51
|
Happo MS, Hirvonen MR, Hälinen AI, Jalava PI, Pennanen AS, Sillanpää M, Hillamo R, Salonen RO. Chemical Compositions Responsible for Inflammation and Tissue Damage in the Mouse Lung by Coarse and Fine Particulate Samples from Contrasting Air Pollution in Europe. Inhal Toxicol 2008; 20:1215-31. [DOI: 10.1080/08958370802147282] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
52
|
Park B, Donaldson K, Duffin R, Tran L, Kelly F, Mudway I, Morin JP, Guest R, Jenkinson P, Samaras Z, Giannouli M, Kouridis H, Martin P. Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive - a case study. Inhal Toxicol 2008; 20:547-66. [PMID: 18444008 DOI: 10.1080/08958370801915309] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Envirox is a scientifically and commercially proven diesel fuel combustion catalyst based on nanoparticulate cerium oxide and has been demonstrated to reduce fuel consumption, greenhouse gas emissions (CO(2)), and particulate emissions when added to diesel at levels of 5 mg/L. Studies have confirmed the adverse effects of particulates on respiratory and cardiac health, and while the use of Envirox contributes to a reduction in the particulate content in the air, it is necessary to demonstrate that the addition of Envirox does not alter the intrinsic toxicity of particles emitted in the exhaust. The purpose of this study was to evaluate the safety in use of Envirox by addressing the classical risk paradigm. Hazard assessment has been addressed by examining a range of in vitro cell and cell-free endpoints to assess the toxicity of cerium oxide nanoparticles as well as particulates emitted from engines using Envirox. Exposure assessment has taken data from modeling studies and from airborne monitoring sites in London and Newcastle adjacent to routes where vehicles using Envirox passed. Data have demonstrated that for the exposure levels measured, the estimated internal dose for a referential human in a chronic exposure situation is much lower than the no-observed-effect level (NOEL) in the in vitro toxicity studies. Exposure to nano-size cerium oxide as a result of the addition of Envirox to diesel fuel at the current levels of exposure in ambient air is therefore unlikely to lead to pulmonary oxidative stress and inflammation, which are the precursors for respiratory and cardiac health problems.
Collapse
Affiliation(s)
- Barry Park
- Oxonica plc, Yarnton, Kidlington, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Du T, Filiz G, Caragounis A, Crouch PJ, White AR. Clioquinol promotes cancer cell toxicity through tumor necrosis factor alpha release from macrophages. J Pharmacol Exp Ther 2007; 324:360-7. [PMID: 17940196 DOI: 10.1124/jpet.107.130377] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Copper has an important role in cancer growth, angiogenesis, and metastasis. Previous studies have shown that cell-permeable metal ligands, including clioquinol (CQ) and pyrrolidine dithiocarbamate, inhibit cancer cell growth in cell culture and in vivo. The mechanism of action has not been fully determined but may involve metal-mediated inhibition of cancer cell proteasome activity. However, these studies do not fully account for the ability of cell-permeable metal ligands to inhibit cancer cell growth without affecting normal cells. In this study, we examined the effect of CQ on macrophage-mediated inhibition of HeLa cancer cell growth in vitro. When CQ was added to RAW 264.7 macrophage-HeLa cell cocultures, a substantial increase in HeLa cell toxicity was observed compared with CQ treatment of HeLa cells cultured alone. Transfer of conditioned medium from CQ-treated macrophages to HeLa cells also induced HeLa cell toxicity, demonstrating the role of secreted factors in the macrophage-mediated effect. Further investigation revealed that CQ induced copper-dependent activation of macrophages and release of tumor necrosis factor (TNF) alpha. In studies with recombinant TNFalpha, we showed that the level of TNFalpha released by CQ-treated macrophages was sufficient to induce HeLa cell toxicity. Moreover, the toxic effect of conditioned medium from CQ-treated macrophages could be prevented by addition of neutralizing antibodies to TNFalpha. These studies demonstrate that CQ can induce cancer cell toxicity through metal-dependent release of TNFalpha from macrophages. Our results may help to explain the targeted inhibition of tumor growth in vivo by CQ.
