51
|
Itskanov S, Kuo KM, Gumbart JC, Park E. Stepwise gating of the Sec61 protein-conducting channel by Sec63 and Sec62. Nat Struct Mol Biol 2021; 28:162-172. [PMID: 33398175 PMCID: PMC8236211 DOI: 10.1038/s41594-020-00541-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Many proteins are transported into the endoplasmic reticulum by the universally conserved Sec61 channel. Post-translational transport requires two additional proteins, Sec62 and Sec63, but their functions are poorly defined. Here, we determined cryo-EM structures of several variants of Sec61–Sec62–Sec63 complexes from Saccharomyces cerevisiae and Thermomyces lanuginosus and show that Sec62 and Sec63 induce opening of the Sec61 channel. Without Sec62, the translocation pore of Sec61 remains closed by the plug domain, rendering the channel inactive. We further show that the lateral gate of Sec61 must first be partially opened by interactions between Sec61 and Sec63 in cytosolic and lumenal domains, a simultaneous disruption of which completely closes the channel. The structures and molecular dynamics simulations suggest that Sec62 may also prevent lipids from invading the channel through the open lateral gate. Our study shows how Sec63 and Sec62 work together in a hierarchical manner to activate Sec61 for post-translational protein translocation.
Collapse
Affiliation(s)
- Samuel Itskanov
- Biophysics Graduate Program, University of California, Berkeley, CA, USA
| | - Katie M Kuo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - James C Gumbart
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.,School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eunyong Park
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA. .,California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA.
| |
Collapse
|
52
|
Torres-Garcia S, Di Pompeo L, Eivers L, Gaborieau B, White SA, Pidoux AL, Kanigowska P, Yaseen I, Cai Y, Allshire RC. SpEDIT: A fast and efficient CRISPR/Cas9 method for fission yeast. Wellcome Open Res 2020; 5:274. [PMID: 33313420 PMCID: PMC7721064 DOI: 10.12688/wellcomeopenres.16405.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 01/01/2023] Open
Abstract
The CRISPR/Cas9 system allows scarless, marker-free genome editing. Current CRISPR/Cas9 systems for the fission yeast Schizosaccharomyces pombe rely on tedious and time-consuming cloning procedures to introduce a specific sgRNA target sequence into a Cas9-expressing plasmid. In addition, Cas9 endonuclease has been reported to be toxic to fission yeast when constitutively overexpressed from the strong adh1 promoter. To overcome these problems we have developed an improved system, SpEDIT, that uses a synthesised Cas9 sequence codon-optimised for S. pombe expressed from the medium strength adh15 promoter. The SpEDIT system exhibits a flexible modular design where the sgRNA is fused to the 3' end of the self-cleaving hepatitis delta virus (HDV) ribozyme, allowing expression of the sgRNA cassette to be driven by RNA polymerase III from a tRNA gene sequence. Lastly, the inclusion of sites for the BsaI type IIS restriction enzyme flanking a GFP placeholder enables one-step Golden Gate mediated replacement of GFP with synthesized sgRNAs for expression. The SpEDIT system allowed a 100% mutagenesis efficiency to be achieved when generating targeted point mutants in the ade6 + or ura4 + genes by transformation of cells from asynchronous cultures. SpEDIT also permitted insertion, tagging and deletion events to be obtained with minimal effort. Simultaneous editing of two independent non-homologous loci was also readily achieved. Importantly the SpEDIT system displayed reduced toxicity compared to currently available S. pombe editing systems. Thus, SpEDIT provides an effective and user-friendly CRISPR/Cas9 procedure that significantly improves the genome editing toolbox for fission yeast.
Collapse
Affiliation(s)
- Sito Torres-Garcia
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Lorenza Di Pompeo
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Luke Eivers
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Baptiste Gaborieau
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Sharon A. White
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Alison L. Pidoux
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Paulina Kanigowska
- School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Imtiyaz Yaseen
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Yizhi Cai
- School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF, UK,Present address: Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Robin C. Allshire
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF, UK,
| |
Collapse
|
53
|
Schwer B, Sanchez AM, Shuman S. Inactivation of fission yeast Erh1 de-represses pho1 expression: evidence that Erh1 is a negative regulator of prt lncRNA termination. RNA (NEW YORK, N.Y.) 2020; 26:1334-1344. [PMID: 32546512 PMCID: PMC7491324 DOI: 10.1261/rna.076463.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/01/2020] [Indexed: 05/08/2023]
Abstract
Fission yeast Erh1 exists in a complex with RNA-binding protein Mmi1. Deletion of erh1 up-regulates the phosphate homeostasis gene pho1, which is normally repressed by transcription in cis of a 5' flanking prt lncRNA. Here we present evidence that de-repression of pho1 by erh1Δ is achieved through precocious 3'-processing/termination of prt lncRNA synthesis, to wit: (i) erh1Δ does not affect the activity of the prt or pho1 promoters per se; (ii) de-repression by erh1Δ depends on CPF (cleavage and polyadenylation factor) subunits Ctf1, Dis2, Ssu72, Swd22, and Ppn1 and on termination factor Rhn1; (iii) de-repression requires synthesis by the Asp1 IPP kinase of inositol 1-pyrophosphates (1-IPPs); (iv) de-repression is effaced by mutating Thr4 of the RNA polymerase II CTD to alanine; and (v) erh1Δ exerts an additive effect on pho1 de-repression in combination with mutating CTD Ser7 to alanine and with deletion of the IPP pyrophosphatase Aps1. These findings point to Erh1 as an antagonist of lncRNA termination in the prt-pho1 axis. In contrast, in mmi1Δ cells there is a reduction in pho1 mRNA and increase in the formation of a prt-pho1 read-through transcript, consistent with Mmi1 being an agonist of prt termination. We envision that Erh1 acts as a brake on Mmi1's ability to promote CPF-dependent termination during prt lncRNA synthesis. Consistent with this idea, erh1Δ de-repression of pho1 was eliminated by mutating the Mmi1-binding sites in the prt lncRNA.
Collapse
Affiliation(s)
- Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
| | - Ana M Sanchez
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
54
|
Nemec AA, Tomko RJ. A suite of polymerase chain reaction-based peptide tagging plasmids for epitope-targeted enzymatic functionalization of yeast proteins. Yeast 2020; 37:327-335. [PMID: 32401365 DOI: 10.1002/yea.3471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 11/08/2022] Open
Abstract
The budding yeast and model eukaryote Saccharomyces cerevisiae has been invaluable for purification and analysis of numerous evolutionarily conserved proteins and multisubunit complexes that cannot be readily reconstituted in Escherichia coli. For many studies, it is desirable to functionalize a particular protein or subunit of a complex with a ligand, fluorophore or other small molecule. Enzyme-catalysed site-specific modification of proteins bearing short peptide tags is a powerful strategy to overcome the limitations associated with traditional nonselective labelling chemistries. Towards this end, we developed a suite of template plasmids for C-terminal tagging with short peptide sequences that can be site-specifically functionalized with high efficiency and selectivity. We have also combined these sequences with the FLAG tag as a handle for purification or immunological detection of the modified protein. We demonstrate the utility of these plasmids by site-specifically labelling the 28-subunit core particle subcomplex of the 26S proteasome with the small molecule fluorophore Cy5. The full set of plasmids has been deposited in the non-profit plasmid repository Addgene (http://www.addgene.org).
Collapse
Affiliation(s)
- Antonia A Nemec
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Robert J Tomko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| |
Collapse
|
55
|
Maestroni L, Reyes C, Vaurs M, Gachet Y, Tournier S, Géli V, Coulon S. Nuclear envelope attachment of telomeres limits TERRA and telomeric rearrangements in quiescent fission yeast cells. Nucleic Acids Res 2020; 48:3029-3041. [PMID: 31980821 PMCID: PMC7102995 DOI: 10.1093/nar/gkaa043] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 11/12/2022] Open
Abstract
Telomere anchoring to nuclear envelope (NE) is a key feature of nuclear genome architecture. Peripheral localization of telomeres is important for chromatin silencing, telomere replication and for the control of inappropriate recombination. Here, we report that fission yeast quiescent cells harbor predominantly a single telomeric cluster anchored to the NE. Telomere cluster association to the NE relies on Rap1-Bqt4 interaction, which is impacted by the length of telomeric sequences. In quiescent cells, reducing telomere length or deleting bqt4, both result in an increase in transcription of the telomeric repeat-containing RNA (TERRA). In the absence of Bqt4, telomere shortening leads to deep increase in TERRA level and the concomitant formation of subtelomeric rearrangements (STEEx) that accumulate massively in quiescent cells. Taken together, our data demonstrate that Rap1-Bqt4-dependent telomere association to NE preserves telomere integrity in post-mitotic cells, preventing telomeric transcription and recombination. This defines the nuclear periphery as an area where recombination is restricted, creating a safe zone for telomeres of post-mitotic cells.
Collapse
Affiliation(s)
- Laetitia Maestroni
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Marseille, France. Equipe labellisée Ligue contre le Cancer, France
| | - Céline Reyes
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Mélina Vaurs
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Marseille, France. Equipe labellisée Ligue contre le Cancer, France
| | - Yannick Gachet
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Sylvie Tournier
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Vincent Géli
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Marseille, France. Equipe labellisée Ligue contre le Cancer, France
| | - Stéphane Coulon
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Marseille, France. Equipe labellisée Ligue contre le Cancer, France
| |
Collapse
|
56
|
Argunhan B, Sakakura M, Afshar N, Kurihara M, Ito K, Maki T, Kanamaru S, Murayama Y, Tsubouchi H, Takahashi M, Takahashi H, Iwasaki H. Cooperative interactions facilitate stimulation of Rad51 by the Swi5-Sfr1 auxiliary factor complex. eLife 2020; 9:52566. [PMID: 32204793 PMCID: PMC7093153 DOI: 10.7554/elife.52566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/13/2020] [Indexed: 01/26/2023] Open
Abstract
Although Rad51 is the key protein in homologous recombination (HR), a major DNA double-strand break repair pathway, several auxiliary factors interact with Rad51 to promote productive HR. We present an interdisciplinary characterization of the interaction between Rad51 and Swi5-Sfr1, a conserved auxiliary factor. Two distinct sites within the intrinsically disordered N-terminus of Sfr1 (Sfr1N) were found to cooperatively bind Rad51. Deletion of this domain impaired Rad51 stimulation in vitro and rendered cells sensitive to DNA damage. By contrast, amino acid-substitution mutants, which had comparable biochemical defects, could promote DNA repair, suggesting that Sfr1N has another role in addition to Rad51 binding. Unexpectedly, the DNA repair observed in these mutants was dependent on Rad55-Rad57, another auxiliary factor complex hitherto thought to function independently of Swi5-Sfr1. When combined with the finding that they form a higher-order complex, our results imply that Swi5-Sfr1 and Rad55-Rad57 can collaboratively stimulate Rad51 in Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Bilge Argunhan
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Masayoshi Sakakura
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Negar Afshar
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Misato Kurihara
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Kentaro Ito
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Takahisa Maki
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Shuji Kanamaru
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Yasuto Murayama
- Center for Frontier Research, National Institute of Genetics, Shizuoka, Japan
| | - Hideo Tsubouchi
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Masayuki Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Hideo Takahashi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Hiroshi Iwasaki
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
57
|
Sjölander JJ, Tarczykowska A, Picazo C, Cossio I, Redwan IN, Gao C, Solano C, Toledano MB, Grøtli M, Molin M, Sunnerhagen P. A Redox-Sensitive Thiol in Wis1 Modulates the Fission Yeast Mitogen-Activated Protein Kinase Response to H 2O 2 and Is the Target of a Small Molecule. Mol Cell Biol 2020; 40:e00346-19. [PMID: 31932483 PMCID: PMC7076255 DOI: 10.1128/mcb.00346-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/23/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022] Open
Abstract
Oxidation of a highly conserved cysteine (Cys) residue located in the kinase activation loop of mitogen-activated protein kinase kinases (MAPKK) inactivates mammalian MKK6. This residue is conserved in the fission yeast Schizosaccharomyces pombe MAPKK Wis1, which belongs to the H2O2-responsive MAPK Sty1 pathway. Here, we show that H2O2 reversibly inactivates Wis1 through this residue (C458) in vitro We found that C458 is oxidized in vivo and that serine replacement of this residue significantly enhances Wis1 activation upon addition of H2O2 The allosteric MAPKK inhibitor INR119, which binds in a pocket next to the activation loop and C458, prevented the inhibition of Wis1 by H2O2in vitro and significantly increased Wis1 activation by low levels of H2O2in vivo We propose that oxidation of C458 inhibits Wis1 and that INR119 cancels out this inhibitory effect by binding close to this residue. Kinase inhibition through the oxidation of a conserved Cys residue in MKK6 (C196) is thus conserved in the S. pombe MAPKK Wis1.
