51
|
Reich S, Kress N, Nestl BM, Hauer B. Variations in the stability of NCR ene reductase by rational enzyme loop modulation. J Struct Biol 2014; 185:228-33. [DOI: 10.1016/j.jsb.2013.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/15/2013] [Accepted: 04/09/2013] [Indexed: 10/26/2022]
|
52
|
Bosshart A, Panke S, Bechtold M. Systematic Optimization of Interface Interactions Increases the Thermostability of a Multimeric Enzyme. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
53
|
Bosshart A, Panke S, Bechtold M. Systematic optimization of interface interactions increases the thermostability of a multimeric enzyme. Angew Chem Int Ed Engl 2013; 52:9673-6. [PMID: 23893529 DOI: 10.1002/anie.201304141] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Andreas Bosshart
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | | | | |
Collapse
|
54
|
Joshi S, Satyanarayana T. Biotechnology of cold-active proteases. BIOLOGY 2013; 2:755-83. [PMID: 24832807 PMCID: PMC3960895 DOI: 10.3390/biology2020755] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/17/2013] [Accepted: 04/24/2013] [Indexed: 11/17/2022]
Abstract
The bulk of Earth's biosphere is cold (<5 °C) and inhabited by psychrophiles. Biocatalysts from psychrophilic organisms (psychrozymes) have attracted attention because of their application in the ongoing efforts to decrease energy consumption. Proteinases as a class represent the largest category of industrial enzymes. There has been an emphasis on employing cold-active proteases in detergents because this allows laundry operations at ambient temperatures. Proteases have been used in environmental bioremediation, food industry and molecular biology. In view of the present limited understanding and availability of cold-active proteases with diverse characteristics, it is essential to explore Earth's surface more in search of an ideal cold-active protease. The understanding of molecular and mechanistic details of these proteases will open up new avenues to tailor proteases with the desired properties. A detailed account of the developments in the production and applications of cold-active proteases is presented in this review.
Collapse
Affiliation(s)
- Swati Joshi
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.
| | - Tulasi Satyanarayana
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
55
|
Psychrophily and catalysis. BIOLOGY 2013; 2:719-41. [PMID: 24832805 PMCID: PMC3960892 DOI: 10.3390/biology2020719] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 11/24/2022]
Abstract
Polar and other low temperature environments are characterized by a low content in energy and this factor has a strong incidence on living organisms which populate these rather common habitats. Indeed, low temperatures have a negative effect on ectothermic populations since they can affect their growth, reaction rates of biochemical reactions, membrane permeability, diffusion rates, action potentials, protein folding, nucleic acids dynamics and other temperature-dependent biochemical processes. Since the discovery that these ecosystems, contrary to what was initially expected, sustain a rather high density and broad diversity of living organisms, increasing efforts have been dedicated to the understanding of the molecular mechanisms involved in their successful adaptation to apparently unfavorable physical conditions. The first question that comes to mind is: How do these organisms compensate for the exponential decrease of reaction rate when temperature is lowered? As most of the chemical reactions that occur in living organisms are catalyzed by enzymes, the kinetic and thermodynamic properties of cold-adapted enzymes have been investigated. Presently, many crystallographic structures of these enzymes have been elucidated and allowed for a rather clear view of their adaptation to cold. They are characterized by a high specific activity at low and moderate temperatures and a rather low thermal stability, which induces a high flexibility that prevents the freezing effect of low temperatures on structure dynamics. These enzymes also display a low activation enthalpy that renders them less dependent on temperature fluctuations. This is accompanied by a larger negative value of the activation entropy, thus giving evidence of a more disordered ground state. Appropriate folding kinetics is apparently secured through a large expression of trigger factors and peptidyl–prolyl cis/trans-isomerases.
Collapse
|
56
|
Okuda M, Ozawa T, Tohata M, Sato T, Saeki K, Ozaki K. A single mutation within a Ca2+ binding loop increases proteolytic activity, thermal stability, and surfactant stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:634-41. [DOI: 10.1016/j.bbapap.2012.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/20/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022]
|
57
|
Fornbacke M, Clarsund M. Cold-adapted proteases as an emerging class of therapeutics. Infect Dis Ther 2013; 2:15-26. [PMID: 25135820 PMCID: PMC4108096 DOI: 10.1007/s40121-013-0002-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Indexed: 01/11/2023] Open
Abstract
Proteases have been used in medicine for several decades and are an established and well tolerated class of therapeutic agent. These proteases were sourced from mammals or bacteria that exist or have adapted to moderate temperatures (mesophilic organisms); however, proteases derived from organisms from cold environments-cold-adapted or psychrophilic proteases-generally have high specific activity, low substrate affinity, and high catalytic rates at low and moderate temperatures. Made possible by greater flexibility, psychrophilic enzymes interact with and transform the substrate at lower energy costs. Cold-adapted proteases have been used in a wide range of applications, including industrial functions, textiles, cleaning/hygiene products, molecular biology, environmental bioremediations, consumer food products, cosmetics, and pharmaceutical production. In addition to these applications, they have also shown promise as therapeutic modalities for cosmeceutical applications (by reducing glabellar [frown] lines) and a number of disease conditions, including bacterial infections (by disrupting biofilms to prevent bacterial infection), topical wound management (when used as a debridement agent to remove necrotic tissue and fibrin clots), oral/dental health management (by removing plaque and preventing periodontal disease), and in viral infections (by reducing the infectivity of viruses, such as human rhinovirus 16 and herpes simplex virus). Psychrophilic proteases with greater activity and stability (than the original organism-derived variant) have been developed; this coupled with available manufacturing recombinant production techniques suggests that cold-adapted proteases have a promising future as a distinct therapeutic class with diverse clinical applications.
Collapse
|
58
|
Singh RK, Tiwari MK, Singh R, Lee JK. From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int J Mol Sci 2013; 14:1232-77. [PMID: 23306150 PMCID: PMC3565319 DOI: 10.3390/ijms14011232] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/14/2012] [Accepted: 12/24/2012] [Indexed: 11/16/2022] Open
Abstract
Enzymes found in nature have been exploited in industry due to their inherent catalytic properties in complex chemical processes under mild experimental and environmental conditions. The desired industrial goal is often difficult to achieve using the native form of the enzyme. Recent developments in protein engineering have revolutionized the development of commercially available enzymes into better industrial catalysts. Protein engineering aims at modifying the sequence of a protein, and hence its structure, to create enzymes with improved functional properties such as stability, specific activity, inhibition by reaction products, and selectivity towards non-natural substrates. Soluble enzymes are often immobilized onto solid insoluble supports to be reused in continuous processes and to facilitate the economical recovery of the enzyme after the reaction without any significant loss to its biochemical properties. Immobilization confers considerable stability towards temperature variations and organic solvents. Multipoint and multisubunit covalent attachments of enzymes on appropriately functionalized supports via linkers provide rigidity to the immobilized enzyme structure, ultimately resulting in improved enzyme stability. Protein engineering and immobilization techniques are sequential and compatible approaches for the improvement of enzyme properties. The present review highlights and summarizes various studies that have aimed to improve the biochemical properties of industrially significant enzymes.