Collapse
Affiliation(s)
- Tai Du
- Centre for Neuroscience and Department of Pathology, University of Melbourne, Victoria, Australia 3010.
| | | | | | | | | |
Collapse
|
54
|
Veranth JM, Kaser EG, Veranth MM, Koch M, Yost GS. Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part Fibre Toxicol 2007. [PMID: 17326846 DOI: 10.1186/1743‐8977‐4‐2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The induction of cytokines by airway cells in vitro has been widely used to assess the effects of ambient and occupational particles. This study measured cytotoxicity and the release of the proinflammatory cytokines IL-6 and IL-8 by human bronchial epithelial cells treated with manufactured nano- and micron-sized particles of Al2O3, CeO2, Fe2O3, NiO, SiO2, and TiO2, with soil-derived particles from fugitive dust sources, and with the positive controls LPS, TNF-alpha, and VOSO4. RESULTS The nano-sized particles were not consistently more potent than an equal mass of micron-sized particles of the same nominal composition for the induction of IL-6 and IL-8 secretion in the in vitro models used in this study. The manufactured pure oxides were much less potent than natural PM2.5 particles derived from soil dust, and the cells were highly responsive to the positive controls. The nano-sized particles in the media caused artifacts in the measurement of IL-6 by ELISA due to adsorption of the cytokine on the high-surface-area particles. The potency for inducing IL-6 secretion by BEAS-2B cells did not correlate with the generation of reactive oxygen species in cell-free media. CONCLUSION Direct comparisons of manufactured metal oxide nanoparticles and previously studied types of particles and surrogate proinflammatory agonists showed that the metal oxide particles have low potency to induce IL-6 secretion in BEAS-2B cells. Particle artifacts from non-biological effects need to be considered in experiments of this type, and the limitations inherent in cell culture studies must be considered when interpreting in vitro results. This study suggests that manufactured metal oxide nanoparticles are not highly toxic to lung cells compared to environmental particles.
Collapse
Affiliation(s)
- John M Veranth
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA.
| | | | | | | | | |
Collapse
|
55
|
Veranth JM, Kaser EG, Veranth MM, Koch M, Yost GS. Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part Fibre Toxicol 2007; 4:2. [PMID: 17326846 PMCID: PMC1821039 DOI: 10.1186/1743-8977-4-2] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 02/27/2007] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The induction of cytokines by airway cells in vitro has been widely used to assess the effects of ambient and occupational particles. This study measured cytotoxicity and the release of the proinflammatory cytokines IL-6 and IL-8 by human bronchial epithelial cells treated with manufactured nano- and micron-sized particles of Al2O3, CeO2, Fe2O3, NiO, SiO2, and TiO2, with soil-derived particles from fugitive dust sources, and with the positive controls LPS, TNF-alpha, and VOSO4. RESULTS The nano-sized particles were not consistently more potent than an equal mass of micron-sized particles of the same nominal composition for the induction of IL-6 and IL-8 secretion in the in vitro models used in this study. The manufactured pure oxides were much less potent than natural PM2.5 particles derived from soil dust, and the cells were highly responsive to the positive controls. The nano-sized particles in the media caused artifacts in the measurement of IL-6 by ELISA due to adsorption of the cytokine on the high-surface-area particles. The potency for inducing IL-6 secretion by BEAS-2B cells did not correlate with the generation of reactive oxygen species in cell-free media. CONCLUSION Direct comparisons of manufactured metal oxide nanoparticles and previously studied types of particles and surrogate proinflammatory agonists showed that the metal oxide particles have low potency to induce IL-6 secretion in BEAS-2B cells. Particle artifacts from non-biological effects need to be considered in experiments of this type, and the limitations inherent in cell culture studies must be considered when interpreting in vitro results. This study suggests that manufactured metal oxide nanoparticles are not highly toxic to lung cells compared to environmental particles.