Collapse
Affiliation(s)
- Johanna J Sjölander
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| | - Agata Tarczykowska
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| | - Cecilia Picazo
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
- Chalmers University of Technology, Department of Biology and Biological Engineering, Gothenburg, Sweden
| | - Itziar Cossio
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| | - Itedale Namro Redwan
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| | - Chunxia Gao
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| | - Carlos Solano
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| | - Michel B Toledano
- Oxidative Stress and Cancer Laboratory, Integrative Biology and Molecular Genetics Unit, CEA Saclay, Gif-sur-Yvette, France
| | - Morten Grøtli
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| | - Mikael Molin
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
- Chalmers University of Technology, Department of Biology and Biological Engineering, Gothenburg, Sweden
| | - Per Sunnerhagen
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| |
Collapse
|
58
|
Two dominant selectable markers for genetic manipulation in Neurospora crassa. Curr Genet 2020; 66:835-847. [PMID: 32152733 DOI: 10.1007/s00294-020-01063-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
Abstract
Neurospora crassa is an excellent model fungus for studies on molecular genetics, biochemistry, physiology, and molecular cell biology. Along with the rapid progress of Neurospora research, new tools facilitating more efficient and accurate genetic analysis are in high demand. Here, we tested whether the dominant selective makers widely used in yeasts are applicable in N. crassa. Among them, we found that the strains of N. crassa are sensitive to the aminoglycoside antibiotics, G418 and nourseothricin. 1000 μg/mL of G418 or 50 μg/mL of nourseothricin is sufficient to inhibit Neurospora growth completely. When the neomycin phosphotransferase gene (neo) used in mammalian cells is expressed, N. crassa shows potent resistance to G418. This establishes G418-resistant marker as a dominant selectable marker to use in N. crassa. Similarly, when the nourseothricin acetyltransferase gene (nat) from Streptomyces noursei is induced by qa-2 promoter in the presence of quinic acid (QA), N. crassa shows potent resistance to nourseothricin. When nat is constitutively expressed by full-length or truncated versions of the promoter from the N. crassa cfp gene (NCU02193), or by the trpC promoter of Aspergillus nidulans, the growth of N. crassa in the presence of nourseothricin is proportional to the expression levels of Nat. Finally, these two markers are used to knock-out wc-2 or al-1 gene from the N. crassa genome. The successful development of these two markers in this study expands the toolbox for N. crassa and very likely for other filamentous fungi as well.
Collapse
|
59
|
Vještica A, Marek M, Nkosi PJ, Merlini L, Liu G, Bérard M, Billault-Chaumartin I, Martin SG. A toolbox of stable integration vectors in the fission yeast Schizosaccharomyces pombe. J Cell Sci 2020; 133:jcs.240754. [PMID: 31801797 DOI: 10.1242/jcs.240754] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/24/2019] [Indexed: 12/14/2022] Open
Abstract
Schizosaccharomyces pombe is a widely used model organism to study many aspects of eukaryotic cell physiology. Its popularity as an experimental system partially stems from the ease of genetic manipulations, where the innate homology-targeted repair is exploited to precisely edit the genome. While vectors to incorporate exogenous sequences into the chromosomes are available, most are poorly characterized. Here, we show that commonly used fission yeast vectors, which upon integration produce repetitive genomic regions, give rise to unstable genomic loci. We overcome this problem by designing a new series of stable integration vectors (SIVs) that target four different prototrophy genes. SIVs produce non-repetitive, stable genomic loci and integrate predominantly as single copy. Additionally, we develop a set of complementary auxotrophic alleles that preclude false-positive integration events. We expand the vector series to include antibiotic resistance markers, promoters, fluorescent tags and terminators, and build a highly modular toolbox to introduce heterologous sequences. Finally, as proof of concept, we generate a large set of ready-to-use, fluorescent probes to mark organelles and cellular processes with a wide range of applications in fission yeast research.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Aleksandar Vještica
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Magdalena Marek
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Pedro Junior Nkosi
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Laura Merlini
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Gaowen Liu
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Melvin Bérard
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Ingrid Billault-Chaumartin
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
60
|
Yorimitsu T, Sato K. Sec16 function in ER export and autophagy is independent of its phosphorylation in Saccharomyces cerevisiae. Mol Biol Cell 2019; 31:149-156. [PMID: 31851588 PMCID: PMC7001475 DOI: 10.1091/mbc.e19-08-0477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Coat protein complex II (COPII) protein assembles at the endoplasmic reticulum exit site (ERES) to form vesicle carrier for transport from the ER to the Golgi apparatus. Sec16 has a critical role in COPII assembly to form ERES. Sec16∆565N mutant, which lacks the N-terminal 565 amino acids, is defective in ERES formation and ER export. Several phosphoproteomic studies have identified 108 phosphorylated Ser/Thr/Tyr residues in Sec16 of Saccharomyces cerevisiae, of which 30 residues are located in the truncated part of Sec16∆565N. The exact role of the phosphorylation in Sec16 function remains to be determined. Therefore, we analyzed nonphosphorylatable Sec16 mutants, in which all identified phosphorylation sites are substituted with Ala. These mutants show ERES and ER export comparable to those of wild-type Sec16, although the nonphosphorylatable mutant binds the COPII subunit Sec23 more efficiently than the wild-type protein. Because nutrient starvation–induced autophagy depends on Sec16, Sec16∆565N impairs autophagy, whereas the nonphosphorylatable mutants do not affect autophagy. We conclude that Sec16 phosphorylation is not essential for its function.
Collapse
Affiliation(s)
- Tomohiro Yorimitsu
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Ken Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
61
|
Sanchez AM, Garg A, Shuman S, Schwer B. Inositol pyrophosphates impact phosphate homeostasis via modulation of RNA 3' processing and transcription termination. Nucleic Acids Res 2019; 47:8452-8469. [PMID: 31276588 PMCID: PMC6895273 DOI: 10.1093/nar/gkz567] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/10/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022] Open
Abstract
Fission yeast phosphate acquisition genes pho1, pho84, and tgp1 are repressed in phosphate-rich medium by transcription of upstream lncRNAs. Here, we show that phosphate homeostasis is subject to metabolite control by inositol pyrophosphates (IPPs), exerted through the 3'-processing/termination machinery and the Pol2 CTD code. Increasing IP8 (via Asp1 IPP pyrophosphatase mutation) de-represses the PHO regulon and leads to precocious termination of prt lncRNA synthesis. pho1 de-repression by IP8 depends on cleavage-polyadenylation factor (CPF) subunits, termination factor Rhn1, and the Thr4 letter of the CTD code. pho1 de-repression by mutation of the Ser7 CTD letter depends on IP8. Simultaneous inactivation of the Asp1 and Aps1 IPP pyrophosphatases is lethal, but this lethality is suppressed by mutations of CPF subunits Ppn1, Swd22, Ssu72, and Ctf1 and CTD mutation T4A. Failure to synthesize IP8 (via Asp1 IPP kinase mutation) results in pho1 hyper-repression. Synthetic lethality of asp1Δ with Ppn1, Swd22, and Ssu72 mutations argues that IP8 plays an important role in essential 3'-processing/termination events, albeit in a manner genetically redundant to CPF. Transcriptional profiling delineates an IPP-responsive regulon composed of genes overexpressed when IP8 levels are increased. Our results establish a novel role for IPPs in cell physiology.
Collapse
Affiliation(s)
- Ana M Sanchez
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Angad Garg
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
62
|
Tamm T, Kisly I, Remme J. Functional Interactions of Ribosomal Intersubunit Bridges in Saccharomyces cerevisiae. Genetics 2019; 213:1329-1339. [PMID: 31649153 PMCID: PMC6893367 DOI: 10.1534/genetics.119.302777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/22/2019] [Indexed: 01/02/2023] Open
Abstract
Ribosomes of Archaea and Eukarya share higher homology with each other than with bacterial ribosomes. For example, there is a set of 35 r-proteins that are specific only for archaeal and eukaryotic ribosomes. Three of these proteins-eL19, eL24, and eL41-participate in interactions between ribosomal subunits. The eukaryote-specific extensions of r-proteins eL19 and eL24 form two intersubunit bridges eB12 and eB13, which are present only in eukaryotic ribosomes. The third r-protein, eL41, forms bridge eB14. Notably, eL41 is found in all eukaryotes but only in some Archaea. It has been shown that bridges eB12 and eB13 are needed for efficient translation, while r-protein eL41 plays a minor role in ribosome function. Here, the functional interactions between intersubunit bridges were studied using budding yeast strains lacking different combinations of the abovementioned bridges/proteins. The growth phenotypes, levels of in vivo translation, ribosome-polysome profiles, and in vitro association of ribosomal subunits were analyzed. The results show a genetic interaction between r-protein eL41 and the eB12 bridge-forming region of eL19, and between r-proteins eL41 and eL24. It was possible to construct viable yeast strains with Archaea-like ribosomes lacking two or three eukaryote-specific bridges. These strains display slow growth and a poor translation phenotype. In addition, bridges eB12 and eB13 appear to cooperate during ribosome subunit association. These results indicate that nonessential structural elements of r-proteins become highly important in the context of disturbed subunit interactions. Therefore, eukaryote-specific bridges may contribute to the evolutionary success of eukaryotic translation machinery.
