51
|
Recent progress in the development of white spot syndrome virus vaccines for protecting shrimp against viral infection. Arch Virol 2017. [DOI: 10.1007/s00705-017-3450-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
52
|
Kulabhusan PK, Rajwade JM, Sahul Hameed AS, Paknikar KM. Lateral flow assay for rapid detection of white spot syndrome virus (WSSV) using a phage-displayed peptide as bio-recognition probe. Appl Microbiol Biotechnol 2017; 101:4459-4469. [DOI: 10.1007/s00253-017-8232-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 01/01/2023]
|
53
|
Fusion of flagellin 2 with bivalent white spot syndrome virus vaccine increases survival in freshwater shrimp. J Invertebr Pathol 2017; 144:97-105. [DOI: 10.1016/j.jip.2017.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/03/2017] [Accepted: 02/15/2017] [Indexed: 01/08/2023]
|
54
|
Motamedi-Sedeh F, Afsharnasab M, Heidarieh M, Tahami SM. Protection of Litopenaeus vannamei against white spot syndrome virus by electron-irradiated inactivated vaccine and prebiotic immunogen. Radiat Phys Chem Oxf Engl 1993 2017. [DOI: 10.1016/j.radphyschem.2016.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
55
|
Yang MC, Shi XZ, Yang HT, Sun JJ, Xu L, Wang XW, Zhao XF, Wang JX. Scavenger Receptor C Mediates Phagocytosis of White Spot Syndrome Virus and Restricts Virus Proliferation in Shrimp. PLoS Pathog 2016; 12:e1006127. [PMID: 28027319 PMCID: PMC5222524 DOI: 10.1371/journal.ppat.1006127] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/09/2017] [Accepted: 12/14/2016] [Indexed: 02/07/2023] Open
Abstract
Scavenger receptors are an important class of pattern recognition receptors that play several important roles in host defense against pathogens. The class C scavenger receptors (SRCs) have only been identified in a few invertebrates, and their role in the immune response against viruses is seldom studied. In this study, we firstly identified an SRC from kuruma shrimp, Marsupenaeus japonicus, designated MjSRC, which was significantly upregulated after white spot syndrome virus (WSSV) challenge at the mRNA and protein levels in hemocytes. The quantity of WSSV increased in shrimp after knockdown of MjSRC, compared with the controls. Furthermore, overexpression of MjSRC led to enhanced WSSV elimination via phagocytosis by hemocytes. Pull-down and co-immunoprecipitation assays demonstrated the interaction between MjSRC and the WSSV envelope protein. Electron microscopy observation indicated that the colloidal gold-labeled extracellular domain of MjSRC was located on the outer surface of WSSV. MjSRC formed a trimer and was internalized into the cytoplasm after WSSV challenge, and the internalization was strongly inhibited after knockdown of Mjβ-arrestin2. Further studies found that Mjβ-arrestin2 interacted with the intracellular domain of MjSRC and induced the internalization of WSSV in a clathrin-dependent manner. WSSV were co-localized with lysosomes in hemocytes and the WSSV quantity in shrimp increased after injection of lysosome inhibitor, chloroquine. Collectively, this study demonstrated that MjSRC recognized WSSV via its extracellular domain and invoked hemocyte phagocytosis to restrict WSSV systemic infection. This is the first study to report an SRC as a pattern recognition receptor promoting phagocytosis of a virus. Shrimp aquaculture is a major industry in many coastal countries, where it contributes significantly to socio-economic development. However, during the rapid expansion of shrimp industry, a succession of previously unknown diseases, especially viral diseases, have emerged in farmed shrimp and spread rapidly across international boundaries, which have significant effects on shrimp production. Since 1994, it has been estimated that annual losses globally caused by viral diseases have been as high as $US3 billion. White spot syndrome, caused by white spot syndrome virus (WSSV), is the most serious disease in shrimp aquaculture. Here, we reveal that a scavenger receptor in kuruma shrimp, Marsupenaeus japonicus (MjSRC) functions as the pattern recognition receptor for WSSV. MjSRC binds to WSSV and initiates phagocytosis of the virus, ultimately leading to degradation of WSSV in the lysosomes of hemocytes. This is the first report of the MjSRC antiviral mechanism, which may be used as a control strategy to prevent WSSV infection in shrimp.