Collapse
Affiliation(s)
- Raushan Kumar Singh
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Korea.
| | | | | | | |
Collapse
|
59
|
Feller G. Psychrophilic enzymes: from folding to function and biotechnology. SCIENTIFICA 2013; 2013:512840. [PMID: 24278781 PMCID: PMC3820357 DOI: 10.1155/2013/512840] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/06/2012] [Indexed: 05/10/2023]
Abstract
Psychrophiles thriving permanently at near-zero temperatures synthesize cold-active enzymes to sustain their cell cycle. Genome sequences, proteomic, and transcriptomic studies suggest various adaptive features to maintain adequate translation and proper protein folding under cold conditions. Most psychrophilic enzymes optimize a high activity at low temperature at the expense of substrate affinity, therefore reducing the free energy barrier of the transition state. Furthermore, a weak temperature dependence of activity ensures moderate reduction of the catalytic activity in the cold. In these naturally evolved enzymes, the optimization to low temperature activity is reached via destabilization of the structures bearing the active site or by destabilization of the whole molecule. This involves a reduction in the number and strength of all types of weak interactions or the disappearance of stability factors, resulting in improved dynamics of active site residues in the cold. These enzymes are already used in many biotechnological applications requiring high activity at mild temperatures or fast heat-inactivation rate. Several open questions in the field are also highlighted.
Collapse
Affiliation(s)
- Georges Feller
- Laboratory of Biochemistry, Centre for Protein Engineering, Institute of Chemistry, University of Liège, B6a, 4000 Liège, Belgium
- *Georges Feller:
| |
Collapse
|
60
|
|
61
|
Martinez R, Jakob F, Tu R, Siegert P, Maurer KH, Schwaneberg U. Increasing activity and thermal resistance ofBacillus gibsoniialkaline protease (BgAP) by directed evolution. Biotechnol Bioeng 2012; 110:711-20. [DOI: 10.1002/bit.24766] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/08/2012] [Accepted: 10/11/2012] [Indexed: 11/06/2022]
|
62
|
Whittington AC, Moerland TS. Resurrecting prehistoric parvalbumins to explore the evolution of thermal compensation in extant Antarctic fish parvalbumins. J Exp Biol 2012; 215:3281-92. [PMID: 22693024 DOI: 10.1242/jeb.070615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Parvalbumins (PVs) from Antarctic notothenioid fishes display a pattern of thermal adaptation that likely reflects evolutionary changes in protein conformational flexibility. We have used ancestral sequence reconstruction and homology modeling to identify two amino acid changes that could potentially account for the present thermal sensitivity pattern of Antarctic fish PVs compared with a PV from a theoretical warm-adapted ancestral fish. To test this hypothesis, ancient PVs were resurrected in the lab using PV from the notothenioid Gobionotothen gibberifrons as a platform for introducing mutations comparable to the reconstructed ancestral PV sequences. The wild-type PV (WT) as well as three mutant expression constructs were engineered: lysine 8 to asparagine (K8N), lysine 26 to asparagine (K26N) and a double mutant (DM). Calcium equilibrium dissociation constants (K(d)) versus temperature curves for all mutants were right-shifted, as predicted, relative to that of WT PV. The K(d) values for the K8N and K26N single mutants were virtually identical at all temperatures and showed an intermediate level of thermal sensitivity. The DM construct displayed a full conversion of thermal sensitivity pattern to that of a PV from a warm/temperate-adapted fish. Additionally, the K(d) versus temperature curve for the WT construct revealed greater thermal sensitivity compared with the mutant constructs. Measurements of the rates of Ca(2+) dissociation (k(off)) showed that all mutants generally had slower k(off) values than WT at all temperatures. Calculated rates of Ca(2+) binding (k(on)) for the K8N and K26N mutants were similar to values for the WT PV at all temperatures. In contrast, the calculated k(on) values for the DM PV were faster, providing mechanistic insights into the nature of potentially adaptive changes in Ca(2+) binding in this PV. The overall results suggest that the current thermal phenotype of Antarctic PVs can be recapitulated by just two amino acid substitutions.
Collapse
Affiliation(s)
- A Carl Whittington
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | | |
Collapse
|
63
|
Liszka MJ, Clark ME, Schneider E, Clark DS. Nature Versus Nurture: Developing Enzymes That Function Under Extreme Conditions. Annu Rev Chem Biomol Eng 2012; 3:77-102. [DOI: 10.1146/annurev-chembioeng-061010-114239] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Elizabeth Schneider
- Department of Chemical and Biomolecular Engineering,
- UC Berkeley and UCSF Graduate Program in Bioengineering, University of California, Berkeley, California 94720; , , ,
| | | |
Collapse
|
64
|
Role of active site rigidity in activity: MD simulation and fluorescence study on a lipase mutant. PLoS One 2012; 7:e35188. [PMID: 22514720 PMCID: PMC3325981 DOI: 10.1371/journal.pone.0035188] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/09/2012] [Indexed: 11/19/2022] Open
Abstract
Relationship between stability and activity of enzymes is maintained by underlying conformational flexibility. In thermophilic enzymes, a decrease in flexibility causes low enzyme activity while in less stable proteins such as mesophiles and psychrophiles, an increase in flexibility is associated with enhanced enzyme activity. Recently, we identified a mutant of a lipase whose stability and activity were enhanced simultaneously. In this work, we probed the conformational dynamics of the mutant and the wild type lipase, particularly flexibility of their active site using molecular dynamic simulations and time-resolved fluorescence techniques. In contrast to the earlier observations, our data show that active site of the mutant is more rigid than wild type enzyme. Further investigation suggests that this lipase needs minimal reorganization/flexibility of active site residues during its catalytic cycle. Molecular dynamic simulations suggest that catalytically competent active site geometry of the mutant is relatively more preserved than wild type lipase, which might have led to its higher enzyme activity. Our study implies that widely accepted positive correlation between conformation flexibility and enzyme activity need not be stringent and draws attention to the possibility that high enzyme activity can still be accomplished in a rigid active site and stable protein structures. This finding has a significant implication towards better understanding of involvement of dynamic motions in enzyme catalysis and enzyme engineering through mutations in active site.
Collapse
|
65
|
Karan R, Capes MD, DasSarma S. Function and biotechnology of extremophilic enzymes in low water activity. AQUATIC BIOSYSTEMS 2012; 8:4. [PMID: 22480329 PMCID: PMC3310334 DOI: 10.1186/2046-9063-8-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/02/2012] [Indexed: 05/31/2023]
Abstract
Enzymes from extremophilic microorganisms usually catalyze chemical reactions in non-standard conditions. Such conditions promote aggregation, precipitation, and denaturation, reducing the activity of most non-extremophilic enzymes, frequently due to the absence of sufficient hydration. Some extremophilic enzymes maintain a tight hydration shell and remain active in solution even when liquid water is limiting, e.g. in the presence of high ionic concentrations, or at cold temperature when water is close to the freezing point. Extremophilic enzymes are able to compete for hydration via alterations especially to their surface through greater surface charges and increased molecular motion. These properties have enabled some extremophilic enzymes to function in the presence of non-aqueous organic solvents, with potential for design of useful catalysts. In this review, we summarize the current state of knowledge of extremophilic enzymes functioning in high salinity and cold temperatures, focusing on their strategy for function at low water activity. We discuss how the understanding of extremophilic enzyme function is leading to the design of a new generation of enzyme catalysts and their applications to biotechnology.
