51
|
Reconciling diverse mammalian pigmentation patterns with a fundamental mathematical model. Nat Commun 2016; 7:10288. [PMID: 26732977 PMCID: PMC4729835 DOI: 10.1038/ncomms10288] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/26/2015] [Indexed: 12/18/2022] Open
Abstract
Bands of colour extending laterally from the dorsal to ventral trunk are a common feature of mouse chimeras. These stripes were originally taken as evidence of the directed dorsoventral migration of melanoblasts (the embryonic precursors of melanocytes) as they colonize the developing skin. Depigmented ‘belly spots' in mice with mutations in the receptor tyrosine kinase Kit are thought to represent a failure of this colonization, either due to impaired migration or proliferation. Tracing of single melanoblast clones, however, has revealed a diffuse distribution with high levels of axial mixing—hard to reconcile with directed migration. Here we construct an agent-based stochastic model calibrated by experimental measurements to investigate the formation of diffuse clones, chimeric stripes and belly spots. Our observations indicate that melanoblast colonization likely proceeds through a process of undirected migration, proliferation and tissue expansion, and that reduced proliferation is the cause of the belly spots in Kit mutants. How embryonic melanoblast behaviour influences adult pigmentation patterns and causes patterning defects is unclear. Here, Mort et al. construct a stochastic model parameterised experimentally to show that melanoblast migration is undirected and that reduced proliferation causes patterning defects.
Collapse
|
52
|
Koludrovic D, Laurette P, Strub T, Keime C, Le Coz M, Coassolo S, Mengus G, Larue L, Davidson I. Chromatin-Remodelling Complex NURF Is Essential for Differentiation of Adult Melanocyte Stem Cells. PLoS Genet 2015; 11:e1005555. [PMID: 26440048 PMCID: PMC4595011 DOI: 10.1371/journal.pgen.1005555] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/07/2015] [Indexed: 12/23/2022] Open
Abstract
MIcrophthalmia-associated Transcription Factor (MITF) regulates melanocyte and melanoma physiology. We show that MITF associates the NURF chromatin-remodelling factor in melanoma cells. ShRNA-mediated silencing of the NURF subunit BPTF revealed its essential role in several melanoma cell lines and in untransformed melanocytes in vitro. Comparative RNA-seq shows that MITF and BPTF co-regulate overlapping gene expression programs in cell lines in vitro. Somatic and specific inactivation of Bptf in developing murine melanoblasts in vivo shows that Bptf regulates their proliferation, migration and morphology. Once born, Bptf-mutant mice display premature greying where the second post-natal coat is white. This second coat is normally pigmented by differentiated melanocytes derived from the adult melanocyte stem cell (MSC) population that is stimulated to proliferate and differentiate at anagen. An MSC population is established and maintained throughout the life of the Bptf-mutant mice, but these MSCs are abnormal and at anagen, give rise to reduced numbers of transient amplifying cells (TACs) that do not express melanocyte markers and fail to differentiate into mature melanin producing melanocytes. MSCs display a transcriptionally repressed chromatin state and Bptf is essential for reactivation of the melanocyte gene expression program at anagen, the subsequent normal proliferation of TACs and their differentiation into mature melanocytes. The melanocytes pigmenting the coat of adult mice derive from the melanocyte stem cell population residing in the permanent bulge area of the hair follicle. At each angen phase, melanocyte stem cells are stimulated to generate proliferative transient amplifying cells that migrate to the bulb of the follicle where they differentiate into mature melanin producing melanocytes, a processes involving MIcrophthalmia-associated Transcription Factor (MITF) the master regulator of the melanocyte lineage. We show that MITF associates with the NURF chromatin-remodelling factor in melanoma cells. NURF acts downstream of MITF in melanocytes and melanoma cells co-regulating gene expression in vitro. In vivo, mice lacking the NURF subunit Bptf in the melanocyte lineage show premature greying as they are unable to generate mature melanocytes from the adult stem cell population. We find that the melanocyte stem cells from these animals are abnormal and that once they are stimulated at anagen, Bptf is required to ensure the expression of melanocyte markers and their differentiation into mature adult melanocytes. Chromatin remodelling by NURF therefore appears to be essential for the transition of the transcriptionally quiescent stem cell to the differentiated state.
Collapse
Affiliation(s)
- Dana Koludrovic
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
- Beaston Institute for Cancer Research, Glasgow, United Kingdom
| | - Patrick Laurette
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Thomas Strub
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Céline Keime
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Madeleine Le Coz
- Institut Curie CNRS UMR3347, INSERM U1021, Bat 110, Orsay, France
| | - Sebastien Coassolo
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Gabrielle Mengus
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Lionel Larue
- Institut Curie CNRS UMR3347, INSERM U1021, Bat 110, Orsay, France
- Equipes labélisées Ligue Contre le Cancer, Orsay and Strasbourg, France
| | - Irwin Davidson
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
- Equipes labélisées Ligue Contre le Cancer, Orsay and Strasbourg, France
- * E-mail:
| |
Collapse
|
53
|
Endou M, Aoki H, Kobayashi T, Kunisada T. Prevention of hair graying by factors that promote the growth and differentiation of melanocytes. J Dermatol 2015; 41:716-23. [PMID: 25099157 DOI: 10.1111/1346-8138.12570] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 06/12/2014] [Indexed: 02/02/2023]
Abstract
Epidermal melanocyte precursors migrate into developing hair follicles to form the melanocyte stem cell system required to supply pigmented melanocytes necessary for hair pigmentation in repetitive hair cycles. Hair graying is caused by irreversible defects in the self-renewal and/or development of follicular melanocyte stem cells in the hair follicles. To investigate the mechanism(s) of hair graying during the normal aging process, we established a hair graying model in mice by repeatedly plucking or shaving trunk hairs. We repeatedly plucked or shaved trunk hairs to induce and accelerate the hair graying and counted the gray hairs. By using this functional model of hair graying in mice, we assessed the effects of genes known to affect melanocyte development, such as Kitl, hepatocyte growth factor (HGF) and endotheline 3 (ET3). After increasing the total numbers of cumulative hair cycles by plucking or shaving, we observed a significant increase in the gray hair of C57BL/6 mice. Kitl expression in the skin was the most effective for preventing hair graying and a significant effect was also confirmed for HGF and ET3 expression. The repeated hair plucking or shaving led to hair graying without any genetic lesion. Kitl is a more effective factor for prevention of hair graying than HGF or ET3. Our simple model of hair graying may provide a basic tool for screening the molecules or reagents preventing the progression of hair graying.
Collapse
Affiliation(s)
- Mariko Endou
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | |
Collapse
|
54
|
Conde-Perez A, Gros G, Longvert C, Pedersen M, Petit V, Aktary Z, Viros A, Gesbert F, Delmas V, Rambow F, Bastian BC, Campbell AD, Colombo S, Puig I, Bellacosa A, Sansom O, Marais R, Van Kempen LCLT, Larue L. A caveolin-dependent and PI3K/AKT-independent role of PTEN in β-catenin transcriptional activity. Nat Commun 2015; 6:8093. [PMID: 26307673 PMCID: PMC4560817 DOI: 10.1038/ncomms9093] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/16/2015] [Indexed: 12/22/2022] Open
Abstract
Loss of the tumour suppressor PTEN is frequent in human melanoma, results in MAPK activation, suppresses senescence and mediates metastatic behaviour. How PTEN loss mediates these effects is unknown. Here we show that loss of PTEN in epithelial and melanocytic cell lines induces the nuclear localization and transcriptional activation of β-catenin independent of the PI3K-AKT-GSK3β axis. The absence of PTEN leads to caveolin-1 (CAV1)-dependent β-catenin transcriptional modulation in vitro, cooperates with NRAS(Q61K) to initiate melanomagenesis in vivo and induces efficient metastasis formation associated with E-cadherin internalization. The CAV1-β-catenin axis is mediated by a feedback loop in which β-catenin represses transcription of miR-199a-5p and miR-203, which suppress the levels of CAV1 mRNA in melanoma cells. These data reveal a mechanism by which loss of PTEN increases CAV1-mediated dissociation of β-catenin from membranous E-cadherin, which may promote senescence bypass and metastasis.