Collapse
Affiliation(s)
- John M Veranth
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Erin G Kaser
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Martha M Veranth
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Michael Koch
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Garold S Yost
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
56
|
NORITAKE S, OGAWA K, SUZUKI G, OZAWA K, IKEDA T. Pulmonary Inflammation in Brown Norway Rats: Possible Association of Environmental Particles in the Animal Room Environment. Exp Anim 2007; 56:319-27. [DOI: 10.1538/expanim.56.319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Shinobu NORITAKE
- Laboratory Animal Science, Tsukuba Research Laboratories (TRL), GlaxoSmithKline K.K
| | - Koji OGAWA
- Laboratory Animal Science, Tsukuba Research Laboratories (TRL), GlaxoSmithKline K.K
| | - Go SUZUKI
- Laboratory Animal Science, Tsukuba Research Laboratories (TRL), GlaxoSmithKline K.K
| | - Kazunori OZAWA
- Laboratory Animal Science, Tsukuba Research Laboratories (TRL), GlaxoSmithKline K.K
| | - Takuya IKEDA
- Laboratory Animal Science, Tsukuba Research Laboratories (TRL), GlaxoSmithKline K.K
| |
Collapse
|
57
|
O’HARA KIMBERLEYA, NEMEC ANTONIAA, ALAM JAWED, KLEI LINDAR, MOSSMAN BROOKET, BARCHOWSKY AARON. Chromium (VI) inhibits heme oxygenase-1 expression in vivo and in arsenic-exposed human airway epithelial cells. J Cell Physiol 2006; 209:113-21. [PMID: 16775837 PMCID: PMC4288750 DOI: 10.1002/jcp.20710] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inhaled hexavalent chromium (Cr(VI)) promotes lung injury and pulmonary diseases through poorly defined mechanisms. One hypothesis for this lung pathogenesis is that Cr(VI) silences induction of cytoprotective genes, such as heme oxygenase-1 (HO-1), whose total lung mRNA levels were reduced 21 days after nasal instillation of potassium dichromate in C57BL/6 mice. To investigate the mechanisms for this inhibition, Cr(VI) effects on basal and arsenic (As(III))-induced HO-1 expression were examined in cultured human bronchial epithelial (BEAS-2B) cells. An effect of Cr(VI) on the low basal HO-1 mRNA and protein levels in BEAS-2B cells was not detectible. In contrast, Cr(VI) added to the cells before As(III), but not simultaneously with As(III), attenuated As(III)-induced HO-1 expression. Transient transfection with luciferase reporter gene constructs controlled by the full length ho-1 promoter or deletion mutants demonstrated that this inhibition occurred in the E1 enhancer region containing critical antioxidant response elements (ARE). Cr(VI) pretreatment inhibited As(III)-induced activity of a transiently expressed reporter construct regulated by three ARE tandem repeats. The mechanism for this Cr(VI)-attenuated transactivation appeared to be Cr(VI) reduction of the nuclear levels of the transcription factor Nrf2 and As(III)-stimulated Nrf2 transcriptional complex binding to the ARE cis element. Finally, exposing cells to Cr(VI) prior to co-exposure with As(III) synergized for apoptosis and loss of membrane integrity. These data suggest that Cr(VI) silences induction of ARE-driven genes required for protection from secondary insults. The data also have important implications for understanding the toxic mechanisms of low level, mixed metal exposures in the lung.
Collapse
Affiliation(s)
- KIMBERLEY A. O’HARA
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - ANTONIA A. NEMEC
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - JAWED ALAM
- Department of Molecular Genetics, Ochsner Medical Foundation, New Orleans, Louisiana
| | - LINDA R. KLEI
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | | | - AARON BARCHOWSKY
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
- Correspondence to: Aaron Barchowsky, PhD, Department of Environmental and Occupational Health, University of Pitts-burgh, 100 Technology Drive, Cellomics Building, Room 332, Pittsburgh, PA 15260.
| |
Collapse
|
58
|
Lanki T, Pekkanen J, Aalto P, Elosua R, Berglind N, D'Ippoliti D, Kulmala M, Nyberg F, Peters A, Picciotto S, Salomaa V, Sunyer J, Tiittanen P, von Klot S, Forastiere F. Associations of traffic related air pollutants with hospitalisation for first acute myocardial infarction: the HEAPSS study. Occup Environ Med 2006; 63:844-51. [PMID: 16912091 PMCID: PMC2078003 DOI: 10.1136/oem.2005.023911] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Acute myocardial infarction (AMI) is the leading cause of death attributed to cardiovascular diseases. An association between traffic related air pollution and AMI has been suggested, but the evidence is still limited. OBJECTIVES To evaluate in a multicentre study association between hospitalisation for first AMI and daily levels of traffic related air pollution. METHODS The authors collected data on first AMI hospitalisations in five European cities. AMI registers were available in Augsburg and Barcelona; hospital discharge registers (HDRs) were used in Helsinki, Rome and Stockholm. NO2, CO, PM10 (particles <10 microm), and O3 were measured at central monitoring sites. Particle number concentration (PNC), a proxy for ultrafine particles (<0.1 microm), was measured for a year in each centre, and then modelled retrospectively for the whole study period. Generalised additive models were used for statistical analyses. Age and 28 day fatality and season were considered as potential effect modifiers in the three HDR centres. RESULTS Nearly 27,000 cases of first AMI were recorded. There was a suggestion of an association of the same day CO and PNC levels with AMI: RR = 1.005 (95% CI 1.000 to 1.010) per 0.2 mg/m3 and RR = 1.005 (95% CI 0.996 to 1.015) per 10000 particles/cm3, respectively. However, associations were only observed in the three cities with HDR, where power for city-specific analyses was higher. The authors observed in these cities the most consistent associations among fatal cases aged <75 years: RR at 1 day lag for CO = 1.021 (95% CI 1.000 to 1.048) per 0.2 mg/m3, for PNC = 1.058 (95% CI 1.012 to 1.107) per 10000 particles/cm3, and for NO2 = 1.032 (95% CI 0.998 to 1.066) per 8 microg/m3. Effects of air pollution were more pronounced during the warm than the cold season. CONCLUSIONS The authors found support for the hypothesis that exposure to traffic related air pollution increases the risk of AMI. Most consistent associations were observed among fatal cases aged <75 years and in the warm season.