Collapse
Affiliation(s)
- Ram Karan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, MD, USA
| | - Melinda D Capes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, MD, USA
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, MD, USA
| |
Collapse
|
66
|
Jacobs SA, Diem MD, Luo J, Teplyakov A, Obmolova G, Malia T, Gilliland GL, O'Neil KT. Design of novel FN3 domains with high stability by a consensus sequence approach. Protein Eng Des Sel 2012; 25:107-17. [PMID: 22240293 DOI: 10.1093/protein/gzr064] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The use of consensus design to produce stable proteins has been applied to numerous structures and classes of proteins. Here, we describe the engineering of novel FN3 domains from two different proteins, namely human fibronectin and human tenascin-C, as potential alternative scaffold biotherapeutics. The resulting FN3 domains were found to be robustly expressed in Escherichia coli, soluble and highly stable, with melting temperatures of 89 and 78°C, respectively. X-ray crystallography was used to confirm that the consensus approach led to a structure consistent with the FN3 design despite having only low-sequence identity to natural FN3 domains. The ability of the Tenascin consensus domain to withstand mutations in the loop regions connecting the β-strands was investigated using alanine scanning mutagenesis demonstrating the potential for randomization in these regions. Finally, rational design was used to produce point mutations that significantly increase the stability of one of the consensus domains. Together our data suggest that consensus FN3 domains have potential utility as alternative scaffold therapeutics.
Collapse
Affiliation(s)
- Steven A Jacobs
- Janssen Research & Development, L.L.C., Radnor, PA 19087, USA.
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Majors BS, Chiang GG, Pederson NE, Betenbaugh MJ. Directed evolution of mammalian anti-apoptosis proteins by somatic hypermutation. Protein Eng Des Sel 2011; 25:27-38. [PMID: 22160868 DOI: 10.1093/protein/gzr052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recently, researchers have created novel fluorescent proteins by harnessing the somatic hypermutation ability of B cells. In this study, we examined if this approach could be used to evolve a non-fluorescent protein, namely the anti-apoptosis protein Bcl-x(L), using the Ramos B-cell line. After demonstrating that Ramos cells were capable of mutating a heterologous bcl-x(L) transgene, the cells were exposed to multiple rounds of the chemical apoptosis inducer staurosporine followed by rounds of recovery in fresh medium. The engineered B cells expressing Bcl-x(L) exhibited progressively lower increases in apoptosis activation as measured by caspase-3 activity after successive rounds of selective pressure with staurosporine treatment. Within the B-cell genome, a number of mutated bcl-x(L) transgene variants were identified after three rounds of evolution, including a mutation of Bcl-x(L) Asp29 to either Asn or His, in 8 out of 23 evaluated constructs that represented at least five distinct Ramos subpopulations. Subsequently, Chinese hamster ovary (CHO) cells engineered to overexpress the Bcl-x(L) Asp29Asn variant showed enhanced apoptosis resistance against an orthogonal apoptosis insult, Sindbis virus infection, when compared with cells expressing the wild-type Bcl-x(L) protein. These findings provide, to our knowledge, the first demonstration of evolution of a recombinant mammalian protein in a mammalian expression system.
Collapse
Affiliation(s)
- Brian S Majors
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, 221 Maryland Hall, Baltimore, MD 21218-2694, USA
| | | | | | | |
Collapse
|
68
|
van Leeuwen JGE, Wijma HJ, Floor RJ, van der Laan JM, Janssen DB. Directed Evolution Strategies for Enantiocomplementary Haloalkane Dehalogenases: From Chemical Waste to Enantiopure Building Blocks. Chembiochem 2011; 13:137-48. [DOI: 10.1002/cbic.201100579] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Indexed: 01/06/2023]
|
69
|
Papaleo E, Pasi M, Tiberti M, De Gioia L. Molecular dynamics of mesophilic-like mutants of a cold-adapted enzyme: insights into distal effects induced by the mutations. PLoS One 2011; 6:e24214. [PMID: 21915299 PMCID: PMC3168468 DOI: 10.1371/journal.pone.0024214] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 08/02/2011] [Indexed: 11/18/2022] Open
Abstract
Networks and clusters of intramolecular interactions, as well as their "communication" across the three-dimensional architecture have a prominent role in determining protein stability and function. Special attention has been dedicated to their role in thermal adaptation. In the present contribution, seven previously experimentally characterized mutants of a cold-adapted α-amylase, featuring mesophilic-like behavior, have been investigated by multiple molecular dynamics simulations, essential dynamics and analyses of correlated motions and electrostatic interactions. Our data elucidate the molecular mechanisms underlying the ability of single and multiple mutations to globally modulate dynamic properties of the cold-adapted α-amylase, including both local and complex unpredictable distal effects. Our investigation also shows, in agreement with the experimental data, that the conversion of the cold-adapted enzyme in a warm-adapted variant cannot be completely achieved by the introduction of few mutations, also providing the rationale behind these effects. Moreover, pivotal residues, which are likely to mediate the effects induced by the mutations, have been identified from our analyses, as well as a group of suitable candidates for protein engineering. In fact, a subset of residues here identified (as an isoleucine, or networks of mesophilic-like salt bridges in the proximity of the catalytic site) should be considered, in experimental studies, to get a more efficient modification of the features of the cold-adapted enzyme.
Collapse
Affiliation(s)
- Elena Papaleo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| | | | | | | |
Collapse
|
70
|
Martinez R, Schwaneberg U, Roccatano D. Temperature effects on structure and dynamics of the psychrophilic protease subtilisin S41 and its thermostable mutants in solution. Protein Eng Des Sel 2011; 24:533-44. [DOI: 10.1093/protein/gzr014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
71
|
Tiberti M, Papaleo E. Dynamic properties of extremophilic subtilisin-like serine-proteases. J Struct Biol 2011; 174:69-83. [DOI: 10.1016/j.jsb.2011.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 12/19/2010] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
72
|
Takano K, Okamoto T, Okada J, Tanaka SI, Angkawidjaja C, Koga Y, Kanaya S. Stabilization by fusion to the C-terminus of hyperthermophile Sulfolobus tokodaii RNase HI: a possibility of protein stabilization tag. PLoS One 2011; 6:e16226. [PMID: 21283826 PMCID: PMC3023800 DOI: 10.1371/journal.pone.0016226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 12/17/2010] [Indexed: 11/24/2022] Open
Abstract
RNase HI from the hyperthermophile Sulfolobus tokodaii (Sto-RNase HI) is stabilized by its C-terminal residues. In this work, the stabilization effect of the Sto-RNase HI C-terminal residues was investigated in detail by thermodynamic measurements of the stability of variants lacking the disulfide bond (C58/145A), or the six C-terminal residues (ΔC6) and by structural analysis of ΔC6. The results showed that the C-terminal does not affect overall structure and stabilization is caused by local interactions of the C-terminal, suggesting that the C-terminal residues could be used as a “stabilization tag.” The Sto-RNase HI C-terminal residues (-IGCIILT) were introduced as a tag on three proteins. Each chimeric protein was more stable than its wild-type protein. These results suggested the possibility of a simple stabilization technique using a stabilization tag such as Sto-RNase HI C-terminal residues.