Collapse
Affiliation(s)
- Tiina Tamm
- Department of Molecular Biology, Institute of Molecular and Cell Biology, University of Tartu, 51010 Estonia
| | - Ivan Kisly
- Department of Molecular Biology, Institute of Molecular and Cell Biology, University of Tartu, 51010 Estonia
| | - Jaanus Remme
- Department of Molecular Biology, Institute of Molecular and Cell Biology, University of Tartu, 51010 Estonia
| |
Collapse
|
63
|
Elías-Villalobos A, Toullec D, Faux C, Séveno M, Helmlinger D. Chaperone-mediated ordered assembly of the SAGA and NuA4 transcription co-activator complexes in yeast. Nat Commun 2019; 10:5237. [PMID: 31748520 PMCID: PMC6868236 DOI: 10.1038/s41467-019-13243-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
Transcription initiation involves the coordinated activities of large multimeric complexes, but little is known about their biogenesis. Here we report several principles underlying the assembly and topological organization of the highly conserved SAGA and NuA4 co-activator complexes, which share the Tra1 subunit. We show that Tra1 contributes to the overall integrity of NuA4, whereas, within SAGA, it specifically controls the incorporation of the de-ubiquitination module (DUB), as part of an ordered assembly pathway. Biochemical and functional analyses reveal the mechanism by which Tra1 specifically interacts with either SAGA or NuA4. Finally, we demonstrate that Hsp90 and its cochaperone TTT promote Tra1 de novo incorporation into both complexes, indicating that Tra1, the sole pseudokinase of the PIKK family, shares a dedicated chaperone machinery with its cognate kinases. Overall, our work brings mechanistic insights into the assembly of transcriptional complexes and reveals the contribution of dedicated chaperones to this process. Transcription initiation involves the coordinated assembly and activity of large multimeric complexes. Here the authors report on the chaperone-mediated ordered assembly of the SAGA and NuA4 transcription co-activator complexes in fission yeast, providing insight into the de novo assembly of transcriptional complexes and the contribution of dedicated chaperones to this process.
Collapse
Affiliation(s)
| | - Damien Toullec
- CRBM, CNRS, University of Montpellier, Montpellier, France
| | - Céline Faux
- CRBM, CNRS, University of Montpellier, Montpellier, France
| | - Martial Séveno
- BioCampus Montpellier, CNRS, INSERM, University of Montpellier, Montpellier, France
| | | |
Collapse
|
64
|
Kisly I, Remme J, Tamm T. Ribosomal protein eL24, involved in two intersubunit bridges, stimulates translation initiation and elongation. Nucleic Acids Res 2019; 47:406-420. [PMID: 30407570 PMCID: PMC6326817 DOI: 10.1093/nar/gky1083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/19/2018] [Indexed: 01/24/2023] Open
Abstract
Interactions between subunits in the Saccharomyces cerevisiae ribosome are mediated by universal and eukaryote-specific intersubunit bridges. Universal bridges are positioned close to the ribosomal functional centers, while eukaryote-specific bridges are mainly located on the periphery of the ribosome. Two bridges, eB13 and B6, are formed by the ribosomal protein eL24. The eukaryotic eL24 is composed of an N-terminal domain, a linker region and a C-terminal α-helix. Here, the functions of different domains of eL24 in the S. cerevisiae ribosome were evaluated. The C-terminal domain and the linker region of the eL24 form eukaryote-specific eB13 bridge. Phenotypic characterization of the eL24 deletion mutants indicated that the functional integrity of the eB13 bridge mainly depends on the protein-protein contacts between eL24 and eS6. Further investigation showed importance of the eB13 bridge in the subunit joining in vivo and in vitro. In vitro translation assay demonstrated the role of the eB13 bridge in both initiation and elongation steps of translation. Intriguingly, results of in vitro translation experiment suggest involvement of the N-terminal domain of eL24 in the translation initiation. Therefore, eL24 performs number of tasks required for the optimal ribosome functionality.
Collapse
Affiliation(s)
- Ivan Kisly
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Jaanus Remme
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Tiina Tamm
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| |
Collapse
|
65
|
Shen KF, Forsburg SL. Overlapping Roles in Chromosome Segregation for Heterochromatin Protein 1 (Swi6) and DDK in Schizosaccharomyces pombe. Genetics 2019; 212:417-430. [PMID: 31000521 PMCID: PMC6553818 DOI: 10.1534/genetics.119.302125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/10/2019] [Indexed: 12/23/2022] Open
Abstract
Fission yeast Swi6 is a human HP1 homolog that plays important roles in multiple cellular processes. In addition to its role in maintaining heterochromatin silencing, Swi6 is required for cohesin enrichment at the pericentromere. Loss of Swi6 leads to abnormal mitosis, including defects in the establishment of bioriented sister kinetochores and microtubule attachment. Swi6 interacts with Dfp1, a regulatory subunit of DBF4-dependent kinase (DDK), and failure to recruit Dfp1 to the pericentromere results in late DNA replication. Using the dfp1-3A mutant allele, which specifically disrupts Swi6-Dfp1 association, we investigated how interaction between Swi6 and Dfp1 affects chromosome dynamics. We find that disrupting the interaction between Swi6 and Dfp1 delays mitotic progression in a spindle assembly checkpoint-dependent manner. Artificially tethering Dfp1 back to the pericentromere is sufficient to restore normal spindle length and rescue segregation defects in swi6-deleted cells. However, Swi6 is necessary for centromeric localization of Rad21-GFP independent of DDK. Our data indicate that DDK contributes to mitotic chromosome segregation in pathways that partly overlap with, but can be separated from both, Swi6 and the other HP1 homolog, Chp2.
Collapse
Affiliation(s)
- Kuo-Fang Shen
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089-2910
| | - Susan L Forsburg
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089-2910
| |
Collapse
|
66
|
Gómez-Gil E, Franco A, Madrid M, Vázquez-Marín B, Gacto M, Fernández-Breis J, Vicente-Soler J, Soto T, Cansado J. Quorum sensing and stress-activated MAPK signaling repress yeast to hypha transition in the fission yeast Schizosaccharomyces japonicus. PLoS Genet 2019; 15:e1008192. [PMID: 31150379 PMCID: PMC6561576 DOI: 10.1371/journal.pgen.1008192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/12/2019] [Accepted: 05/13/2019] [Indexed: 01/14/2023] Open
Abstract
Quorum sensing (QS), a mechanism of microbial communication dependent on cell density, governs developmental decisions in many bacteria and in some pathogenic and non-pathogenic fungi including yeasts. In these simple eukaryotes this response is mediated by the release into the growth medium of quorum-sensing molecules (QSMs) whose concentration increases proportionally to the population density. To date the occurrence of QS is restricted to a few yeast species. We show that a QS mediated by the aromatic alcohols phenylethanol and tryptophol represses the dimorphic yeast to hypha differentiation in the fission yeast S. japonicus in response to an increased population density. In addition, the stress activated MAPK pathway (SAPK), which controls cell cycle progression and adaptation to environmental changes in this organism, constitutively represses yeast to hypha differentiation both at transcriptional and post-translational levels. Moreover, deletion of its main effectors Sty1 MAPK and Atf1 transcription factor partially suppressed the QS-dependent block of hyphal development under inducing conditions. RNAseq analysis showed that the expression of nrg1+, which encodes a putative ortholog of the transcription factor Nrg1 that represses yeast to hypha dimorphism in C. albicans, is downregulated both by QS and the SAPK pathway. Remarkably, Nrg1 may act in S. japonicus as an activator of hyphal differentiation instead of being a repressor. S. japonicus emerges as an attractive and amenable model organism to explore the QS mechanisms that regulate cellular differentiation in fungi. Quorum sensing is a relevant mechanism of communication dependent on population density that controls cell development and pathogenesis in microorganisms including fungi. We describe a quorum sensing mediated by the release of aromatic alcohols in the growth medium that blocks hyphal development in the fission yeast Schizosaccharomyces japonicus. This is the first description of such a mechanism in the fission yeast lineage, and confirms its expansion along Ascomycota fungi. The stress-responsive pathway (SAPK), which regulates fungal growth and differentiation, limits hyphal growth in S. japonicus in a constitutive fashion, and nonfunctional SAPK mutants are partially insensitive to quorum sensing and able to form hyphae in high cell density cultures. Nrg1, an important factor that blocks hyphal development in the pathogen Candida albicans, activates hyphal growth in S. japonicus, and its expression is counteracted by both quorum sensing and the SAPK pathway. Nrg1 function may thus have diverged evolutionary in this organism from being a repressor to an activator of hyphal development. S. japonicus emerges as a suitable model organism to explore the intricate mechanisms regulating fungal differentiation.
Collapse
Affiliation(s)
- Elisa Gómez-Gil
- Yeast Physiology Group, Departmento de Genética y Microbiología, Facultad de Biología. Universidad de Murcia, Murcia, Spain
| | - Alejandro Franco
- Yeast Physiology Group, Departmento de Genética y Microbiología, Facultad de Biología. Universidad de Murcia, Murcia, Spain
| | - Marisa Madrid
- Yeast Physiology Group, Departmento de Genética y Microbiología, Facultad de Biología. Universidad de Murcia, Murcia, Spain
| | - Beatriz Vázquez-Marín
- Yeast Physiology Group, Departmento de Genética y Microbiología, Facultad de Biología. Universidad de Murcia, Murcia, Spain
| | - Mariano Gacto
- Yeast Physiology Group, Departmento de Genética y Microbiología, Facultad de Biología. Universidad de Murcia, Murcia, Spain
| | - Jesualdo Fernández-Breis
- Departamento de Informática y Sistemas, Facultad de Informática. Universidad de Murcia, Murcia, Spain
| | - Jero Vicente-Soler
- Yeast Physiology Group, Departmento de Genética y Microbiología, Facultad de Biología. Universidad de Murcia, Murcia, Spain
| | - Teresa Soto
- Yeast Physiology Group, Departmento de Genética y Microbiología, Facultad de Biología. Universidad de Murcia, Murcia, Spain
- * E-mail: (TS); (JC)
| | - José Cansado
- Yeast Physiology Group, Departmento de Genética y Microbiología, Facultad de Biología. Universidad de Murcia, Murcia, Spain
- * E-mail: (TS); (JC)
| |
Collapse
|
67
|
Adames NR, Gallegos JE, Peccoud J. Yeast genetic interaction screens in the age of CRISPR/Cas. Curr Genet 2019; 65:307-327. [PMID: 30255296 PMCID: PMC6420903 DOI: 10.1007/s00294-018-0887-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022]
Abstract
The ease of performing both forward and reverse genetics in Saccharomyces cerevisiae, along with its stable haploid state and short generation times, has made this budding yeast the consummate model eukaryote for genetics. The major advantage of using budding yeast for reverse genetics is this organism's highly efficient homology-directed repair, allowing for precise genome editing simply by introducing DNA with homology to the chromosomal target. Although plasmid- and PCR-based genome editing tools are quite efficient, they depend on rare spontaneous DNA breaks near the target sequence. Consequently, they can generate only one genomic edit at a time, and the edit must be associated with a selectable marker. However, CRISPR/Cas technology is efficient enough to permit markerless and multiplexed edits in a single step. These features have made CRISPR/Cas popular for yeast strain engineering in synthetic biology and metabolic engineering applications, but it has not been widely employed for genetic screens. In this review, we critically examine different methods to generate multi-mutant strains in systematic genetic interaction screens and discuss the potential of CRISPR/Cas to supplement or improve on these methods.