Collapse
Affiliation(s)
- T Lanki
- Environmental Epidemiology Unit, National Public Health Institute (KTL), Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Nurkiewicz TR, Porter DW, Barger M, Millecchia L, Rao KMK, Marvar PJ, Hubbs AF, Castranova V, Boegehold MA. Systemic microvascular dysfunction and inflammation after pulmonary particulate matter exposure. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:412-9. [PMID: 16507465 PMCID: PMC1392236 DOI: 10.1289/ehp.8413] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The epidemiologic association between pulmonary exposure to ambient particulate matter (PM) and cardiovascular dysfunction is well known, but the systemic mechanisms that drive this effect remain unclear. We have previously shown that acute pulmonary exposure to PM impairs or abolishes endothelium-dependent arteriolar dilation in the rat spinotrapezius muscle. The purpose of this study was to further characterize the effect of pulmonary PM exposure on systemic microvascular function and to identify local inflammatory events that may contribute to these effects. Rats were intratracheally instilled with residual oil fly ash (ROFA) or titanium dioxide at 0.1 or 0.25 mg/rat 24 hr before measurement of pulmonary and systemic microvascular responses. In vivo microscopy of the spinotrapezius muscle was used to study systemic arteriolar responses to intraluminal infusion of the Ca2+ ionophore A23187 or iontophoretic abluminal application of the adrenergic agonist phenylephrine (PHE). Leukocyte rolling and adhesion were quantified in venules paired with the studied arterioles. Histologic techniques were used to assess pulmonary inflammation, characterize the adherence of leukocytes to systemic venules, verify the presence of myeloperoxidase (MPO) in the systemic microvascular wall, and quantify systemic microvascular oxidative stress. In the lungs of rats exposed to ROFA or TiO2, changes in some bronchoalveolar lavage markers of inflammation were noted, but an indication of cellular damage was not found. In rats exposed to 0.1 mg ROFA, focal alveolitis was evident, particularly at sites of particle deposition. Exposure to either ROFA or TiO2 caused a dose-dependent impairment of endothelium-dependent arteriolar dilation. However, exposure to these particles did not affect microvascular constriction in response to PHE. ROFA and TiO2 exposure significantly increased leukocyte rolling and adhesion in paired venules, and these cells were positively identified as polymorphonuclear leukocytes (PMNLs). In ROFA- and TiO2-exposed rats, MPO was found in PMNLs adhering to the systemic microvascular wall. Evidence suggests that some of this MPO had been deposited in the microvascular wall. There was also evidence for oxidative stress in the microvascular wall. These results indicate that after PM exposure, the impairment of endothelium-dependent dilation in the systemic microcirculation coincides with PMNL adhesion, MPO deposition, and local oxidative stress. Collectively, these microvascular observations are consistent with events that contribute to the disruption of the control of peripheral resistance and/or cardiac dysfunction associated with PM exposure.
Collapse
Affiliation(s)
- Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9229, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Pearson P, Britton J, McKeever T, Lewis SA, Weiss S, Pavord I, Fogarty A. Lung function and blood levels of copper, selenium, vitamin C and vitamin E in the general population. Eur J Clin Nutr 2005; 59:1043-8. [PMID: 16015272 DOI: 10.1038/sj.ejcn.1602209] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Increased dietary intake of antioxidants has been associated with higher lung function, but few studies have used biological markers of antioxidant intake. OBJECTIVE This study aimed to determine if antioxidant status, as measured by blood levels, influences lung function. DESIGN Using a random subsample of 479 participants, aged 18-65 y old, from a larger cross-sectional observational study, the association of forced expiratory volume in 1 s (FEV1) with plasma copper, vitamin C, vitamin E and serum selenium was assessed. RESULTS An s.d. increase in blood copper level was associated with a difference in FEV1 of -48 ml (95% confidence intervals: -95, -2 ml, P = 0.04), vitamin C +49 ml (+4, +94, P = 0.03), vitamin E -15 ml (-62, +32, P = 0.53) and selenium +52 ml (+7, +96, P = 0.02). The sizes of association were not appreciably altered in a mutually adjusted model. CONCLUSIONS Higher levels of serum vitamin C and selenium appear to be associated with higher FEV1. The association between higher serum copper and lower FEV1 requires further study in view of the ubiquitous exposure to this mineral.