Collapse
Affiliation(s)
- Alejandro Conde-Perez
- Normal and Pathological Development of Melanocytes, Institut Curie, Orsay 91405, France
- CNRS, UMR3347 Bat. 110, Orsay Cedex 91405, France
- INSERM U1021, Orsay Cedex 91405, France
- Equipe labellisée-Ligue Nationale contre le Cancer, Orsay Cedex 91405, France
| | - Gwendoline Gros
- Normal and Pathological Development of Melanocytes, Institut Curie, Orsay 91405, France
- CNRS, UMR3347 Bat. 110, Orsay Cedex 91405, France
- INSERM U1021, Orsay Cedex 91405, France
- Equipe labellisée-Ligue Nationale contre le Cancer, Orsay Cedex 91405, France
| | - Christine Longvert
- Normal and Pathological Development of Melanocytes, Institut Curie, Orsay 91405, France
- CNRS, UMR3347 Bat. 110, Orsay Cedex 91405, France
- INSERM U1021, Orsay Cedex 91405, France
- Equipe labellisée-Ligue Nationale contre le Cancer, Orsay Cedex 91405, France
| | - Malin Pedersen
- Targeted Therapy Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Valérie Petit
- Normal and Pathological Development of Melanocytes, Institut Curie, Orsay 91405, France
- CNRS, UMR3347 Bat. 110, Orsay Cedex 91405, France
- INSERM U1021, Orsay Cedex 91405, France
- Equipe labellisée-Ligue Nationale contre le Cancer, Orsay Cedex 91405, France
| | - Zackie Aktary
- Normal and Pathological Development of Melanocytes, Institut Curie, Orsay 91405, France
- CNRS, UMR3347 Bat. 110, Orsay Cedex 91405, France
- INSERM U1021, Orsay Cedex 91405, France
- Equipe labellisée-Ligue Nationale contre le Cancer, Orsay Cedex 91405, France
| | - Amaya Viros
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Franck Gesbert
- Normal and Pathological Development of Melanocytes, Institut Curie, Orsay 91405, France
- CNRS, UMR3347 Bat. 110, Orsay Cedex 91405, France
- INSERM U1021, Orsay Cedex 91405, France
- Equipe labellisée-Ligue Nationale contre le Cancer, Orsay Cedex 91405, France
| | - Véronique Delmas
- Normal and Pathological Development of Melanocytes, Institut Curie, Orsay 91405, France
- CNRS, UMR3347 Bat. 110, Orsay Cedex 91405, France
- INSERM U1021, Orsay Cedex 91405, France
- Equipe labellisée-Ligue Nationale contre le Cancer, Orsay Cedex 91405, France
| | - Florian Rambow
- Normal and Pathological Development of Melanocytes, Institut Curie, Orsay 91405, France
- CNRS, UMR3347 Bat. 110, Orsay Cedex 91405, France
- INSERM U1021, Orsay Cedex 91405, France
- Equipe labellisée-Ligue Nationale contre le Cancer, Orsay Cedex 91405, France
| | - Boris C Bastian
- Departments of Dermatology and Pathology and UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, USA
| | | | - Sophie Colombo
- Normal and Pathological Development of Melanocytes, Institut Curie, Orsay 91405, France
- CNRS, UMR3347 Bat. 110, Orsay Cedex 91405, France
- INSERM U1021, Orsay Cedex 91405, France
- Equipe labellisée-Ligue Nationale contre le Cancer, Orsay Cedex 91405, France
| | - Isabel Puig
- Normal and Pathological Development of Melanocytes, Institut Curie, Orsay 91405, France
- CNRS, UMR3347 Bat. 110, Orsay Cedex 91405, France
- INSERM U1021, Orsay Cedex 91405, France
- Equipe labellisée-Ligue Nationale contre le Cancer, Orsay Cedex 91405, France
| | | | - Owen Sansom
- The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Richard Marais
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Leon C L T Van Kempen
- Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen 6500 HB, The Netherlands
- Jewish General Hospital, Lady Davis Institute for Medical Research, Montreal, Quebec QC H3T 1E2, Canada
- Department of Pathology, McGill University, Montreal, Quebec QC H3T 1E2, Canada
| | - Lionel Larue
- Normal and Pathological Development of Melanocytes, Institut Curie, Orsay 91405, France
- CNRS, UMR3347 Bat. 110, Orsay Cedex 91405, France
- INSERM U1021, Orsay Cedex 91405, France
- Equipe labellisée-Ligue Nationale contre le Cancer, Orsay Cedex 91405, France
| |
Collapse
|
55
|
Conditional Deletion of Kit in Melanocytes: White Spotting Phenotype Is Cell Autonomous. J Invest Dermatol 2015; 135:1829-1838. [DOI: 10.1038/jid.2015.83] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/04/2015] [Accepted: 02/15/2015] [Indexed: 12/13/2022]
|
56
|
Huang JLY, Urtatiz O, Van Raamsdonk CD. Oncogenic G Protein GNAQ Induces Uveal Melanoma and Intravasation in Mice. Cancer Res 2015; 75:3384-97. [PMID: 26113083 DOI: 10.1158/0008-5472.can-14-3229] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 06/05/2015] [Indexed: 11/16/2022]
Abstract
GNAQ and GNA11 are heterotrimeric G protein alpha subunits, which are mutated in a mutually exclusive pattern in most cases of uveal melanoma, one of the most aggressive cancers. Here we introduce the first transgenic mouse model of uveal melanoma, which develops cancers induced by expression of oncogenic GNAQ(Q209L) under control of the Rosa26 promoter. Disease penetrance is 100% by 3 months of age, with 94% of mice also developing lung tumors. In this model, the Yap protein of the Hippo pathway is activated in the eyes, and blood vessels near the lesions in the head and lungs exhibit melanocytic invasion. While full transcription levels are not necessary for GNAQ(Q209L) to transform mouse melanocytes, we obtained suggestive evidence of a selective advantage for increased GNAQ(Q209L) expression in human tumors. Intriguingly, enforced expression of GNAQ(Q209L) progressively eliminated melanocytes from the interfollicular epidermis in adults, possibly explaining the near absence of GNAQ(Q209) mutations in human epithelial melanomas. The mouse model also exhibited dermal nevi and melanocytic neoplasms of the central nervous system, accompanied by impaired hearing and balance, identifying a novel role for GNAQ in melanocyte-like cells of the inner ear. Overall, this model offers a new tool to dissect signaling by oncogenic GNAQ and to test potential therapeutics in an in vivo setting where GNAQ(Q209L) mutations contribute to both the initiation and metastatic progression of uveal melanoma.
Collapse
Affiliation(s)
- Jenny Li-Ying Huang
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oscar Urtatiz
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine D Van Raamsdonk
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
57
|
Glover JD, Knolle S, Wells KL, Liu D, Jackson IJ, Mort RL, Headon DJ. Maintenance of distinct melanocyte populations in the interfollicular epidermis. Pigment Cell Melanoma Res 2015; 28:476-80. [PMID: 25847135 PMCID: PMC4973853 DOI: 10.1111/pcmr.12375] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/30/2015] [Indexed: 12/01/2022]
Abstract
Hair follicles and sweat glands are recognized as reservoirs of melanocyte stem cells (MSCs). Unlike differentiated melanocytes, undifferentiated MSCs do not produce melanin. They serve as a source of differentiated melanocytes for the hair follicle and contribute to the interfollicular epidermis upon wounding, exposure to ultraviolet irradiation or in remission from vitiligo, where repigmentation often spreads outwards from the hair follicles. It is unknown whether these observations reflect the normal homoeostatic mechanism of melanocyte renewal or whether unperturbed interfollicular epidermis can maintain a melanocyte population that is independent of the skin's appendages. Here, we show that mouse tail skin lacking appendages does maintain a stable melanocyte number, including a low frequency of amelanotic melanocytes, into adult life. Furthermore, we show that actively cycling differentiated melanocytes are present in postnatal skin, indicating that amelanotic melanocytes are not uniquely relied on for melanocyte homoeostasis.
Collapse
Affiliation(s)
- James D Glover
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - Stefan Knolle
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - Kirsty L Wells
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - Dianbo Liu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - Ian J Jackson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK.,MRC Human Genetics Unit, MRC IGMM, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Richard L Mort
- MRC Human Genetics Unit, MRC IGMM, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Denis J Headon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
| |
Collapse
|
58
|
Abstract
Melanocyte development provides an excellent model for studying more complex developmental processes. Melanocytes have an apparently simple aetiology, differentiating from the neural crest and migrating through the developing embryo to specific locations within the skin and hair follicles, and to other sites in the body. The study of pigmentation mutations in the mouse provided the initial key to identifying the genes and proteins involved in melanocyte development. In addition, work on chicken has provided important embryological and molecular insights, whereas studies in zebrafish have allowed live imaging as well as genetic and transgenic approaches. This cross-species approach is powerful and, as we review here, has resulted in a detailed understanding of melanocyte development and differentiation, melanocyte stem cells and the role of the melanocyte lineage in diseases such as melanoma. Summary: This Review discusses melanocyte development and differentiation, melanocyte stem cells, and the role of the melanocyte lineage in diseases such as melanoma.
Collapse
Affiliation(s)
| | - Ian J Jackson
- MRC Human Genetics Unit and University of Edinburgh Cancer Research UK Cancer Centre, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - E Elizabeth Patton
- MRC Human Genetics Unit and Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| |
Collapse
|
59
|
Aoki H, Hara A, Kunisada T. White spotting phenotype induced by targeted REST disruption during neural crest specification to a melanocyte cell lineage. Genes Cells 2015; 20:439-49. [DOI: 10.1111/gtc.12235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 02/15/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science; Gifu University Graduate School of Medicine; 1-1 Yanagido Gifu 501-1194 Japan
| | - Akira Hara
- Department of Tumor Pathology; Gifu University Graduate School of Medicine; 1-1 Yanagido Gifu 501-1194 Japan
| | - Takahiro Kunisada
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science; Gifu University Graduate School of Medicine; 1-1 Yanagido Gifu 501-1194 Japan
| |
Collapse
|
60
|
Wolnicka-Glubisz A, Strickland FM, Wielgus A, Anver M, Merlino G, De Fabo EC, Noonan FP. A melanin-independent interaction between Mc1r and Met signaling pathways is required for HGF-dependent melanoma. Int J Cancer 2015; 136:752-60. [PMID: 24975581 PMCID: PMC4262613 DOI: 10.1002/ijc.29050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/29/2014] [Accepted: 06/18/2014] [Indexed: 12/20/2022]
Abstract
Melanocortin 1 receptor (MC1R) signaling stimulates black eumelanin production through a cAMP-dependent pathway. MC1R polymorphisms can impair this process, resulting in a predominance of red phaeomelanin. The red hair, fair skin and UV sensitive phenotype is a well-described melanoma risk factor. MC1R polymorphisms also confer melanoma risk independent of pigment. We investigated the effect of Mc1r deficiency in a mouse model of UV-induced melanoma. C57BL/6-Mc1r+/+-HGF transgenic mice have a characteristic hyperpigmented black phenotype with extra-follicular dermal melanocytes located at the dermal/epidermal junction. UVB induces melanoma, independent of melanin pigmentation, but UVA-induced and spontaneous melanomas are dependent on black eumelanin. We crossed these mice with yellow C57BL/6-Mc1re/e animals which have a non-functional Mc1r and produce predominantly yellow phaeomelanin. Yellow C57BL/6-Mc1re/e-HGF mice produced no melanoma in response to UVR or spontaneously even though the HGF transgene and its receptor Met were expressed. Total melanin was less than in C57BL/6-Mc1r+/+-HGF mice, hyperpigmentation was not observed and there were few extra-follicular melanocytes. Thus, functional Mc1r was required for expression of the transgenic HGF phenotype. Heterozygous C57BL/6-Mc1re/+-HGF mice were black and hyperpigmented and, although extra-follicular melanocytes and skin melanin content were similar to C57BL/6-Mc1r+/+-HGF animals, they developed UV-induced and spontaneous melanomas with significantly less efficiency by all criteria. Thus, heterozygosity for Mc1r was sufficient to restore the transgenic HGF phenotype but insufficient to fully restore melanoma. We conclude that a previously unsuspected melanin-independent interaction between Mc1r and Met signaling pathways is required for HGF-dependent melanoma and postulate that this pathway is involved in human melanoma.
Collapse
Affiliation(s)
- Agnieszka Wolnicka-Glubisz
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC; Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | | | | | |
Collapse
|
61
|
Johnson JL, Kozysa A, Kharlamova AV, Gulevich RG, Perelman PL, Fong HWF, Vladimirova AV, Oskina IN, Trut LN, Kukekova AV. Platinum coat color in red fox (Vulpes vulpes) is caused by a mutation in an autosomal copy of KIT. Anim Genet 2015; 46:190-9. [PMID: 25662789 DOI: 10.1111/age.12270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2014] [Indexed: 12/30/2022]
Abstract
The red fox (Vulpes vulpes) demonstrates a variety of coat colors including platinum, a common phenotype maintained in farm-bred fox populations. Foxes heterozygous for the platinum allele have a light silver coat and extensive white spotting, whereas homozygosity is embryonic lethal. Two KIT transcripts were identified in skin cDNA from platinum foxes. The long transcript was identical to the KIT transcript of silver foxes, whereas the short transcript, which lacks exon 17, was specific to platinum. The KIT gene has several copies in the fox genome: an autosomal copy on chromosome 2 and additional copies on the B chromosomes. To identify the platinum-specific KIT sequence, the genomes of one platinum and one silver fox were sequenced. A single nucleotide polymorphism (SNP) was identified at the first nucleotide of KIT intron 17 in the platinum fox. In platinum foxes, the A allele of the SNP disrupts the donor splice site and causes exon 17, which is part of a segment that encodes a conserved tyrosine kinase domain, to be skipped. Complete cosegregation of the A allele with the platinum phenotype was confirmed by linkage mapping (LOD 25.59). All genotyped farm-bred platinum foxes from Russia and the US were heterozygous for the SNP (A/G), whereas foxes with different coat colors were homozygous for the G allele. Identification of the platinum mutation suggests that other fox white-spotting phenotypes, which are allelic to platinum, would also be caused by mutations in the KIT gene.
