51
|
Affiliation(s)
- Aubrey Gorbman
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
52
|
Okubo K, Ishii S, Ishida J, Mitani H, Naruse K, Kondo M, Shima A, Tanaka M, Asakawa S, Shimizu N, Aida K. A novel third gonadotropin-releasing hormone receptor in the medaka Oryzias latipes: evolutionary and functional implications. Gene 2003; 314:121-31. [PMID: 14527724 DOI: 10.1016/s0378-1119(03)00711-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) plays pivotal roles in the regulation of vertebrate reproduction through binding to its specific membrane receptor. Within the past few years, substantial evidence has accumulated that more than one GnRH receptor (GnRH-R) is expressed in individual vertebrate species. Two GnRH-Rs, termed GnRH-R1 and GnRH-R2, have been identified in a teleost, the medaka Oryzias latipes. Here we describe the identification and characterization of a novel third member of GnRH-R, designated GnRH-R3, in the medaka. GnRH-R3 share high sequence homology (77% amino acid identity in the transmembrane domain) with GnRH-R1. Phylogenetic analysis and genetic mapping demonstrated that both GnRH-R1 and GnRH-R3 were orthologous to the type 2 GnRH-R in primates and that these two medaka receptors were duplicates resulting from the genome-wide duplication within the teleost lineage. GnRH-R3, however, contained three introns, whereas GnRH-R1 had only two. Moreover, unlike GnRH-R1, GnRH-R3 exhibited an approximately equal selectivity for two of three native GnRH forms in the medaka, chicken-II-type GnRH (cGnRH-II) and salmon-type GnRH (sGnRH), and a less sensitivity for the other form, medaka-type GnRH. GnRH-R3 was found to be expressed throughout the brain, and thus appeared to mediate the neuromodulatory functions of both cGnRH-II and sGnRH. These data identify GnRH-R3 as a new member of GnRH-R that arose in a recent genome duplication but has distinctive genomic structure and functional characteristic.
Collapse
Affiliation(s)
- Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Bunkyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Steven C, Lehnen N, Kight K, Ijiri S, Klenke U, Harris WA, Zohar Y. Molecular characterization of the GnRH system in zebrafish (Danio rerio): cloning of chicken GnRH-II, adult brain expression patterns and pituitary content of salmon GnRH and chicken GnRH-II. Gen Comp Endocrinol 2003; 133:27-37. [PMID: 12899844 DOI: 10.1016/s0016-6480(03)00144-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The zebrafish has proven to be a model system with unparalleled utility in vertebrate genetic and developmental studies. Substantially less attention has been paid to the potential role that zebrafish can play in answering important questions of vertebrate reproductive endocrinology. As an initial step towards exploiting the advantages that the zebrafish model offers, we have characterized their gonadotropin-releasing hormone (GnRH) system at the molecular level. GnRHs comprise a family of highly conserved decapeptide neurohormones widely recognized to orchestrate the hormonal control of reproduction in all vertebrates. We have isolated the gene and cDNA encoding chicken GnRH-II (cGnRH-II) from zebrafish, as well as several kilobases of upstream promoter sequence for this gene. As the gene encoding salmon GnRH (sGnRH) has been previously isolated (Torgersen et al, 2002), this is the second GnRH gene isolated from zebrafish to date. We have localized expression of these two genes in the brains of reproductively mature zebrafish using in situ hybridization. sGnRH is localized to the olfactory bulb-terminal nerve region (OB-TN), the ventral telencephalon-preoptic area (VT-POA) and, as we report here for the first time in any teleost species, the hindbrain. cGnRH-II is expressed exclusively in the midbrain, as has been found in all other jawed vertebrate species examined. Finally, the levels of both GnRH peptides in pituitaries of reproductively mature zebrafish were quantified using specific ELISAs. sGnRH pituitary peptide levels were shown to be 3- to 4-fold higher than cGnRH-II pituitary peptide. The cumulative results of these experiments allow us to conclude that zebrafish express just two forms of GnRH in a site-specific manner within the brain, and that sGnRH is the hypophysiotropic GnRH form. This work lays the foundation for further research into the control of reproduction in zebrafish, such as the functional significance of multiple GnRHs in vertebrates, and the molecular mechanisms controlling tissue-specific GnRH expression.
Collapse
Affiliation(s)
- Colin Steven
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 701 E Pratt Street, Baltimore, MD 21202, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Miranda LA, Strobl-Mazzulla PH, Strüssmann CA, Parhar I, Somoza GM. Gonadotropin-releasing hormone neuronal development during the sensitive period of temperature sex determination in the pejerrey fish, Odontesthes bonariensis. Gen Comp Endocrinol 2003; 132:444-53. [PMID: 12849968 DOI: 10.1016/s0016-6480(03)00117-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The development of gonadotropin-releasing hormone (GnRH) neurons was studied in relation to the sensitive period of thermolabile sex determination in the pejerrey Odontesthes bonariensis, an atherinid fish from South America. Fish were raised from hatching at three different temperatures: 17 degrees C (100% females), 24 degrees C (70% females), and 29 degrees C (100% males). Three groups of immunoreactive GnRH (ir-GnRH) neurons were identified at the terminal nerve ganglion (TNG), the midbrain tegmentum (MT), and the preoptic area (POA). Immunoreactive GnRH (ir-GnRH) neurons were identified in the TNG at hatching (day 0) and in the MT at day 3 at all the experimental temperatures. In the POA ir-GnRH neurons were identified in the nucleus preopticus periventricularis simultaneously with the first appearance of ir-GnRH fibers in the pituitary on days 11, 14, and 17 for larvae kept at 29, 24, and 17 degrees C, respectively. The number of ir-GnRH neurons in the TNG did not show any statistical difference between temperatures. The number of ir-GnRH neurons in the MT increased in number during the experiment for larvae kept at 17 and 24 degrees C but decreased between days 17 and 31 in larvae kept at 29 degrees C. The number of ir-GnRH neurons in the POA increased during development with a peak at day 28 for all temperatures studied and the magnitude of this peak showed a correlation with incubation temperature. These results reinforce the notion that the hypothalamus-pituitary-gonadal axis is active during sex determination in pejerrey suggesting a possible role of the central nervous system and GnRH in this process. It is also suggested that GnRH neurons located in the preoptic area might be the physiological transducers of temperature during the temperature sensitive period in this species.