Collapse
Affiliation(s)
- Kazufumi Takano
- Department of Material and Life Science, Osaka University, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
Proteases are hydrolytic enzymes which catalyze the total hydrolysis of proteins in to amino acids. Although proteolytic enzymes can be obtained from animals and plants but microorganisms are the preferred source for industrial applications in view of scientific and economical advantage. Among various groups of microbes, psychrotrophs are ideal candidates for enzymes production keeping in mind that enzymes active at low temperature and stable under alkaline condition, in presence of oxidants and detergents are in large demand as laundry additive. The proteases from psychrotrophs also find application in environmental bioremediation, food and molecular biology. During the previous two decades, proteases from psychrotrophs have received increased attention because of their wide range of applications, but the full potential of psychrotrophic proteases has not been exploited. This review focuses attention on the present status of knowledge on the production, optimization, molecular characteristics, applications, substrate specificity, and crystal structure of psychrotrophic proteases. The review will help in making strategies for exploitation of psychrotrophic protease resources and improvement of enzymes to obtain more robust proteases of industrial and biotechnological significance.
Collapse
Affiliation(s)
- Ramesh Chand Kasana
- Institute of Himalayan Bioresource Technology (CSIR), Palampur (HP)-176061, India.
| |
Collapse
|
74
|
Asghari SM, Pazhang M, Ehtesham S, Karbalaei-Heidari HR, Taghdir M, Sadeghizadeh M, Naderi-Manesh H, Khajeh K. Remarkable improvements of a neutral protease activity and stability share the same structural origins. Protein Eng Des Sel 2010; 23:599-606. [DOI: 10.1093/protein/gzq031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
75
|
Schmidt M, Böttcher D, Bornscheuer UT. Directed Evolution of Industrial Biocatalysts. Ind Biotechnol (New Rochelle N Y) 2010. [DOI: 10.1002/9783527630233.ch4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
76
|
Rogers TA, Bommarius AS. Utilizing Simple Biochemical Measurements to Predict Lifetime Output of Biocatalysts in Continuous Isothermal Processes. Chem Eng Sci 2010; 65:2118-2124. [PMID: 20885990 DOI: 10.1016/j.ces.2009.12.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The expected product yield of a biocatalyst during its useful lifetime is an important consideration when designing a continuous biocatalytic process. One important indicator of lifetime biocatalyst productivity is the dimensionless total turnover number (TTN). Here, a method is proposed for estimating the TTN of a given biocatalyst from readily-measured biochemical quantities, namely the specific activity and the deactivation half-life, measured under identical conditions. We demonstrate that this method may be applied to any enzyme whose thermal deactivation follows first-order kinetics, regardless of the number of unfolding intermediates, and that the TTN method circumvents the potential problems associated with measuring specific catalyst output when a portion of the enzyme is already unfolded. The TTN estimation was applied to several representative biocatalysts to demonstrate its applicability in identifying the most cost-effective catalyst from a pool of engineered mutants with similar activity and thermal stability.
Collapse
Affiliation(s)
- Thomas A Rogers
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332-0363, USA
| | | |
Collapse
|
77
|
You C, Huang Q, Xue H, Xu Y, Lu H. Potential hydrophobic interaction between two cysteines in interior hydrophobic region improves thermostability of a family 11 xylanase fromNeocallimastix Patriciarum. Biotechnol Bioeng 2010; 105:861-70. [DOI: 10.1002/bit.22623] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
78
|
Zhong CQ, Song S, Fang N, Liang X, Zhu H, Tang XF, Tang B. Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site-directed mutagenesis. Biotechnol Bioeng 2009; 104:862-70. [PMID: 19609954 DOI: 10.1002/bit.22473] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
By directed evolution and subsequent site-directed mutagenesis, cold-adapted variants of WF146 protease, a thermophilic subtilase, have been successfully engineered. A four-amino acid substitution variant RTN29 displayed a sixfold increase in caseinolytic activity in the temperature range of 15-25 degrees C, a down-shift of optimum temperature by approximately 15 degrees C, as well as a decrease in thermostability, indicating it follows the general principle of trade-off between activity and stability. Nevertheless, to some extent RTN29 remained its thermophilic nature, and no loss of activity was observed after heat-treatment at 60 degrees C for 2 h. Notably, RTN29 exhibited a lower hydrolytic activity toward suc-AAPF-pNA, due to an increase in K(m) and a decrease in k(cat), in contrast to other artificially cold-adapted subtilases with increased low-temperature activity toward small synthetic substrates. All mutations (S100P, G108S, D114G, M137T, T153A, and S246N) identified in the cold-adapted variants occurred within or near the substrate-binding region. None of these mutations, however, match the corresponding sites in naturally psychrophilic and other artificially cold-adapted subtilases, implying there are multiple routes to cold adaptation. Homology modeling and structural analysis demonstrated that these mutations led to an increase in mobility of substrate-binding region and a modulation of substrate specificity, which seemed to account for the improvement of the enzyme's catalytic activity toward macromolecular substrates at lower temperatures. Our study may provide valuable information needed to develop enzymes coupling high stability and high low-temperature activity, which are highly desired for industrial use.
Collapse
Affiliation(s)
- Chuan-Qi Zhong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072
| | | | | | | | | | | | | |
Collapse
|
79
|
He HL, Chen XL, Zhang XY, Sun CY, Zou BC, Zhang YZ. Novel use for the osmolyte trimethylamine N-oxide: retaining the psychrophilic characters of cold-adapted protease deseasin MCP-01 and simultaneously improving its thermostability. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:710-716. [PMID: 19255806 DOI: 10.1007/s10126-009-9185-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 01/28/2009] [Indexed: 05/27/2023]
Abstract
The low thermostability of cold-adapted enzymes is a main barrier for their application. A simple and reliable method to improve both the stability and the activity of cold-adapted enzymes is still rare. As a protein stabilizer, the effect of trimethylamine N-oxide (TMAO) on a cold-adapted enzyme or protein has not been reported. In this study, effects of TMAO on the structure, activity, and stability of a cold-adapted protease, deseasin MCP-01, were studied. Deseasin MCP-01 is a new type of subtilase from deep-sea psychrotolerant bacterium Pseudoalteromonas sp. SM9913. Fluorescence and CD spectra showed that TMAO did not perturb the structure of MCP-01 and therefore kept the conformational flexibility of MCP-01. One molar TMAO improved the activity of MCP-01 by 174% and its catalytic efficiency (k(cat) /K(m)) by 290% at 0 degrees C. In the presence of 1 M TMAO, the thermostability (t(1/2)) of MCP-01 increased by two- to fivefold at 60 approximately 40 degrees C. Structural analysis with CD showed that 1 M TMAO could keep the structural thermostability of MCP-01 close to that of its mesophilic counterpart subtilisin Carlsberg when incubated at 40 degrees C for 1 h. Moreover, 1 M TMAO increased the melting temperature (T(m)) of MCP-01 by 10.5 degrees C. These results suggest that TMAO can be used as a perfect stabilizing agent to retain the psychrophilic characters of a cold-adapted enzyme and simultaneously improve its thermostability.