Collapse
Affiliation(s)
- J L Johnson
- Animal Sciences Department, College of ACES, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Shakhova O, Cheng P, Mishra PJ, Zingg D, Schaefer SM, Debbache J, Häusel J, Matter C, Guo T, Davis S, Meltzer P, Mihic-Probst D, Moch H, Wegner M, Merlino G, Levesque MP, Dummer R, Santoro R, Cinelli P, Sommer L. Antagonistic cross-regulation between Sox9 and Sox10 controls an anti-tumorigenic program in melanoma. PLoS Genet 2015; 11:e1004877. [PMID: 25629959 PMCID: PMC4309598 DOI: 10.1371/journal.pgen.1004877] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/04/2014] [Indexed: 12/20/2022] Open
Abstract
Melanoma is the most fatal skin cancer, but the etiology of this devastating disease is still poorly understood. Recently, the transcription factor Sox10 has been shown to promote both melanoma initiation and progression. Reducing SOX10 expression levels in human melanoma cells and in a genetic melanoma mouse model, efficiently abolishes tumorigenesis by inducing cell cycle exit and apoptosis. Here, we show that this anti-tumorigenic effect functionally involves SOX9, a factor related to SOX10 and upregulated in melanoma cells upon loss of SOX10. Unlike SOX10, SOX9 is not required for normal melanocyte stem cell function, the formation of hyperplastic lesions, and melanoma initiation. To the contrary, SOX9 overexpression results in cell cycle arrest, apoptosis, and a gene expression profile shared by melanoma cells with reduced SOX10 expression. Moreover, SOX9 binds to the SOX10 promoter and induces downregulation of SOX10 expression, revealing a feedback loop reinforcing the SOX10 low/SOX9 high ant,m/ii-tumorigenic program. Finally, SOX9 is required in vitro and in vivo for the anti-tumorigenic effect achieved by reducing SOX10 expression. Thus, SOX10 and SOX9 are functionally antagonistic regulators of melanoma development. For the development of future cancer therapies it is imperative to understand the molecular processes underlying tumor initiation and expansion. Many key factors involved in these processes have been identified based on cell culture and transplantation experiments, but their relevance for tumor formation and disease progression in the living organism is often unclear. Therefore, genetically modified mice spontaneously developing tumors present indispensable models for cancer research. Here, we address this issue by studying the formation of melanoma, the most fatal skin tumor in industrialized countries. To this end, we use a transgenic mouse model to elucidate cellular and molecular mechanisms regulating congenital nevus and melanoma initiation. We show that a transcription factor called SOX10 promotes melanoma formation by repressing an anti-tumorigenic program involving the activity of a related factor, SOX9. When SOX10 is inactivated, SOX9 becomes upregulated and induces cell cycle arrest and death in melanoma cells. Furthermore, upon experimental elevation of SOX9 levels, SOX10 activity is suppressed, revealing an antagonistic relationship between SOX9 and SOX10 in melanoma initiation. Knowledge of how an anti-tumorigenic program can be stimulated by modulating the activities of these key factors might help to design novel therapeutic strategies.
Collapse
Affiliation(s)
- Olga Shakhova
- Cell and Developmental Biology, Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Phil Cheng
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Pravin J. Mishra
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Daniel Zingg
- Cell and Developmental Biology, Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Simon M. Schaefer
- Cell and Developmental Biology, Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Julien Debbache
- Cell and Developmental Biology, Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Jessica Häusel
- Cell and Developmental Biology, Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Claudia Matter
- Department of Oncology, University Hospital Zurich, Schlieren, Switzerland
| | - Theresa Guo
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Sean Davis
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Paul Meltzer
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Daniela Mihic-Probst
- Department of Pathology, Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology, Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Wegner
- Institute of Biochemistry, Emil Fischer Center, FAU University of Erlangen-Nuernberg, Erlangen, Germany
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | | | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Raffaella Santoro
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Zurich, Switzerland
| | - Paolo Cinelli
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, Zurich, Switzerland
| | - Lukas Sommer
- Cell and Developmental Biology, Institute of Anatomy, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
63
|
Fantauzzo KA, Soriano P. Receptor tyrosine kinase signaling: regulating neural crest development one phosphate at a time. Curr Top Dev Biol 2015; 111:135-82. [PMID: 25662260 PMCID: PMC4363133 DOI: 10.1016/bs.ctdb.2014.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Receptor tyrosine kinases (RTKs) bind to a subset of growth factors on the surface of cells and elicit responses with broad roles in developmental and postnatal cellular processes. Receptors in this subclass consist of an extracellular ligand-binding domain, a single transmembrane domain, and an intracellular domain harboring a catalytic tyrosine kinase and regulatory sequences that are phosphorylated either by the receptor itself or by various interacting proteins. Once activated, RTKs bind signaling molecules and recruit effector proteins to mediate downstream cellular responses through various intracellular signaling pathways. In this chapter, we highlight the role of a subset of RTK families in regulating the activity of neural crest cells (NCCs) and the development of their derivatives in mammalian systems. NCCs are migratory, multipotent cells that can be subdivided into four axial populations, cranial, cardiac, vagal, and trunk. These cells migrate throughout the vertebrate embryo along defined pathways and give rise to unique cell types and structures. Interestingly, individual RTK families often have specific functions in a subpopulation of NCCs that contribute to the diversity of these cells and their derivatives in the mammalian embryo. We additionally discuss current methods used to investigate RTK signaling, including genetic, biochemical, large-scale proteomic, and biosensor approaches, which can be applied to study intracellular signaling pathways active downstream of this receptor subclass during NCC development.
Collapse
Affiliation(s)
- Katherine A Fantauzzo
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Philippe Soriano
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
64
|
Huang JM, Hornyak TJ. Polycomb group proteins--epigenetic repressors with emerging roles in melanocytes and melanoma. Pigment Cell Melanoma Res 2015; 28:330-9. [PMID: 25475071 DOI: 10.1111/pcmr.12341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 11/28/2014] [Indexed: 12/21/2022]
Abstract
Melanocytes undergo rapid and significant changes in their gene expression programs at regular intervals during development and the hair follicle cycle. In melanoma, the gene expression pattern found in normal melanocytes is disrupted. These gene expression patterns are regulated in part by post-translational histone modifications catalyzed by Polycomb group (PcG) proteins, which play a major role in many developmental processes and are often altered in cancer. In this review, we discuss the role of the PcG proteins in stem cell and cancer biology, in general, as well as in melanocyte development and melanomagenesis. Highlights include the discussion of newly identified treatments that target the activity of PcG proteins as well as new developments in the understanding of the role that these proteins play in melanocyte biology.
Collapse
Affiliation(s)
- Jennifer M Huang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
65
|
Lindsay CR, Li A, Faller W, Ozanne B, Welch H, Machesky LM, Sansom OJ. A Rac1-independent role for P-Rex1 in melanoblasts. J Invest Dermatol 2015; 135:314-318. [PMID: 25075639 PMCID: PMC4269807 DOI: 10.1038/jid.2014.323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Ang Li
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Brad Ozanne
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | | | | |
Collapse
|
66
|
Charbel C, Fontaine RH, Kadlub N, Coulomb-L'Hermine A, Rouillé T, How-Kit A, Moguelet P, Tost J, Picard A, Aractingi S, Guégan S. Clonogenic cell subpopulations maintain congenital melanocytic nevi. J Invest Dermatol 2014; 135:824-833. [PMID: 25310409 DOI: 10.1038/jid.2014.437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 01/09/2023]
Abstract
Large congenital melanocytic nevi (lCMN) are benign melanocytic tumors associated with an increased risk of melanoma transformation. They result predominantly from a post-zygotic somatic NRAS mutation. These lesions persist and even increase after birth proportionally to the child's growth. Therefore, we asked here whether cells with clonogenic and tumorigenic properties persisted postnatally in lCMN. Subpopulations of lCMN cells expressed stem cell/progenitor lineage markers such as Sox10, Nestin, Oct4, and ABCB5. In vitro, 1 in 250 cells from fresh lCMN formed colonies that could be passaged and harbored the same NRAS mutation as the original nevus. In vivo, lCMN specimens xenografted in immunocompromised mice expanded 4-fold. BrdU(+)-proliferating and label-retaining melanocytes were found within the outgrowth skin tissue of these xenografts, which displayed the same benign nested architecture as the original nevus. lCMN cell suspensions were not able to expand when xenografted alone in Rag 2-/- mice. Conversely, when mixed with keratinocytes, these cells reconstituted the architecture of the human nevus with its characteristic melanocyte layout, lentiginous hyperplasia, and nested architecture. Overall, our data demonstrate that, after birth, certain lCMN cell subtypes still display features such as clonogenic potential and expand into nevus-like structures when cooperating with adjacent keratinocytes.
Collapse
Affiliation(s)
- Christelle Charbel
- Saint Antoine Research Center, U938, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Université Pierre et Marie Curie-Paris VI, Paris, France
| | - Romain H Fontaine
- Saint Antoine Research Center, U938, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Université Pierre et Marie Curie-Paris VI, Paris, France
| | - Natacha Kadlub
- Université René Descartes-Paris V, Paris, France; Department of Maxillofacial and Plastic Surgery, Hôpital Necker, Publique-Hôpitaux de Paris, Paris, France
| | - Aurore Coulomb-L'Hermine
- Université Pierre et Marie Curie-Paris VI, Paris, France; Department of Pathology, Hôpital Trousseau, Publique-Hôpitaux de Paris, Paris, France
| | - Thomas Rouillé
- Saint Antoine Research Center, U938, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Université Pierre et Marie Curie-Paris VI, Paris, France
| | - Alexandre How-Kit
- Laboratory for Functional Genomics, Fondation Jean Dausset - CEPH, Paris, France
| | - Philippe Moguelet
- Department of Pathology, Hôpital Tenon, Publique-Hôpitaux de Paris, Paris, France
| | - Jorg Tost
- Laboratory for Functional Genomics, Fondation Jean Dausset - CEPH, Paris, France; Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Arnaud Picard
- Université René Descartes-Paris V, Paris, France; Department of Maxillofacial and Plastic Surgery, Hôpital Necker, Publique-Hôpitaux de Paris, Paris, France
| | - Selim Aractingi
- Saint Antoine Research Center, U938, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Université René Descartes-Paris V, Paris, France; Department of Dermatology, Hôpital Cochin, Publique-Hôpitaux de Paris, Paris, France
| | - Sarah Guégan
- Saint Antoine Research Center, U938, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Université Pierre et Marie Curie-Paris VI, Paris, France; Department of Dermatology, Hôpital Tenon, Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
67
|
Okamoto N, Aoto T, Uhara H, Yamazaki S, Akutsu H, Umezawa A, Nakauchi H, Miyachi Y, Saida T, Nishimura EK. A melanocyte--melanoma precursor niche in sweat glands of volar skin. Pigment Cell Melanoma Res 2014; 27:1039-50. [PMID: 25065272 DOI: 10.1111/pcmr.12297] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/24/2014] [Indexed: 01/17/2023]
Abstract
Determination of the niche for early-stage cancer remains a challenging issue. Melanoma is an aggressive cancer of the melanocyte lineage. Early melanoma cells are often found in the epidermis around sweat ducts of human volar skin, and the skin pigmentation pattern is an early diagnostic sign of acral melanoma. However, the niche for melanoma precursors has not been determined yet. Here, we report that the secretory portion (SP) of eccrine sweat glands provide an anatomical niche for melanocyte-melanoma precursor cells. Using lineage-tagged H2B-GFP reporter mice, we found that melanoblasts that colonize sweat glands during development are maintained in an immature, slow-cycling state but renew themselves in response to genomic stress and provide their differentiating progeny to the epidermis. FISH analysis of human acral melanoma expanding in the epidermis revealed that unpigmented melanoblasts with significant cyclin D1 gene amplification reside deep in the SP of particular sweat gland(s). These findings indicate that sweat glands maintain melanocyte-melanoma precursors in an immature state in the niche and explain the preferential distribution of early melanoma cells around sweat glands in human volar skin.