Collapse
Affiliation(s)
- Leandro Andrés Miranda
- Instituto de Investigaciones Biotecnológicas/Instituto Tecnológico de Chascomús, Camino de Circunvalacion Laguna, C.C. 164, (B7130IWA), Chascomús, Provincia de Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
55
|
Whitlock KE, Wolf CD, Boyce ML. Gonadotropin-releasing hormone (GnRH) cells arise from cranial neural crest and adenohypophyseal regions of the neural plate in the zebrafish, Danio rerio. Dev Biol 2003; 257:140-52. [PMID: 12710963 DOI: 10.1016/s0012-1606(03)00039-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The olfactory placodes generate the primary sensory neurons of the olfactory sensory system. Additionally, the olfactory placodes have been proposed to generate a class of neuroendocrine cells containing gonadotropin-releasing hormone (GnRH). GnRH is a multifunctional decapeptide essential for the development of secondary sex characteristics in vertebrates as well as a neuromodulator within the central nervous system. Here, we show that endocrine and neuromodulatory GnRH cells arise from two separate, nonolfactory regions in the developing neural plate. Specifically, the neuromodulatory GnRH cells of the terminal nerve arise from the cranial neural crest, and the endocrine GnRH cells of the hypothalamus arise from the adenohypophyseal region of the developing anterior neural plate. Our findings are consistent with cell types generated by the adenohypophysis, a source of endocrine tissue in vertebrate animals, and by neural crest, a source of cells contributing to the cranial nerves. The adenohypophysis arises from a region of the anterior neural plate flanked by the olfactory placode fields at early stages of development, and premigratory cranial neural crest lies adjacent to the caudal edge of the olfactory placode domain [Development 127 (2000), 3645]. Thus, the GnRH cells arise from tissue closely associated with the developing olfactory placode, and their different developmental origins reflect their different functional roles in the adult animal.
Collapse
Affiliation(s)
- K E Whitlock
- Field of Genetics and Development/Neurobiology and Behavior, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
56
|
Pierantoni R, Cobellis G, Meccariello R, Fasano S. Evolutionary aspects of cellular communication in the vertebrate hypothalamo-hypophysio-gonadal axis. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 218:69-141. [PMID: 12199520 DOI: 10.1016/s0074-7696(02)18012-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review emphasizes the comparative approach for developing insight into knowledge related to cellular communications occurring in the hypothalamus-pituitary-gonadal axis. Indeed, research on adaptive phenomena leads to evolutionary tracks. Thus, going through recent results, we suggest that pheromonal communication precedes local communication which, in turn, precedes communication via the blood stream. Furthermore, the use of different routes of communication by a certain mediator leads to a conceptual change related to what hormones are. Nevertheless, endocrine communication should leave out of consideration the source (glandular or not) of mediator. Finally, we point out that the use of lower vertebrate animal models is fundamental to understanding general physiological mechanisms. In fact, different anatomical organization permits access to tissues not readily approachable in mammals.
Collapse
|
57
|
Okuzawa K, Kumakura N, Mori A, Gen K, Yamaguchi S, Kagawa H. Regulation of GnRH and its receptor in a teleost, red seabream. PROGRESS IN BRAIN RESEARCH 2003; 141:95-110. [PMID: 12508564 DOI: 10.1016/s0079-6123(02)41087-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Koichi Okuzawa
- Inland Station, National Research Institute of Aquaculture, Fisheries Research Agency, 224-1, Hiruta, Tamaki, Watarai, Mie 519-0423, Japan.