Collapse
Affiliation(s)
- Hai-Lun He
- The State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, 250100, China
| | | | | | | | | | | |
Collapse
|
80
|
Gatti-Lafranconi P, Natalello A, Rehm S, Doglia SM, Pleiss J, Lotti M. Evolution of stability in a cold-active enzyme elicits specificity relaxation and highlights substrate-related effects on temperature adaptation. J Mol Biol 2009; 395:155-66. [PMID: 19850050 DOI: 10.1016/j.jmb.2009.10.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/08/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
Abstract
Molecular aspects of thermal adaptation of proteins were studied by following the co-evolution of temperature dependence, conformational stability, and substrate specificity in a cold-active lipase modified via directed evolution. We found that the evolution of kinetic stability was accompanied by a relaxation in substrate specificity. Moreover, temperature dependence and selectivity turned out to be mutually dependent. While the wild-type protein was strictly specific for short-chain triglycerides (C4) in the temperature range 10-50 degrees C and displayed highest activity in the cold, its stabilized variant was able to accept C8 and C12 molecules and its selectivity was temperature dependent. We could not detect any improvement in the overall structural robustness of the mutant when the structure was challenged by temperature or chemical denaturants. There is, however, strong evidence for local stabilization effects in the active-site region provided by two independent approaches. Differential scanning fluorimetry revealed that the exposure of hydrophobic patches (as the active site is) precedes denaturation, and molecular dynamics simulations confirmed that stability was obtained by restriction of the mobility of the lid, a flexible structure that regulates the access to the enzyme active site and influences its stability. This reduction of lid movements is suggested to be accompanied by a concomitant increase in the mobility of other protein regions, thus accounting for the observed broadening of substrate specificity.
Collapse
Affiliation(s)
- Pietro Gatti-Lafranconi
- Department of Biotechnology and Biosciences, State University of Milano-Bicocca, Piazza della Scienza 2, I-20126 Milano, Italy
| | | | | | | | | | | |
Collapse
|
81
|
Schlee S, Deuss M, Bruning M, Ivens A, Schwab T, Hellmann N, Mayans O, Sterner R. Activation of anthranilate phosphoribosyltransferase from Sulfolobus solfataricus by removal of magnesium inhibition and acceleration of product release . Biochemistry 2009; 48:5199-209. [PMID: 19385665 DOI: 10.1021/bi802335s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anthranilate phosphoribosyltransferase from the hyperthermophilic archaeon Sulfolobus solfataricus (ssAnPRT) is encoded by the sstrpD gene and catalyzes the reaction of anthranilate (AA) with a complex of Mg(2+) and 5'-phosphoribosyl-alpha1-pyrophosphate (Mg.PRPP) to N-(5'-phosphoribosyl)-anthranilate (PRA) and pyrophosphate (PP(i)) within tryptophan biosynthesis. The ssAnPRT enzyme is highly thermostable (half-life at 85 degrees C = 35 min) but only marginally active at ambient temperatures (turnover number at 37 degrees C = 0.33 s(-1)). To understand the reason for the poor catalytic proficiency of ssAnPRT, we have isolated from an sstrpD library the activated ssAnPRT-D83G + F149S double mutant by metabolic complementation of an auxotrophic Escherichia coli strain. Whereas the activity of purified wild-type ssAnPRT is strongly reduced in the presence of high concentrations of Mg(2+) ions, this inhibition is no longer observed in the double mutant and the ssAnPRT-D83G single mutant. The comparison of the crystal structures of activated and wild-type ssAnPRT shows that the D83G mutation alters the binding mode of the substrate Mg.PRPP. Analysis of PRPP and Mg(2+)-dependent enzymatic activity indicates that this leads to a decreased affinity for a second Mg(2+) ion and thus reduces the concentration of enzymes with the inhibitory Mg(2).PRPP complex bound to the active site. Moreover, the turnover number of the double mutant ssAnPRT-D83G + F149S is elevated 40-fold compared to the wild-type enzyme, which can be attributed to an accelerated release of the product PRA. This effect appears to be mainly caused by an increased conformational flexibility induced by the F149S mutation, a hypothesis which is supported by the reduced thermal stability of the ssAnPRT-F149S single mutant.
Collapse
Affiliation(s)
- Sandra Schlee
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
82
|
|
83
|
Kelly RM, Dijkhuizen L, Leemhuis H. Starch and alpha-glucan acting enzymes, modulating their properties by directed evolution. J Biotechnol 2009; 140:184-93. [PMID: 19428713 DOI: 10.1016/j.jbiotec.2009.01.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 01/29/2009] [Indexed: 11/25/2022]
Abstract
Starch is the major food reserve in plants and forms a large part of the daily calorie intake in the human diet. Industrially, starch has become a major raw material in the production of various products including bio-ethanol, coating and anti-staling agents. The complexity and diversity of these starch based industries and the demand for high quality end products through extensive starch processing, can only be met through the use of a broad range of starch and alpha-glucan modifying enzymes. The economic importance of these enzymes is such that the starch industry has grown to be the largest market for enzymes after the detergent industry. However, as the starch based industries expand and develop the demand for more efficient enzymes leading to lower production cost and higher quality products increases. This in turn stimulates interest in modifying the properties of existing starch and alpha-glucan acting enzymes through a variety of molecular evolution strategies. Within this review we examine and discuss the directed evolution strategies applied in the modulation of specific properties of starch and alpha-glucan acting enzymes and highlight the recent developments in the field of directed evolution techniques which are likely to be implemented in the future engineering of these enzymes.
Collapse
Affiliation(s)
- Ronan M Kelly
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Carbohydrate Bioprocessing, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
84
|
Almog O, González A, Godin N, de Leeuw M, Mekel MJ, Klein D, Braun S, Shoham G, Walter RL. The crystal structures of the psychrophilic subtilisin S41 and the mesophilic subtilisin Sph reveal the same calcium-loaded state. Proteins 2009; 74:489-96. [PMID: 18655058 DOI: 10.1002/prot.22175] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We determine and compare the crystal structure of two proteases belonging to the subtilisin superfamily: S41, a cold-adapted serine protease produced by Antarctic bacilli, at 1.4 A resolution and Sph, a mesophilic serine protease produced by Bacillus sphaericus, at 0.8 A resolution. The purpose of this comparison was to find out whether multiple calcium ion binding is a molecular factor responsible for the adaptation of S41 to extreme low temperatures. We find that these two subtilisins have the same subtilisin fold with a root mean square between the two structures of 0.54 A. The final models for S41 and Sph include a calcium-loaded state of five ions bound to each of these two subtilisin molecules. None of these calcium-binding sites correlate with the high affinity known binding site (site A) found for other subtilisins. Structural analysis of the five calcium-binding sites found in these two crystal structures indicate that three of the binding sites have two side chains of an acidic residue coordinating the calcium ion, whereas the other two binding sites have either a main-chain carbonyl, or only one acidic residue side chain coordinating the calcium ion. Thus, we conclude that three of the sites are of high affinity toward calcium ions, whereas the other two are of low affinity. Because Sph is a mesophilic subtilisin and S41 is a psychrophilic subtilisin, but both crystal structures were found to bind five calcium ions, we suggest that multiple calcium ion binding is not responsible for the adaptation of S41 to low temperatures.