Collapse
Affiliation(s)
- Natsuko Okamoto
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan; Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
INTRODUCTION Melanocytes produce pigment granules that color both skin and hair. In the hair follicles melanocytes are derived from stem cells (MelSCs) that are present in hair bulges or sub-bulge regions and function as melanocyte reservoirs. Quiescence, maintenance, activation and proliferation of MelSCs are controlled by specific activities in the microenvironment that can influence the differentiation and regeneration of melanocytes. Therefore, understanding MelSCs and their niche may lead to use of MelSCs in new treatments for various pigmentation disorders. AREAS COVERED We describe here pathophysiological mechanisms by which melanocyte defects lead to skin pigmentation disorders such as vitiligo and hair graying. The development, migration and proliferation of melanocytes and factors involved in the survival, maintenance and regeneration of MelSCs are reviewed with regard to the biological roles and potential therapeutic applications in skin pigmentation diseases. EXPERT OPINION MelSC biology and niche factors have been studied mainly in murine experimental models. Human MelSC markers or methods to isolate them are much less well understood. Identification, isolation and culturing of human MelSCs would represent a major step toward new biological therapeutic options for patients with recalcitrant pigmentary disorders or hair graying. By modulating the niche factors for MelSCs, it may one day be possible to control skin pigmentary disorders and prevent or reverse hair graying.
Collapse
Affiliation(s)
- Ju Hee Lee
- Massachusetts General Hospital, Harvard Medical School, Department of Dermatology and Cutaneous Biology Research Center , Boston, MA 02129 , USA +1 617 643 5428 ; +1 617 643 6588 ;
| | | |
Collapse
|
69
|
Lebron MB, Brennan L, Damoci CB, Prewett MC, O'Mahony M, Duignan IJ, Credille KM, DeLigio JT, Starodubtseva M, Amatulli M, Zhang Y, Schwartz KD, Burtrum D, Balderes P, Persaud K, Surguladze D, Loizos N, Paz K, Kotanides H. A human monoclonal antibody targeting the stem cell factor receptor (c-Kit) blocks tumor cell signaling and inhibits tumor growth. Cancer Biol Ther 2014; 15:1208-18. [PMID: 24921944 DOI: 10.4161/cbt.29523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stem cell factor receptor (c-Kit) exerts multiple biological effects on target cells upon binding its ligand stem cell factor (SCF). Aberrant activation of c-Kit results in dysregulated signaling and is implicated in the pathogenesis of numerous cancers. The development of more specific and effective c-Kit therapies is warranted given its essential role in tumorigenesis. In this study, we describe the biological properties of CK6, a fully human IgG1 monoclonal antibody against the extracellular region of human c-Kit. CK6 specifically binds c-Kit receptor with high affinity (EC 50 = 0.06 nM) and strongly blocks its interaction with SCF (IC 50 = 0.41 nM) in solid phase assays. Flow cytometry shows CK6 binding to c-Kit on the cell surface of human small cell lung carcinoma (SCLC), melanoma, and leukemia tumor cell lines. Furthermore, exposure to CK6 inhibits SCF stimulation of c-Kit tyrosine kinase activity and downstream signaling pathways such as mitogen-activated protein kinase (MAPK) and protein kinase B (AKT), in addition to reducing tumor cell line growth in vitro. CK6 treatment significantly decreases human xenograft tumor growth in NCI-H526 SCLC (T/C% = 57) and Malme-3M melanoma (T/C% = 58) models in vivo. The combination of CK6 with standard of care chemotherapy agents, cisplatin and etoposide for SCLC or dacarbazine for melanoma, more potently reduces tumor growth (SCLC T/C% = 24, melanoma T/C% = 38) compared with CK6 or chemotherapy alone. In summary, our results demonstrate that CK6 is a c-Kit antagonist antibody with tumor growth neutralizing properties and are highly suggestive of potential therapeutic application in treating human malignancies harboring c-Kit receptor.
Collapse
Affiliation(s)
- Maria B Lebron
- ImClone Systems, a wholly-owned subsidiary of Eli Lilly and Company; New York, NY USA
| | - Laura Brennan
- ImClone Systems, a wholly-owned subsidiary of Eli Lilly and Company; New York, NY USA
| | - Christopher B Damoci
- ImClone Systems, a wholly-owned subsidiary of Eli Lilly and Company; New York, NY USA
| | - Marie C Prewett
- ImClone Systems, a wholly-owned subsidiary of Eli Lilly and Company; New York, NY USA
| | - Marguerita O'Mahony
- ImClone Systems, a wholly-owned subsidiary of Eli Lilly and Company; New York, NY USA
| | - Inga J Duignan
- ImClone Systems, a wholly-owned subsidiary of Eli Lilly and Company; New York, NY USA
| | | | - James T DeLigio
- ImClone Systems, a wholly-owned subsidiary of Eli Lilly and Company; New York, NY USA
| | - Marina Starodubtseva
- ImClone Systems, a wholly-owned subsidiary of Eli Lilly and Company; New York, NY USA
| | - Michael Amatulli
- ImClone Systems, a wholly-owned subsidiary of Eli Lilly and Company; New York, NY USA
| | - Yiwei Zhang
- ImClone Systems, a wholly-owned subsidiary of Eli Lilly and Company; New York, NY USA
| | - Kaben D Schwartz
- ImClone Systems, a wholly-owned subsidiary of Eli Lilly and Company; New York, NY USA
| | - Douglas Burtrum
- ImClone Systems, a wholly-owned subsidiary of Eli Lilly and Company; New York, NY USA
| | - Paul Balderes
- ImClone Systems, a wholly-owned subsidiary of Eli Lilly and Company; New York, NY USA
| | - Kris Persaud
- ImClone Systems, a wholly-owned subsidiary of Eli Lilly and Company; New York, NY USA
| | - David Surguladze
- ImClone Systems, a wholly-owned subsidiary of Eli Lilly and Company; New York, NY USA
| | - Nick Loizos
- ImClone Systems, a wholly-owned subsidiary of Eli Lilly and Company; New York, NY USA
| | - Keren Paz
- ImClone Systems, a wholly-owned subsidiary of Eli Lilly and Company; New York, NY USA
| | - Helen Kotanides
- ImClone Systems, a wholly-owned subsidiary of Eli Lilly and Company; New York, NY USA
| |
Collapse
|
70
|
Ueno M, Aoto T, Mohri Y, Yokozeki H, Nishimura EK. Coupling of the radiosensitivity of melanocyte stem cells to their dormancy during the hair cycle. Pigment Cell Melanoma Res 2014; 27:540-51. [DOI: 10.1111/pcmr.12251] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/10/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Makiko Ueno
- Department of Stem Cell Biology Medical Research Institute Tokyo Medical and Dental University Tokyo Japan
- Department of Dermatology Tokyo Medical and Dental University Graduate School of Medicine Tokyo Japan
| | - Takahiro Aoto
- Department of Stem Cell Biology Medical Research Institute Tokyo Medical and Dental University Tokyo Japan
| | - Yasuaki Mohri
- Department of Stem Cell Biology Medical Research Institute Tokyo Medical and Dental University Tokyo Japan
| | - Hiroo Yokozeki
- Department of Dermatology Tokyo Medical and Dental University Graduate School of Medicine Tokyo Japan
| | - Emi K. Nishimura
- Department of Stem Cell Biology Medical Research Institute Tokyo Medical and Dental University Tokyo Japan
| |
Collapse
|
71
|
Denecker G, Vandamme N, Akay O, Koludrovic D, Taminau J, Lemeire K, Gheldof A, De Craene B, Van Gele M, Brochez L, Udupi GM, Rafferty M, Balint B, Gallagher WM, Ghanem G, Huylebroeck D, Haigh J, van den Oord J, Larue L, Davidson I, Marine JC, Berx G. Identification of a ZEB2-MITF-ZEB1 transcriptional network that controls melanogenesis and melanoma progression. Cell Death Differ 2014; 21:1250-61. [PMID: 24769727 DOI: 10.1038/cdd.2014.44] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/17/2014] [Accepted: 03/10/2014] [Indexed: 12/15/2022] Open
Abstract
Deregulation of signaling pathways that control differentiation, expansion and migration of neural crest-derived melanoblasts during normal development contributes also to melanoma progression and metastasis. Although several epithelial-to-mesenchymal (EMT) transcription factors, such as zinc finger E-box binding protein 1 (ZEB1) and ZEB2, have been implicated in neural crest cell biology, little is known about their role in melanocyte homeostasis and melanoma. Here we show that mice lacking Zeb2 in the melanocyte lineage exhibit a melanoblast migration defect and, unexpectedly, a severe melanocyte differentiation defect. Loss of Zeb2 in the melanocyte lineage results in a downregulation of the Microphthalmia-associated transcription factor (Mitf) and melanocyte differentiation markers concomitant with an upregulation of Zeb1. We identify a transcriptional signaling network in which the EMT transcription factor ZEB2 regulates MITF levels to control melanocyte differentiation. Moreover, our data are also relevant for human melanomagenesis as loss of ZEB2 expression is associated with reduced patient survival.