Collapse
Affiliation(s)
- Ming-Chong Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Xiu-Zhen Shi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Hui-Ting Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Jie-Jie Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Ling Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
- * E-mail:
| |
Collapse
|
56
|
Wang X, Liu X. Close ecological relationship among species facilitated horizontal transfer of retrotransposons. BMC Evol Biol 2016; 16:201. [PMID: 27717306 PMCID: PMC5055719 DOI: 10.1186/s12862-016-0767-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/27/2016] [Indexed: 01/01/2023] Open
Abstract
Background Horizontal transfer (HT) of genetic materials is increasingly being found in both animals and plants and mainly concerns transposable elements (TEs). Many crustaceans have big genome sizes and are thus likely to harbor high TE contents. Their habitat might offer them ample opportunities to exchange genetic materials with organisms that are ecologically close but taxonomically distant to them. Results In this study, we analyzed the transcriptome of Pacific white shrimp (Litopenaeus vannamei), an important economic crustacean, to explore traces of HT events. From a collection of newly assembled transcripts, we identified 395 high reliable TE transcripts, most of which were retrotransposon transcripts. One hundred fifty-seven of those transcripts showed highest similarity to sequences from non-arthropod organisms, including ray-finned fishes, mollusks and putative parasites. In total, 16 already known L. vannamei TE families are likely to be involved in horizontal transfer events. Phylogenetic analyses of 10 L. vannamei TE families and their homologues (protein sequences) revealed that L. vannamei TE families were generally more close to sequences from aquatic species. Furthermore, TEs from other aquatic species also tend to group together, although they are often distantly related in taxonomy. Sequences from parasites and microorganisms were also widely present, indicating their possible important roles in HT events. Expression profile analyses of transcripts in two NCBI BioProjects revealed that transcripts involved in HT events are likely to play important roles in antiviral immunity. More specifically, those transcripts might act as inhibitors of antiviral immunity. Conclusions Close ecological relationship, especially predation, might greatly facilitate HT events among aquatic species. This could be achieved through exchange of parasites and microorganisms, or through direct DNA flow. The occurrence of HT events may be largely incidental, but the effects could be beneficial for recipients. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0767-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xianzong Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xiaolin Liu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
57
|
Sudharsana S, Rajashekar Reddy CB, Dinesh S, Rajasekhara Reddy S, Mohanapriya A, Itami T, Sudhakaran R. Molecular docking and simulation studies of 3-(1-chloropiperidin-4-yl)-6-fluoro benzisoxazole 2 against VP26 and VP28 proteins of white spot syndrome virus. JOURNAL OF FISH DISEASES 2016; 39:1231-1238. [PMID: 26850228 DOI: 10.1111/jfd.12454] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/04/2015] [Accepted: 12/06/2015] [Indexed: 06/05/2023]
Abstract
White spot syndrome virus (WSSV), an aquatic virus infecting shrimps and other crustaceans, is widely distributed in Asian subcontinents including India. The infection has led to a serious economic loss in shrimp farming. The WSSV genome is approximately 300 kb and codes for several proteins mediating the infection. The envelope proteins VP26 and VP28 play a major role in infection process and also in the interaction with the host cells. A comprehensive study on the viral proteins leading to the development of safe and potent antiviral therapeutic is of adverse need. The novel synthesized compound 3-(1-chloropiperidin-4-yl)-6-fluoro benzisoxazole 2 is proved to have potent antiviral activity against WSSV. The compound antiviral activity is validated in freshwater crabs (Paratelphusa hydrodomous). An in silico molecular docking and simulation analysis of the envelope proteins VP26 and VP28 with the ligand 3-(1-chloropiperidin-4-yl)-6-fluoro benzisoxazole 2 are carried out. The docking analysis reveals that the polar amino acids in the pore region of the envelope proteins were involved in the ligand binding. The influence of the ligand binding on the proteins is validated by the molecular dynamics and simulation study. These in silico approaches together demonstrate the ligand's efficiency in preventing the trimers from exhibiting their physiological function.