Collapse
Affiliation(s)
- Orna Almog
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University, Beer Sheva 84105, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Xie BB, Bian F, Chen XL, He HL, Guo J, Gao X, Zeng YX, Chen B, Zhou BC, Zhang YZ. Cold adaptation of zinc metalloproteases in the thermolysin family from deep sea and arctic sea ice bacteria revealed by catalytic and structural properties and molecular dynamics: new insights into relationship between conformational flexibility and hydrogen bonding. J Biol Chem 2009; 284:9257-69. [PMID: 19181663 DOI: 10.1074/jbc.m808421200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increased conformational flexibility is the prevailing explanation for the high catalytic efficiency of cold-adapted enzymes at low temperatures. However, less is known about the structural determinants of flexibility. We reported two novel cold-adapted zinc metalloproteases in the thermolysin family, vibriolysin MCP-02 from a deep sea bacterium and vibriolysin E495 from an Arctic sea ice bacterium, and compared them with their mesophilic homolog, pseudolysin from a terrestrial bacterium. Their catalytic efficiencies, k(cat)/K(m) (10-40 degrees C), followed the order pseudolysin < MCP-02 < E495 with a ratio of approximately 1:2:4. MCP-02 and E495 have the same optimal temperature (T(opt), 57 degrees C, 5 degrees C lower than pseudolysin) and apparent melting temperature (T(m) = 64 degrees C, approximately 10 degrees C lower than pseudolysin). Structural analysis showed that the slightly lower stabilities resulted from a decrease in the number of salt bridges. Fluorescence quenching experiments and molecular dynamics simulations showed that the flexibilities of the proteins were pseudolysin < MCP-02 < E495, suggesting that optimization of flexibility is a strategy for cold adaptation. Molecular dynamics results showed that the ordinal increase in flexibility from pseudolysin to MCP-02 and E495, especially the increase from MCP-02 to E495, mainly resulted from the decrease of hydrogen-bond stability in the dynamic structure, which was due to the increase in asparagine, serine, and threonine residues. Finally, a model for the cold adaptation of MCP-02 and E495 was proposed. This is the first report of the optimization of hydrogen-bonding dynamics as a strategy for cold adaptation and provides new insights into the structural basis underlying conformational flexibility.
Collapse
Affiliation(s)
- Bin-Bin Xie
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Thermostable Bacillus subtilis Lipases: In Vitro Evolution and Structural Insight. J Mol Biol 2008; 381:324-40. [DOI: 10.1016/j.jmb.2008.05.063] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 05/09/2008] [Accepted: 05/16/2008] [Indexed: 11/30/2022]
|
87
|
Almog O, Kogan A, Leeuw MD, Gdalevsky GY, Cohen-Luria R, Parola AH. Structural insights into cold inactivation of tryptophanase and cold adaptation of subtilisin S41. Biopolymers 2008; 89:354-9. [PMID: 17937401 DOI: 10.1002/bip.20866] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A wide variety of enzymes can undergo a reversible loss of activity at low temperature, a process that is termed cold inactivation. This phenomenon is found in oligomeric enzymes such as tryptophanase (Trpase) and other pyridoxal phosphate dependent enzymes. On the other hand, cold-adapted, or psychrophilic enzymes, isolated from organisms able to thrive in permanently cold environments, have optimal activity at low temperature, which is associated with low thermal stability. Since cold inactivation may be considered "contradictory" to cold adaptation, we have looked into the amino acid sequences and the crystal structures of two families of enzymes, subtilisin and tryptophanase. Two cold adapted subtilisins, S41 and subtilisin-like protease from Vibrio, were compared to a mesophilic and a thermophilic subtilisins, as well as to four PLP-dependent enzymes in order to understand the specific surface residues, specific interactions, or any other molecular features that may be responsible for the differences in their tolerance to cold temperatures. The comparison between the psychrophilic and the mesophilic subtilisins revealed that the cold adapted subtilisins have a high content of acidic residues mainly found on their surface, making it charged. The analysis of the Trpases showed that they have a high content of hydrophobic residues on their surface. Thus, we suggest that the negatively charged residues on the surface of the subtilisins may be responsible for their cold adaptation, whereas the hydrophobic residues on the surface of monomeric Trpase molecules are responsible for the tetrameric assembly, and may account for their cold inactivation and dissociation.
Collapse
Affiliation(s)
- Orna Almog
- Department of Clinical Biochemistry, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel.
| | | | | | | | | | | |
Collapse
|
88
|
Yang YR, Zhu H, Fang N, Liang X, Zhong CQ, Tang XF, Shen P, Tang B. Cold-adapted maturation of thermophilic WF146 protease by mimicking the propeptide binding interactions of psychrophilic subtilisin S41. FEBS Lett 2008; 582:2620-6. [DOI: 10.1016/j.febslet.2008.06.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/26/2008] [Accepted: 06/19/2008] [Indexed: 10/21/2022]
|
89
|
Ashbaugh HS, Hatch HW. Natively Unfolded Protein Stability as a Coil-to-Globule Transition in Charge/Hydropathy Space. J Am Chem Soc 2008; 130:9536-42. [DOI: 10.1021/ja802124e] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Henry S. Ashbaugh
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118
| | - Harold W. Hatch
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118
| |
Collapse
|
90
|
Gatti-Lafranconi P, Caldarazzo SM, Villa A, Alberghina L, Lotti M. Unscrambling thermal stability and temperature adaptation in evolved variants of a cold-active lipase. FEBS Lett 2008; 582:2313-8. [PMID: 18534193 DOI: 10.1016/j.febslet.2008.05.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/21/2008] [Accepted: 05/24/2008] [Indexed: 11/17/2022]
Abstract
Directed evolution by error-prone PCR was applied to stabilize the cold-active lipase from Pseudomonas fragi (PFL). PFL displays high activity at 10 degrees C, but it is highly unstable even at moderate temperatures. After two rounds of evolution, a variant was generated with a 5-fold increase in half-life at 42 degrees C and a shift of 10 degrees C in the temperature optimum, nevertheless retaining cold-activity. The evolved lipase displayed specific activity higher than the wild type enzyme in the temperature range 29-42 degrees C. Biophysical measurements did not indicate any obvious difference between the improved variant and the wild type enzyme in terms of loss of secondary structure upon heat treatment, nor a shift in the apparent melting temperature.
Collapse
Affiliation(s)
- Pietro Gatti-Lafranconi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, Milan, Italy
| | | | | | | | | |
Collapse
|
91
|
Lee CK, Daniel RM, Shepherd C, Saul D, Cary SC, Danson MJ, Eisenthal R, Peterson ME. Eurythermalism and the temperature dependence of enzyme activity. FASEB J 2007; 21:1934-41. [PMID: 17341686 DOI: 10.1096/fj.06-7265com] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The "Equilibrium Model" has provided new tools for describing and investigating enzyme thermal adaptation. It has been shown that the effect of temperature on enzyme activity is not only governed by deltaG(double dagger)(cat) and deltaG(double dagger)(inact) but also by two new intrinsic parameters, deltaH(eq) and T(eq), which describe the enthalpy and midpoint, respectively, of a reversible equilibrium between active and inactive (but not denatured) forms of enzyme. Twenty-one enzymes from organisms with a wide range of growth temperatures were characterized using the Equilibrium Model. Statistical analysis indicates that T(eq) is a better predictor of growth temperature than enzyme stability (deltaG(double dagger)(inact)). As expected from the Equilibrium Model, deltaH(eq) correlates with catalytic temperature tolerance of enzymes and thus can be declared the first intrinsic and quantitative measure of enzyme eurythermalism. Other findings shed light on the evolution of psychrophilic and thermophilic enzymes. The findings suggest that the description of the Equilibrium Model of the effect of temperature on enzyme activity applies to all enzymes regardless of their temperature origins and that its associated parameters, deltaH(eq) and T(eq), are intrinsic and necessary parameters for characterizing the thermal properties of enzymes and their temperature adaptation and evolution.
