathways, including the Wnt/β-catenin signalling pathway. There is increasing evidence suggesting Wnt/β-catenin signalling is involved in the neural differentiation of embryonic, somatic and neural stem cells. However, a large body of evidence indicates that this pathway maintains stem cells in a proliferative state. To address this controversy, we have investigated whether the Wnt/β-catenin pathway is present and involved in the neural differentiation of newly introduced USSCs (unrestricted somatic stem cells). Our results indicate that the components of Wnt/β-catenin signalling are present in undifferentiated USSCs. We also show that the treatment of neurally induced USSCs with BIO (6-bromoindirubin-3'-oxime), a specific GSK-3β inhibitor and Wnt activator, for 5 and 10 days results in increased expression of a general neuronal marker (β-tubulin III). Moreover, the expression of pGSK-3β and stabilized β-catenin increased by BIO in neurally induced USSCs, indicates that the Wnt pathway is activated and functional in these cells. Thus, inhibition of GSK-3β in USSCs enhances their neural differentiation, which suggests a positive role of the Wnt/β-catenin signalling pathway towards neural fate.
Collapse
|
68
|
Mutanlallemand (mtl) and Belly Spot and Deafness (bsd) are two new mutations of Lmx1a causing severe cochlear and vestibular defects. PLoS One 2012; 7:e51065. [PMID: 23226461 PMCID: PMC3511360 DOI: 10.1371/journal.pone.0051065] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/29/2012] [Indexed: 11/19/2022] Open
Abstract
Mutanlallemand (mtl) and Belly Spot and Deafness (bsd) are two new spontaneous alleles of the Lmx1a gene in mice. Homozygous mutants show head tossing and circling behaviour, indicative of vestibular defects, and they have short tails and white belly patches of variable size. The analysis of auditory brainstem responses (ABR) showed that mtl and bsd homozygotes are deaf, whereas heterozygous and wildtype littermates have normal hearing. Paint-filled inner ears at E16.5 revealed that mtl and bsd homozygotes lack endolymphatic ducts and semicircular canals and have short cochlear ducts. These new alleles show similarities with dreher (Lmx1a) mutants. Complementation tests between mtl and dreher and between mtl and bsd suggest that mtl and bsd are new mutant alleles of the Lmx1a gene. To determine the Lmx1a mutation in mtl and bsd mutant mice we performed PCR followed by sequencing of genomic DNA and cDNA. The mtl mutation is a single point mutation in the 3′ splice site of exon 4 leading to an exon extension and the activation of a cryptic splice site 44 base pairs downstream, whereas the bsd mutation is a genomic deletion that includes exon 3. Both mutations lead to a truncated LMX1A protein affecting the homeodomain (mtl) or LIM2-domain (bsd), which is critical for LMX1A protein function. Moreover, the levels of Lmx1a transcript in mtl and bsd mutants are significantly down-regulated. Hmx2/3 and Pax2 expression are also down-regulated in mtl and bsd mutants, suggesting a role of Lmx1a upstream of these transcription factors in early inner ear morphogenesis. We have found that these mutants develop sensory patches although they are misshapen. The characterization of these two new Lmx1a alleles highlights the critical role of this gene in the development of the cochlea and vestibular system.
Collapse
|
69
|
Yue X, Zhifeng G, Biyu S, Guofeng X, Tianqiu Z, Jinxia J, Jing X, Suzhe L, Man L, Wei T, Guijuan F, Aimin S, Liren L. Roles of Wnt/β-catenin signaling in retinal neuron-like differentiation of bone marrow mesenchymal stem cells from nonobese diabetic mice. J Mol Neurosci 2012; 49:250-261. [PMID: 23229835 DOI: 10.1007/s12031-012-9917-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 10/29/2012] [Indexed: 12/26/2022]
Abstract
Recent studies have shown that mesenchymal stem cells (MSCs) are expected to become promising therapeutic agents for the treatment of diabetic retinopathy (DR); moreover, we previously demonstrated that bone marrow (BM)-MSCs from nonobese diabetic (NOD) mice (an ideal DR model) had abnormal migration and adhesion. So, we hypothesized that NOD-MSCs also have abnormal retinal neuron-like differentiation potential. MSCs were cultured with brain-derived neurotrophic factor, nerve growth factor, and basic fibroblast growth factor. Western blot analysis and immunofluorescence both showed that the level of retinal neuron-like markers, such as glial fibrillary acidic protein, neuron-specific nuclear protein, tyrosine hydroxylase, Thy-1, glutamine synthetase, and rhodopsin was lower in NOD-MSCs than in imprinting control region MSCs. Furthermore, we explored the precise mechanisms controlling this change in NOD-MSCs. The expression levels of some important member proteins in Wnt/β-catenin signaling were determined and suggested the downregulation of Wnt/β-catenin signaling with retinal neuron-like differentiation of NOD-MSCs. Incubation of NOD-MSCs in medium supplemented with human recombinant Wnt1 resulted in a significant upregulation of retinal neuron-like markers, and the effects of Wnt1 were dose-dependent. Taken together, our study indicated that the inhibition of Wnt/β-catenin signaling in NOD-MSCs after induction could contribute to the abnormal retinal neuron-like differentiation. These data provide important preclinical references supporting the basis for further development of autologous MSC-based therapies for DR.