Collapse
Affiliation(s)
- S Sudharsana
- Bioinformatics Division, School of Biosciences and Technology, VIT University, Vellore, Tamilnadu, India
| | - C B Rajashekar Reddy
- Organic Chemistry Division, Department of Chemistry, VIT University, Vellore, Tamilnadu, India
| | - S Dinesh
- Aquaculture Biotechnology Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamilnadu, India
| | - S Rajasekhara Reddy
- Organic Chemistry Division, Department of Chemistry, VIT University, Vellore, Tamilnadu, India
| | - A Mohanapriya
- Bioinformatics Division, School of Biosciences and Technology, VIT University, Vellore, Tamilnadu, India
| | - T Itami
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - R Sudhakaran
- Aquaculture Biotechnology Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamilnadu, India
| |
Collapse
|
58
|
Afsharnasab M, Kakoolaki S, Mohammadidost M. Immunity enhancement with administration of Gracilaria corticata and Saccharomyces cerevisiae compared to gamma irradiation in expose to WSSV in shrimp, in juvenile Litopenaeus vannamei: A comparative study. FISH & SHELLFISH IMMUNOLOGY 2016; 56:21-33. [PMID: 27377028 DOI: 10.1016/j.fsi.2016.06.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/19/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
This paper investigates the efficacy of Gracilaria corticata, Saccharomyces cerevisiae and gamma irradiation WSSV as immunostimulants to white shrimp Litopenaeus vannamei. Seven hundred and twenty healthy shrimp SPF L. vannamei subadult with average weight of 10 ± 1.02 g were collected and divided into 8 groups. The first group (T1) was fed with commercial pellet, the second group (T2) fed with S. cerevisiae (2 g/kg), the third group (T3) fed with G. corticata powder mixed with shrimp feed (2 g/kg) and, finally, the fourth group (T4) was fed with commercial pellet and injected intramuscularly gamma irradiant WSSV (1 μl/gbw) for 10 days. The shrimps were then injected with WSSV and maintained for 25 days. The positive control group for each treatment was maintained in the same manner but without injection with WSSV. Moreover, survival rate and immune parameters such as total hemocyte count (THC), total protein plasma (TPP), superoxide dismutase (SOD) activity, peroxidase (POD) activity and phenoloxidase activity (PO) were determined. Results indicated that the survival rates for groups T4, T3 T2 and T1 were 57.05 ± 3.52%, 22.5 ± 0.5%, 15 ± 1.05% and 00.0 ± 0%, respectively. Ultimately, at the end of the study the shrimp group T4 showed higher hematological data: THC, TPP, SOD, POD and PO. The study concluded that gamma irradiant WSSV is effective immunostimulants in shrimp L. vannamei and the immunity has better performances than those of the G. corticata and S. cerevisiae.
Collapse
Affiliation(s)
- Mohammad Afsharnasab
- Department of Aquatic Animal Health & Diseases, Agricultural Research, Education and Extension Org.(AREEO), Iranian Fisheries Science Research Institute, Tehran-Karaj High Way, Sarve Azad Ave., Tehran, Iran
| | - Shapour Kakoolaki
- Department of Aquatic Animal Health & Diseases, Agricultural Research, Education and Extension Org.(AREEO), Iranian Fisheries Science Research Institute, Tehran-Karaj High Way, Sarve Azad Ave., Tehran, Iran.
| | - Mehrdad Mohammadidost
- Department of Health, Aquatic Animal Health and Disease, South Iranian Aquaculture Center, Ahvaz, Iran
| |
Collapse
|
59
|
Sivakumar KC, Sajeevan TP, Bright Singh IS. Marine derived compounds as binders of the White spot syndrome virus VP28 envelope protein: In silico insights from molecular dynamics and binding free energy calculations. Comput Biol Chem 2016; 64:359-367. [PMID: 27591791 DOI: 10.1016/j.compbiolchem.2016.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/03/2016] [Accepted: 08/25/2016] [Indexed: 11/17/2022]
Abstract
White spot syndrome virus (WSSV) remains as one of the most dreadful pathogen of the shrimp aquaculture industry owing to its high virulence. The cumulative mortality reaches up to 100% within in 2-10days in a shrimp farm. Currently, no chemotherapeutics are available to control WSSV. The viral envelope protein, VP28, located on the surface of the virus particle acts as a vital virulence factor in the initial phases of inherent WSSV infection in shrimp. Hence, inhibition of envelope protein VP28 could be a novel way to deal with infection by inhibiting its interaction in the endocytic pathway. In this direction, a timely attempt was made to recognize a potential drug candidate of marine origin against WSSV using VP28 as a target by employing in silico docking and molecular dynamic simulations. A virtual library of 388 marine bioactive compounds was extracted from reports published in Marine Drugs. The top ranking compounds from docking studies were chosen from the flexible docking based on the binding affinities (ΔGb). In addition, the MD simulation and binding free energy analysis were implemented to validate and capture intermolecular interactions. The results suggested that the two compounds obtained a negative binding free energy with -40.453kJ/mol and -31.031kJ/mol for compounds with IDs 30797199 and 144162 respectively. The RMSD curve indicated that 30797199 moves into the hydrophobic core, while the position of 144162 atoms changes abruptly during simulation and is mostly stabilized by water bridges. The shift in RMSD values of VP28 corresponding to ligand RMSD gives an insight into the ligand induced conformational changes in the protein. This study is first of its kind to elucidate the explicit binding of chemical inhibitor to WSSV major structural protein VP28.