Collapse
Affiliation(s)
- Charles K Lee
- Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Takahashi H, Arai M, Takenawa T, Sota H, Xie QH, Iwakura M. Stabilization of Hyperactive Dihydrofolate Reductase by Cyanocysteine-mediated Backbone Cyclization. J Biol Chem 2007; 282:9420-9429. [PMID: 17264073 DOI: 10.1074/jbc.m610983200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stabilization of an enzyme while maintaining its activity has been a major challenge in protein chemistry. Although it is difficult to simultaneously improve stability and activity of a protein by amino acid substitutions due to the activity-stability trade-off, backbone cyclization by connecting the N and C termini with a linker is promising as a general method of stabilizing a protein without affecting its activity. Recently, we created a hyperactive, methionine- and cysteine-free mutant of dihydrofolate reductase from Escherichia coli, called ANLYF, by introducing seven amino acid substitutions, which, however, destabilized the protein. Here we show that ANLYF is stabilized without a loss of its high activity by a novel backbone cyclization method for unprotected proteins. The method is based on the in vitro cyanocysteine-mediated intramolecular ligation reaction, which can be conducted with relatively high efficiency by a simple procedure and under mild conditions. We also show that the reversibility of thermal denaturation is highly improved by the cyclization. Thus, activity and stability of the protein can be separately improved by amino acid substitutions and backbone cyclization, respectively. We suggest that the cyanocysteine-mediated cyclization method is complementary to the intein-mediated cyclization method in stabilizing a protein without affecting its activity.
Collapse
Affiliation(s)
- Hisashi Takahashi
- Protein Design Research Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Munehito Arai
- Protein Design Research Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Tatsuyuki Takenawa
- Protein Design Research Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Hiroyuki Sota
- Protein Design Research Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Qui Hong Xie
- Protein Design Research Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Masahiro Iwakura
- Protein Design Research Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
93
|
Abstract
By far the largest proportion of the Earth's biosphere is comprised of organisms that thrive in cold environments (psychrophiles). Their ability to proliferate in the cold is predicated on a capacity to synthesize cold-adapted enzymes. These enzymes have evolved a range of structural features that confer a high level of flexibility compared to thermostable homologs. High flexibility, particularly around the active site, is translated into low-activation enthalpy, low-substrate affinity, and high specific activity at low temperatures. High flexibility is also accompanied by a trade-off in stability, resulting in heat lability and, in the few cases studied, cold lability. This review addresses the structure, function, and stability of cold-adapted enzymes, highlighting the challenges for immediate and future consideration. Because of the unique properties of cold-adapted enzymes, they are not only an important focus in extremophile biology, but also represent a valuable model for fundamental research into protein folding and catalysis.
Collapse
Affiliation(s)
- Khawar Sohail Siddiqui
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.
| | | |
Collapse
|
94
|
García-Arribas O, Mateo R, Tomczak MM, Davies PL, Mateu MG. Thermodynamic stability of a cold-adapted protein, type III antifreeze protein, and energetic contribution of salt bridges. Protein Sci 2006; 16:227-38. [PMID: 17189482 PMCID: PMC2203292 DOI: 10.1110/ps.062448907] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A thermodynamic analysis of a cold-adapted protein, type III anti-freeze protein (AFP), was carried out. The results indicate that the folding equilibrium of type III AFP is a reversible, unimolecular, two-state process with no populated intermediates. Compared to most mesophilic proteins whose folding is two-state, the psychrophilic type III AFP has a much lower thermodynamic stability at 25 degrees C, approximately 3 kcal/mol, and presents a remarkably downshifted stability-temperature curve, reaching a maximum of 5 kcal/mol around 0 degrees C. Type III AFPs contain few and non-optimally distributed surface charges relative to their mesophilic homologs, the C-terminal domains of sialic acid synthases. We used thermodynamic double mutant cycles to evaluate the energetic role of every surface salt bridge in type III AFP. Two isolated salt bridges provided no contribution to stability, while the Asp36-Arg39 salt bridge, involved in a salt bridge network with the C-terminal carboxylate, had a substantial contribution (approximately 1 kcal/mol). However, this contribution was more than counteracted by the destabilizing effect of the Asp36 carboxylate itself, whose removal led to a net 30% increase in stability at 25 degrees C. This study suggests that type III AFPs may have evolved for a minimally acceptable stability at the restricted, low temperature range (around 0 degrees C) at which AFPs must function. In addition, it indicates that salt bridge networks are used in nature also for the stability of psychrophilic proteins, and has led to a type III AFP variant of increased stability that could be used for biotechnological purposes.
Collapse
Affiliation(s)
- Olga García-Arribas
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
95
|
Bian Y, Liang X, Fang N, Tang XF, Tang B, Shen P, Peng Z. The roles of surface loop insertions and disulfide bond in the stabilization of thermophilic WF146 protease. FEBS Lett 2006; 580:6007-14. [PMID: 17052711 DOI: 10.1016/j.febslet.2006.09.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 09/15/2006] [Accepted: 09/30/2006] [Indexed: 10/24/2022]
Abstract
Thermophilic WF146 protease possesses four surface loop insertions and a disulfide bond, resembling its psychrophilic (subtilisins S41 and S39) and mesophilic (subtilisins SSII and sphericase) homologs. Deletion of the insertion 3 (positions 193-197) or insertion 4 (positions 210-221) of WF146 protease resulted in a significant decrease of the enzyme stability. In addition, substitution of the residues Pro211 and Ala212 or residue Glu221 which localized in the vicinity of a Ca(2+) binding site of the enzyme by the corresponding residues in subtilisin S41 remarkably reduced the half-life of the enzyme at 70 degrees C, suggesting that the three residues contributed to the thermostability of the enzyme, probably by enhancing the affinity of enzyme to Ca(2+). In the presence of dithiothreitol, the WF146 protease suffered excessive autolysis, indicating that the Cys52-Cys65 disulfide bond played a critical role in stabilizing the WF146 protease against autolysis. The autolytic cleavage sites of the WF146 protease were identified to locate between residues Asn63-Gly64 and Cys65-Ala66 by N-terminal amino acid analysis of the autolytic product. It was noticed that the effect of the autolytic cleavage at Asn63-Gly64 could be compensated by the disulfide bond Cys52-Cys65 under non-reducing condition, and the disulfide bond cross-linked autolytic product remained active. The apparent stabilization effect of the disulfide bond Cys52-Cys65 in the WF146 protease might provide a rational basis for improving the stability of subtilase against autolysis by protein engineering.
Collapse
Affiliation(s)
- Yan Bian
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | |
Collapse
|
96
|
Papaleo E, Riccardi L, Villa C, Fantucci P, De Gioia L. Flexibility and enzymatic cold-adaptation: A comparative molecular dynamics investigation of the elastase family. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1397-406. [PMID: 16920043 DOI: 10.1016/j.bbapap.2006.06.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 06/14/2006] [Accepted: 06/26/2006] [Indexed: 11/21/2022]
Abstract
Molecular dynamics simulations of representative mesophilic and psycrophilic elastases have been carried out at different temperatures to explore the molecular basis of cold adaptation inside a specific enzymatic family. The molecular dynamics trajectories have been compared and analyzed in terms of secondary structure, molecular flexibility, intramolecular and protein-solvent interactions, unravelling molecular features relevant to rationalize the efficient catalytic activity of psychrophilic elastases at low temperature. The comparative molecular dynamics investigation reveals that modulation of the number of protein-solvent interactions is not the evolutionary strategy followed by the psycrophilic elastase to enhance catalytic activity at low temperature. In addition, flexibility and solvent accessibility of the residues forming the catalytic triad and the specificity pocket are comparable in the cold- and warm-adapted enzymes. Instead, loop regions with different amino acid composition in the two enzymes, and clustered around the active site or the specificity pocket, are characterized by enhanced flexibility in the cold-adapted enzyme. Remarkably, the psycrophilic elastase is characterized by reduced flexibility, when compared to the mesophilic counterpart, in some scattered regions distant from the functional sites, in agreement with hypothesis suggesting that local rigidity in regions far from functional sites can be beneficial for the catalytic activity of psychrophilic enzymes.