| | | | | | | | | | | |
Collapse
|
58
|
Parhar IS. Cell migration and evolutionary significance of GnRH subtypes. PROGRESS IN BRAIN RESEARCH 2003; 141:3-17. [PMID: 12508557 DOI: 10.1016/s0079-6123(02)41080-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hypothetically it can be assumed that in advanced teleost fishes, GnRH-III and GnRH-IV neurons migrate along the 'telencephalonic' (anterior) and 'diencephalonic' (posterior) migratory route, which perhaps fuses in primitive teleost fishes and land vertebrates to form the 'ancient migratory route' (in all probability = nervus terminalis; see Von Bartheld et al., 1988) of GnRH-I neurons. The difference in distribution pattern of GnRH forms in the vertebrate brain is due to distinct embryonic origins: (1) Cells of olfactory origin, which give rise to GnRH-I (salmon, catfish, chicken I, mammalian GnRH) are distributed along the olfactory system and the basal forebrain in primitive fishes and in land vertebrates; GnRH-I might be pivotal for LH/FSH synthesis-release, olfaction and metamorphosis in lower vertebrates. In advanced teleost fishes, neurons synthesizing GnRH-III ('salmon' GnRH) originate from the olfactory system; they are distributed along the basal olfactory bulbs, with distinct ganglia (NOR) at the caudalmost part of the olfactory bulbs and few scattered cells in the basal telencephalon. The NOR might function as a neuromodulator, hypophysiotropic hormone and regulate visual associated reproductive behaviors. (2) Cells of mesencephalonic origin, which give rise to GnRH-II (chicken-II GnRH) are evolutionarily conserved; might function as a neuromodulator involved in motor-associated reproductive behaviors and acid-base balance. (3) Cells of diencephalonic origin, which give rise to GnRH-IV (seabream, medaka GnRH); they are localized in the anterior-basal OVLT-POA area and present only in advanced teleost fishes. GnRH-IV has been implicated in gonadal sex differentiation, gonadal maturation, LH/FSH secretion and territorial behavior. Advance teleost fishes for yet unknown functions might have acquired GnRH-IV. Although all GnRH subtypes participate in some aspect of reproduction; the precise function of each GnRH form still remains unclear.
Collapse
Affiliation(s)
- Ishwar S Parhar
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan.
| |
Collapse
|
59
|
Affiliation(s)
- William C Wetsel
- Departments of Psychiatry and Behavioral Sciences, Medicine (Endocrinology), and Cell Biology, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
60
|
Terasawa E. Gonadotropin-releasing hormone II: is this neuropeptide important for mammalian reproduction? Endocrinology 2003; 144:3-4. [PMID: 12488322 DOI: 10.1210/en.2002-0010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Ei Terasawa
- Wisconsin National Primate Research Center, Department of Pediatrics and Center for Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin 53715-1299, USA.
| |
Collapse
|
61
|
Somoza GM, Miranda LA, Strobl-Mazzulla P, Guilgur LG. Gonadotropin-releasing hormone (GnRH): from fish to mammalian brains. Cell Mol Neurobiol 2002; 22:589-609. [PMID: 12838906 DOI: 10.1023/a:1021888420271] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This work deals with a family of neuropeptides, gonadotropin-releasing hormone (GnRH), that play a key role in the development and maintenance of reproductive function in vertebrates. 2. Until now, a total of 16 GnRH structural variants have been isolated and characterized from vertebrate and protochordate nervous tissue. All vertebrate species already investigated have at least two GnRH forms coexisting in the central nervous system. However, it is now well accepted that three forms of GnRH in early and late evolved bony fishes are present. 3. In these cases, cGnRH-II is expressed by midbrain neurons, a species-specific GnRH is present mainly in the preoptic area and the hypothalamus, and sGnRH is localized in the terminal nerve ganglion (TNG). In this context it is possible to think that three GnRH forms and three GnRH receptor (GnRH-R) subtypes are expressed in the central nervous system of a given species. 4. Then it is possible to propose three different GnRH lineages expressed by distinct brain areas in vertebrates: (1) the conserved cGnRH-II or mesencephalic lineage; or (2) the hypothalamic or "releasing" lineage whose primary structure has diverged by point mutations (mGnRH and its orthologous forms: hrGnRH, wfGnRH, cfGnRH, sbGnRH, and pjGnRH); and (3) the telencephalic sGnRH form. Also different GnRH nomenclatures are discussed.
Collapse
Affiliation(s)
- Gustavo M Somoza
- Laboratorio de Ictiofisiología, Instituto Tecnológico, Universidad Nacional de General San Martín, Chascomús, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
62
|
Somoza GM, Lescheid DW, Miranda LA, Lo Nostro FL, Magliulo-Cepriano L, Montaner AD, Schreibman MP, Rivier JE, Sherwood NM. Expression of pejerrey gonadotropin-releasing hormone in three orders of fish. Biol Reprod 2002; 67:1864-71. [PMID: 12444064 DOI: 10.1095/biolreprod.102.004572] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Molecular variants of GnRH were characterized by reverse-phase, high-performance liquid chromatography from brain extracts of fish in three different orders: Synbranchiformes (swamp eel [Synbranchus marmoratus]), Cyprinidontiformes (platyfish [Xiphophorus maculatus] and green swordtail [X. helleri]), and Atheriniformes (Patagonia pejerrey [Odontesthes hatchery]). Also, pituitary gland extracts from the pejerrey O. bonariensis (Atheriniformes) were characterized. Eluted fractions were tested in radioimmunoassays with antisera specific to GnRH, including both antisera that detected only one form of GnRH and those that detected several forms. The results show that brain extracts obtained from all species contained the same three molecular forms of GnRH, which were immunologically and chromatographically undistinguishable from chicken GnRH-II, pejerrey GnRH (pjGnRH), and salmon GnRH. This study supports the hypothesis that expression of these three forms is common in different fish orders and that pjGnRH is the main regulator of pituitary function in these fish.