Collapse
Affiliation(s)
- Xu Yue
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, People's Republic of China
| | - Gu Zhifeng
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, People's Republic of China
| | - Shen Biyu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, People's Republic of China
| | - Xu Guofeng
- Department of Internal Medicine, Affiliated Changzhou No. 5 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province 223000, People's Republic of China
| | - Zhou Tianqiu
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, People's Republic of China
| | - Jiang Jinxia
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, People's Republic of China
| | - Xing Jing
- Department of Gastroenterology and Hepatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, People's Republic of China
| | - Liu Suzhe
- Department of Gastroenterology and Hepatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, People's Republic of China
| | - Li Man
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, People's Republic of China
| | - Tan Wei
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, People's Republic of China
| | - Feng Guijuan
- Department of Gastroenterology and Hepatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, People's Republic of China
| | - Sang Aimin
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, People's Republic of China
| | - Li Liren
- Department of Gastroenterology and Hepatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, People's Republic of China
| |
Collapse
|
70
|
Electrical stimulation enhances neurogenin2 expression through β-catenin signaling pathway of mouse bone marrow stromal cells and intensifies the effect of cell transplantation on brain injury. Neurosci Lett 2012; 533:71-6. [PMID: 23142721 DOI: 10.1016/j.neulet.2012.10.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 10/07/2012] [Accepted: 10/19/2012] [Indexed: 01/12/2023]
Abstract
Bone marrow stromal cells (BMSCs) have received significant attention for its use in neural regeneration. However, neural replacement by transplanted BMSCs was not very effective. Recently, the gene transfection method has improved the capability of cell transplantation; however, this method results in canceration and immune rejection. We induced the differentiation of mouse BMSCs into neural cells using electrical stimulation and transplanted the cells into traumatic brain injury (TBI) model mice. We found that the electrically stimulated cells have good potential to differentiate into neural cells and contribute to recovery from TBI without differentiating into astrocytes. In addition, we found that electrical stimulation enhanced neurogenin2 (Ngn2) expression. Ngn2 is involved in neural differentiation and inhibits astrocytic differentiation during cell growth. Furthermore, we found that this enhancement of Ngn2 expression occurred through β-catenin signaling pathway. This study may contribute to the use of BMSCs for neural replacement in central nervous system diseases.
Collapse
|
71
|
Ying C, Hu W, Cheng B, Zheng X, Li S. Neural differentiation of rat adipose-derived stem cells in vitro. Cell Mol Neurobiol 2012; 32:1255-63. [PMID: 22569742 DOI: 10.1007/s10571-012-9850-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 04/17/2012] [Indexed: 01/23/2023]
Abstract
It is reported that adipose-derived stem cells (ADSCs) had multilineage differentiation potential, and could differentiate into neuron-like cells induced by special induction media, which may provide a new idea for restoration of erectile dysfunction (ED) after cavernous nerve injury. The aim of this research was to explore the neuronal differentiation potential of ADSCs in vitro. ADSCs isolated from inguinal adipose tissue of rat were characterized by flow cytometry, and results showed that ADSCs were positive for mesenchymal stem cell markers CD90 and CD44, but negative for hematopoietic stem cell markers. ADSCs maintained self-renewing capacity and could differentiate into adipocytes and neurocytes under special culture condition. In this research, two methods were used to induce ADSCs. In method 1, ADSCs were treated with the preinduction medium including epithelium growth factor, basic fibroblast growth factor, and brain derived neurotrophic factor (BDNF) for 3 days, then with the neurogenic induction medium containing isobutylmethylxanthine, indomethacin, and insulin. While in method 2, BDNF was not used to treat ADSCs. After induction, neuronal differentiation of ADSCs was evaluated. Neuronal markers, glial fibrillary acidic protein (GFAP), and β-tubulin III (Tuj-1) were detected by immunofluorescence and Western Blot analyses. The expressions of GFAP and Tuj-1 in method 1 were obviously higher then those in method 2. In addition, the positive rate of the neuron-like cells was higher in method 1. It suggested that ADSCs are able to differentiate into neural-like cells in vitro, and the administration of BDNF in the preinduction medium may provide a new way to modify the culture method for getting more neuron-like cells in vitro.