Collapse
Affiliation(s)
- P Pearson
- Division of Respiratory Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, UK
| | | | | | | | | | | | | |
Collapse
|
61
|
Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V. Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2005; 2:10. [PMID: 16242040 PMCID: PMC1280930 DOI: 10.1186/1743-8977-2-10] [Citation(s) in RCA: 482] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 10/21/2005] [Indexed: 11/10/2022] Open
Abstract
This review considers the molecular toxicology of combustion-derived nanoparticles (CDNP) following inhalation exposure. CDNP originate from a number of sources and in this review we consider diesel soot, welding fume, carbon black and coal fly ash. A substantial literature demonstrates that these pose a hazard to the lungs through their potential to cause oxidative stress, inflammation and cancer; they also have the potential to redistribute to other organs following pulmonary deposition. These different CDNP show considerable heterogeneity in composition and solubility, meaning that oxidative stress may originate from different components depending on the particle under consideration. Key CDNP-associated properties of large surface area and the presence of metals and organics all have the potential to produce oxidative stress. CDNP may also exert genotoxic effects, depending on their composition. CDNP and their components also have the potential to translocate to the brain and also the blood, and thereby reach other targets such as the cardiovascular system, spleen and liver. CDNP therefore can be seen as a group of particulate toxins unified by a common mechanism of injury and properties of translocation which have the potential to mediate a range of adverse effects in the lungs and other organs and warrant further research.
Collapse
Affiliation(s)
- Ken Donaldson
- ELEGI Colt Laboratory, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Lang Tran
- Institute of Occupational Medicine, Research Park North, Riccarton, Edinburgh EH14 4AP, UK
| | - Luis Albert Jimenez
- ELEGI Colt Laboratory, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Rodger Duffin
- ELEGI Colt Laboratory, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - David E Newby
- Cardiovascular Research, Division of Medical and Radiological Sciences, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SU, UK
| | - Nicholas Mills
- Cardiovascular Research, Division of Medical and Radiological Sciences, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SU, UK
| | - William MacNee
- ELEGI Colt Laboratory, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Vicki Stone
- Napier University, School of Life Sciences, 10 Colinton Rd, Edinburgh EH10 5DT, UK
| |
Collapse
|
62
|
Hutchison GR, Brown DM, Hibbs LR, Heal MR, Donaldson K, Maynard RL, Monaghan M, Nicholl A, Stone V. The effect of refurbishing a UK steel plant on PM10 metal composition and ability to induce inflammation. Respir Res 2005; 6:43. [PMID: 15904485 PMCID: PMC1156955 DOI: 10.1186/1465-9921-6-43] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 05/18/2005] [Indexed: 12/04/2022] Open
Abstract
Background In the year 2000 Corus closed its steel plant operations in Redcar, NE of England temporarily for refurbishment of its blast furnace. This study investigates the impact of the closure on the chemical composition and biological activity of PM10 collected in the vicinity of the steel plant. Methods The metal content of PM10 samples collected before during and after the closure was measured by ICP-MS in order to ascertain whether there was any significant alteration in PM10 composition during the steel plant closure. Biological activity was assessed by instillation of 24 hr PM10 samples into male Wistar rats for 18 hr (n = 6). Inflammation was identified by the cellular and biochemical profile of the bronchoalveolar lavage fluid. Metal chelation of PM10 samples was conducted using Chelex beads prior to treatment of macrophage cell line, J774, in vitro and assessment of pro-inflammatory cytokine expression. Results The total metal content of PM10 collected before and during the closure period were similar, but on reopening of the steel plant there was a significant 3-fold increase (p < 0.05) compared with the closure and pre-closure samples. Wind direction prior to the closure was predominantly from the north, compared to south westerly during the closure and re-opened periods. Of metals analysed, iron was most abundant in the total and acid extract, while zinc was the most prevalent metal in the water-soluble fraction. Elevated markers of inflammation included a significant increase (p < 0.01) in neutrophil cell numbers in the bronchoalveolar lavage of rats instilled with PM10 collected during the reopened period, as well as significant increases in albumin (p < 0.05). Extracts of PM10 from the pre-closure and closure periods did not induce any significant alterations in inflammation or lung damage. The soluble and insoluble extractable PM10 components washed from the reopened period both induced a significant increase in neutrophil cell number (p < 0.05) when compared to the control, and these increases when added together approximately equalled the inflammation induced by the whole sample. PM10 from the re-opened period stimulated J774 macrophages to generate TNF-α protein and this was significantly prevented by chelating the metal content of the PM10 prior to addition to the cells. Conclusion PM10-induced inflammation in the rat lung was related to the concentration of metals in the PM10 samples tested, and activity was found in both the soluble and insoluble fractions of the particulate pollutant.