Collapse
Affiliation(s)
- G M Somoza
- Instituto Tecnológico de Chascomús (IIB-INTECH, CONICET-Universidad de San Martín), Camino de Circunvalación Laguna, Km 6. CC 164 (B7130IWA) Chascomús, Provincia de Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Madigou T, Uzbekova S, Lareyre JJ, Kah O. Two messenger RNA isoforms of the gonadotrophin-releasing hormone receptor, generated by alternative splicing and/or promoter usage, are differentially expressed in rainbow trout gonads during gametogenesis. Mol Reprod Dev 2002; 63:151-60. [PMID: 12203824 DOI: 10.1002/mrd.90006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The recent cloning of a gonadotrophin-releasing hormone receptor (GnRH-R) cDNA from rainbow trout showed that it contains several in-frame ATG codons, one of which, ATG2, corresponds to that found in other species. However, an upstream codon, ATG1, could give rise to a protein with a larger extracellular domain. Using S1 nuclease assay and a method combining primer extension and RACE-PCR, we characterized a second population of mRNA, termed mRNA-2, with a distinct 5'untranslated region and lacking ATG1. The genomic origin of the two mRNAs was determined by establishing the complete gene structure, which shows, for the first time in a vertebrate species that an alternative splicing and promoter usage generate two GnRH-R mRNA variants whose 5' extremities are encoded by two different exons. The analysis of the tissue distribution indicated that mRNA-2 presents a broader pattern of expression and is detected at higher levels than mRNA-1. Interestingly, it was found that those two mRNAs are differentially expressed in male and female gonads during gametogenesis. In particular, the variations of mRNA-1 levels parallel those of sGnRH expression during spermatogenesis, indicating that tissue-specific processing of the GnRH-R mRNA may underlie the effects of GnRH as a paracrine/autocrine regulator of gonadal functions.
Collapse
Affiliation(s)
- Thierry Madigou
- Endocrinologie Moléculaire de la Reproduction, UMR CNRS, Campus de Beaulieu, Rennes, France
| | | | | | | |
Collapse
|
64
|
Oehlmann VD, Korte H, Sterner C, Korsching SI. A neuropeptide FF-related gene is expressed selectively in neurons of the terminal nerve in Danio rerio. Mech Dev 2002; 117:357-61. [PMID: 12204285 DOI: 10.1016/s0925-4773(02)00210-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
RFamides constitute a large family of neuromodulatory peptides. We have cloned a zebrafish gene, which is presumably a homologue to the mammalian PQRF subfamily of RFamides, and named it zfPQRF for its species and subfamily allocation. We report that in contrast to its mammalian counterparts zfPQRF is expressed in the olfactory bulb and the nucleus olfactoretinalis in the telencephalon, but absent in more caudal regions, including hypothalamus, brain stem and spinal cord. zfPQRF-expressing neurons originate in the vicinity of the olfactory placode and populate the nuclei of the terminal nerve during later development, as demonstrated by co-expression of zebrafish salmon-type gonadotropin releasing hormone, which was found to exclusively label terminal nerve neurons.
Collapse
Affiliation(s)
- Verena D Oehlmann
- Institut für Genetik, Universität zu Köln, Zülpicher Strasse 47, 50674 Cologne, Germany
| | | | | | | |
Collapse
|
65
|
Adams BA, Vickers ED, Warby C, Park M, Fischer WH, Grey Craig A, Rivier JE, Sherwood NM. Three forms of gonadotropin-releasing hormone, including a novel form, in a basal salmonid, Coregonus clupeaformis. Biol Reprod 2002; 67:232-9. [PMID: 12080022 DOI: 10.1095/biolreprod67.1.232] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Multiple forms of GnRH within individual brains may have different functions. However, some vertebrates such as salmonids continue to reproduce even though they have lost or do not express 1 of the 3 forms of GnRH found in most other teleosts. We examined a basal salmonid, lake whitefish, to determine the mechanism by which a reduction in the number of GnRH forms occurs. We identified for the first time 3 distinct GnRHs in a salmonid. One form is novel and is designated whitefish GnRH. The primary structure is pGlu-His-Trp-Ser-Tyr-Gly-Met-Asn-Pro-Gly-NH(2). HPLC and RIA were used for purification followed by Edman degradation for sequence determination. Mass spectroscopy was used to confirm the sequence and amidation of the peptide. The other 2 forms, salmon GnRH and chicken GnRH-II, are identical to the 2 forms found in salmon, which evolved later than whitefish. Synthetic whitefish GnRH is biologically active, as it increased mRNA expression of growth hormone and the alpha-subunit for LH and thyroid-stimulating hormone in dispersed fish pituitary cells. Our data support the hypothesis that the ancestral salmonid had a third GnRH form when the genome doubled (tetraploidization), but the third form was lost later in some salmonids due to chromosomal rearrangements. We suggest that the salmon GnRH form compensated for the loss of the third form.