Collapse
Affiliation(s)
- Neil R Adames
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jenna E Gallegos
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jean Peccoud
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
68
|
Gregory B, Rahman N, Bommakanti A, Shamsuzzaman M, Thapa M, Lescure A, Zengel JM, Lindahl L. The small and large ribosomal subunits depend on each other for stability and accumulation. Life Sci Alliance 2019; 2:e201800150. [PMID: 30837296 PMCID: PMC6402506 DOI: 10.26508/lsa.201800150] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
The 1:1 balance between the numbers of large and small ribosomal subunits can be disturbed by mutations that inhibit the assembly of only one of the subunits. Here, we have investigated if the cell can counteract an imbalance of the number of the two subunits. We show that abrogating 60S assembly blocks 40S subunit accumulation. In contrast, cessation of the 40S pathways does not prevent 60S accumulation, but does, however, lead to fragmentation of the 25S rRNA in 60S subunits and formation of a 55S ribosomal particle derived from the 60S. We also present evidence suggesting that these events occur post assembly and discuss the possibility that the turnover of subunits is due to vulnerability of free subunits not paired with the other subunit to form 80S ribosomes.
Collapse
MESH Headings
- Cell Survival/physiology
- Galactokinase/genetics
- Gene Expression Regulation, Fungal
- Promoter Regions, Genetic
- Protein Stability
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 18S/metabolism
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Trans-Activators/genetics
Collapse
Affiliation(s)
- Brian Gregory
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Nusrat Rahman
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Ananth Bommakanti
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Md Shamsuzzaman
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Mamata Thapa
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Alana Lescure
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Janice M Zengel
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Lasse Lindahl
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
69
|
Seike T, Shimoda C, Niki H. Asymmetric diversification of mating pheromones in fission yeast. PLoS Biol 2019; 17:e3000101. [PMID: 30668560 PMCID: PMC6342294 DOI: 10.1371/journal.pbio.3000101] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/19/2018] [Indexed: 01/25/2023] Open
Abstract
In fungi, mating between partners depends on the molecular recognition of two peptidyl mating pheromones by their respective receptors. The fission yeast Schizosaccharomyces pombe (Sp) has two mating types, Plus (P) and Minus (M). The mating pheromones P-factor and M-factor, secreted by P and M cells, are recognized by the receptors mating type auxiliary minus 2 (Mam2) and mating type auxiliary plus 3 (Map3), respectively. Our recent study demonstrated that a few mutations in both M-factor and Map3 can trigger reproductive isolation in S. pombe. Here, we explored the mechanism underlying reproductive isolation through genetic changes of pheromones/receptors in nature. We investigated the diversity of genes encoding the pheromones and their receptor in 150 wild S. pombe strains. Whereas the amino acid sequences of M-factor and Map3 were completely conserved, those of P-factor and Mam2 were very diverse. In addition, the P-factor gene contained varying numbers of tandem repeats of P-factor (4–8 repeats). By exploring the recognition specificity of pheromones between S. pombe and its close relative Schizosaccharomyces octosporus (So), we found that So-M-factor did not have an effect on S. pombe P cells, but So-P-factor had a partial effect on S. pombe M cells. Thus, recognition of M-factor seems to be stringent, whereas that of P-factor is relatively relaxed. We speculate that asymmetric diversification of the two pheromones might be facilitated by the distinctly different specificities of the two receptors. Our findings suggest that M-factor communication plays an important role in defining the species, whereas P-factor communication is able to undergo a certain degree of flexible adaptation–perhaps as a first step toward prezygotic isolation in S. pombe. An asymmetric pheromone/receptor system in the fission yeast Schizosaccharomyces pombe might allow flexible adaptation of pheromones to mutational changes while maintaining stringent recognition for mating partners, perhaps as a first step toward prezygotic mating isolation. The emergence of a new species might occur when two groups can no longer mate. Although such reproductive isolation is considered a key evolutionary process, the mechanisms by which it actually occurs have been confined to conjecture. The two sexes (Plus [P] and Minus [M]) of S. pombe each secrete a pheromone (P-factor and M-factor), which binds to a corresponding receptor (mating type auxiliary minus 2 [Mam2] and mating type auxiliary plus 3 [Map3]) on cells of the opposite sex. The interaction between a pheromone and its receptor is essential for successful mating. Here, we explored conservation of the mating pheromone communication system among 150 wild S. pombe strains of different geographical origins and the closely related species S. octosporus. We found that 1) the M-factor/Map3 interaction was completely conserved, whereas the P-factor/Mam2 interaction was very diverse in the strains investigated, and 2) most of the P-factor variants were functional across species. Thus, we have revealed an asymmetric pheromone/receptor system in fungal mating: namely, whereas M-factor communication operates extremely stringently, P-factor communication has the flexibility to create variations, perhaps facilitating prezygotic isolation in S. pombe.
Collapse
Affiliation(s)
- Taisuke Seike
- Genetics Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- * E-mail:
| | - Chikashi Shimoda
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| | - Hironori Niki
- Genetics Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| |
Collapse
|
70
|
Shen J, Li T, Niu X, Liu W, Zheng S, Wang J, Wang F, Cao X, Yao X, Zheng F, Fu C. The J-domain cochaperone Rsp1 interacts with Mto1 to organize noncentrosomal microtubule assembly. Mol Biol Cell 2019; 30:256-267. [PMID: 30427751 PMCID: PMC6589567 DOI: 10.1091/mbc.e18-05-0279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microtubule biogenesis initiates at various intracellular sites, including the centrosome, the Golgi apparatus, the nuclear envelope, and preexisting microtubules. Similarly, in the fission yeast Schizosaccharomyces pombe, interphase microtubules are nucleated at the spindle pole body (SPB), the nuclear envelope, and preexisting microtubules, depending on Mto1 activity. Despite the essential role of Mto1 in promoting microtubule nucleation, how distribution of Mto1 in different sites is regulated has remained elusive. Here, we show that the J-domain cochaperone Rsp1 interacts with Mto1 and specifies the localization of Mto1 to non-SPB nucleation sites. The absence of Rsp1 abolishes the localization of Mto1 to non-SPB nucleation sites, with concomitant enrichment of Mto1 to the SPB and the nuclear envelope. In contrast, Rsp1 overexpression impairs the localization of Mto1 to all microtubule organization sites. These findings delineate a previously uncharacterized mechanism in which Rsp1-Mto1 interaction orchestrates non-SPB microtubule formation.
Collapse
Affiliation(s)
- Juan Shen
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Tianpeng Li
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Xiaojia Niu
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Wenyue Liu
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Shengnan Zheng
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Jing Wang
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Fengsong Wang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230027, China
| | - Xinwang Cao
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230027, China
| | - Xuebiao Yao
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Fan Zheng
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Chuanhai Fu
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
71
|
Gündüz Ergün B, Hüccetoğulları D, Öztürk S, Çelik E, Çalık P. Established and Upcoming Yeast Expression Systems. Methods Mol Biol 2019; 1923:1-74. [PMID: 30737734 DOI: 10.1007/978-1-4939-9024-5_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Yeast was the first microorganism used by mankind for biotransformation of feedstock that laid the foundations of industrial biotechnology. Long historical use, vast amount of data, and experience paved the way for Saccharomyces cerevisiae as a first yeast cell factory, and still it is an important expression platform as being the production host for several large volume products. Continuing special needs of each targeted product and different requirements of bioprocess operations have led to identification of different yeast expression systems. Modern bioprocess engineering and advances in omics technology, i.e., genomics, transcriptomics, proteomics, secretomics, and interactomics, allow the design of novel genetic tools with fine-tuned characteristics to be used for research and industrial applications. This chapter focuses on established and upcoming yeast expression platforms that have exceptional characteristics, such as the ability to utilize a broad range of carbon sources or remarkable resistance to various stress conditions. Besides the conventional yeast S. cerevisiae, established yeast expression systems including the methylotrophic yeasts Pichia pastoris and Hansenula polymorpha, the dimorphic yeasts Arxula adeninivorans and Yarrowia lipolytica, the lactose-utilizing yeast Kluyveromyces lactis, the fission yeast Schizosaccharomyces pombe, and upcoming yeast platforms, namely, Kluyveromyces marxianus, Candida utilis, and Zygosaccharomyces bailii, are compiled with special emphasis on their genetic toolbox for recombinant protein production.
Collapse
Affiliation(s)
- Burcu Gündüz Ergün
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Damla Hüccetoğulları
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Sibel Öztürk
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Eda Çelik
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Pınar Çalık
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey.
- Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
72
|
Hoffmann A, Haas C, Hennig S, Ostermann K, Bley T, Löser C, Walther T. Modeling population dynamics in a microbial consortium under control of a synthetic pheromone-mediated communication system. Eng Life Sci 2018; 19:400-411. [PMID: 32625018 DOI: 10.1002/elsc.201800107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 10/10/2018] [Accepted: 10/24/2018] [Indexed: 11/06/2022] Open
Abstract
Microbial consortia can be used to catalyze complex biotransformations. Tools to control the behavior of these consortia in a technical environment are currently lacking. In the present study, a synthetic biology approach was used to build a model consortium of two Saccharomyces cerevisiae strains where growth and expression of the fluorescent marker protein EGFP by the receiver strain is controlled by the concentration of α-factor pheromone, which is produced by the emitter strain. We have developed a quantitative experimental and theoretical framework to describe population dynamics in the model consortium. We measured biomass growth and metabolite production in controlled bioreactor experiments, and used flow cytometry to monitor changes of the subpopulations and protein expression under different cultivation conditions. This dataset was used to parameterize a segregated mathematical model, which took into account fundamental growth processes, pheromone-induced growth arrest and EGFP production, as well as pheromone desensitization after extended exposure. The model was able to predict the growth dynamics of single-strain cultures and the consortium quantitatively and provides a basis for using this approach in actual biotransformations.
Collapse
Affiliation(s)
- Andreas Hoffmann
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | - Christiane Haas
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | - Stefan Hennig
- Institute of Genetics Technische Universität Dresden Dresden Germany
| | - Kai Ostermann
- Institute of Genetics Technische Universität Dresden Dresden Germany
| | - Thomas Bley
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | - Christian Löser
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | - Thomas Walther
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| |
Collapse
|
73
|
Generation of a synthetic binary plasmid that confers resistance to nourseothricin for genetic engineering of Sporothrix schenckii. Plasmid 2018; 100:1-5. [PMID: 30236508 DOI: 10.1016/j.plasmid.2018.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/19/2022]
Abstract
Some members of the Sporothrix genus can cause sporotrichosis, a worldwide distributed mycosis that affects several mammalian species, including human beings. Sporothrix schenckii and Sporothrix brasiliensis are the fungal species frequently associated with this disease, and the latter has gained significant interest because of the increased number of cases associated with transmission by cats. Despite the relevance of these organisms in the medical field, limited strategies for their genetic manipulation have been explored. Thus far, gene silencing using the hygromycin B resistance cassette is the sole strategy currently available to study these organisms. Here, we report the generation of a cassette that confers resistance to nourseothricin, which was successfully transferred from Agrobacterium tumefaciens to Sporothrix cells. Therefore, this can be used as a second selective marker to manipulate the genome of these organisms.