Collapse
Affiliation(s)
- Gary R Hutchison
- Biomedicine Research Group, Napier University, Edinburgh EH10 5DT, UK
| | - David M Brown
- Biomedicine Research Group, Napier University, Edinburgh EH10 5DT, UK
| | - Leon R Hibbs
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, UK
| | - Mathew R Heal
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, UK
| | - Ken Donaldson
- ELEGI & COLT Research Laboratory, Medical School, University of Edinburgh, UK
| | - Robert L Maynard
- Department of Health UK, Skipton House, 80 London Road, London SE1 6LH, UK
| | - Michelle Monaghan
- Biomedicine Research Group, Napier University, Edinburgh EH10 5DT, UK
| | - Andy Nicholl
- Institute of Occupational Medicine, Research Park North, Riccarton, Edinburgh, EH14 4AP, Scotland, UK
| | - Vicki Stone
- Biomedicine Research Group, Napier University, Edinburgh EH10 5DT, UK
| |
Collapse
|
63
|
Tatár E, Csiky GM, Mihucz VG, Záray G. Investigation of adverse health effects of residual oil fly ash emitted from a heavy-oil-fuelled Hungarian power plant. Microchem J 2005. [DOI: 10.1016/j.microc.2004.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
64
|
Hetland RB, Cassee FR, Refsnes M, Schwarze PE, Låg M, Boere AJF, Dybing E. Release of inflammatory cytokines, cell toxicity and apoptosis in epithelial lung cells after exposure to ambient air particles of different size fractions. Toxicol In Vitro 2004; 18:203-12. [PMID: 14757111 DOI: 10.1016/s0887-2333(03)00142-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several studies have shown that particles of smaller size may be more potent than larger to induce inflammatory and toxic responses in cultured lung cells. However, the relative importance of different size fractions of ambient PM to induce such effects is still not known. In this study, we investigated the potency of different size fractions of urban ambient air particles to induce release of inflammatory cytokines in the human alveolar cell line A549 and primary rat type 2 cells. A mineral-rich ambient air PM10 sample collected in a road tunnel (road PM10) was also included. The coarse fraction of the urban ambient air particles demonstrated a similar or higher potency to induce release of the proinflammatory cytokines IL-8/MIP-2 and IL-6 compared to the fine and ultrafine fractions. The coarse fraction was also the most toxic in both cell systems. In contrast to the A549 cells, no induction of cytokine release was induced by the ultrafine particles in the primary type 2 cells. The mineral-rich road PM10 may be equally or more potent than the various size fractions of the ambient air particles to induce cytokines in both cell types. In conclusion, the coarse fraction of ambient particles may be at least as potent by mass as smaller fractions to induce inflammatory and toxic effects in lung cells.
Collapse
Affiliation(s)
- R B Hetland
- Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404 Nydalen, NO-0403 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
Children’s exposure to air pollution is a special concern because their immune system and lungs are not fully developed when exposure begins, raising the possibility of different responses than seen in adults. In addition, children spend more time outside, where the concentrations of pollution from traffic, powerplants, and other combustion sources are generally higher. Although air pollution has long been thought to exacerbate minor acute illnesses, recent studies have suggested that air pollution, particularly traffic-related pollution, is associated with infant mortality and the development of asthma and atopy. Other studies have associated particulate air pollution with acute bronchitis in children and demonstrated that rates of bronchitis and chronic cough declined in areas where particle concentrations have fallen. More mixed results have been reported for lung function. Overall, evidence for effects of air pollution on children have been growing, and effects are seen at concentrations that are common today. Although many of these associations seem likely to be causal, others require and warrant additional investigation.