Collapse
Affiliation(s)
- Bruce A Adams
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Amano M, Okubo K, Ikuta K, Kitamura S, Okuzawa K, Yamada H, Aida K, Yamamori K. Ontogenic origin of salmon GnRH neurons in the ventral telencephalon and the preoptic area in masu salmon. Gen Comp Endocrinol 2002; 127:256-62. [PMID: 12225767 DOI: 10.1016/s0016-6480(02)00049-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
During the ontogeny of masu salmon Oncorhynchus masou, neurons producing the salmon type of gonadotropin-releasing hormone (sGnRH) were first detected in the olfactory epithelium of the eyed egg and, subsequently, in the brain, suggesting a migration of these cells. Among sGnRH neurons distributed from the olfactory nerve (ON) through the preoptic area (POA), those in the ventral telencephalon (VT) and the POA are indicated to regulate gonadotropin secretion. Thus, it is of interest to know whether all the sGnRH neurons originate from the olfactory epithelium. In the present study, we examined by in situ hybridization whether sGnRH neurons are present in the VT-POA of fish, whose olfactory epithelia including sGnRH clusters were cauterized just after hatching (44 days after fertilization). Fish were sampled in June (212 days after the operation). Neurons expressing sGnRH mRNA were detected in the VT-POA as well as in the ON, ventral olfactory bulb, and transitional area between the olfactory bulb and telencephalon (which is considered to correspond to the terminal nerve ganglion) in the control group. In contrast, neurons expressing sGnRH mRNA were not detected in the VT-POA in the olfactory epithelium lesioned (OEL) group. Furthermore, pituitary sGnRH content in the OEL group was just above the detectable limit and was significantly lower than that in the corresponding control group in both sexes. These results indicate that sGnRH neurons in the VT-POA are derived from the olfactory epithelium in masu salmon, although the possibility cannot be ruled out that sGnRH neurons in the VT-POA arise from the VT-POA, but were delayed in expressing sGnRH because of the trauma of cauterization.
Collapse
Affiliation(s)
- Masafumi Amano
- School of Fisheries Sciences, Kitasato University, Sanriku, Ofunato, Iwate 022-0101, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Okubo K, Suetake H, Aida K. Three mRNA species for mammalian-type gonadotropin-releasing hormone in the brain of the eel Anguilla japonica. Mol Cell Endocrinol 2002; 192:17-25. [PMID: 12088863 DOI: 10.1016/s0303-7207(02)00130-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A variant mRNA species for mammalian-type gonadotropin-releasing hormone (mGnRH) that retains first intron has recently been found in the brain of a primitive teleost, the eel Anguilla japonica. Here we have found that this mRNA species is generated from an alternative upstream transcription start site of the mGnRH gene. In addition, the upstream start site produces another mRNA species that lacks first intron. Both of these two variant mRNA species, however, have the same open reading frame as the downstream mGnRH mRNA, whose introns are all spliced out, and therefore, all three mGnRH mRNA species expressed in the eel brain would translate a common prepro-mGnRH polypeptide. Quantitative analysis revealed that the upstream mRNAs are less abundant accounting for not more than 1% of the total mGnRH mRNAs. When testosterone was administered (1 mg per fish per day) continuously for 5 days to juvenile male eels, both upstream and downstream mGnRH mRNA species in the brain were up-regulated. However, the level of the upstream mRNAs increased by 3-5-fold after 12 days of the treatment, whereas that of the downstream mRNA showed a more modest increase (about 2-fold) although this increase was more rapid. These results demonstrate that both upstream and downstream mGnRH mRNAs in the eel brain are under the hormonal control, but they are regulated in different and independent manners.
Collapse
Affiliation(s)
- Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, 113-8657, Tokyo, Japan
| | | | | |
Collapse
|
68
|
Okubo K, Mitani H, Naruse K, Kondo M, Shima A, Tanaka M, Asakawa S, Shimizu N, Yoshiura Y, Aida K. Structural characterization of GnRH loci in the medaka genome. Gene 2002; 293:181-9. [PMID: 12137956 DOI: 10.1016/s0378-1119(02)00724-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To help clarify the origin of a third gonadotropin-releasing hormone (GnRH) paralog found only in the teleost lineage, we have characterized GnRH loci in a teleost species, the medaka Oryzias latipes, and compared corresponding regions of the medaka and human genomes. Three GnRHs for medaka-type GnRH (mdGnRH), chicken-II-type GnRH (cGnRH-II), and salmon-type GnRH (sGnRH) exist as single-copy genes and reside on separate chromosomes in the medaka genome. Both medaka mdGnRH and human mGnRH are closely linked to FLJ20038 encoding a hypothetical protein, and both cGnRH-IIs in the medaka and humans are adjacent to PTP(alpha) for protein tyrosine phosphatase alpha. These conserved syntenies demonstrate that mdGnRH and cGnRH-II in teleosts are orthologous to mGnRH and cGnRH-II in tetrapods, respectively. On the other hand, the third paralogous GnRH in the medaka, sGnRH, is adjacent to PTP(epsilon), a paralog of PTP(alpha). Although humans possess PTP(epsilon) on 10q26, no sGnRH-like sequence was found in the human genome databases. Therefore a gene duplication that gave rise to the third paralogous GnRH likely occurred before the divergence of teleosts and tetrapods, and it has been lost only in the tetrapod lineage. Additionally, together with the prior observations that like GnRH, PTP(alpha)/PTP(epsilon) are strongly expressed in neural and tumor cells and that GnRH can increase PTP activity, the current data suggests that the physically linked cGnRH-II/sGnRH and PTP(alpha)/PTP(epsilon) are also functionally linked.