Collapse
|
74
|
Sinzel M, Zeitler A, Dimmer KS. Interaction network of the mitochondrial outer membrane protein Mcp3. FEBS Lett 2018; 592:3210-3220. [PMID: 30192984 DOI: 10.1002/1873-3468.13243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 02/04/2023]
Abstract
Mitochondria are organelles containing two membranes that are distinct in composition and function. A role of the mitochondrial outer membrane (MOM) is to mediate contact of the organelle with the rest of the cell. In yeast, the MOM contains about 40 different integral proteins. Recently, we described the MOM protein Mcp3, which can serve as a multicopy suppressor of loss of ERMES complex that mediates mitochondria-endoplasmic reticulum contacts. To shed further light on the role of Mcp3 in the MOM, we analyzed its physical interaction with other proteins. We show that Mcp3 interacts with the MOM protein Om45 and the inner membrane protein Aim19. Our observations hint toward a potential involvement of Mcp3 in a structural and/or functional link between both mitochondrial membranes.
Collapse
Affiliation(s)
- Monika Sinzel
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | - Andreas Zeitler
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | - Kai S Dimmer
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| |
Collapse
|
75
|
Nambiar M, Smith GR. Pericentromere-Specific Cohesin Complex Prevents Meiotic Pericentric DNA Double-Strand Breaks and Lethal Crossovers. Mol Cell 2018; 71:540-553.e4. [PMID: 30078721 PMCID: PMC6097939 DOI: 10.1016/j.molcel.2018.06.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/13/2018] [Accepted: 06/22/2018] [Indexed: 11/17/2022]
Abstract
In most eukaryotes, meiotic crossovers are essential for error-free chromosome segregation but are specifically repressed near centromeres to prevent missegregation. Recognized for >85 years, the molecular mechanism of this repression has remained unknown. Meiotic chromosomes contain two distinct cohesin complexes: pericentric complex (for segregation) and chromosomal arm complex (for crossing over). We show that the pericentric-specific complex also actively represses pericentric meiotic double-strand break (DSB) formation and, consequently, crossovers. We uncover the mechanism by which fission yeast heterochromatin protein Swi6 (mammalian HP1-homolog) prevents recruitment of activators of meiotic DSB formation. Localizing missing activators to wild-type pericentromeres bypasses repression and generates abundant crossovers but reduces gamete viability. The molecular mechanism elucidated here likely extends to other species, including humans, where pericentric crossovers can result in disorders, such as Down syndrome. These mechanistic insights provide new clues to understand the roles played by multiple cohesin complexes, especially in human infertility and birth defects.
Collapse
Affiliation(s)
- Mridula Nambiar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
76
|
Johnson M, Mulvihill DP. Dependency relationships within the fission yeast polarity network. FEBS Lett 2018; 592:2543-2549. [PMID: 29972885 PMCID: PMC6120479 DOI: 10.1002/1873-3468.13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 11/07/2022]
Abstract
The ability to regulate polarised cell growth is crucial to maintain the viability of cells. Growth is modulated to facilitate essential cell functions and respond to the external environment. Failure to do so can lead to numerous developmental and disease states, including cancer. We have undertaken a detailed analysis of the regulatory interplay between molecules involved in the regulation and maintenance of polarised cell growth within fission yeast. Internally controlled live cell imaging was used to examine interactions between 10 key polarity proteins. Analysis reveals interplay between the microtubule and actin cytoskeletons, as well as multiple novel dependency pathways and feedback networks between groups of proteins. This study provides important insights into the conserved regulation of polarised cell growth within eukaryotes.
Collapse
|
77
|
Bao XX, Spanos C, Kojidani T, Lynch EM, Rappsilber J, Hiraoka Y, Haraguchi T, Sawin KE. Exportin Crm1 is repurposed as a docking protein to generate microtubule organizing centers at the nuclear pore. eLife 2018; 7:e33465. [PMID: 29809148 PMCID: PMC6008054 DOI: 10.7554/elife.33465] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/21/2018] [Indexed: 01/04/2023] Open
Abstract
Non-centrosomal microtubule organizing centers (MTOCs) are important for microtubule organization in many cell types. In fission yeast Schizosaccharomyces pombe, the protein Mto1, together with partner protein Mto2 (Mto1/2 complex), recruits the γ-tubulin complex to multiple non-centrosomal MTOCs, including the nuclear envelope (NE). Here, we develop a comparative-interactome mass spectrometry approach to determine how Mto1 localizes to the NE. Surprisingly, we find that Mto1, a constitutively cytoplasmic protein, docks at nuclear pore complexes (NPCs), via interaction with exportin Crm1 and cytoplasmic FG-nucleoporin Nup146. Although Mto1 is not a nuclear export cargo, it binds Crm1 via a nuclear export signal-like sequence, and docking requires both Ran in the GTP-bound state and Nup146 FG repeats. In addition to determining the mechanism of MTOC formation at the NE, our results reveal a novel role for Crm1 and the nuclear export machinery in the stable docking of a cytoplasmic protein complex at NPCs.
Collapse
Affiliation(s)
- Xun X Bao
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Christos Spanos
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Tomoko Kojidani
- Advanced ICT Research Institute KobeNational Institute of Information and Communications TechnologyKobeJapan
- Department of Chemical and Biological Sciences, Faculty of ScienceJapan Women’s UniversityTokyoJapan
| | - Eric M Lynch
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
- Department of BioanalyticsInstitute of Biotechnology, Technische Universität BerlinBerlinGermany
| | - Yasushi Hiraoka
- Advanced ICT Research Institute KobeNational Institute of Information and Communications TechnologyKobeJapan
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute KobeNational Institute of Information and Communications TechnologyKobeJapan
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Kenneth E Sawin
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
78
|
Fraczek MG, Naseeb S, Delneri D. History of genome editing in yeast. Yeast 2018; 35:361-368. [PMID: 29345746 PMCID: PMC5969250 DOI: 10.1002/yea.3308] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 12/27/2022] Open
Abstract
For thousands of years humans have used the budding yeast Saccharomyces cerevisiae for the production of bread and alcohol; however, in the last 30-40 years our understanding of the yeast biology has dramatically increased, enabling us to modify its genome. Although S. cerevisiae has been the main focus of many research groups, other non-conventional yeasts have also been studied and exploited for biotechnological purposes. Our experiments and knowledge have evolved from recombination to high-throughput PCR-based transformations to highly accurate CRISPR methods in order to alter yeast traits for either research or industrial purposes. Since the release of the genome sequence of S. cerevisiae in 1996, the precise and targeted genome editing has increased significantly. In this 'Budding topic' we discuss the significant developments of genome editing in yeast, mainly focusing on Cre-loxP mediated recombination, delitto perfetto and CRISPR/Cas.
Collapse
Affiliation(s)
- Marcin G. Fraczek
- The University of Manchester, Faculty of Biology, Medicine and HealthManchester Institute of BiotechnologyManchesterM1 7DNUK
| | - Samina Naseeb
- The University of Manchester, Faculty of Biology, Medicine and HealthManchester Institute of BiotechnologyManchesterM1 7DNUK
| | - Daniela Delneri
- The University of Manchester, Faculty of Biology, Medicine and HealthManchester Institute of BiotechnologyManchesterM1 7DNUK
| |
Collapse
|
79
|
Leland BA, Chen AC, Zhao AY, Wharton RC, King MC. Rev7 and 53BP1/Crb2 prevent RecQ helicase-dependent hyper-resection of DNA double-strand breaks. eLife 2018; 7:33402. [PMID: 29697047 PMCID: PMC5945276 DOI: 10.7554/elife.33402] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/11/2018] [Indexed: 12/15/2022] Open
Abstract
Poly(ADP ribose) polymerase inhibitors (PARPi) target cancer cells deficient in homology-directed repair of DNA double-strand breaks (DSBs). In preclinical models, PARPi resistance is tied to altered nucleolytic processing (resection) at the 5’ ends of a DSB. For example, loss of either 53BP1 or Rev7/MAD2L2/FANCV derepresses resection to drive PARPi resistance, although the mechanisms are poorly understood. Long-range resection can be catalyzed by two machineries: the exonuclease Exo1, or the combination of a RecQ helicase and Dna2. Here, we develop a single-cell microscopy assay that allows the distinct phases and machineries of resection to be interrogated simultaneously in living S. pombe cells. Using this assay, we find that the 53BP1 orthologue and Rev7 specifically repress long-range resection through the RecQ helicase-dependent pathway, thereby preventing hyper-resection. These results suggest that ‘rewiring’ of BRCA1-deficient cells to employ an Exo1-independent hyper-resection pathway is a driver of PARPi resistance. Healthy cells can typically repair damage to their DNA with high accuracy, keeping their genetic code intact. In contrast, cancer cells often lose this ability. Inaccurate repair leads to more frequent DNA mutations, which can make a tumor more aggressive. However, DNA repair-deficient tumors can be targeted with cancer therapies, such as PARP inhibitors, which kill cells that do not have working DNA repair mechanisms. PARP inhibitors show great promise clinically, but unfortunately some tumor cells can become resistant to these treatments over time. Recent work has shown that resistance to PARP inhibitors is often caused by further alternations to DNA repair machineries. Being able to visualize DNA repair in living cells is crucial to understanding this process and to find ways to improve cancer treatments. Previous studies have used repetitive DNA sequences called Lac operators (LacO) to visualize the dynamic behavior of DNA in live cells. Leland et al. have now adapted this system to watch individual DNA repair events in living yeast cells under the microscope. Their experiments reveal that when cells lose a single protein called Rev7, an early phase of DNA repair becomes hyperactive. Leland et al. traced the cause of this hyperactivity to an enzyme in the RecQ helicase family. A RecQ helicase becoming hyperactive in cells lacking Rev7 could explain how some cancer cells become resistant to PARP inhibitor treatments. This information could help fine-tune future approaches to treating cancer. For example, using an inhibitor of RecQ helicase alongside PARP inhibitors may help block this type of resistance from developing in the first place. As well as potentially paving the way for better cancer treatments, this method of visualization could improve scientists’ understanding of the basic processes of DNA repair.