Collapse
Affiliation(s)
- Elena Papaleo
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, P.za della Scienza 2, 20126, Milan, Italy
| | | | | | | | | |
Collapse
|
97
|
Pálsdóttir HM, Gudmundsdóttir A. Expression and purification of a cold-adapted group III trypsin in Escherichia coli. Protein Expr Purif 2006; 51:243-52. [PMID: 16879980 DOI: 10.1016/j.pep.2006.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 06/12/2006] [Indexed: 10/24/2022]
Abstract
The recently classified group III trypsins include members like Atlantic cod (Gadus morhua) trypsin Y as well as seven analogues from other cold-adapted fish species. The eight group III trypsins have been characterized from their cDNAs and deduced amino acid sequences but none of the enzymes have been isolated from their native sources. This study describes the successful expression and purification of a recombinant HP-thioredoxin-trypsin Y fusion protein in the His-Patch ThioFusion Escherichia coli expression system and its purification by chromatographic methods. The recombinant form of trypsin Y was previously expressed in Pichia pastoris making it the first biochemically characterized group III trypsin. It has dual substrate specificity towards trypsin and chymotrypsin substrates and demonstrates an increasing activity at temperatures between 2 and 21 degrees C with a complete inactivation at 30 degrees C. The aim of the study was to facilitate further studies of recombinant trypsin Y by finding an expression system yielding higher amounts of the enzyme than possible in our hands in the P. pastoris system. Also, commercial production of trypsin Y will require an efficient and inexpensive expression system like the His-Patch ThioFusion E. coli expression system described here as the enzyme is produced in very low amounts in the Atlantic cod.
Collapse
Affiliation(s)
- Helga Margrét Pálsdóttir
- Science Institute, University of Iceland, Laeknagardi, Vatnsmýrarvegi 16, Reykjavík IS-101, Iceland
| | | |
Collapse
|
98
|
Saraf MC, Moore GL, Goodey NM, Cao VY, Benkovic SJ, Maranas CD. IPRO: an iterative computational protein library redesign and optimization procedure. Biophys J 2006; 90:4167-80. [PMID: 16513775 PMCID: PMC1459523 DOI: 10.1529/biophysj.105.079277] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A number of computational approaches have been developed to reengineer promising chimeric proteins one at a time through targeted point mutations. In this article, we introduce the computational procedure IPRO (iterative protein redesign and optimization procedure) for the redesign of an entire combinatorial protein library in one step using energy-based scoring functions. IPRO relies on identifying mutations in the parental sequences, which when propagated downstream in the combinatorial library, improve the average quality of the library (e.g., stability, binding affinity, specific activity, etc.). Residue and rotamer design choices are driven by a globally convergent mixed-integer linear programming formulation. Unlike many of the available computational approaches, the procedure allows for backbone movement as well as redocking of the associated ligands after a prespecified number of design iterations. IPRO can also be used, as a limiting case, for the redesign of a single or handful of individual sequences. The application of IPRO is highlighted through the redesign of a 16-member library of Escherichia coli/Bacillus subtilis dihydrofolate reductase hybrids, both individually and through upstream parental sequence redesign, for improving the average binding energy. Computational results demonstrate that it is indeed feasible to improve the overall library quality as exemplified by binding energy scores through targeted mutations in the parental sequences.
Collapse
Affiliation(s)
- Manish C Saraf
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
99
|
Yang G, Jing C, Zhu P, Hu X, Xu J, Wu Z, Yu X. Molecular cloning and characterization of a novel lactate dehydrogenase gene from Clonorchis sinensis. Parasitol Res 2006; 99:55-64. [PMID: 16479375 DOI: 10.1007/s00436-005-0125-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 12/22/2005] [Indexed: 11/26/2022]
Abstract
From a Clonorchis sinensis adult worm cDNA library, we isolated a cDNA clone encoding a novel lactate dehydrogenase (LDH) gene which encoded a putative protein with a predicted molecular weight of 35.6 kDa. The optimum pH and temperature for the enzyme were 7.5 and 50 degrees C in the pyruvate reduction while 11 and 80 degrees C in the lactate oxidation reaction, respectively. CsLDH showed no substrate inhibition by high lactate and NAD(+) concentration, and the optimal pyruvate and optimal NADH concentrations were 10 and 0.5 mmol/l, respectively. The relative activities of these 2-oxocarboxylic acids were pyruvic acid>2-ketobutyrate>oxalacetic acid>alpha-ketoglutaric acid>phenylpyruvate. The cofactor 3-acetylpyridine adenine dinucleotide was much more effective than NAD(+). The cofactor analogs in which the nicotinamide ring is replaced by 3-pyridinealdehyde were lower activity cofactors, while the nicotinamide ring is replaced by nicotinic acid or thionicotinamide which is not a cofactor to CsLDH. The succinic acid and malic acid are not substrates of CsLDH. Cu(2+), Fe(2+), and Zn(2+) greatly inhibited the CsLDH activity both in the direction of pyruvate reduction and in the direction of lactate oxidation. The inhibition of CsLDH by gossypol may make gossypol a potential therapy drug or a lead compound for C. sinensis. Accordingly, the CsLDH may be a novel potential drug target.
Collapse
Affiliation(s)
- Guang Yang
- Department of Parasitology, Medical School, Jinan University, Guangzhou 510632, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
100
|
Miyazaki K, Takenouchi M, Kondo H, Noro N, Suzuki M, Tsuda S. Thermal stabilization of Bacillus subtilis family-11 xylanase by directed evolution. J Biol Chem 2006; 281:10236-42. [PMID: 16467302 DOI: 10.1074/jbc.m511948200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used directed evolution to enhance the thermostability of glycosyl hydrolase family-11 xylanase from Bacillus subtilis. By combining random point mutagenesis, saturation mutagenesis, and DNA shuffling, a thermostable variant, Xyl(st), was identified which contained three amino acid substitutions: Q7H, N8F, and S179C. The half-inactivation temperature (the midpoint of the melting curves) for the Xyl(st) variant compared with the wild-type enzyme after incubation for 10 min was elevated from 58 to 68 degrees C. At 60 degrees C the wild-type enzyme was inactivated within 5 min, but Xyl(st) retained full activity for at least 2 h. The stabilization was accompanied by evidence of thermophilicity; that is, an increase in the optimal reaction temperature from 55 to 65 degrees C and lower activity at low temperatures and higher activity at higher temperatures relative to wild type. To elucidate the mechanism of thermal stabilization, three-dimensional structures were determined for the wild-type and Xyl(st) enzymes. A cavity was identified around Gln-7/Asn-8 in wild type that was filled with bulky, hydrophobic residues in Xyl(st). This site was not identified by previous approaches, but directed evolution identified the region as a weak point. Formation of an intermolecular disulfide bridge via Cys-179 was observed between monomers in Xyl(st). However, the stability was essentially the same in the presence and absence of a reducing agent, indicating that the increased hydrophobicity around the Cys-179 accounted for the stability.
Collapse
Affiliation(s)
- Kentaro Miyazaki
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | | | | | | | |
Collapse
|