Collapse
Affiliation(s)
- Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Grove-Strawser D, Sower SA, Ronsheim PM, Connolly JB, Bourn CG, Rubin BS. Guinea pig GnRH: localization and physiological activity reveal that it, not mammalian GnRH, is the major neuroendocrine form in guinea pigs. Endocrinology 2002; 143:1602-12. [PMID: 11956141 DOI: 10.1210/endo.143.5.8803] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The isolation of GnRH cDNA from guinea pig hypothalamus predicted a novel form of GnRH with two unique amino acid substitutions relative to all known forms of this essential decapeptide. The predicted substitution at amino acid 2 in guinea pig (gp) GnRH was particularly intriguing because of the proposed importance of position 2 for binding and activation of the GnRH receptor. In the present study, gpGnRH was synthesized, and a specific antibody was generated and used to assess translation of the gpGnRH transcript. The localization of intensely labeled gpGnRH-positive cell bodies and processes in tissue sections through the preoptic area and hypothalamus argue that gpGnRH is the major neuroendocrine form of GnRH in guinea pigs. Guinea pig GnRH stimulated LH release in guinea pigs and increased LH output from guinea pig pituitary fragments, thus demonstrating biological activity in this species. In contrast, gpGnRH demonstrated little ability to stimulate LH release in rats, a species known to possess the highly conserved mammalian GnRH receptor. These findings suggest that: (1) the amino acid substitutions in gpGnRH impede binding to and/or activation of the mammalian GnRH receptor, and (2) the unique amino acid substitutions in gpGnRH are accompanied by changes in the guinea pig GnRH receptor.
Collapse
Affiliation(s)
- Danielle Grove-Strawser
- Department of Anatomy and Cellular Biology, Tufts Medical School, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
70
|
Amano M, Takahashi A, Yamanome T, Okubo K, Aida K, Yamamori K. Molecular cloning of three cDNAs encoding different GnRHs in the brain of barfin flounder. Gen Comp Endocrinol 2002; 126:325-33. [PMID: 12093120 DOI: 10.1016/s0016-6480(02)00008-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To examine the reproductive endocrinology of a large pleuronectiform fish, barfin flounder, Verasper moseri, a promising candidate for aquaculture and resource enhancement in northern Japan due to its high commercial value, three gonadotropin-releasing hormones (GnRHs) in the brain was identified by isolation of their cDNAs. This species had three molecular forms of GnRH; salmon GnRH (sGnRH), chicken GnRH-II (cGnRH-II), and seabream GnRH (sbGnRH). Each GnRH cDNA encoded a signal peptide (SP), GnRH, and a GnRH-associated peptide (GAP), which was connected to GnRH by a Gly-Lys-Arg sequence. The sGnRH cDNA encoded an SP composed of 23 amino acids and a GAP composed of 54 amino acids. The cGnRH-II cDNA encoded an SP of 23 amino acids and a GAP of 49 amino acids. The sbGnRH cDNA encoded an SP of 26 amino acids and a GAP of 57 amino acids. In situ hybridization showed that the genes for sGnRH, cGnRH-II, and sbGnRH are expressed in the ventromedial olfactory bulbs and the terminal nerve ganglion, the midbrain tegmentum, and the preoptic area, respectively. These results indicate that sbGnRH neurons in the preoptic area are involved in gonadotropin secretion in barfin flounder.
Collapse
Affiliation(s)
- Masafumi Amano
- School of Fisheries Sciences, Kitasato University, Sanriku Ofunato, Iwate 022-0101, Japan.
| | | | | | | | | | | |
Collapse
|
71
|
González-Martínez D, Zmora N, Mañanos E, Saligaut D, Zanuy S, Zohar Y, Elizur A, Kah O, Muñoz-Cueto JA. Immunohistochemical localization of three different prepro-GnRHs in the brain and pituitary of the European sea bass (Dicentrarchus labrax) using antibodies to the corresponding GnRH-associated peptides. J Comp Neurol 2002; 446:95-113. [PMID: 11932929 DOI: 10.1002/cne.10190] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The distribution of the cells expressing three prepro-gonadotrophin-releasing hormones (GnRH), corresponding to salmon GnRH (sGnRH), seabream GnRH (sbGnRH), and chicken GnRH-II (cGnRH-II) forms, was studied in the brain and pituitary of the sea bass (Dicentrarchus labrax) by using immunohistochemistry. To circumvent the cross-reactivity problems of antibodies raised to GnRH decapeptides, we used specific antibodies generated against the different sea bass GnRH-associated peptides (GAP): salmon GAP (sGAP), seabream GAP (sbGAP), and chicken-II GAP (cIIGAP). The salmon GAP immunostaining was mostly detected in terminal nerve neurons but also in ventral telencephalic and preoptic perikarya. Salmon GAP-immunoreactive (ir) fibers were observed mainly in the forebrain, although sGAP-ir projections were also evident in the optic tectum, mesencephalic tegmentum, and ventral rhombencephalon. The pituitary only receives a few sGAP-ir fibers. The seabream GAP-ir cells were mainly detected in the preoptic area. Nevertheless, sbGAP-ir neurons were also found in olfactory bulbs, ventral telencephalon, and ventrolateral hypothalamus. The sbGAP-ir fibers were only observed in the ventral forebrain, innervating strongly the pituitary gland. Finally, chicken-II GAP immunoreactivity was only detected in large synencephalic cells, which are the origin of a profuse innervation reaching the telencephalon, preoptic area, hypothalamus, thalamus, pretectum, posterior tuberculum, mesencephalic tectum and tegmentum, cerebellum, and rhombencephalon. However, no cIIGAP-ir fibers were detected in the hypophysis. These results corroborate the overlapping of sGAP- and sbGAP-expressing cells in the forebrain of the sea bass, and provide, for the first time, unambiguous information on the distribution of projections of the three different GnRH forms expressed in the brain of a single species.