Collapse
Affiliation(s)
- G Denecker
- 1] Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - N Vandamme
- 1] Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - O Akay
- 1] Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - D Koludrovic
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France
| | - J Taminau
- 1] Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - K Lemeire
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - A Gheldof
- 1] Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - B De Craene
- 1] Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - M Van Gele
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium
| | - L Brochez
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium
| | - G M Udupi
- 1] UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College, Dublin 4, Ireland [2] OncoMark Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin 4, Ireland
| | - M Rafferty
- OncoMark Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin 4, Ireland
| | - B Balint
- OncoMark Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin 4, Ireland
| | - W M Gallagher
- 1] UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College, Dublin 4, Ireland [2] OncoMark Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin 4, Ireland
| | - G Ghanem
- Institute Jules Bordet, Brussels, Belgium
| | - D Huylebroeck
- 1] Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium [2] Department of Cell Biology, Erasmus MC, 3015 GE Rotterdam, The Netherlands
| | - J Haigh
- 1] Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium [2] Vascular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | - J van den Oord
- Department of Pathology, University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - L Larue
- Curie Institute, Developmental Genetics of Melanocytes, Centre National de la Recherche Scientifique (CNRS) UMR3347, Institut National de la Santé et de la Recherche Médicale (INSERM) U1021, Orsay, France
| | - I Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France
| | - J-C Marine
- 1] Center for the Biology of Disease, Laboratory for Molecular Cancer Biology, VIB, Leuven, Belgium [2] Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - G Berx
- 1] Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
72
|
Abstract
The melanocyte stem cells of the hair follicle provide an attractive system for the study of the stem cells. Successful regeneration of a functional organ relies on the organized and timely orchestration of molecular events among distinct stem/progenitor cell populations. The stem cells are regulated by communication with their specialized microenvironment known as the niche. Despite remarkable progress in understanding stem cell-intrinsic behavior, the molecular nature of the extrinsic factors provided to the stem cells by the niche microenvironment remains poorly understood. In this regard, the bulge niche of the mammalian hair follicle offers an excellent model for study. It holds two resident populations of SCs: epidermal stem cells and melanocyte stem cells. While their behavior is tightly coordinated, very little of the crosstalk involved is known. This review summarized the recent development in trying to understand the regulation of melanocyte and melanocyte stem cells. A better understanding of the normal regulation and behaviors of the melanocytes and the melanocyte stem cells will help to improve the clinical applications in regenerative medicine, cancer therapy, and aging.
Collapse
Affiliation(s)
- Ang Li
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, 1230 York Avenue, PO 300, New York, NY 10065, USA
| |
Collapse
|
73
|
Takeda K, Hozumi H, Nakai K, Yoshizawa M, Satoh H, Yamamoto H, Shibahara S. Insertion of long interspersed element-1 in the Mitf gene is associated with altered neurobehavior of the black-eyed white Mitf(mi-bw) mouse. Genes Cells 2013; 19:126-40. [PMID: 24304702 DOI: 10.1111/gtc.12117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 10/21/2013] [Indexed: 11/30/2022]
Abstract
Microphthalmia-associated transcription factor (Mitf) is required for the differentiation of melanoblasts of the neural crest origin. The mouse homozygous for the black-eyed white (Mitf(mi-bw) ) allele is characterized by white-coat color and deafness with black eye, due to the loss of melanoblasts during embryonic development. The Mitf(mi-bw) allele carries an insertion of long interspersed element-1 (L1) in intron 3 of the Mitf gene, which may cause the deficiency of melanocyte-specific Mitf-M. Here, we show that the L1 insertion results in the generation of alternatively spliced Mitf-M mRNA species, such as Mitf-M mRNA lacking exon 3, exon 4 or both exons 3 and 4, each of which encodes Mitf-M protein with an internal deletion. Transient expression assays showed the loss of or reduction in function of each aberrant Mitf-M protein and the dominant negative effect of Mitf-M lacking exon 4 that encodes an activation domain. Thus, the L1 insertion may decrease the expression level of functional Mitf-M. Importantly, Mitf-M mRNA is expressed in the wild-type mouse brain, with the highest expression level in the hypothalamus. Likewise, aberrant Mitf-M mRNAs are expressed in the bw mouse brain. The bw mice show the altered neurobehavior under a stressful environment, suggesting the role of Mitf-M in sensory perception.
Collapse
Affiliation(s)
- Kazuhisa Takeda
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | | | | | | | | | | | | |
Collapse
|
74
|
Law AL, Vehlow A, Kotini M, Dodgson L, Soong D, Theveneau E, Bodo C, Taylor E, Navarro C, Perera U, Michael M, Dunn GA, Bennett D, Mayor R, Krause M. Lamellipodin and the Scar/WAVE complex cooperate to promote cell migration in vivo. J Cell Biol 2013; 203:673-89. [PMID: 24247431 PMCID: PMC3840943 DOI: 10.1083/jcb.201304051] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 10/21/2013] [Indexed: 12/12/2022] Open
Abstract
Cell migration is essential for development, but its deregulation causes metastasis. The Scar/WAVE complex is absolutely required for lamellipodia and is a key effector in cell migration, but its regulation in vivo is enigmatic. Lamellipodin (Lpd) controls lamellipodium formation through an unknown mechanism. Here, we report that Lpd directly binds active Rac, which regulates a direct interaction between Lpd and the Scar/WAVE complex via Abi. Consequently, Lpd controls lamellipodium size, cell migration speed, and persistence via Scar/WAVE in vitro. Moreover, Lpd knockout mice display defective pigmentation because fewer migrating neural crest-derived melanoblasts reach their target during development. Consistently, Lpd regulates mesenchymal neural crest cell migration cell autonomously in Xenopus laevis via the Scar/WAVE complex. Further, Lpd's Drosophila melanogaster orthologue Pico binds Scar, and both regulate collective epithelial border cell migration. Pico also controls directed cell protrusions of border cell clusters in a Scar-dependent manner. Taken together, Lpd is an essential, evolutionary conserved regulator of the Scar/WAVE complex during cell migration in vivo.
Collapse
Affiliation(s)
- Ah-Lai Law
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Anne Vehlow
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Maria Kotini
- Department of Cell and Developmental Biology, University College London, London WC1 6BT, England, UK
| | - Lauren Dodgson
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England, UK
| | - Daniel Soong
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Eric Theveneau
- Department of Cell and Developmental Biology, University College London, London WC1 6BT, England, UK
| | - Cristian Bodo
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Eleanor Taylor
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England, UK
| | - Christel Navarro
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Upamali Perera
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Magdalene Michael
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Graham A. Dunn
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Daimark Bennett
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1 6BT, England, UK
| | - Matthias Krause
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| |
Collapse
|
75
|
Sypecka J, Sarnowska A. The neuroprotective effect exerted by oligodendroglial progenitors on ischemically impaired hippocampal cells. Mol Neurobiol 2013; 49:685-701. [PMID: 24085562 PMCID: PMC3950613 DOI: 10.1007/s12035-013-8549-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/27/2013] [Indexed: 01/13/2023]
Abstract
Oligodendrocyte progenitor cells (OPCs) are the focus of intense research for the purpose of cell replacement therapies in acquired or inherited neurodegenerative disorders, accompanied by ongoing hypo/demyelination. Recently, it has been postulated that these glia-committed cells exhibit certain properties of neural stem cells. Advances in stem cell biology have shown that their therapeutic effect could be attributed to their ability to secret numerous active compounds which modify the local microenvironment making it more susceptible to restorative processes. To verify this hypothesis, we set up an ex vivo co-culture system of OPCs isolated from neonatal rat brain with organotypic hippocampal slices (OHC) injured by oxygen-glucose deprivation (OGD). The presence of OPCs in such co-cultures resulted in a significant neuroprotective effect manifesting itself as a decrease in cell death rate and as an extension of newly formed cells in ischemically impaired hippocampal slices. A microarray analysis of broad spectrum of trophic factors and cytokines expressed by OPCs was performed for the purpose of finding the factor(s) contributing to the observed effect. Three of them—BDNF, IL-10 and SCF—were selected for the subsequent functional assays. Our data revealed that BDNF released by OPCs is the potent factor that stimulates cell proliferation and survival in OHC subjected to OGD injury. At the same time, it was observed that IL-10 attenuates inflammatory processes by promoting the formation of the cells associated with the immunological response. Those neuroprotective qualities of oligodendroglia-biased progenitors significantly contribute to anticipating a successful cell replacement therapy.
Collapse
Affiliation(s)
- Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, Pawinskiego str.,, 02-106, Warsaw, Poland,
| | | |
Collapse
|
76
|
Guijarro P, Wang Y, Ying Y, Yao Y, Jieyi X, Yuan X. In vivoknockdown of ckit impairs neuronal migration and axonal extension in the cerebral cortex. Dev Neurobiol 2013; 73:871-87. [DOI: 10.1002/dneu.22107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/05/2013] [Accepted: 07/02/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Patricia Guijarro
- State Key Laboratory of Neuroscience, Institute of Neuroscience (ION); Shanghai Institutes for Biological Sciences (SIBS); Shanghai 200031 China
- CAS-MPG Partner Institute for Computational Biology (PICB); Shanghai Institutes for Biological Sciences (SIBS); Shanghai 200031 China
| | - Yi Wang
- State Key Laboratory of Neuroscience, Institute of Neuroscience (ION); Shanghai Institutes for Biological Sciences (SIBS); Shanghai 200031 China
| | - Yanting Ying
- State Key Laboratory of Neuroscience, Institute of Neuroscience (ION); Shanghai Institutes for Biological Sciences (SIBS); Shanghai 200031 China
| | - Yini Yao
- State Key Laboratory of Neuroscience, Institute of Neuroscience (ION); Shanghai Institutes for Biological Sciences (SIBS); Shanghai 200031 China
| | - Xiong Jieyi
- CAS-MPG Partner Institute for Computational Biology (PICB); Shanghai Institutes for Biological Sciences (SIBS); Shanghai 200031 China
| | - Xiaobing Yuan
- State Key Laboratory of Neuroscience, Institute of Neuroscience (ION); Shanghai Institutes for Biological Sciences (SIBS); Shanghai 200031 China
| |
Collapse
|
77
|
Karia B, Martinez JA, Bishop AJR. Induction of homologous recombination following in utero exposure to DNA-damaging agents. DNA Repair (Amst) 2013; 12:912-21. [PMID: 24029142 DOI: 10.1016/j.dnarep.2013.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/06/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022]
Abstract
Much of our understanding of homologous recombination, as well as the development of the working models for these processes, has been derived from extensive work in model organisms, such as yeast and fruit flies, and mammalian systems by studying the repair of induced double strand breaks or repair following exposure to genotoxic agents in vitro. We therefore set out to expand this in vitro work to ask whether DNA-damaging agents with varying modes of action could induce somatic change in an in vivo mouse model of homologous recombination. We exposed pregnant dams to DNA-damaging agents, conferring a variety of lesions at a specific time in embryo development. To monitor homologous recombination frequency, we used the well-established retinal pigment epithelium pink-eyed unstable assay. Homologous recombination resulting in the deletion of a duplicated 70 kb fragment in the coding region of the Oca2 gene renders this gene functional and can be visualized as a pigmented eyespot in the retinal pigment epithelium. We observed an increased frequency of pigmented eyespots in resultant litters following exposure to cisplatin, methyl methanesulfonate, ethyl methanesulfonate, 3-aminobenzamide, bleomycin, and etoposide with a contrasting decrease in the frequency of detectable reversion events following camptothecin and hydroxyurea exposure. The somatic genomic rearrangements that result from such a wide variety of differently acting damaging agents implies long-term potential effects from even short-term in utero exposures.