Collapse
Affiliation(s)
- K C Sivakumar
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi 682 016, Kerala, India; Bioinformatics Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| | - T P Sajeevan
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi 682 016, Kerala, India.
| | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi 682 016, Kerala, India.
| |
Collapse
|
60
|
Rattanarojpong T, Khankaew S, Khunrae P, Vanichviriyakit R, Poomputsa K. Recombinant baculovirus mediates dsRNA specific to rr2 delivery and its protective efficacy against WSSV infection. J Biotechnol 2016; 229:44-52. [PMID: 27164257 DOI: 10.1016/j.jbiotec.2016.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 04/27/2016] [Accepted: 05/03/2016] [Indexed: 01/11/2023]
Abstract
White spot syndrome virus (WSSV) is a major causative agent in shrimp farming. Consequently, RNAi technology is an effective strategy to prevent WSSV infection in shrimp especially dsRNA targeting to rr2 of WSSV. In an effort to develop dsRNA expression in shrimp for control of WSSV infection, we developed a recombinant baculovirus expressing recombinant VP28 as the gene delivery system to carry a gene encoding dsRNA specific to rr2 for triggering the RNAi process in shrimp. The results showed that the recombinant baculovirus harboring VP28 was able to express VP28 indicated by Western blot with polyclonal antibody specific to VP28. VP28 transcript was detected in shrimp hemocytes after co-culture hemocytes with the recombinant baculovirus displaying VP28. In addition, we found that shrimp injected with the recombinant baculovirus displaying VP28 and encoding dsRNA synthetic gene specific to rr2 (Bac-VP28-dsrr2) showed the lowest cumulative mortality (33%) at 14days post infection (dpi) when compared to shrimp injected with baculovirus displaying VP28 (Bac-VP28) (64% cumulative mortality) (p<0.05). According to the results, shrimp injected with Bac-VP28-dsrr2 also showed significantly lower WSSV copies than shrimp injected with Bac-VP28 (p<0.05) along with the down-regulation of rr2 expression at 1, 3 and 7dpi. In conclusion, the Bac-VP28-dsrr2 was effective in prevention of WSSV infection. Therefore, the results obtained here can be applied to the prevention of WSSV infection by mixing the recombinant baculovirus with shrimp feed in the future.
Collapse
Affiliation(s)
- Triwit Rattanarojpong
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
| | - Suthiwat Khankaew
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Pongsak Khunrae
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Rapeepun Vanichviriyakit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok 10400, Thailand
| | - Kanokwan Poomputsa
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand.
| |
Collapse
|
61
|
Verbruggen B, Bickley LK, van Aerle R, Bateman KS, Stentiford GD, Santos EM, Tyler CR. Molecular Mechanisms of White Spot Syndrome Virus Infection and Perspectives on Treatments. Viruses 2016; 8:E23. [PMID: 26797629 PMCID: PMC4728583 DOI: 10.3390/v8010023] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/18/2015] [Accepted: 01/06/2016] [Indexed: 02/07/2023] Open
Abstract
Since its emergence in the 1990s, White Spot Disease (WSD) has had major economic and societal impact in the crustacean aquaculture sector. Over the years shrimp farming alone has experienced billion dollar losses through WSD. The disease is caused by the White Spot Syndrome Virus (WSSV), a large dsDNA virus and the only member of the Nimaviridae family. Susceptibility to WSSV in a wide range of crustacean hosts makes it a major risk factor in the translocation of live animals and in commodity products. Currently there are no effective treatments for this disease. Understanding the molecular basis of disease processes has contributed significantly to the treatment of many human and animal pathogens, and with a similar aim considerable efforts have been directed towards understanding host-pathogen molecular interactions for WSD. Work on the molecular mechanisms of pathogenesis in aquatic crustaceans has been restricted by a lack of sequenced and annotated genomes for host species. Nevertheless, some of the key host-pathogen interactions have been established: between viral envelope proteins and host cell receptors at initiation of infection, involvement of various immune system pathways in response to WSSV, and the roles of various host and virus miRNAs in mitigation or progression of disease. Despite these advances, many fundamental knowledge gaps remain; for example, the roles of the majority of WSSV proteins are still unknown. In this review we assess current knowledge of how WSSV infects and replicates in its host, and critique strategies for WSD treatment.