Collapse
Affiliation(s)
- David González-Martínez
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Okubo K, Mitani H, Naruse K, Kondo M, Shima A, Tanaka M, Aida K. Conserved physical linkage of GnRH-R and RBM8 in the medaka and human genomes. Biochem Biophys Res Commun 2002; 293:327-31. [PMID: 12054603 DOI: 10.1016/s0006-291x(02)00161-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Candidate genes for human type II gonadotropin-releasing hormone receptor (GnRH-RII) reside on two separate loci, 1q12-q21 and 14q21-23, yet neither locus generates functional GnRH-RII. Instead, their opposite DNA strands encode functional RNA-binding motif protein 8 (RBM8s), which is also encoded by another locus, 5q13-q14. To elucidate the mechanism through which such multiple human GnRH-RII/RBM8 loci arose, here we have defined an RBM8 locus in a comparative model species, the medaka Oryzias latipes. The medaka RBM8, which exists as a single copy gene, is linked to, but does not overlap with, GnRH-R2 on linkage group (LG) 16, demonstrating the ancient origin of the physical linkage between GnRH-R and RBM8. The medaka LG 16 contains orthologous segments to the human chromosome 1 and therefore the 1q12-q21 locus would be an originating human GnRH-RII/RBM8 segment. Furthermore, like the human RBM8s on 1q12-q21 and 5q13-q14 but not that on 14q21-q23, the medaka RBM8 is a multiexon gene, indicating that the 14q21-q23 and 5q13-q14 loci were generated by retrotransposition and segmental genomic duplication, respectively, of the originating 1q12-q21 locus.
Collapse
Affiliation(s)
- Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
73
|
Dubois EA, Zandbergen MA, Peute J, Goos HJT. Evolutionary development of three gonadotropin-releasing hormone (GnRH) systems in vertebrates. Brain Res Bull 2002; 57:413-8. [PMID: 11923000 DOI: 10.1016/s0361-9230(01)00676-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the neuropeptide that links the brain to the reproductive system. Most vertebrate species express two forms of GnRH, which differ in amino acid sequence, localization, distribution, and embryological origin. The GnRH system in the ventral forebrain produces a species-specific GnRH form and projects toward the gonadotropic cell in the pituitary. The GnRH neurons of this system originate from the olfactory placode and migrate into the brain during early development. The other GnRH system is localized in a nucleus in the midbrain, where large cells express chicken-GnRH-II, of which the function is still unclear. In modern teleosts, a third GnRH system is present in the terminal nerve, which contains salmon GnRH. The three GnRH systems appear at different times during fish evolution. Besides the two accepted lineages in GnRH evolution (of conserved chicken GnRH-II in the midbrain and of mammalian GnRH or species-specific GnRH in the hypophysiotropic system), we propose a third lineage: of salmon GnRH in the terminal nerve.
Collapse
Affiliation(s)
- E A Dubois
- Research Group of Comparative Endocrinology, Graduate School for Developmental Biology, Faculty of Biology, The, Utrecht, Netherlands
| | | | | | | |
Collapse
|
74
|
Okubo K, Aida K. Gonadotropin-releasing hormones (GnRHs) in a primitive teleost, the arowana: phylogenetic evidence that three paralogous lineages of GnRH occurred prior to the emergence of teleosts. Gen Comp Endocrinol 2001; 124:125-33. [PMID: 11703078 DOI: 10.1006/gcen.2001.7698] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple molecular forms of gonadotropin-releasing hormone (GnRH) are present in a single vertebrate species. To extend the knowledge on GnRH evolution and the number of GnRH forms in one organism, GnRH cDNAs have been isolated and characterized from one of the most primitive teleosts, the arowana Scleropages jardini. This species had two molecular forms of GnRH: salmon-type GnRH (sGnRH) and chicken-II-type GnRH (cGnRH-II). Sequence comparison between the prepro-GnRHs of the arowana and those of other teleosts indicated that sGnRH represented a paralogue separate from any other forms of GnRH. Consistently, subsequent phylogenetic analysis showed that known forms of GnRH in teleosts fell into three paralogous lineages: sGnRH alone on one lineage, cGnRH-II on another, and many other forms on the other. These results suggest that an ancestral GnRH gene duplicated twice prior to the emergence of teleosts and, therefore, that teleosts, and probably also tetrapods, would possess three paralogous forms of GnRH in individual brains.