Collapse
Affiliation(s)
- Chengcheng Ying
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | | | | | | | | |
Collapse
|
72
|
Wislet-Gendebien S, Laudet E, Neirinckx V, Alix P, Leprince P, Glejzer A, Poulet C, Hennuy B, Sommer L, Shakhova O, Rogister B. Mesenchymal stem cells and neural crest stem cells from adult bone marrow: characterization of their surprising similarities and differences. Cell Mol Life Sci 2012; 69:2593-608. [PMID: 22349262 PMCID: PMC11114712 DOI: 10.1007/s00018-012-0937-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/24/2012] [Accepted: 01/30/2012] [Indexed: 10/28/2022]
Abstract
The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crest stem cells (NCSC) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSC), including their similarities and differences. In this paper, using transcriptomic as well as proteomic technologies, we compared NCSC to MSC and stromal nestin-positive cells, all of them isolated from adult bone marrow. We demonstrated that the nestin-positive cell population, which was the first to be described as able to differentiate into functional neurons, was a mixed population of NCSC and MSC. More interestingly, we demonstrated that MSC shared with NCSC the same ability to truly differentiate into Tuj1-positive cells when co-cultivated with paraformaldehyde-fixed cerebellar granule neurons. Altogether, those results suggest that both NCSC and MSC can be considered as important tools for cellular therapies in order to replace neurons in various neurological diseases.
Collapse
|
73
|
Abstract
Both embryonic and adult neurogenesis involves the self-renewal/proliferation, survival, migration and lineage differentiation of neural stem/progenitor cells. Such dynamic process is tightly regulated by intrinsic and extrinsic factors and complex signaling pathways. Misregulated neurogenesis contributes much to a large range of neurodevelopmental defects and neurodegenerative diseases. The signaling of NFκB regulates many genes important in inflammation, immunity, cell survival and neural plasticity. During neurogenesis, NFκB signaling mediates the effect of numerous niche factors such as cytokines, chemokines, growth factors, extracellular matrix molecules, but also crosstalks with other signaling pathways such as Notch, Shh, Wnt/β-catenin. This review summarizes current progress on the NFκB signaling in all aspects of neurogenesis, focusing on the novel role of NFκB signaling in initiating early neural differentiation of neural stem cells and embryonic stem cells.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
74
|
Saraswati S, Deskins DL, Holt GE, Young PP. Pyrvinium, a potent small molecule Wnt inhibitor, increases engraftment and inhibits lineage commitment of mesenchymal stem cells (MSCs). Wound Repair Regen 2012; 20:185-93. [PMID: 22332749 DOI: 10.1111/j.1524-475x.2012.00767.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 12/26/2011] [Indexed: 01/09/2023]
Abstract
We and others have found that Wnt signaling inhibition is important in mesenchymal stem cell (MSC) self-renewal. Pyrvinium was identified as a potent Wnt inhibitor in a chemical screen for small molecules. In the present study, we hypothesized that pyrvinium will enhance MSC self-renewal to improve the clinical efficacy of MSC therapy. Pyrvinium increased MSC proliferation in vitro while inhibiting their osteogenic and chondrogenic lineage commitment by reducing cytoplasmic β-catenin. Although MSCs are a promising target for cell therapy, strategies to enhance their survival and maintain their stemness in the wounded area are essential. Using an in vivo model of granulation tissue formation, we demonstrated that pyrvinium enhanced long-term MSC engraftment. Pyrvinium-treated MSC-generated granulation tissue also demonstrated less ectopic differentiation into bone or cartilage. This study highlights the potential of using a therapeutic Wnt inhibitor to enhance MSC-driven regenerative therapy.