Collapse
Affiliation(s)
- Bas Verbruggen
- Biosciences, College of Life & Environmental Sciences, Geoffrey Pope Building, University of Exeter, Exeter, Devon EX4, UK.
| | - Lisa K Bickley
- Biosciences, College of Life & Environmental Sciences, Geoffrey Pope Building, University of Exeter, Exeter, Devon EX4, UK.
| | - Ronny van Aerle
- European Union Reference Laboratory for Crustacean Diseases, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset DT4 8UB, UK.
| | - Kelly S Bateman
- European Union Reference Laboratory for Crustacean Diseases, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset DT4 8UB, UK.
| | - Grant D Stentiford
- European Union Reference Laboratory for Crustacean Diseases, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset DT4 8UB, UK.
| | - Eduarda M Santos
- Biosciences, College of Life & Environmental Sciences, Geoffrey Pope Building, University of Exeter, Exeter, Devon EX4, UK.
| | - Charles R Tyler
- Biosciences, College of Life & Environmental Sciences, Geoffrey Pope Building, University of Exeter, Exeter, Devon EX4, UK.
| |
Collapse
|
62
|
Xie YK, Ding D, Wang HM, Kang CJ. A homologue gene of β-catenin participates in the development of shrimps and immune response to bacteria and viruses. FISH & SHELLFISH IMMUNOLOGY 2015; 47:147-156. [PMID: 26334791 DOI: 10.1016/j.fsi.2015.08.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 06/05/2023]
Abstract
β-Catenin is a multifunctional protein that is involved in many physiological processes, including development, cell proliferation, cell migration, and apoptosis. However, the function of β-Catenin in crustacean is unknown. In this study, the first shrimp homologous gene of β-catenin in Marsupenaeus japonicus (i.e., Mjβ-catenin) was identified and characterized. The full-length of the complementary DNA of Mjβ-catenin is 3130 bp, including a 2463 bp open reading frame that encodes 821 amino acid. Multiple alignment of β-Catenin proteins suggested that the Armadillo/β-Catenin-like repeat domains were conserved. Phylogenetic analysis showed that β-Catenin from shrimp was clustered into one group with invertebrate β-Catenin. The transcription of β-catenin in various development stages of shrimp was detected and persistently increased as the shrimp matured. In adult shrimp, β-catenin was widely distributed in detected tissues and has the relatively high expression level in gills, hemocytes, testes, and ovaries. The transcripts of β-catenin in tissues of adult shrimp were significantly up-regulated at various time points after infecting with Staphylococcus aureus, Vibrio anguillarum, and white-spot syndrome virus. Furthermore, knockdown of β-catenin resulted in impaired bacterial clearance ability and increased virus copy in shrimp in vivo. Therefore, β-Catenin in shrimp participates in the development and immune response of shrimps.
Collapse
Affiliation(s)
- Ya-Kai Xie
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of the Ministry of Education; Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, China
| | - Ding Ding
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of the Ministry of Education; Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, China
| | - Hui-Min Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of the Ministry of Education; Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, China
| | - Cui-Jie Kang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of the Ministry of Education; Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, China.