Collapse
Affiliation(s)
- Bryan A Leland
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Angela C Chen
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Amy Y Zhao
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Robert C Wharton
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| |
Collapse
|
80
|
Lodens S, De Graeve M, Roelants SLKW, De Maeseneire SL, Soetaert W. Transformation of an Exotic Yeast Species into a Platform Organism: A Case Study for Engineering Glycolipid Production in the Yeast Starmerella bombicola. Synth Biol (Oxf) 2018; 1772:95-123. [DOI: 10.1007/978-1-4939-7795-6_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
81
|
Unruh JR, Slaughter BD, Jaspersen SL. Functional Analysis of the Yeast LINC Complex Using Fluctuation Spectroscopy and Super-Resolution Imaging. Methods Mol Biol 2018; 1840:137-161. [PMID: 30141044 DOI: 10.1007/978-1-4939-8691-0_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Saccharomyces cerevisiae and Schizosaccharomyces pombe genomes encode a single SUN domain-containing protein, Mps3 and Sad1, respectively. Both localize to the yeast centrosome (known as the spindle pole body, SPB) and are essential for bipolar spindle formation. In addition, Mps3 and Sad1 play roles in chromosome organization in both mitotic and meiotic cells that are independent of their SPB function. To dissect the function of Mps3 at the nuclear envelope (NE) and SPB, we employed cell imaging methods such as scanning fluorescence cross-correlation spectroscopy (SFCCS) and single particle averaging with structured illumination microscopy (SPA-SIM) to determine the strength, nature, and location of protein-protein interactions in vivo. We describe how these same techniques can also be used in fission yeast to analyze Sad1, providing evidence of their applicability to other NE proteins and systems.
Collapse
Affiliation(s)
- Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
82
|
Kiriya K, Tsuyuzaki H, Sato M. Module-based systematic construction of plasmids for episomal gene expression in fission yeast. Gene 2017; 637:14-24. [PMID: 28935259 DOI: 10.1016/j.gene.2017.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022]
Abstract
The fission yeast Schizosaccharomyces pombe is a powerful model organism for cell biology and molecular biology, as genetic manipulation is easily achieved. Introduction of exogenous genes cloned in episomal plasmids into yeast cells can be done through well-established transformation methods. For expression of genes in S. pombe cells, the multi-copy plasmid pREP1 and its derivatives, including pREP41 and pREP81, have been widely used as vectors. Although recent advancement of technology brought a number of useful genetic elements such as new promoters, selection marker genes and fluorescent protein tags, introduction of those elements into conventional pREP1 requires a large commitment of both time and effort because cloning procedures need to be repeated until the final products are constructed. Here, we introduce materials and methods to construct many pREP1-type plasmids easily and systematically using the Golden Gate shuffling method, which enables one-step ligation of many DNA fragments into a plasmid. These materials and methods support creation of expression plasmids employing a variety of novel genetic elements, which will further facilitate genetic studies using S. pombe.
Collapse
Affiliation(s)
- Keita Kiriya
- Laboratory for Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Japan
| | - Hayato Tsuyuzaki
- Laboratory for Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Japan; Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tokyo Waterfront Main Building, 2-3-26 Aomi, Tokyo 135-0064, Japan
| | - Masamitsu Sato
- Laboratory for Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Japan; Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan.
| |
Collapse
|
83
|
Zafar F, Okita AK, Onaka AT, Su J, Katahira Y, Nakayama JI, Takahashi TS, Masukata H, Nakagawa T. Regulation of mitotic recombination between DNA repeats in centromeres. Nucleic Acids Res 2017; 45:11222-11235. [PMID: 28977643 PMCID: PMC5737691 DOI: 10.1093/nar/gkx763] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
Centromeres that are essential for faithful segregation of chromosomes consist of unique DNA repeats in many eukaryotes. Although recombination is under-represented around centromeres during meiosis, little is known about recombination between centromere repeats in mitotic cells. Here, we compared spontaneous recombination that occurs between ade6B/ade6X inverted repeats integrated at centromere 1 (cen1) or at a non-centromeric ura4 locus in fission yeast. Remarkably, distinct mechanisms of homologous recombination (HR) were observed in centromere and non-centromere regions. Rad51-dependent HR that requires Rad51, Rad54 and Rad52 was predominant in the centromere, whereas Rad51-independent HR that requires Rad52 also occurred in the arm region. Crossovers between inverted repeats (i.e. inversions) were under-represented in the centromere as compared to the arm region. While heterochromatin was dispensable, Mhf1/CENP–S, Mhf2/CENP–X histone-fold proteins and Fml1/FANCM helicase were required to suppress crossovers. Furthermore, Mhf1 and Fml1 were found to prevent gross chromosomal rearrangements mediated by centromere repeats. These data uncovered the regulation of mitotic recombination between DNA repeats in centromeres and its physiological role in maintaining genome integrity.
Collapse
Affiliation(s)
- Faria Zafar
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Akiko K Okita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Atsushi T Onaka
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Jie Su
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yasuhiro Katahira
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Jun-Ichi Nakayama
- Division of Chromatin Regulation, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 44-8585, Japan
| | - Tatsuro S Takahashi
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hisao Masukata
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
84
|
Laboucarié T, Detilleux D, Rodriguez-Mias RA, Faux C, Romeo Y, Franz-Wachtel M, Krug K, Maček B, Villén J, Petersen J, Helmlinger D. TORC1 and TORC2 converge to regulate the SAGA co-activator in response to nutrient availability. EMBO Rep 2017; 18:2197-2218. [PMID: 29079657 DOI: 10.15252/embr.201744942] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022] Open
Abstract
Gene expression regulation is essential for cells to adapt to changes in their environment. Co-activator complexes have well-established roles in transcriptional regulation, but less is known about how they sense and respond to signaling cues. We have previously shown that, in fission yeast, one such co-activator, the SAGA complex, controls gene expression and the switch from proliferation to differentiation in response to nutrient availability. Here, using a combination of genetic, biochemical, and proteomic approaches, we show that SAGA responds to nutrients through the differential phosphorylation of its Taf12 component, downstream of both the TORC1 and TORC2 pathways. Taf12 phosphorylation increases early upon starvation and is controlled by the opposing activities of the PP2A phosphatase, which is activated by TORC1, and the TORC2-activated Gad8AKT kinase. Mutational analyses suggest that Taf12 phosphorylation prevents cells from committing to differentiation until starvation reaches a critical level. Overall, our work reveals that SAGA is a direct target of nutrient-sensing pathways and has uncovered a mechanism by which TORC1 and TORC2 converge to control gene expression and cell fate decisions.
Collapse
Affiliation(s)
| | | | | | - Céline Faux
- CRBM, CNRS, University of Montpellier, Montpellier, France
| | - Yves Romeo
- CRBM, CNRS, University of Montpellier, Montpellier, France
| | | | | | - Boris Maček
- Proteome Center Tübingen, Tuebingen, Germany
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Janni Petersen
- Flinders Centre for Innovation in Cancer, School of Medicine, Faculty of Health Science, Flinders University, Adelaide, SA, Australia
| | | |
Collapse
|
85
|
Niikura H, Maruyama C, Ogasawara Y, Shin-Ya K, Dairi T, Hamano Y. Functional analysis of methyltransferases participating in streptothricin-related antibiotic biosynthesis. J Biosci Bioeng 2017; 125:148-154. [PMID: 29029816 DOI: 10.1016/j.jbiosc.2017.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/05/2017] [Accepted: 09/14/2017] [Indexed: 10/18/2022]
Abstract
Streptothricin (ST) and its related compounds produced by Streptomyces strains are broad-spectrum antibiotics that consist of carbamoylated d-gulosamine, amino-acid side chain, and streptolidine lactam moieties. BD-12, a streptothricin-related antibiotic, has a glycine-derived side chain and two N-methyl groups, whereas ST-F carrying the l-β-lysine side chain has no methyl group. In our previous studies, we identified and characterized the BD-12 and ST biosynthetic gene clusters. Here we report the functional analysis of two methyltransferase genes (orf 6 and orf 13) in the BD-12 biosynthetic gene cluster. Combinatorial biosynthesis using these two methyltransferase genes and the ST biosynthetic gene cluster resulted in the production of three methylated forms of ST-F. Among them, N,N'-dimethyl-ST-F, a novel compound generated in the present study, showed bacteria-specific antibiotic activities, although ST-F exhibits antibiotic activities against both prokaryotes and eukaryotes. Our findings also demonstrated that the orf 6 and orf 13 genes are responsible for the N-methylations of the amide bonds in the streptolidine lactam and in the amino-acid side chain linkage, respectively, and that N-methyl modification of the streptolidine lactam confers resistance in part against an ST hydrolase, SttH.
Collapse
Affiliation(s)
- Haruka Niikura
- Department of Bioscience, Fukui Prefectural University, Yoshida-Gun, Fukui 910-1195, Japan
| | - Chitose Maruyama
- Department of Bioscience, Fukui Prefectural University, Yoshida-Gun, Fukui 910-1195, Japan
| | - Yasushi Ogasawara
- Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan; The Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tohru Dairi
- Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Yoshimitsu Hamano
- Department of Bioscience, Fukui Prefectural University, Yoshida-Gun, Fukui 910-1195, Japan.
| |
Collapse
|
86
|
Makrantoni V, Ciesiolka A, Lawless C, Fernius J, Marston A, Lydall D, Stark MJR. A Functional Link Between Bir1 and the Saccharomyces cerevisiae Ctf19 Kinetochore Complex Revealed Through Quantitative Fitness Analysis. G3 (BETHESDA, MD.) 2017; 7:3203-3215. [PMID: 28754723 PMCID: PMC5592945 DOI: 10.1534/g3.117.300089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/25/2017] [Indexed: 11/18/2022]
Abstract
The chromosomal passenger complex (CPC) is a key regulator of eukaryotic cell division, consisting of the protein kinase Aurora B/Ipl1 in association with its activator (INCENP/Sli15) and two additional proteins (Survivin/Bir1 and Borealin/Nbl1). Here, we report a genome-wide genetic interaction screen in Saccharomyces cerevisiae using the bir1-17 mutant, identifying through quantitative fitness analysis deletion mutations that act as enhancers and suppressors. Gene knockouts affecting the Ctf19 kinetochore complex were identified as the strongest enhancers of bir1-17, while mutations affecting the large ribosomal subunit or the mRNA nonsense-mediated decay pathway caused strong phenotypic suppression. Thus, cells lacking a functional Ctf19 complex become highly dependent on Bir1 function and vice versa. The negative genetic interaction profiles of bir1-17 and the cohesin mutant mcd1-1 showed considerable overlap, underlining the strong functional connection between sister chromatid cohesion and chromosome biorientation. Loss of some Ctf19 components, such as Iml3 or Chl4, impacted differentially on bir1-17 compared with mutations affecting other CPC components: despite the synthetic lethality shown by either iml3∆ or chl4∆ in combination with bir1-17, neither gene knockout showed any genetic interaction with either ipl1-321 or sli15-3 Our data therefore imply a specific functional connection between the Ctf19 complex and Bir1 that is not shared with Ipl1.