Collapse
Affiliation(s)
- Joel Schwartz
- Department of Environmental Health, Harvard School of Public Health, and Channing Laboratory, Brigham and Women's Hospital, Boston, Massachusetts 02215, USA.
| |
Collapse
|
66
|
Zhou YM, Zhong CY, Kennedy IM, Pinkerton KE. Pulmonary responses of acute exposure to ultrafine iron particles in healthy adult rats. ENVIRONMENTAL TOXICOLOGY 2003; 18:227-235. [PMID: 12900941 DOI: 10.1002/tox.10119] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
As critical constituents of ambient particulate matter, transition metals such as iron may play an important role in health outcomes associated with air pollution. The purpose of this study was to determine the respiratory effects of inhaled ultrafine iron particles in rats. Sprague Dawley rats 10-12 weeks of age were exposed by inhalation to iron particles (57 and 90 microg/m(3), respectively) or filtered air (FA) for 6 h/day for 3 days. The median diameter of particles generated was 72 nm. Exposure to iron particles at a concentration of 90 microg/m(3) resulted in a significant decrease in total antioxidant power along with a significant induction in ferritin expression, GST activity, and IL-1beta levels in lungs compared with lungs of the FA control or of animals exposed to iron particles at 57 microg/m(3). NFkappaB-DNA binding activity was elevated 1.3-fold compared with that of control animals following exposure to 90 microg/m(3) of iron, but this change was not statistically significant. We concluded that inhalation of iron particles leads to oxidative stress associated with a proinflammatory response in a dose-dependent manner. The activation of NFkappaB may be involved in iron-induced respiratory responses, but further studies are merited.
Collapse
Affiliation(s)
- Ya-Mei Zhou
- Center for Health and the Environment, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
67
|
Hamoir J, Nemmar A, Halloy D, Wirth D, Vincke G, Vanderplasschen A, Nemery B, Gustin P. Effect of polystyrene particles on lung microvascular permeability in isolated perfused rabbit lungs: role of size and surface properties. Toxicol Appl Pharmacol 2003; 190:278-85. [PMID: 12902199 DOI: 10.1016/s0041-008x(03)00192-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the role of particle number, total surface area, mass and surface chemical groups in (K(f,c)) changes. The lung effects of four different fine (110 nm) and ultrafine (24 nm) polystyrene particles have been tested in an isolated perfused rabbit lung model. Pulmonary microvascular permeability (K(f,c)) modifications were measured in response to intratracheal particle challenge. Polystyrene particles, mainly located in alveolar spaces and macrophages, induced a K(f,c) increase that was related to the total surface area and number of particles rather than to the instilled mass. Moreover, the positively charged amine-modified polystyrene particles were more effective in the K(f,c) response than the negatively charged carboxylate-modified polystyrene particles. We concluded that particle number and diameter that mathematically equally determined total surface area do not have the same importance in explaining the biological effects observed and that particle number could be an alternative to total surface area to describe the particle exposure. Furthermore, surface properties of polystyrene particles need to be considered to investigate the microvascular permeability changes measured in our model.
Collapse
Affiliation(s)
- J Hamoir
- Unit of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster B43B, 4000 Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Zhou YM, Zhong CY, Kennedy IM, Leppert VJ, Pinkerton KE. Oxidative stress and NFkappaB activation in the lungs of rats: a synergistic interaction between soot and iron particles. Toxicol Appl Pharmacol 2003; 190:157-69. [PMID: 12878045 DOI: 10.1016/s0041-008x(03)00157-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Particulate matter (PM) has been associated with a variety of adverse health effects primarily involving the cardiopulmonary system. However, the precise biological mechanisms to explain how exposure to PM exacerbates or directly causes adverse effects are unknown. Particles of varying composition may play a critical role in these effects. To study such a phenomenon, a simple, laminar diffusion flame was used to generate aerosols of soot and iron particles in the ultrafine size range. Exposures of healthy adult rats were for 6 h/day for 3 days. Conditions used included exposure to soot only, iron only, or a combination of soot and iron. We found animals exposed to soot particles at 250 microg/m3 had no adverse respiratory effects. Exposure to iron alone at a concentration of 57 microg/m3 also had no respiratory effects. However, the addition of 45 microg/m3 of iron to soot with a combined total mass concentration of 250 microg/m3 demonstrated significant pulmonary ferritin induction, oxidative stress, elevation of IL-1beta, and cytochrome P450s, as well as activation of NFkappaB. These findings suggest that a synergistic interaction between soot and iron particles account for biological responses not found with exposure to iron alone or to soot alone.