| |
Collapse
|
63
|
Virus replication cycle of white spot syndrome virus in secondary cell cultures from the lymphoid organ of Litopenaeus vannamei. J Gen Virol 2015; 96:2844-2854. [DOI: 10.1099/vir.0.000217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
64
|
Wilson W, Lowman D, Antony SP, Puthumana J, Bright Singh IS, Philip R. Immune gene expression profile of Penaeus monodon in response to marine yeast glucan application and white spot syndrome virus challenge. FISH & SHELLFISH IMMUNOLOGY 2015; 43:346-356. [PMID: 25555812 DOI: 10.1016/j.fsi.2014.12.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/19/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
Immunostimulant potential of eight marine yeast glucans (YG) from Candida parapsilosis R20, Hortaea werneckii R23, Candida spencermartinsiae R28, Candida haemulonii R63, Candida oceani R89, Debaryomyces fabryi R100, Debaryomyces nepalensis R305 and Meyerozyma guilliermondii R340 were tested against WSSV challenge in Penaeus monodon post larvae (PL). Structural characterization of these marine yeast glucans by proton nuclear magnetic resonance (NMR) indicated structures containing (1-6)-branched (1-3)-β-D-glucan. PL were fed 0.2% glucan incorporated diet once in seven days for a period of 45 days and the animals were challenged with white spot syndrome virus (WSSV). The immunostimulatory activity of yeast glucans were assessed pre- and post-challenge WSSV by analysing the expression profile of six antimicrobial peptide (AMP) genes viz., anti-lipopolysaccharide factor (ALF), crustin-1, crustin-2, crustin-3, penaeidin-3 and penaeidin-5 and 13 immune genes viz., alpha-2-macroglobulin (α-2-M), astakine, caspase, catalase, glutathione peroxidase, glutathione-s-transferase, haemocyanin, peroxinectin, pmCathepsinC, prophenol oxidase (proPO), Rab-7, superoxide dismutase and transglutaminase. Expression of seven WSSV genes viz., DNA polymerase, endonuclease, protein kinase, immediate early gene, latency related gene, thymidine kinase and VP28 were also analysed to detect the presence and intensity of viral infection in the experimental animals post-challenge. The study revealed that yeast glucans (YG) do possess immunostimulatory activity against WSSV and also supported higher survival (40-70 %) post-challenge WSSV. Among the various glucans tested, YG23 showed maximum survival (70.27%), followed by YG20 (66.66%), YG28 (60.97%), YG89 (58.53%), YG100 (54.05%), YG63 (48.64%), YG305 (45.7%) and YG340 (43.24%).
Collapse
Affiliation(s)
- Wilsy Wilson
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, Kerala, India
| | - Douglas Lowman
- AppRidge International, LLC, 1328 Barkley Road, Telford, TN, 37690-2235, USA
| | - Swapna P Antony
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, Kerala, India; National Center for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, Kerala, India
| | - Jayesh Puthumana
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, Kerala, India
| | - I S Bright Singh
- National Center for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, Kerala, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, Kerala, India.
| |
Collapse
|
65
|
Rasala BA, Mayfield SP. Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. PHOTOSYNTHESIS RESEARCH 2015; 123:227-39. [PMID: 24659086 DOI: 10.1007/s11120-014-9994-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/03/2014] [Indexed: 05/18/2023]
Abstract
Recombinant proteins are widely used for industrial, nutritional, and medical applications. Green microalgae have attracted considerable attention recently as a biomanufacturing platform for the production of recombinant proteins for a number of reasons. These photosynthetic eukaryotic microorganisms are safe, scalable, easy to genetically modify through transformation, mutagenesis, or breeding, and inexpensive to grow. Many microalgae species are genetically transformable, but the green alga Chlamydomonas reinhardtii is the most widely used host for recombinant protein expression. An extensive suite of molecular genetic tools has been developed for C. reinhardtii over the last 25 years, including a fully sequenced genome, well-established methods for transformation, mutagenesis and breeding, and transformation vectors for high levels of recombinant protein accumulation and secretion. Here, we review recent successes in the development of C. reinhardtii as a biomanufacturing host for recombinant proteins, including antibodies and immunotoxins, hormones, industrial enzymes, an orally-active colostral protein for gastrointestinal health, and subunit vaccines. In addition, we review the biomanufacturing potential of other green algae from the genera Dunaliella and Chlorella.