Collapse
Affiliation(s)
- Bijal Karia
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA; Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
78
|
Abstract
Melanocyte stem cells differ greatly from melanoma stem cells; the former provide pigmented cells during normal tissue homeostasis and repair, and the latter play an active role in a lethal form of cancer. These 2 cell types share several features and can be studied by similar methods. Aspects held in common by both melanocyte stem cells and melanoma stem cells include their expression of shared biochemical markers, a system of similar molecular signals necessary for their maintenance, and a requirement for an ideal niche microenvironment for providing these factors. This review provides a perspective of both these cell types and discusses potential models of stem cell growth and propagation. Recent findings provide a strong foundation for the development of new therapeutics directed at isolating and manipulating melanocyte stem cells for tissue engineering or at targeting and eradicating melanoma specifically, while sparing nontumor cells.
Collapse
Affiliation(s)
- Deborah Lang
- Department of Medicine, Section of Dermatology, University of Chicago, Pritzker School of Medicine, MC 5067, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
79
|
Van Raamsdonk CD, Deo M. Links between Schwann cells and melanocytes in development and disease. Pigment Cell Melanoma Res 2013; 26:634-45. [DOI: 10.1111/pcmr.12134] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/28/2013] [Indexed: 01/31/2023]
Affiliation(s)
| | - Mugdha Deo
- Department of Medical Genetics; University of British Columbia; Vancouver; BC; Canada
| |
Collapse
|
80
|
Ma Y, Li A, Faller WJ, Libertini S, Fiorito F, Gillespie DA, Sansom OJ, Yamashiro S, Machesky LM. Fascin 1 is transiently expressed in mouse melanoblasts during development and promotes migration and proliferation. Development 2013; 140:2203-11. [PMID: 23633513 PMCID: PMC3912869 DOI: 10.1242/dev.089789] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2013] [Indexed: 01/15/2023]
Abstract
Fascins, a family of actin-bundling proteins, are expressed in a spatially and temporally restricted manner during development and often in cancer. Fascin 1 has a clear role in cell migration in vitro, but its role in vivo in mammals is not well understood. Here, we investigate the role of fascin 1 in the melanocyte lineage and in melanoma cells. Fascin 1 knockout causes hypopigmentation in adult mice owing to migration and cell cycle progression defects in melanoblasts, the melanocyte precursor cell. Study of live embryo skin explants reveals that E14.5 fascin 1-null melanoblasts migrate slower, and generate fewer and thinner pseudopods. By contrast, fascin 1 expression drives faster migration and lamellipodia protrusion in melanocytes in vitro. In addition, fascin 1 depletion retards melanoblast proliferation in vivo and melanoma cell growth in vitro. These data indicate that fascin 1 not only promotes cell migration in mouse melanocytes but it also has a role in growth and cell cycle progression.
Collapse
Affiliation(s)
- Yafeng Ma
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Ang Li
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - William J. Faller
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Silvana Libertini
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Florencia Fiorito
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - David A. Gillespie
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Owen J. Sansom
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Shigeko Yamashiro
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08855, USA
| | - Laura M. Machesky
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| |
Collapse
|
81
|
Smith J, Larue L, Gillespie DA. Chk1 is essential for the development of murine epidermal melanocytes. Pigment Cell Melanoma Res 2013; 26:580-5. [PMID: 23557358 DOI: 10.1111/pcmr.12100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/18/2013] [Indexed: 02/07/2023]
Abstract
Embryonic deletion of mouse Chk1 is lethal; however, whether Chk1 is essential in all individual tissues is unknown. By breeding C57Bl/ 6 mice homozygous for a conditional allele of Chk1 (Chk1fl/fl) and bearing melanocyte-specific Tyr::Cre and DCT:: LacZ transgenes, we investigated the consequences of Chk1 deletion in the melanocytic lineage. We show that adult Tyr::Cre; Chk1fl/fl mice lack coat pigmentation and epidermal melanocytes in the hair follicles, but retain eye pigmentation in the retinal pigmented epithelium (RPE). Melanoblasts formed normally during embryogenesis in Tyr::Cre; Chk1fl/fl mice at early times (embryonic day 10.5; E10.5) but were completely absent by stage E13.5, most probably as a consequence of spontaneous DNA damage and apoptosis. By contrast, melanoblast numbers were only slightly reduced in heterozygous Tyr::Cre; Chk1fl/ + embryos, and these mice exhibited normal coat pigmentation as adults. Thus, Chk1 is essential for the developmental formation of murine epidermal melanocytes but hemizygosity has little, if any, permanent developmental consequence in this cell type.
Collapse
Affiliation(s)
- Joanne Smith
- Beatson Institute for Cancer Research, Glasgow, UK
| | | | | |
Collapse
|
82
|
Aoki H, Hara A, Motohashi T, Kunisada T. Keratinocyte stem cells but not melanocyte stem cells are the primary target for radiation-induced hair graying. J Invest Dermatol 2013; 133:2143-51. [PMID: 23549419 DOI: 10.1038/jid.2013.155] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/27/2013] [Accepted: 03/10/2013] [Indexed: 12/17/2022]
Abstract
Ionizing radiation (IR)-induced hair graying is caused by the ectopic differentiation of melanocyte stem cells (MSCs) in their niche located at the bulge region of the hair follicle. Keratinocyte stem cells (KSCs) in the bulge region are an important component of that niche. However, little is known about the relationship between MSC differentiation and the KSC niche during IR-induced hair graying. We found that both follicular MSCs and KSCs were affected by IR by using immunohistochemical detection of γH2AX as a genotoxicity marker. We also found that KSCs prepared from irradiated mice were functionally affected by IR as indicated by their reduced colony-forming activity in culture and the delayed hair cycle in vivo. However, these effects of IR on KSCs were temporal. The MSC population, which proliferated and differentiated to melanocytes, was persistently maintained after irradiation. In addition to the loss of colony-forming activity, irradiated keratinocytes including KSCs suppressed the colony formation of MSCs in vitro. Furthermore, pigmented hairs were not reconstituted in vivo in the presence of irradiated KSCs or keratinocytes. These results provide a previously unreported insight that the primary target of IR during the induction of hair graying is follicular KSCs rather than MSCs.
Collapse
Affiliation(s)
- Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu, Japan
| | | | | | | |
Collapse
|
83
|
Silver DL, Leeds KE, Hwang HW, Miller EE, Pavan WJ. The EJC component Magoh regulates proliferation and expansion of neural crest-derived melanocytes. Dev Biol 2013; 375:172-81. [PMID: 23333945 PMCID: PMC3710740 DOI: 10.1016/j.ydbio.2013.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 12/28/2022]
Abstract
Melanoblasts are a population of neural crest-derived cells that generate the pigment-producing cells of our body. Defective melanoblast development and function underlies many disorders including Waardenburg syndrome and melanoma. Understanding the genetic regulation of melanoblast development will help elucidate the etiology of these and other neurocristopathies. Here we demonstrate that Magoh, a component of the exon junction complex, is required for normal melanoblast development. Magoh haploinsufficient mice are hypopigmented and exhibit robust genetic interactions with the transcription factor, Sox10. These phenotypes are caused by a marked reduction in melanoblast number beginning at mid-embryogenesis. Strikingly, while Magoh haploinsufficiency severely reduces epidermal melanoblasts, it does not significantly affect the number of dermal melanoblasts. These data indicate Magoh impacts melanoblast development by disproportionately affecting expansion of epidermal melanoblast populations. We probed the cellular basis for melanoblast reduction and discovered that Magoh mutant melanoblasts do not undergo increased apoptosis, but instead are arrested in mitosis. Mitotic arrest is evident in both Magoh haploinsufficient embryos and in Magoh siRNA treated melanoma cell lines. Together our findings indicate that Magoh-regulated proliferation of melanoblasts in the dermis may be critical for production of epidermally-bound melanoblasts. Our results point to a central role for Magoh in melanocyte development.
Collapse
Affiliation(s)
- Debra L. Silver
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD 20892
| | - Karen E. Leeds
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD 20892
| | - Hun-Way Hwang
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD 20892
| | | | - William J. Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD 20892
| |
Collapse
|
84
|
Larue L, de Vuyst F, Delmas V. Modeling melanoblast development. Cell Mol Life Sci 2013; 70:1067-79. [PMID: 22915137 PMCID: PMC11113344 DOI: 10.1007/s00018-012-1112-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/17/2012] [Accepted: 07/30/2012] [Indexed: 12/14/2022]
Abstract
Melanoblasts are a particular type of cell that displays extensive cellular proliferation during development to contribute to the skin. There are only a few melanoblast founders, initially located just dorsal to the neural tube, and they sequentially colonize the dermis, epidermis, and hair follicles. In each compartment, melanoblasts are exposed to a wide variety of developmental cues that regulate their expansion. The colonization of the dermis and epidermis by melanoblasts involves substantial proliferation to generate thousands of cells or more from a few founders within a week of development. This review addresses the cellular and molecular events occurring during melanoblast development. We focus on intrinsic and extrinsic factors that control melanoblast proliferation. We also present a robust mathematical model for estimating the doubling-time of dermal and epidermal melanoblasts for all coat color phenotypes from black to white.
Collapse
Affiliation(s)
- Lionel Larue
- Institut Curie, Centre de Recherche, Developmental Genetics of Melanocytes, 91405, Orsay, France.
| | | | | |
Collapse
|
85
|
A subpopulation of smooth muscle cells, derived from melanocyte-competent precursors, prevents patent ductus arteriosus. PLoS One 2013; 8:e53183. [PMID: 23382837 PMCID: PMC3561373 DOI: 10.1371/journal.pone.0053183] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/26/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Patent ductus arteriosus is a life-threatening condition frequent in premature newborns but also present in some term infants. Current mouse models of this malformation generally lead to perinatal death, not reproducing the full phenotypic spectrum in humans, in whom genetic inheritance appears complex. The ductus arteriosus (DA), a temporary fetal vessel that bypasses the lungs by shunting the aortic arch to the pulmonary artery, is constituted by smooth muscle cells of distinct origins (SMC1 and SMC2) and many fewer melanocytes. To understand novel mechanisms preventing DA closure at birth, we evaluated the importance of cell fate specification in SMC that form the DA during embryonic development. Upon specific Tyr::Cre-driven activation of Wnt/β-catenin signaling at the time of cell fate specification, melanocytes replaced the SMC2 population of the DA, suggesting that SMC2 and melanocytes have a common precursor. The number of SMC1 in the DA remained similar to that in controls, but insufficient to allow full DA closure at birth. Thus, there was no cellular compensation by SMC1 for the loss of SMC2. Mice in which only melanocytes were genetically ablated after specification from their potential common precursor with SMC2, demonstrated that differentiated melanocytes themselves do not affect DA closure. Loss of the SMC2 population, independent of the presence of melanocytes, is therefore a cause of patent ductus arteriosus and premature death in the first months of life. Our results indicate that patent ductus arteriosus can result from the insufficient differentiation, proliferation, or contractility of a specific smooth muscle subpopulation that shares a common neural crest precursor with cardiovascular melanocytes.