Collapse
Affiliation(s)
- Ya-Mei Zhou
- Center for Health and the Environment, Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
69
|
Roth JA, Garrick MD. Iron interactions and other biological reactions mediating the physiological and toxic actions of manganese. Biochem Pharmacol 2003; 66:1-13. [PMID: 12818360 DOI: 10.1016/s0006-2952(03)00145-x] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chronic exposure to the divalent heavy metals, such as iron, lead, manganese (Mn), and chromium, has been linked to the development of severe, often irreversible neurological disorders and increased vulnerability to developing Parkinson's disease. Although the mechanisms by which these metals elicit or facilitate neuronal cell death are not well defined, neurotoxicity is limited by the extent to which they are transported across the blood-brain barrier and their subsequent uptake within targeted neurons. Once inside the neuron, these heavy metals provoke a series of biochemical and molecular events leading to cell death induced by either apoptosis and/or necrosis. The toxicological properties of Mn have been studied extensively in recent years because of the potential health risk created by increased atmospheric levels owing to the impending use of the gas additive methylcyclopentadienyl manganese tricarbonyl. Individuals exposed to high environmental levels of Mn, which include miners, welders, and those living near ferroalloy processing plants, display a syndrome known as manganism, best characterized by debilitating symptoms resembling those of Parkinson's disease. Mn disposition in vivo is influenced by dietary iron intake and stores within the body since the two metals compete for the same binding protein in serum (transferrin) and subsequent transport systems (divalent metal transporter, DMT1). There appear to be two distinct carrier-mediated transport systems for Mn and ferrous ion: a transferrin-dependent and a transferrin-independent pathway, both of which utilize DMT1 as the transport protein. Accordingly, this commentary focuses on the biochemical and molecular processes responsible for the cytotoxic actions of Mn and the role that cellular transport plays in mediating the physiological as well as the toxicological actions of this metal.
Collapse
Affiliation(s)
- Jerome A Roth
- Department of Pharmacology and Toxicology, 102 Farber Hall, University at Buffalo, Buffalo, NY 14214, USA.
| | | |
Collapse
|
70
|
Abstract
Chronic environmental and occupational exposures to low levels of metals are associated with increased incidence of pulmonary and cardiopulmonary diseases. The cellular and molecular mechanisms of action of metals in the lung are unresolved and involve complex pleiotrophic effects. These effects are mediated by direct reaction of the metals with cellular macromolecules and indirect effects of reactive oxygen species generated when cells are exposed to metals. This review focuses on cell signaling pathways activated by two metals, chromium and nickel, that are known to promote a variety of lung diseases, including fibrosis, obstructive disease, and cancer. These signaling pathways are discussed in relation to the inclusion or exclusion of reactive oxygen in mediating cellular activation following metal exposures.
Collapse
Affiliation(s)
- Aaron Barchowsky
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | |
Collapse
|
71
|
Nemmar A, Hoylaerts MF, Hoet PHM, Vermylen J, Nemery B. Size effect of intratracheally instilled particles on pulmonary inflammation and vascular thrombosis. Toxicol Appl Pharmacol 2003; 186:38-45. [PMID: 12583991 DOI: 10.1016/s0041-008x(02)00024-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Particulate air pollution is associated with cardiorespiratory effects and ultrafine particles (UFPs, diameter < 100 nm) are believed to play an important role. We studied the acute (1 h) effect of intratracheally instilled unmodified (60 nm), negatively charged carboxylate-modified (60 nm), or positively charged amine-modified (60 or 400 nm) polystyrene particles on bronchoalveolar lavage (BAL) indices and on peripheral thrombosis in hamster. The latter was assessed by measuring the extent of photochemically induced thrombosis in a femoral vein via transillumination. Unmodified and negative UFPs did not modify thrombosis and BAL indices. Positive UFPs increased thrombosis at 500 microg per animal (+ 341 +/- 96%) and at 50 microg per animal (+ 533 +/- 122%), but not at 5 microg per animal. Neutrophils, lactate dehydrogenase, and histamine were increased in BAL at all these doses but protein concentration was increased only at 500 microg per animal. Positive 400-nm particles (500 microg per animal) did not affect thrombosis, although they led to a neutrophil influx and an increase in BAL proteins and histamine. Using the Platelet Function Analyser (PFA-100), the platelets of hamsters were activated by the in vitro addition of positive UFPs and 400-nm particles to blood. We conclude that intratracheally administered positive ultrafine and 400-nm particles induce pulmonary inflammation within 1 h. Positive UFPs, but not the 400-nm particles enhance thrombosis. Hence, particle-induced lung inflammation and thrombogenesis can be partially uncoupled.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Laboratory of Pneumology (Lung Toxicology), KULeuven, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|