52
|
Mizutani Y, Kihara A, Igarashi Y. Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochem J 2005; 390:263-71. [PMID: 15823095 PMCID: PMC1184580 DOI: 10.1042/bj20050291] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Lass (longevity-assurance homologue) family members, which are highly conserved among eukaryotes, function in ceramide synthesis. In the mouse, there are at least five Lass family members, Lass1, Lass2, Lass4, Lass5 and the hitherto uncharacterized Lass6. To investigate specific roles for each Lass member in ceramide synthesis, we cloned these five mouse proteins. Overproduction of any Lass protein in cultured cells resulted in an increase in cellular ceramide, but the ceramide species produced varied. Overproduction of Lass1 increased C18:0-ceramide levels preferentially, and overproduction of Lass2 and Lass4 increased levels of longer ceramides such as C22:0- and C24:0-ceramides. Lass5 and Lass6 produced shorter ceramide species (C14:0- and C16:0-ceramides); however, their substrate preferences towards saturated/unsaturated fatty acyl-CoA differed. In addition to differences in substrate preferences, we also demonstrated by Northern blotting that Lass family members are differentially expressed among tissues. Additionally, we found that Lass proteins differ with regard to glycosylation. Of the five members, only Lass2, Lass5 and Lass6 were N-glycosylated, each at their N-terminal Asn residue. The occurrence of N-glycosylation of some Lass proteins provides topological insight, indicating that the N-termini of Lass family members probably face the luminal side of the endoplasmic reticulum membrane. Furthermore, based on a proteinase K digestion assay, we demonstrated that the C-terminus of Lass6 faces the cytosolic side of the membrane. From these data we propose topology for the conserved Lag1 motif in Lass family members, namely that the N-terminal region faces the luminal side and the C-terminal region the cytosolic side of the endoplasmic reticulum membrane.
Collapse
Affiliation(s)
- Yukiko Mizutani
- Department of Biomembrane and Biofunctional Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-choume, Kita-ku, Sapporo 060-0812, Japan
| | - Akio Kihara
- Department of Biomembrane and Biofunctional Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-choume, Kita-ku, Sapporo 060-0812, Japan
| | - Yasuyuki Igarashi
- Department of Biomembrane and Biofunctional Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-choume, Kita-ku, Sapporo 060-0812, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
57
|
Wan D, Gong Y, Qin W, Zhang P, Li J, Wei L, Zhou X, Li H, Qiu X, Zhong F, He L, Yu J, Yao G, Jiang H, Qian L, Yu Y, Shu H, Chen X, Xu H, Guo M, Pan Z, Chen Y, Ge C, Yang S, Gu J. Large-scale cDNA transfection screening for genes related to cancer development and progression. Proc Natl Acad Sci U S A 2004; 101:15724-9. [PMID: 15498874 PMCID: PMC524842 DOI: 10.1073/pnas.0404089101] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 09/09/2004] [Indexed: 02/02/2023] Open
Abstract
A large-scale assay was performed by transfecting 29,910 individual cDNA clones derived from human placenta, fetus, and normal liver tissues into human hepatoma cells and 22,926 cDNA clones into mouse NIH 3T3 cells. Based on the results of colony formation in hepatoma cells and foci formation in NIH 3T3 cells, 3,806 cDNA species (8,237 clones) were found to possess the ability of either stimulating or inhibiting cell growth. Among them, 2,836 (6,958 clones) were known genes, 372 (384 clones) were previously unrecognized genes, and 598 (895 clones) were unigenes of uncharacterized structure and function. A comprehensive analysis of the genes and the potential mechanisms for their involvement in the regulation of cell growth is provided. The genes were classified into four categories: I, genes related to the basic cellular mechanism for growth and survival; II, genes related to the cellular microenvironment; III, genes related to host-cell systemic regulation; and IV, genes of miscellaneous function. The extensive growth-regulatory activity of genes with such highly diversified functions suggests that cancer may be related to multiple levels of cellular and systemic controls. The present assay provides a direct genomewide functional screening method. It offers a better understanding of the basic machinery of oncogenesis, including previously undescribed systemic regulatory mechanisms, and also provides a tool for gene discovery with potential clinical applications.