Collapse
|
86
|
O'Reilly-Pol T, Johnson SL. Kit signaling is involved in melanocyte stem cell fate decisions in zebrafish embryos. Development 2013; 140:996-1002. [PMID: 23364331 DOI: 10.1242/dev.088112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Adult stem cells are crucial for growth, homeostasis and repair of adult animals. The melanocyte stem cell (MSC) and melanocyte regeneration is an attractive model for studying regulation of adult stem cells. The process of melanocyte regeneration can be divided into establishment of the MSC, recruitment of the MSC to produce committed daughter cells, and the proliferation, differentiation and survival of these daughter cells. Reduction of Kit signaling results in dose-dependent reduction of melanocytes during larval regeneration. Here, we use clonal analysis techniques to develop assays to distinguish roles for these processes during zebrafish larval melanocyte regeneration. We use these clonal assays to investigate which processes are affected by the reduction in Kit signaling. We show that the regeneration defect in kita mutants is not due to defects in MSC recruitment or in the proliferation, differentiation or survival of the daughter cells, but is instead due to a defect in stem cell establishment. Our analysis suggests that the kit MSC establishment defect results from inappropriate differentiation of the MSC lineage.
Collapse
Affiliation(s)
- Thomas O'Reilly-Pol
- Department of Genetics, Washington University Medical School, St Louis, MO 63130, USA.
| | | |
Collapse
|
87
|
Yoshimura N, Motohashi T, Aoki H, Tezuka KI, Watanabe N, Wakaoka T, Era T, Kunisada T. Dual origin of melanocytes defined by Sox1 expression and their region-specific distribution in mammalian skin. Dev Growth Differ 2013; 55:270-81. [DOI: 10.1111/dgd.12034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/10/2012] [Accepted: 12/10/2012] [Indexed: 01/10/2023]
Affiliation(s)
- Naoko Yoshimura
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science; Gifu University Graduate School of Medicine; 1-1 Yanagido; 501-1194; Gifu; Japan
| | - Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science; Gifu University Graduate School of Medicine; 1-1 Yanagido; 501-1194; Gifu; Japan
| | - Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science; Gifu University Graduate School of Medicine; 1-1 Yanagido; 501-1194; Gifu; Japan
| | - Ken-ichi Tezuka
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science; Gifu University Graduate School of Medicine; 1-1 Yanagido; 501-1194; Gifu; Japan
| | - Natsuki Watanabe
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science; Gifu University Graduate School of Medicine; 1-1 Yanagido; 501-1194; Gifu; Japan
| | - Takanori Wakaoka
- Department of Otolaryngology; Gifu University Graduate School of Medicine; 1-1 Yanagido; 501-1194; Gifu; Japan
| | - Takumi Era
- Department of Cell Modulation; Institute of Molecular Embryology and Genetics (IMEG); Kumamoto University; 2-2-1 Honjo; 860-0811; Kumamoto; Japan
| | - Takahiro Kunisada
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science; Gifu University Graduate School of Medicine; 1-1 Yanagido; 501-1194; Gifu; Japan
| |
Collapse
|
88
|
Deo M, Huang JLY, Fuchs H, de Angelis MH, Van Raamsdonk CD. Differential Effects of Neurofibromin Gene Dosage on Melanocyte Development. J Invest Dermatol 2013; 133:49-58. [DOI: 10.1038/jid.2012.240] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
89
|
Ye J, Yang T, Guo H, Tang Y, Deng F, Li Y, Xing Y, Yang L, Yang K. Wnt10b promotes differentiation of mouse hair follicle melanocytes. Int J Med Sci 2013; 10:691-8. [PMID: 23569433 PMCID: PMC3619118 DOI: 10.7150/ijms.6170] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/20/2013] [Indexed: 01/18/2023] Open
Abstract
Previous research has revealed that Wnt10b activates canonical Wnt signaling, which is integral to melanocyte differentiation in hair follicles (HFs). However, the function of Wnt10b in HF melanocytes remains poorly understood. We determined using Dct-LacZ transgenic mice that Wnt10b is mainly expressed near and within melanocytes of the hair bulbs during the anagen stage of the hair cycle. We also found that Wnt10b promotes an increase in melanocyte maturation and pigmentation in the hair bulbs of the mouse HF. To further explore the potential functions of Wnt10b in mouse HF melanocytes, we infected iMC23 cells with Ad-Wnt10b to overexpress Wnt10b. We demonstrated that Wnt10b promotes the differentiation of melanocytes by activating canonical Wnt signaling in melanocytes.
Collapse
Affiliation(s)
- Jixing Ye
- Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Harris ML, Pavan WJ. Postnatal lineage mapping of follicular melanocytes with the Tyr::CreER(T) (2) transgene. Pigment Cell Melanoma Res 2012; 26:269-74. [PMID: 23176440 DOI: 10.1111/pcmr.12048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 11/15/2012] [Indexed: 11/28/2022]
Abstract
One of the main advantages of using inducible and conditional transgenes to study pigment cell biology is that they allow for genetic manipulation within melanocytes after roles in general neural crest or melanoblast development have been fulfilled. Specifically, we focus here on the ability of the Tyr::CreER(T) (2) transgenic line to alter genes within follicular melanocytes postnatally. Using the Gt(ROSA)26Sor(tm1sor) reporter allele, we present in detail the expression and activity of Tyr::CreER(T) (2) when induced during hair morphogenesis and adult hair cycling. We find that despite similarities in expression pattern to endogenous TYR, Tyr::CreER(T) (2) is effective at targeting both undifferentiated and differentiated melanocytes within the hair follicle. We also find that Tyr::CreER(T) (2) provides the highest levels of recombination when induced during the early phases of hair growth. In conclusion, the descriptions provided here will guide future analyses of gene function within the melanocyte system of the hair follicle when using this Tyr::CreER(T) (2) transgene.
Collapse
Affiliation(s)
- Melissa L Harris
- Genetic Disease Research Branch, National Human Genome Institute, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
91
|
Alikhan A, Ibrahimi OA, Eisen DB. Congenital melanocytic nevi: where are we now? Part I. Clinical presentation, epidemiology, pathogenesis, histology, malignant transformation, and neurocutaneous melanosis. J Am Acad Dermatol 2012; 67:495.e1-17; quiz 512-4. [PMID: 22980258 DOI: 10.1016/j.jaad.2012.06.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/04/2012] [Accepted: 06/07/2012] [Indexed: 11/15/2022]
Abstract
Congenital melanocytic nevi (CMN) are present at birth or arise during the first few weeks of life. They are quite common, may have a heritable component, and can present with marked differences in size, shape, color, and location. Histologic and dermatoscopic findings may help suggest the diagnosis, but they are not entirely specific. CMN are categorized based on size, and larger lesions can have a significant psychosocial impact and other complications. They are associated with a variety of dermatologic lesions, ranging from benign to malignant. The risk of malignant transformation varies, with larger CMN carrying a significantly higher risk of malignant melanoma (MM), although with an absolute risk that is lower than is commonly believed. They may also be associated with neuromelanosis, which may be of greater concern than cutaneous MM. The information presented herein aims to help dermatologists determine when it is prudent to obtain a biopsy specimen or excise these lesions, to obtain radiographic imaging, and to involve other specialists (eg, psychiatrists and neurologists) in the patient's care.
Collapse
Affiliation(s)
- Ali Alikhan
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
92
|
Li A, Ma Y, Jin M, Mason S, Mort RL, Blyth K, Larue L, Sansom OJ, Machesky LM. Activated mutant NRas(Q61K) drives aberrant melanocyte signaling, survival, and invasiveness via a Rac1-dependent mechanism. J Invest Dermatol 2012; 132:2610-21. [PMID: 22718121 PMCID: PMC3472562 DOI: 10.1038/jid.2012.186] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/20/2012] [Accepted: 04/20/2012] [Indexed: 12/30/2022]
Abstract
Around a fifth of melanomas exhibit an activating mutation in the oncogene NRas that confers constitutive signaling to proliferation and promotes tumor initiation. NRas signals downstream of the major melanocyte tyrosine kinase receptor c-kit and activated NRas results in increased signaling via the extracellular signal-regulated kinase (ERK)/MAPK/ERK kinase/mitogen-activated protein kinase (MAPK) pathways to enhance proliferation. The Ras oncogene also activates signaling via the related Rho GTPase Rac1, which can mediate growth, survival, and motility signaling. We tested the effects of activated NRas(Q61K) on the proliferation, motility, and invasiveness of melanoblasts and melanocytes in the developing mouse and ex vivo explant culture as well as in a melanoma transplant model. We find an important role for Rac1 downstream of NRas(Q61K) in mediating dermal melanocyte survival in vivo in mouse, but surprisingly NRas(Q61K) does not appear to affect melanoblast motility or proliferation during mouse embryogenesis. We also show that genetic deletion or pharmacological inhibition of Rac1 in NRas(Q61K) induced melanoma suppresses tumor growth, lymph node spread, and tumor cell invasiveness, suggesting a potential value for Rac1 as a therapeutic target for activated NRas-driven tumor growth and invasiveness.
Collapse
Affiliation(s)
- Ang Li
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| | - Yafeng Ma
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| | - Meng Jin
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| | - Susan Mason
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| | - Richard L Mort
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, UK
| | - Karen Blyth
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| | - Lionel Larue
- Institut Curie, CNRS UMR3347 INSERM U1021, Institut Curie, Bat 110, Centre Universitaire, Orsay, France
| | - Owen J Sansom
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| | - Laura M Machesky
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| |
Collapse
|
93
|
Lee E, Han J, Kim K, Choi H, Cho EG, Lee TR. CXCR7 mediates SDF1-induced melanocyte migration. Pigment Cell Melanoma Res 2012; 26:58-66. [PMID: 22978759 DOI: 10.1111/pcmr.12024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 09/12/2012] [Indexed: 01/08/2023]
Abstract
Melanoblasts are derived from the neural crest and migrate to the dermal/epidermal border of skin and hair bulges. Although melanoblast migration during embryogenesis has been well investigated, there are only a few reports regarding the migration of mature melanocytes. Here, we demonstrate that a chemokine, stromal-derived factor-1 (SDF1, also known as CXCL12), and one of its receptor CXCR7 regulate normal human epidermal melanocyte (NHEM) migration. We found that SDF1 induces the directional migration of NHEMs. Interestingly, although both CXCR4 and CXCR7 are expressed in NHEMs, blockade of CXCR4 using a CXCR4-specific neutralizing antibody did not exert any influence on the SDF1-induced migration of NHEMs, whereas blockade of CXCR7 using a CXCR7-specific neutralizing antibody did influence migration. Furthermore, SDF1-induced NHEMs migration exhibited the early hallmark events of CXCR7 signaling associated with MAP kinase activation. It is known that the phosphorylation of ERK through CXCR7 signaling is mediated by β-arrestins. The treatment of NHEMs with SDF1 resulted in the phosphorylation of ERK in a β-arrestin 2-dependent manner. These results suggest that melanocytes may have a unique mechanism of migration via SDF1/CXCR7 signaling that is different from that of other cell types.