Collapse
Affiliation(s)
- Vasso Makrantoni
- Centre for Gene Regulation and Expression, University of Dundee, DD1 5EH, UK
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF, UK
| | - Adam Ciesiolka
- Institute for Cell and Molecular Biosciences, Newcastle University, NE2 4HH, UK
| | - Conor Lawless
- Institute for Cell and Molecular Biosciences, Newcastle University, NE2 4HH, UK
| | - Josefin Fernius
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF, UK
| | - Adele Marston
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF, UK
| | - David Lydall
- Institute for Cell and Molecular Biosciences, Newcastle University, NE2 4HH, UK
| | - Michael J R Stark
- Centre for Gene Regulation and Expression, University of Dundee, DD1 5EH, UK
| |
Collapse
|
87
|
Anderson NS, Mukherjee I, Bentivoglio CM, Barlowe C. The Golgin protein Coy1 functions in intra-Golgi retrograde transport and interacts with the COG complex and Golgi SNAREs. Mol Biol Cell 2017; 28:mbc.E17-03-0137. [PMID: 28794270 PMCID: PMC5620376 DOI: 10.1091/mbc.e17-03-0137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/12/2017] [Accepted: 07/31/2017] [Indexed: 01/09/2023] Open
Abstract
Extended coiled-coil proteins of the Golgin family play prominent roles in maintaining the structure and function of the Golgi complex. Here we further investigate the Golgin protein Coy1 and document its function in retrograde transport between early Golgi compartments. Cells that lack Coy1 displayed a reduced half-life of the Och1 mannosyltransferase, an established cargo of intra-Golgi retrograde transport. Combining the coy1Δ mutation with deletions in other putative retrograde Golgins (sgm1Δ and rud3Δ) caused strong glycosylation and growth defects and reduced membrane association of the Conserved Oligomeric Golgi complex. In contrast, overexpression of COY1 inhibited the growth of mutant strains deficient in fusion activity at the Golgi (sed5-1 and sly1-ts). To map Coy1 protein interactions, co-immunoprecipitation experiments revealed an association with the Conserved Oliogmeric Golgi (COG) complex and with intra-Golgi SNARE proteins. These physical interactions are direct, as Coy1 was efficiently captured in vitro by Lobe A of the COG complex and the purified SNARE proteins Gos1, Sed5 and Sft1. Thus, our genetic, in vivo, and biochemical data indicate a role for Coy1 in regulating COG complex-dependent fusion of retrograde-directed COPI vesicles.
Collapse
Affiliation(s)
- Nadine S Anderson
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Indrani Mukherjee
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Christine M Bentivoglio
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Charles Barlowe
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
88
|
Elp3 and Dph3 of Schizosaccharomyces pombe mediate cellular stress responses through tRNA LysUUU modifications. Sci Rep 2017; 7:7225. [PMID: 28775286 PMCID: PMC5543170 DOI: 10.1038/s41598-017-07647-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/30/2017] [Indexed: 01/31/2023] Open
Abstract
Efficient protein synthesis in eukaryotes requires diphthamide modification of translation elongation factor eEF2 and wobble uridine modifications of tRNAs. In higher eukaryotes, these processes are important for preventing neurological and developmental defects and cancer. In this study, we used Schizosaccharomyces pombe as a model to analyse mutants defective in eEF2 modification (dph1Δ), in tRNA modifications (elp3Δ), or both (dph3Δ) for sensitivity to cytotoxic agents and thermal stress. The dph3Δ and elp3Δ mutants were sensitive to a range of drugs and had growth defects at low temperature. dph3Δ was epistatic with dph1Δ for sensitivity to hydroxyurea and methyl methanesulfonate, and with elp3Δ for methyl methanesulfonate and growth at 16 °C. The dph1Δ and dph3Δ deletions rescued growth defects of elp3Δ in response to thiabendazole and at 37 °C. Elevated tRNALysUUU levels suppressed the elp3Δ phenotypes and some of the dph3Δ phenotypes, indicating that lack of tRNALysUUU modifications were responsible. Furthermore, we found positive genetic interactions of elp3Δ and dph3Δ with sty1Δ and atf1Δ, indicating that Elp3/Dph3-dependent tRNA modifications are important for efficient biosynthesis of key factors required for accurate responses to cytotoxic stress conditions.
Collapse
|
89
|
Abstract
In this introduction we discuss some basic genetic tools and techniques that are used with the fission yeast Schizosaccharomyces pombe Genes commonly used for selection or as reporters are discussed, with an emphasis on genes that permit counterselection, intragenic complementation, or colony-color assays. S. pombe is most stable as a haploid organism. We describe its mating-type system, how to perform genetic crosses and methods for selecting and propagating diploids. We discuss the relative merits of tetrad dissection and random spore preparation in strain construction and genetic analyses. Finally, we present several types of mutant screens, with an evaluation of their respective strengths and limitations in the light of emerging technologies such as next-generation sequencing.
Collapse
Affiliation(s)
- Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm SE-141 83, Sweden;
| | - Geneviève Thon
- Department of Biology, University of Copenhagen, Copenhagen DK-2200, Denmark
| |
Collapse
|
90
|
Dudin O, Merlini L, Martin SG. Spatial focalization of pheromone/MAPK signaling triggers commitment to cell-cell fusion. Genes Dev 2017; 30:2226-2239. [PMID: 27798845 PMCID: PMC5088570 DOI: 10.1101/gad.286922.116] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
Here, Dudin et al. show that cell fusion does not require a dedicated signal but is triggered by spatial focalization of the same pheromone–GPCR–MAPK signaling cascade that drives earlier mating events in Schizosaccharomyces pombe. Cell fusion is universal in eukaryotes for fertilization and development, but what signals this process is unknown. Here, we show in Schizosaccharomyces pombe that fusion does not require a dedicated signal but is triggered by spatial focalization of the same pheromone–GPCR (G-protein-coupled receptor)–MAPK signaling cascade that drives earlier mating events. Autocrine cells expressing the receptor for their own pheromone trigger fusion attempts independently of cell–cell contact by concentrating pheromone release at the fusion focus, a dynamic actin aster underlying the secretion of cell wall hydrolases. Pheromone receptor and MAPK cascade are similarly enriched at the fusion focus, concomitant with fusion commitment in wild-type mating pairs. This focalization promotes cell fusion by immobilizing the fusion focus, thus driving local cell wall dissolution. We propose that fusion commitment is imposed by a local increase in MAPK concentration at the fusion focus, driven by a positive feedback between fusion focus formation and focalization of pheromone release and perception.
Collapse
Affiliation(s)
- Omaya Dudin
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Laura Merlini
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
91
|
Shellhammer JP, Morin-Kensicki E, Matson JP, Yin G, Isom DG, Campbell SL, Mohney RP, Dohlman HG. Amino acid metabolites that regulate G protein signaling during osmotic stress. PLoS Genet 2017; 13:e1006829. [PMID: 28558063 PMCID: PMC5469498 DOI: 10.1371/journal.pgen.1006829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/13/2017] [Accepted: 05/17/2017] [Indexed: 12/29/2022] Open
Abstract
All cells respond to osmotic stress by implementing molecular signaling events to protect the organism. Failure to properly adapt can lead to pathologies such as hypertension and ischemia-reperfusion injury. Mitogen-activated protein kinases (MAPKs) are activated in response to osmotic stress, as well as by signals acting through G protein-coupled receptors (GPCRs). For proper adaptation, the action of these kinases must be coordinated. To identify second messengers of stress adaptation, we conducted a mass spectrometry-based global metabolomics profiling analysis, quantifying nearly 300 metabolites in the yeast S. cerevisiae. We show that three branched-chain amino acid (BCAA) metabolites increase in response to osmotic stress and require the MAPK Hog1. Ectopic addition of these BCAA derivatives promotes phosphorylation of the G protein α subunit and dampens G protein-dependent transcription, similar to that seen in response to osmotic stress. Conversely, genetic ablation of Hog1 activity or the BCAA-regulatory enzymes leads to diminished phosphorylation of Gα and increased transcription. Taken together, our results define a new class of candidate second messengers that mediate cross talk between osmotic stress and GPCR signaling pathways.
Collapse
Affiliation(s)
- James P. Shellhammer
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | | | - Jacob P. Matson
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Guowei Yin
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel G. Isom
- The University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert P. Mohney
- Metabolon, Inc., Research Triangle Park, North Carolina, United States of America
| | - Henrik G. Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
92
|
A mutated dph3 gene causes sensitivity of Schizosaccharomyces pombe cells to cytotoxic agents. Curr Genet 2017; 63:1081-1091. [PMID: 28555368 PMCID: PMC5668335 DOI: 10.1007/s00294-017-0711-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/11/2017] [Accepted: 05/23/2017] [Indexed: 12/11/2022]
Abstract
Dph3 is involved in diphthamide modification of the eukaryotic translation elongation factor eEF2 and in Elongator-mediated modifications of tRNAs, where a 5-methoxycarbonyl-methyl moiety is added to wobble uridines. Lack of such modifications affects protein synthesis due to inaccurate translation of mRNAs at ribosomes. We have discovered that integration of markers at the msh3 locus of Schizosaccharomyces pombe impaired the function of the nearby located dph3 gene. Such integrations rendered cells sensitive to the cytotoxic drugs hydroxyurea and methyl methanesulfonate. We constructed dph3 and msh3 strains with mutated ATG start codons (ATGmut), which allowed investigating drug sensitivity without potential interference by marker insertions. The dph3-ATGmut and a dph3::loxP-ura4-loxM gene disruption strain, but not msh3-ATGmut, turned out to be sensitive to hydroxyurea and methyl methanesulfonate, likewise the strains with cassettes integrated at the msh3 locus. The fungicide sordarin, which inhibits diphthamide modified eEF2 of Saccharomyces cerevisiae, barely affected survival of wild type and msh3Δ S. pombe cells, while the dph3Δ mutant was sensitive. The msh3-ATG mutation, but not dph3Δ or the dph3-ATG mutation caused a defect in mating-type switching, indicating that the ura4 marker at the dph3 locus did not interfere with Msh3 function. We conclude that Dph3 is required for cellular resistance to the fungicide sordarin and to the cytotoxic drugs hydroxyurea and methyl methanesulfonate. This is likely mediated by efficient translation of proteins in response to DNA damage and replication stress.
Collapse
|
93
|
Schizosaccharomyces pombe MutSα and MutLα Maintain Stability of Tetra-Nucleotide Repeats and Msh3 of Hepta-Nucleotide Repeats. G3-GENES GENOMES GENETICS 2017; 7:1463-1473. [PMID: 28341698 PMCID: PMC5427490 DOI: 10.1534/g3.117.040816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Defective mismatch repair (MMR) in humans is associated with colon cancer and instability of microsatellites, that is, DNA sequences with one or several nucleotides repeated. Key factors of eukaryotic MMR are the heterodimers MutSα (Msh2-Msh6), which recognizes base-base mismatches and unpaired nucleotides in DNA, and MutLα (Mlh1-Pms1), which facilitates downstream steps. In addition, MutSβ (Msh2-Msh3) recognizes DNA loops of various sizes, although our previous data and the data presented here suggest that Msh3 of Schizosaccharomyces pombe does not play a role in MMR. To test microsatellite stability in S. pombe and hence DNA loop repair, we have inserted tetra-, penta-, and hepta-nucleotide repeats in the ade6 gene and determined their Ade+ reversion rates and spectra in wild type and various mutants. Our data indicate that loops with four unpaired nucleotides in the nascent and the template strand are the upper limit of MutSα- and MutLα-mediated MMR in S. pombe Stability of hepta-nucleotide repeats requires Msh3 and Exo1 in MMR-independent processes as well as the DNA repair proteins Rad50, Rad51, and Rad2FEN1 Most strikingly, mutation rates in the double mutants msh3 exo1 and msh3 rad51 were decreased when compared to respective single mutants, indicating that Msh3 prevents error prone processes carried out by Exo1 and Rad51. We conclude that Msh3 has no obvious function in MMR in S. pombe, but contributes to DNA repeat stability in MMR-independent processes.