Collapse
Affiliation(s)
- Dafang Wan
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China; Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China; and BioInfo Bridge, 16905 George Washington Drive, Rockville, MD 20853
| | - Yi Gong
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China; Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China; and BioInfo Bridge, 16905 George Washington Drive, Rockville, MD 20853
| | - Wenxin Qin
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China; Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China; and BioInfo Bridge, 16905 George Washington Drive, Rockville, MD 20853
| | - Pingping Zhang
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China; Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China; and BioInfo Bridge, 16905 George Washington Drive, Rockville, MD 20853
| | - Jinjun Li
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China; Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China; and BioInfo Bridge, 16905 George Washington Drive, Rockville, MD 20853
| | - Lin Wei
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China; Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China; and BioInfo Bridge, 16905 George Washington Drive, Rockville, MD 20853
| | - Xiaomei Zhou
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China; Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China; and BioInfo Bridge, 16905 George Washington Drive, Rockville, MD 20853
| | - Hongnian Li
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China; Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China; and BioInfo Bridge, 16905 George Washington Drive, Rockville, MD 20853
| | - Xiaokun Qiu
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China; Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China; and BioInfo Bridge, 16905 George Washington Drive, Rockville, MD 20853
| | - Fei Zhong
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China; Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China; and BioInfo Bridge, 16905 George Washington Drive, Rockville, MD 20853
| | - Liping He
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China; Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China; and BioInfo Bridge, 16905 George Washington Drive, Rockville, MD 20853
| | - Jian Yu
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China; Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China; and BioInfo Bridge, 16905 George Washington Drive, Rockville, MD 20853
| | - Genfu Yao
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China; Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China; and BioInfo Bridge, 16905 George Washington Drive, Rockville, MD 20853
| | - Huiqiu Jiang
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China; Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China; and BioInfo Bridge, 16905 George Washington Drive, Rockville, MD 20853
| | - Lianfang Qian
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China; Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China; and BioInfo Bridge, 16905 George Washington Drive, Rockville, MD 20853
| | - Ye Yu
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China; Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China; and BioInfo Bridge, 16905 George Washington Drive, Rockville, MD 20853
| | - Huiqun Shu
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China; Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China; and BioInfo Bridge, 16905 George Washington Drive, Rockville, MD 20853
| | - Xianlian Chen
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China; Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China; and BioInfo Bridge, 16905 George Washington Drive, Rockville, MD 20853
| | - Huili Xu
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China; Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China; and BioInfo Bridge, 16905 George Washington Drive, Rockville, MD 20853
| | - Minglei Guo
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China; Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China; and BioInfo Bridge, 16905 George Washington Drive, Rockville, MD 20853
| | - Zhimei Pan
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China; Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China; and BioInfo Bridge, 16905 George Washington Drive, Rockville, MD 20853
| | - Yan Chen
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China; Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China; and BioInfo Bridge, 16905 George Washington Drive, Rockville, MD 20853
| | - Chao Ge
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China; Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China; and BioInfo Bridge, 16905 George Washington Drive, Rockville, MD 20853
| | - Shengli Yang
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China; Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China; and BioInfo Bridge, 16905 George Washington Drive, Rockville, MD 20853
| | - Jianren Gu
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China; Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China; and BioInfo Bridge, 16905 George Washington Drive, Rockville, MD 20853
| |
Collapse
|
59
|
Fei P, Junyu N, Jiangfeng Y, Jingpin Y, Yuping W, Zhihui H, Jieliang W, Xianglin C, Shaomin Y, Jie Z. Monoclonal Antibodies Against Human Tumor Metastasis Suppressor Gene–1 (TMSG-1): Preparation, Characterization, and Application. ACTA ACUST UNITED AC 2004; 23:318-25. [PMID: 15672611 DOI: 10.1089/hyb.2004.23.318] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To better understand the molecular mechanism of metastasis, the monoclonal antibody against tumor metastasis suppressor gene-1 (TMSG-1, one novel gene) was prepared, characterized, and applied in estimating the metastatic potential of human tumors. A dominant epitope, TMSG-1(15)--derived from TMSG-1--was automatically synthesized based on the Fmoc method, and the hapten was conjugated to Imject Maleimide activated mcKLH as a carrier protein. The antigen solution was used to immunize BALB/C mice. Hybridomas were generated and screened by ELISA for specific monoclonal antibodies, and their characterization was performed by Western blotting and immunohistochemical staining. The hybridoma cell line secreting anti-TMSG-1 antibody, designated C8, was established after primary ELISA screening and consequent rapid limited dilution. C8 was IgM in isotyping. The competitive inhibition assay showed that the antibody was TMSG-1 specific. Furthermore, in Western blotting, a protein band of about 45 kD was detected with nonmetastatic variant PC-3M-2B4 and PG-LH7 cells, but not with the isogenetic metastatic variant PC-3M-1E8 and PG-BE1 cells. Immunohistochemistry method showed that positive staining presented in the cytomembrane and cytoplasm of 2B4 and LH7 cells, while 1E8 and BE1 cells were non-reactive. The sections from paraffin-embedded blocks of human cancer (52 cases of breast carcinoma and 41 cases of colon cancer) were stained, showing strongly positive in non-metastatic tumor and weakly positive or negative in metastatic tumor; the strongly positive rate of TMSG-1 expression in human cancers were, respectively, 36%, 7.4%, 52.4%, and 35% in non-metastatic and metastatic breast cancer and non-metastatic and metastatic colon cancer (p = 0.02). The monoclonal antibody developed against synthetic peptide was TMSG-1 specific, and it has promise in Western blot and immunohistochemistry for detecting the TMSG-1 expression of cancer cells and tissues. It may provide an important tool in the study of TMSG-1 expression and function in both experimental and clinical studies. Furthermore, our tests confirmed that TMSG-1 protein has excellent inverse correlation to tumor metastasis potential, with the molecular weight of 45 kD (supporting the encoded protein containing 380 amino acids) and localization in cytomembrane and cytoplasm of tumor cell.
Collapse
Affiliation(s)
- Pei Fei
- Department of Pathology, Health Science Center, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|