Collapse
Affiliation(s)
- Beth A Rasala
- California Center for Algae Biotechnology and Division of Biological Sciences, University of California, 9500 Gilman Dr, La Jolla, San Diego, CA, 92093-0368, USA
| | | |
Collapse
|
66
|
Syed Musthaq SK, Kwang J. Reprint of "evolution of specific immunity in shrimp - a vaccination perspective against white spot syndrome virus". DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:342-353. [PMID: 25083808 DOI: 10.1016/j.dci.2014.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/11/2014] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
Invertebrates lack true adaptive immunity and it solely depends on the primitive immunity called innate immunity. However, various innate immune molecules and mechanisms are identified in shrimp that plays potential role against invading bacterial, fungal and viral pathogens. Perceiving the shrimp innate immune mechanisms will contribute in developing effective vaccine strategies against major shrimp pathogens. Hence this review intends to explore the innate immune molecules of shrimp with suitable experimental evidences together with the evolution of "specific immune priming" of invertebrates. In addition, we have emphasized on the development of an effective vaccine strategy against major shrimp pathogen, white spot syndrome virus (WSSV). The baculovirus displayed rVP28 (Bac-VP28), a major envelope protein of WSSV was utilized to study its vaccine efficacy by oral route. A significant advantage of this baculovirus expression cassette is the use of WSSV-immediate early 1 (ie1) promoter that derived the abundant expression of rVP28 protein at the early stage of the infection in insect cell. The orally vaccinated shrimp with Bac-VP28 transduced successfully in the shrimp cells as well as provided highest survival rate. In support to our vaccine efficacy we analysed Pattern Recognition Proteins (PRPs) β-1,3 glucan lipopolysaccharides (LGBP) and STAT gene profiles in the experimental shrimp. Indeed, the vaccination of shrimp with Bac-VP28 demonstrated some degree of specificity with enhanced survival rate when compared to control vaccination with Bac-wt. Hence it is presumed that the concept of "specific immune priming" in relevant to shrimp immunity is possible but may not be common to all shrimp pathogens.
Collapse
Affiliation(s)
- Syed Khader Syed Musthaq
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Jimmy Kwang
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; Department of Microbiology, Faculty of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
67
|
Hossain A, Nandi S, Siddique M, Sanyal S, Sultana M, Hossain M. Prevalence and distribution of
W
hite
S
pot
S
yndrome
V
irus in cultured shrimp. Lett Appl Microbiol 2014; 60:128-134. [DOI: 10.1111/lam.12353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/25/2014] [Accepted: 10/28/2014] [Indexed: 11/30/2022]
Affiliation(s)
- A. Hossain
- Department of Fisheries University of Dhaka Dhaka Bangladesh
| | - S.P. Nandi
- Department of Microbiology University of Dhaka Dhaka Bangladesh
| | - M.A. Siddique
- Department of Microbiology University of Dhaka Dhaka Bangladesh
| | - S.K. Sanyal
- Department of Microbiology University of Dhaka Dhaka Bangladesh
| | - M. Sultana
- Department of Microbiology University of Dhaka Dhaka Bangladesh
| | - M.A. Hossain
- Department of Microbiology University of Dhaka Dhaka Bangladesh
| |
Collapse
|
68
|
Duan H, Jin S, Zhang Y, Li F, Xiang J. Granulocytes of the red claw crayfish Cherax quadricarinatus can endocytose beads, E. coli and WSSV, but in different ways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:186-193. [PMID: 24747430 DOI: 10.1016/j.dci.2014.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/06/2014] [Accepted: 04/09/2014] [Indexed: 06/03/2023]
Abstract
The hemocytes of the red claw crayfish Cherax quadricarinatus are classified by morphologic observation into the following types: hyalinocytes (H), semi-granulocytes (SG) and granulocytes (G). Density gradient centrifugation with Percoll was developed to separate these three subpopulations of hemocytes. Beads, Escherichia coli, and FITC labeling WSSV were used to investigate the characteristics of granulocytes by using scanning electron microscope, transmission electron microscope, and laser scan confocal microscope. Results showed that granulocytes could phagocytose beads and E. coli by endocytic pathways. WSSV could rely on caveolae-mediated endocytosis to mainly enter into granulocytes. These results could elucidate the mechanism of the innate immunity function of granulocytes, and it also showed the mechanism by which WSSV invaded granulocytes in the red claw crayfish.
Collapse
Affiliation(s)
- Hu Duan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songjun Jin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Yan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China.