Collapse
Affiliation(s)
- Eunkyung Lee
- Bioscience Research Institute, AmorePacific Corporation R&D Center, Yongin-si, South Korea
| | | | | | | | | | | |
Collapse
|
94
|
Lennartsson J, Rönnstrand L. Stem Cell Factor Receptor/c-Kit: From Basic Science to Clinical Implications. Physiol Rev 2012; 92:1619-49. [DOI: 10.1152/physrev.00046.2011] [Citation(s) in RCA: 485] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stem cell factor (SCF) is a dimeric molecule that exerts its biological functions by binding to and activating the receptor tyrosine kinase c-Kit. Activation of c-Kit leads to its autophosphorylation and initiation of signal transduction. Signaling proteins are recruited to activated c-Kit by certain interaction domains (e.g., SH2 and PTB) that specifically bind to phosphorylated tyrosine residues in the intracellular region of c-Kit. Activation of c-Kit signaling has been found to mediate cell survival, migration, and proliferation depending on the cell type. Signaling from c-Kit is crucial for normal hematopoiesis, pigmentation, fertility, gut movement, and some aspects of the nervous system. Deregulated c-Kit kinase activity has been found in a number of pathological conditions, including cancer and allergy. The observation that gain-of-function mutations in c-Kit can promote tumor formation and progression has stimulated the development of therapeutics agents targeting this receptor, e.g., the clinically used inhibitor imatinib mesylate. Also other clinically used multiselective kinase inhibitors, for instance, sorafenib and sunitinib, have c-Kit included in their range of targets. Furthermore, loss-of-function mutations in c-Kit have been observed and shown to give rise to a condition called piebaldism. This review provides a summary of our current knowledge regarding structural and functional aspects of c-Kit signaling both under normal and pathological conditions, as well as advances in the development of low-molecular-weight molecules inhibiting c-Kit function.
Collapse
Affiliation(s)
- Johan Lennartsson
- Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden; and Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Lars Rönnstrand
- Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden; and Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
95
|
Valluet A, Druillennec S, Barbotin C, Dorard C, Monsoro-Burq AH, Larcher M, Pouponnot C, Baccarini M, Larue L, Eychène A. B-Raf and C-Raf are required for melanocyte stem cell self-maintenance. Cell Rep 2012; 2:774-80. [PMID: 23022482 DOI: 10.1016/j.celrep.2012.08.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 06/08/2012] [Accepted: 08/22/2012] [Indexed: 11/18/2022] Open
Abstract
B-Raf and C-Raf kinases have emerged as critical players in melanoma. However, little is known about their role during development and homeostasis of the melanocyte lineage. Here, we report that knockout of B-raf and C-raf genes in this lineage results in normal pigmentation at birth with no defect in migration, proliferation, or differentiation of melanoblasts in mouse hair follicles. In contrast, the double raf knockout mice displayed hair graying resulting from a defect in cell-cycle entry of melanocyte stem cells (MSCs) and their subsequent depletion in the hair follicle bulge. Therefore, Raf signaling is dispensable for early melanocyte lineage development, but necessary for MSC maintenance.
Collapse
Affiliation(s)
- Agathe Valluet
- Institut Curie, Centre Universitaire, Orsay F-91405, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Tharmarajah G, Faas L, Reiss K, Saftig P, Young A, Van Raamsdonk CD. Adam10 haploinsufficiency causes freckle-like macules in Hairless mice. Pigment Cell Melanoma Res 2012; 25:555-65. [DOI: 10.1111/j.1755-148x.2012.01032.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
97
|
Pshenichnaya I, Schouwey K, Armaro M, Larue L, Knoepfler PS, Eisenman RN, Trumpp A, Delmas V, Beermann F. Constitutive gray hair in mice induced by melanocyte-specific deletion of c-Myc. Pigment Cell Melanoma Res 2012; 25:312-25. [PMID: 22420299 DOI: 10.1111/j.1755-148x.2012.00998.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
c-Myc is involved in the control of diverse cellular processes and implicated in the maintenance of different tissues including the neural crest. Here, we report that c-Myc is particularly important for pigment cell development and homeostasis. Targeting c-Myc specifically in the melanocyte lineage using the floxed allele of c-Myc and Tyr::Cre transgenic mice results in a congenital gray hair phenotype. The gray coat color is associated with a reduced number of functional melanocytes in the hair bulb and melanocyte stem cells in the hair bulge. Importantly, the gray phenotype does not progress with time, suggesting that maintenance of the melanocyte through the hair cycle does not involve c-Myc function. In embryos, at E13.5, c-Myc-deficient melanocyte precursors are affected in proliferation in concordance with a reduction in numbers, showing that c-Myc is required for the proper melanocyte development. Interestingly, melanocytes from c-Myc-deficient mice display elevated levels of the c-Myc paralog N-Myc. Double deletion of c-Myc and N-Myc results in nearly complete loss of the residual pigmentation, indicating that N-Myc is capable of compensating for c-Myc loss of function in melanocytes.
Collapse
Affiliation(s)
- Irina Pshenichnaya
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Djian-Zaouche J, Campagne C, Reyes-Gomez E, Gadin-Czerw S, Bernex F, Louise A, Relaix F, Buckingham M, Panthier JJ, Aubin-Houzelstein G. Pax3( GFP ) , a new reporter for the melanocyte lineage, highlights novel aspects of PAX3 expression in the skin. Pigment Cell Melanoma Res 2012; 25:545-54. [PMID: 22621661 DOI: 10.1111/j.1755-148x.2012.01024.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The paired box gene 3 (Pax3) is expressed during pigment cell development. We tested whether the targeted allele Pax3(GFP) can be used as a reporter gene for pigment cells in the mouse. We found that enhanced green fluorescent protein (GFP) can be seen readily in every melanoblast and melanocyte in the epidermis and hair follicles of Pax3(GFP/+) heterozygotes. The GFP was detected at all differentiation stages, including melanocyte stem cells. In the dermis, Schwann cells and nestin-positive cells of the piloneural collars resembling the nestin-positive hair follicle multipotent stem cells exhibited a weaker GFP signal. Pigment cells could be purified by fluorescent activated cell sorting and grown in vitro without feeder cells, giving pure cultures of melanocytes. The Schwann cells and nestin-positive cells of the piloneural collars were FACS-isolated based on their weak expression of GFP. Thus Pax3(GFP) can discriminate distinct populations of cells in the skin.
Collapse
Affiliation(s)
- Johanna Djian-Zaouche
- INRA, UMR955 Génétique Fonctionnelle et Médicale, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Fenina M, Simon-Chazottes D, Vandormael-Pournin S, Soueid J, Langa F, Cohen-Tannoudji M, Bernard BA, Panthier JJ. I-SceI-mediated double-strand break does not increase the frequency of homologous recombination at the Dct locus in mouse embryonic stem cells. PLoS One 2012; 7:e39895. [PMID: 22761925 PMCID: PMC3383693 DOI: 10.1371/journal.pone.0039895] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/28/2012] [Indexed: 11/20/2022] Open
Abstract
Targeted induction of double-strand breaks (DSBs) at natural endogenous loci was shown to increase the rate of gene replacement by homologous recombination in mouse embryonic stem cells. The gene encoding dopachrome tautomerase (Dct) is specifically expressed in melanocytes and their precursors. To construct a genetic tool allowing the replacement of Dct gene by any gene of interest, we generated an embryonic stem cell line carrying the recognition site for the yeast I-SceI meganuclease embedded in the Dct genomic segment. The embryonic stem cell line was electroporated with an I-SceI expression plasmid, and a template for the DSB-repair process that carried sequence homologies to the Dct target. The I-SceI meganuclease was indeed able to introduce a DSB at the Dct locus in live embryonic stem cells. However, the level of gene targeting was not improved by the DSB induction, indicating a limited capacity of I-SceI to mediate homologous recombination at the Dct locus. These data suggest that homologous recombination by meganuclease-induced DSB may be locus dependent in mammalian cells.
Collapse
Affiliation(s)
- Myriam Fenina
- Mouse functional Genetics, Institut Pasteur, Paris, France
- CNRS URA 2578, Institut Pasteur, Paris, France
- Life Sciences Department, L’Oréal Recherche and Innovation, Clichy, France
| | - Dominique Simon-Chazottes
- Mouse functional Genetics, Institut Pasteur, Paris, France
- CNRS URA 2578, Institut Pasteur, Paris, France
| | | | - Jihane Soueid
- Mouse functional Genetics, Institut Pasteur, Paris, France
- CNRS URA 2578, Institut Pasteur, Paris, France
| | - Francina Langa
- Mouse Genetics Engineering Center, Institut Pasteur, Paris, France
| | - Michel Cohen-Tannoudji
- Mouse functional Genetics, Institut Pasteur, Paris, France
- CNRS URA 2578, Institut Pasteur, Paris, France
| | - Bruno A. Bernard
- Life Sciences Department, L’Oréal Recherche and Innovation, Clichy, France
| | - Jean-Jacques Panthier
- Mouse functional Genetics, Institut Pasteur, Paris, France
- CNRS URA 2578, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
100
|
Abstract
The canonical Wnt signalling pathway induces the β-catenin/lymphoid enhancer factor transcription factors. It is activated in various cancers, most characteristically carcinomas, in which it promotes metastatic spread by increasing migration and/or invasion. The Wnt/β-catenin signalling pathway is frequently activated in melanoma, but the presence of β-catenin in the nucleus does not seem to be a sign of aggressiveness in these tumours. We found that, unlike its positive role in stimulating migration and invasion of carcinoma cells, β-catenin signalling decreased the migration of melanocytes and melanoma cell lines. In vivo, β-catenin signalling in melanoblasts reduced the migration of these cells, causing a white belly-spot phenotype. The inhibition by β-catenin of migration was dependent on MITF-M, a key transcription factor of the melanocyte lineage, and CSK, an Src-inhibitor. Despite reducing migration, β-catenin signalling promoted lung metastasis in the NRAS-driven melanoma murine model. Thus, β-catenin may have conflicting roles in the metastatic spread of melanoma, repressing migration while promoting metastasis. These results highlight that metastasis formation requires a series of successful cellular processes, any one of which may not be optimally efficient.
Collapse
|