Collapse
|
94
|
Gómez-Sánchez R, Sánchez-Wandelmer J, Reggiori F. Monitoring the Formation of Autophagosomal Precursor Structures in Yeast Saccharomyces cerevisiae. Methods Enzymol 2017; 588:323-365. [DOI: 10.1016/bs.mie.2016.09.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
95
|
Malecki M, Bitton DA, Rodríguez-López M, Rallis C, Calavia NG, Smith GC, Bähler J. Functional and regulatory profiling of energy metabolism in fission yeast. Genome Biol 2016; 17:240. [PMID: 27887640 PMCID: PMC5124322 DOI: 10.1186/s13059-016-1101-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 11/08/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The control of energy metabolism is fundamental for cell growth and function and anomalies in it are implicated in complex diseases and ageing. Metabolism in yeast cells can be manipulated by supplying different carbon sources: yeast grown on glucose rapidly proliferates by fermentation, analogous to tumour cells growing by aerobic glycolysis, whereas on non-fermentable carbon sources metabolism shifts towards respiration. RESULTS We screened deletion libraries of fission yeast to identify over 200 genes required for respiratory growth. Growth media and auxotrophic mutants strongly influenced respiratory metabolism. Most genes uncovered in the mutant screens have not been implicated in respiration in budding yeast. We applied gene-expression profiling approaches to compare steady-state fermentative and respiratory growth and to analyse the dynamic adaptation to respiratory growth. The transcript levels of most genes functioning in energy metabolism pathways are coherently tuned, reflecting anticipated differences in metabolic flows between fermenting and respiring cells. We show that acetyl-CoA synthase, rather than citrate lyase, is essential for acetyl-CoA synthesis in fission yeast. We also investigated the transcriptional response to mitochondrial damage by genetic or chemical perturbations, defining a retrograde response that involves the concerted regulation of distinct groups of nuclear genes that may avert harm from mitochondrial malfunction. CONCLUSIONS This study provides a rich framework of the genetic and regulatory basis of energy metabolism in fission yeast and beyond, and it pinpoints weaknesses of commonly used auxotroph mutants for investigating metabolism. As a model for cellular energy regulation, fission yeast provides an attractive and complementary system to budding yeast.
Collapse
Affiliation(s)
- Michal Malecki
- Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, University College London, London, WC1E 6BT, UK.,Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Danny A Bitton
- Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, University College London, London, WC1E 6BT, UK
| | - Maria Rodríguez-López
- Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, University College London, London, WC1E 6BT, UK
| | - Charalampos Rallis
- Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, University College London, London, WC1E 6BT, UK.,Present address: School of Health, Sport and Biosciences, University of East London, London, E15 4LZ, UK
| | - Noelia Garcia Calavia
- Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, University College London, London, WC1E 6BT, UK
| | - Graeme C Smith
- Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, University College London, London, WC1E 6BT, UK
| | - Jürg Bähler
- Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
96
|
Abstract
We have used both auxotroph and prototroph versions of the latest deletion-mutant library to identify genes required for respiratory growth on solid glycerol medium in fission yeast. This data set complements and enhances our recent study on functional and regulatory aspects of energy metabolism by providing additional proteins that are involved in respiration. Most proteins identified in this mutant screen have not been implicated in respiration in budding yeast. We also provide a protocol to generate a prototrophic mutant library, and data on technical and biological reproducibility of colony-based high-throughput screens.
Collapse
Affiliation(s)
- Michal Malecki
- Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, University College London, London, UK.,Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jürg Bähler
- Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, University College London, London, UK
| |
Collapse
|
97
|
Sequential and counter-selectable cassettes for fission yeast. BMC Biotechnol 2016; 16:76. [PMID: 27825338 PMCID: PMC5101803 DOI: 10.1186/s12896-016-0307-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/21/2016] [Indexed: 01/26/2023] Open
Abstract
Background Fission yeast is one of the most commonly used model organisms for studying genetics. For selection of desirable genotypes, antibiotic resistance cassettes are widely integrated into the genome near genes of interest. In yeasts, this is achieved by PCR amplification of the cassette flanked by short homology sequences, which can be incorporated by homology directed repair. However, the currently available cassettes all share the same tef promoter and terminator sequences. It can therefore be challenging to perform multiple genetic modifications by PCR-based targeting, as existing resistance cassettes in strains can be favored for recombination due to shared homology between the cassettes. Results Here we have generated new selection cassettes that do not recombine with those traditionally used. We achieved this by swapping the tef promoter and terminator sequences in the established antibiotic resistance MX6 cassette series for alternative promoters and/or terminators. The newly created selection cassettes did not recombine with the tef-containing MX6 cassettes already present in the genome, allowing for sequential gene targeting using the PCR-based method. In addition, we have generated a series of plasmids to facilitate the C-terminal tagging of genes with desired epitopes. We also utilized the anti-selection gene HSV-TK, which results in cell death in strains grown on the drug 5-Fluoro-2’-deoxyuridine (FdU, Floxuridin or FUDR). By fusing an antibiotic resistance gene to HSV-TK, we were able to select on the relevant antibiotic as well as counter-select on FdU media to confirm the desired genomic modification had been made. We noted that the efficiency of the counter selection by FdU was enhanced by treatment with hydroxyurea. However, a number of DNA replication checkpoint and homologous recombination mutants, including rad3∆, cds1∆, rad54∆ and rad55∆, exhibited sensitivity to FdU even though those strains did not carry the HSV-TK gene. To remove counter-selectable markers, we introduced the Cre-loxP irreversible recombination method. Finally, utilizing the negative selectable markers, we showed efficient induction of point mutations in an endogenous gene by a two-step transformation method. Conclusions The plasmid constructs and techniques described here are invaluable tools for sequential gene targeting and will simplify construction of fission yeast strains required for study.
Collapse
|
98
|
Stress sensitivity of a fission yeast strain lacking histidine kinases is rescued by the ectopic expression of Chk1 from Candida albicans. Curr Genet 2016; 63:343-357. [PMID: 27613427 PMCID: PMC5383687 DOI: 10.1007/s00294-016-0644-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 01/07/2023]
Abstract
The development of new drugs against the pathogenic yeast Candida albicans is compelling and the evolution of relevant bioassays is important to achieve this goal. Promising drug targets are proteins that lack human counterparts which are true for the His-to-Asp phosphorelay signal transduction systems, important for stress sensing in bacteria, fungi, and plants. In the pathogenic yeast, Candida albicans, the CaChk1 histidine kinase is a trigger of the pathway that leads to a switch from yeast to hyphal growth necessary for invasion. Intriguingly, the model yeast Schizosaccharomyces pombe has a similar phosphorelay system, with three histidine kinases named Mak1, Mak2, and Mak3, which are important for the prevention of aberrant mating and sporulation on rich media. This study uncovered distinct functions for the three histidine kinases; Mak1 alone or Mak2 and Mak3 together were sufficient for the repression of the meiotic cycle when nutrients were available. Moreover, strains lacking histidine kinase genes were sensitive to various types of stress conditions in an auxotrophic strain background, while the stress sensitivity was lost in prototrophic strains. Finally, the stress sensitivity of a S. pombe strain that lacks endogenous histidine kinases could be complemented by the ectopic expression of the CaChk1 histidine kinase from C. albicans. This finding opens up for the possibility to perform a drug screen with a biological read-out in S. pombe to find inhibitors of CaChk1.
Collapse
|
99
|
Fernandez R, Berro J. Use of a fluoride channel as a new selection marker for fission yeast plasmids and application to fast genome editing with CRISPR/Cas9. Yeast 2016; 33:549-557. [PMID: 27327046 DOI: 10.1002/yea.3178] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/03/2016] [Accepted: 06/08/2016] [Indexed: 12/18/2022] Open
Abstract
Fission yeast is a powerful model organism that has provided insights into important cellular processes thanks to the ease of its genome editing by homologous recombination. However, creation of strains with a large number of targeted mutations or containing plasmids has been challenging because only a very small number of selection markers is available in Schizosaccharomyces pombe. In this paper, we identify two fission yeast fluoride exporter channels (Fex1p and Fex2p) and describe the development of a new strategy using Fex1p as a selection marker for transformants in rich media supplemented with fluoride. To our knowledge this is the first positive selection marker identified in S. pombe that does not use auxotrophy or drug resistance and that can be used for plasmids transformation or genomic integration in rich media. We illustrate the application of our new marker by significantly accelerating the protocol for genome edition using CRISPR/Cas9 in S. pombe. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ronan Fernandez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Nanobiology Institute, Yale University, West Haven, CT, 06516, USA
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA. .,Nanobiology Institute, Yale University, West Haven, CT, 06516, USA.
| |
Collapse
|
100
|
Wang Q, Donze D. Transcription factor Reb1 is required for proper transcriptional start site usage at the divergently transcribed TFC6-ESC2 locus in Saccharomyces cerevisiae. Gene 2016; 594:108-116. [PMID: 27601258 DOI: 10.1016/j.gene.2016.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/15/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022]
Abstract
Eukaryotic promoters generally contain nucleosome depleted regions near their transcription start sites. In the model organism Saccharomyces cerevisiae, these regions are adjacent to binding sites for general regulatory transcription factors, and the Reb1 protein is commonly bound to promoter DNA near such regions. The yeast TFC6 promoter is a unique RNA polymerase II promoter in that it is autoregulated by its own gene product Tfc6p, which is part of the RNA polymerase III transcription factor complex TFIIIC. We previously demonstrated that mutation of a potential Reb1 binding site adjacent to the TFIIIC binding site in the TFC6 promoter modestly reduces transcript levels, but leads to a severe decrease in Tfc6 protein levels due to an upstream shift in the TFC6 transcription start site. Here we confirm that Reb1p indeed binds to the TFC6 promoter, and is important for proper transcription start site selection and protein expression. Interestingly, loss of Reb1p association at this site has a similar effect on the adjacent divergently transcribed ESC2 promoter, resulting in a significant increase of 5'-extended ESC2 transcripts and reduction of Esc2 protein levels. This altered divergent transcription may be the result of changes in nucleosome positioning at this locus in the absence of Reb1p binding. We speculate that an important function of general regulatory factors such as Reb1p is to establish and maintain proper transcription start sites at promoters, and that when binding of such factors is compromised, resulting effects on mRNA translation may be an underappreciated aspect of gene regulation studies.
Collapse
Affiliation(s)
- Qing Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States
| | - David Donze
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States.
| |
Collapse
|