Collapse
Affiliation(s)
- Sarika Saraswati
- Department of Pathology, Vanderbilt Orthopaedic Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | |
Collapse
|
75
|
Lee ES, Yu SH, Jang YJ, Hwang DY, Jeon CJ. Transplantation of bone marrow-derived mesenchymal stem cells into the developing mouse eye. Acta Histochem Cytochem 2011; 44:213-21. [PMID: 22096261 PMCID: PMC3210426 DOI: 10.1267/ahc.11009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 07/06/2011] [Indexed: 12/23/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been studied widely for their potential to differentiate into various lineage cells including neural cells in vitro and in vivo. To investigate the influence of the developing host environment on the integration and morphological and molecular differentiation of MSCs, human bone marrow-derived mesenchymal stem cells (BM-MSCs) were transplanted into the developing mouse retina. Enhanced green fluorescent protein (GFP)-expressing BM-MSCs were transplanted by intraocular injections into mice, ranging in ages from 1 day postnatal (PN) to 10 days PN. The survival dates ranged from 7 days post-transplantation (DPT) to 28DPT, at which time an immunohistochemical analysis was performed on the eyes. The transplanted BM-MSCs survived and showed morphological differentiation into neural cells and some processes within the host retina. Some transplanted cells expressed microtubule associated protein 2 (MAP2ab, marker for mature neural cells) or glial fibrillary acid protein (GFAP, marker for glial cells) at 5PN 7DPT. In addition, some transplanted cells integrated into the developing retina. The morphological and molecular differentiation and integration within the 5PN 7DPT eye was greater than those of other-aged host eye. The present findings suggest that the age of the host environment can strongly influence the differentiation and integration of BM-MSCs.
Collapse
Affiliation(s)
- Eun-Shil Lee
- Department of Biology, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| | - Song-Hee Yu
- Department of Biology, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| | - Yu-Jin Jang
- Department of Biology, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| | - Dong-Youn Hwang
- Department of Biomedical Science, College of Life Science, CHA University
| | - Chang-Jin Jeon
- Department of Biology, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| |
Collapse
|
76
|
Abstract
AbstractThe olfactory system represents a perfect model to study the interactions between the central and peripheral nervous systems in order to establish a neural circuit during early embryonic development. In addition, another important feature of this system is the capability to integrate new cells generated in two neurogenic zones: the olfactory epithelium in the periphery and the wall of the lateral ventricles in the CNS, both during development and adulthood. In all these processes the combination and sequence of specific molecular signals plays a critical role in the wiring of the olfactory axons, as well as the precise location of the incoming cell populations to the olfactory bulb. The purpose of this review is to summarize recent insights into the cellular and molecular events that dictate cell settling position and axonal trajectories from their origin in the olfactory placode to the formation of synapses in the olfactory bulb to ensure rapid and reliable transmission of olfactory information from the nose to the brain.
Collapse
|
77
|
Lattanzi W, Geloso MC, Saulnier N, Giannetti S, Puglisi MA, Corvino V, Gasbarrini A, Michetti F. Neurotrophic features of human adipose tissue-derived stromal cells: in vitro and in vivo studies. J Biomed Biotechnol 2011; 2011:468705. [PMID: 22219658 PMCID: PMC3248027 DOI: 10.1155/2011/468705] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/16/2011] [Indexed: 12/25/2022] Open
Abstract
Due to its abundance, easy retrieval, and plasticity characteristics, adipose-tissue-derived stromal cells (ATSCs) present unquestionable advantages over other adult-tissue-derived stem cells. Based on the in silico analysis of our previous data reporting the ATSC-specific expression profiles, the present study attempted to clarify and validate at the functional level the expression of the neurospecific genes expressed by ATSC both in vitro and in vivo. This allowed evidencing that ATSCs express neuro-specific trophins, metabolic genes, and neuroprotective molecules. They were in fact able to induce neurite outgrowth in vitro, along with tissue-specific commitment along the neural lineage and the expression of the TRKA neurotrophin receptor in vivo. Our observation adds useful information to recent evidence proposing these cells as a suitable tool for cell-based applications in neuroregenerative medicine.
Collapse
Affiliation(s)
- Wanda Lattanzi
- 1Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Concetta Geloso
- 1Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- *Maria Concetta Geloso:
| | - Nathalie Saulnier
- 2Department of Internal Medicine and Gastroenterology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Stefano Giannetti
- 1Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Ausiliatrice Puglisi
- 2Department of Internal Medicine and Gastroenterology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Valentina Corvino
- 1Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- 2Department of Internal Medicine and Gastroenterology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fabrizio Michetti
- 1Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|