Collapse
Affiliation(s)
- K Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, Tokyo, Bunkyo, 113-8657, Japan
| | | |
Collapse
|
75
|
Okubo K, Nagata S, Ko R, Kataoka H, Yoshiura Y, Mitani H, Kondo M, Naruse K, Shima A, Aida K. Identification and characterization of two distinct GnRH receptor subtypes in a teleost, the medaka Oryzias latipes. Endocrinology 2001; 142:4729-39. [PMID: 11606438 DOI: 10.1210/endo.142.11.8475] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We report the identification and characterization of two distinct GnRH receptor (GnRH-R) subtypes, designated GnRH-R1 and GnRH-R2, in a model teleost, the medaka Oryzias latipes. These seven-transmembrane receptors of the medaka contain a cytoplasmic C-terminal tail, which has been found in all other nonmammalian GnRH-Rs cloned to date. The GnRH-R1 gene is composed of three exons separated by two introns, whereas the GnRH-R2 gene has an additional intron and therefore consists of four exons and three introns. The GnRH-R1 and GnRH-R2 genes, both of which exist as single-copy genes in the medaka genome, were mapped to linkage groups 3 and 16, respectively. Inositol phosphate assays using COS-7 cells transfected with GnRH-R1 and GnRH-R2 demonstrated that they had remarkably different ligand sensitivities, although both receptors showed highest preference for chicken-II-type GnRH. Phylogenetic analysis showed the presence of three paralogous lineages for vertebrate GnRH-Rs and indicated that neither GnRH-R1 nor GnRH-R2 is the medaka ortholog to mammalian GnRH-Rs that lack a cytoplasmic tail. This, together with an observation that medaka-type GnRH had low affinity for GnRH-R1 and GnRH-R2, suggests that a third GnRH-R may exist in the medaka.
Collapse
Affiliation(s)
- K Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Dubois EA, Zandbergen MA, Peute J, Bogerd J, Goos HJ. Development of three distinct GnRH neuron populations expressing two different GnRH forms in the brain of the African catfish (Clarias gariepinus). J Comp Neurol 2001; 437:308-20. [PMID: 11494258 DOI: 10.1002/cne.1285] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The early development of both the catfish gonadotropin-releasing hormone (cfGnRH)- and the chicken GnRH-II (cGnRH-II) system was investigated in African catfish by immunocytochemistry by using antibodies against the GnRH-associated peptide (GAP) of the respective preprohormones. Weakly cfGnRH-immunoreactive (ir) neurons and fibers were present at 2 weeks after hatching (ph) but only in the ventral telencephalon and pituitary. Two weeks later, cfGnRH fibers and neurons were also observed in more rostral and in more caudal brain areas, mainly in the preoptic area and hypothalamus. Based on differences in temporal, spatial, and morphologic appearance, two distinct cfGnRH populations were identified in the ventral forebrain: a population innervating the pituitary (ventral forebrain system) and a so-called terminal nerve (TN) population. DiI tracing studies revealed that the TN population has no neuronal connections with the pituitary. The cGnRH-II system is present from 2 weeks ph onward in the midbrain tegmentum and only their size and staining intensity increased during development. Based on the comparison of GnRH systems amongst vertebrates, we hypothesize that during fish evolution, three different GnRH systems evolved, each expressing their own molecular form: the cGnRH-II system in the midbrain, a hypophysiotropic GnRH system in the hypothalamus with a species-specific GnRH form, and a salmon GnRH-expressing TN population. This hypothesis is supported by phylogenetic analysis of known GnRH precursor amino acid sequences. We hypothesize, because the African catfish is a less advanced teleost species, that it contains the cfGnRH form both in the ventral forebrain system and in the TN population.
Collapse
Affiliation(s)
- E A Dubois
- Research Group of Comparative Endocrinology, Graduate School for Developmental Biology, Faculty of Biology, 3584 CH Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
77
|
Dubois EA, Slob S, Zandbergen MA, Peute J, Goos HJ. Gonadal steroids and the maturation of the species-specific gonadotropin-releasing hormone system in brain and pituitary of the male African catfish (Clarias gariepinus). Comp Biochem Physiol B Biochem Mol Biol 2001; 129:381-7. [PMID: 11399472 DOI: 10.1016/s1096-4959(01)00328-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effect of testosterone (T), 11-ketotestosterone (KT) and estradiol (E(2)) on the development of the catfish gonadotropin-releasing hormone system (cfGnRH) of male African catfish (Clarias gariepinus), at the onset of puberty [between 10 and 12 weeks post hatching (ph)] was investigated. The cfGnRH neurons, located in the ventral forebrain, were visualized by immunofluorescence and their numbers were determined and the amounts of cfGnRH-associated peptide (cfGAP) in the pituitary were measured by RIA. Steroid treatments did not significantly alter the numbers of immunoreactive GnRH neurons. However, T and E(2) caused an increase in the amount of GnRH, demonstrated by the intensity of the immunostaining of GnRH neurons and fibers in the brain and the amount of cfGAP in the pituitary. Treatment with KT, the main circulating androgen in adult male catfish, neither changed the number of cfGnRH neurons, nor elevated the cfGnRH content in the pituitary. In previous experiments with younger, prepubertal fish (2-6 weeks ph), T caused an elevation of the number of cfGnRH neurons to the same level as present in pubertal fish of 12-14 weeks. We conclude that the onset of puberty in the male African catfish coincides with the completion of the steroid-dependent structural maturation of the cfGnRH system in the brain. T and/or E(2), however, are still able to exert a positive influence on the amounts of cfGnRH during the later stages of pubertal development, thus still playing a role in the control of the cfGnRH system.
Collapse
Affiliation(s)
- E A Dubois
- Comparative Endocrinology, Faculty of Biology, Graduate School of Developmental Biology, University of Utrecht, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|