| |
Collapse
|
69
|
Syed Musthaq SK, Kwang J. Evolution of specific immunity in shrimp - a vaccination perspective against white spot syndrome virus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:279-290. [PMID: 24780624 DOI: 10.1016/j.dci.2014.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/11/2014] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
Invertebrates lack true adaptive immunity and it solely depends on the primitive immunity called innate immunity. However, various innate immune molecules and mechanisms are identified in shrimp that plays potential role against invading bacterial, fungal and viral pathogens. Perceiving the shrimp innate immune mechanisms will contribute in developing effective vaccine strategies against major shrimp pathogens. Hence this review intends to explore the innate immune molecules of shrimp with suitable experimental evidences together with the evolution of "specific immune priming" of invertebrates. In addition, we have emphasized on the development of an effective vaccine strategy against major shrimp pathogen, white spot syndrome virus (WSSV). The baculovirus displayed rVP28 (Bac-VP28), a major envelope protein of WSSV was utilized to study its vaccine efficacy by oral route. A significant advantage of this baculovirus expression cassette is the use of WSSV-immediate early 1 (ie1) promoter that derived the abundant expression of rVP28 protein at the early stage of the infection in insect cell. The orally vaccinated shrimp with Bac-VP28 transduced successfully in the shrimp cells as well as provided highest survival rate. In support to our vaccine efficacy we analysed Pattern Recognition Proteins (PRPs) β-1,3 glucan lipopolysaccharides (LGBP) and STAT gene profiles in the experimental shrimp. Indeed, the vaccination of shrimp with Bac-VP28 demonstrated some degree of specificity with enhanced survival rate when compared to control vaccination with Bac-wt. Hence it is presumed that the concept of "specific immune priming" in relevant to shrimp immunity is possible but may not be common to all shrimp pathogens.
Collapse
Affiliation(s)
- Syed Khader Syed Musthaq
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Jimmy Kwang
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; Department of Microbiology, Faculty of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
70
|
Hipolito SG, Shitara A, Kondo H, Hirono I. Role of Marsupenaeus japonicus crustin-like peptide against Vibrio penaeicida and white spot syndrome virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:461-469. [PMID: 24929027 DOI: 10.1016/j.dci.2014.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 06/03/2023]
Abstract
Crustins are important AMP that has been identified in crustaceans. In this study, the role of Marsupenaeus japonicus crustin-like peptide (MjCRS) was examined in vivo by RNA interference (RNAi) using double-stranded RNA (dsRNA). Tissue expression analysis revealed that MjCRS transcripts are expressed in different tissues tested with the highest expression observed in hemocytes. Treatment with double-stranded RNA specific to MjCRS led to a significant reduction of MjCRS transcripts within the hemocytes. When MjCRS was silenced and subsequently infected with Vibrio penaeicida final mortality was significantly higher compared with PBS and dsGFP treated groups. On the other hand, final mortalities of MjCRS silenced and PBS injected groups were not significantly different after infection with white spot virus, however, both are significantly higher compared with dsGFP treated group. V. penaeicida infection significantly decreased MjCRS expression at 3, 6, 12 and 24h followed by significant increase at 48 h post-infection. On the contrary, white spot infection significantly increased MjCRS expression at 6 and 12h and decreased at 48 h post-infection. dsRNA treatment alone decreased total hemocyte counts (THCs) and subsequent V. penaeicida or white spot virus infection further decreased THCs. VP28 gene expression was both similarly increased in PBS injected group and MjCRS silenced group at 24 and 48 h-post infection. Results suggest that MjCRS is involved in antibacterial defense and might not have critical function against viral infection.
Collapse
Affiliation(s)
- Sheryll Grospe Hipolito
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Aiko Shitara
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Hidehiro Kondo
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan.
| |
Collapse
|
71
|
Wang XW, Xu YH, Xu JD, Zhao XF, Wang JX. Collaboration between a Soluble C-Type Lectin and Calreticulin Facilitates White Spot Syndrome Virus Infection in Shrimp. THE JOURNAL OF IMMUNOLOGY 2014; 193:2106-2117. [DOI: 10.4049/jimmunol.1400552] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
White spot syndrome virus (WSSV) mainly infects crustaceans through the digestive tract. Whether C-type lectins (CLs), which are important receptors for many viruses, participate in WSSV infection in the shrimp stomach remains unknown. In this study, we orally infected kuruma shrimp Marsupenaeus japonicus to model the natural transmission of WSSV and identified a CL (designated as M. japonicus stomach virus–associated CL [MjsvCL]) that was significantly induced by virus infection in the stomach. Knockdown of MjsvCL expression by RNA interference suppressed the virus replication, whereas exogenous MjsvCL enhanced it. Further analysis by GST pull-down and coimmunoprecipitation showed that MjsvCL could bind to viral protein 28, the most abundant and functionally relevant envelope protein of WSSV. Furthermore, cell-surface calreticulin was identified as a receptor of MjsvCL, and the interaction between these proteins was a determinant for the viral infection–promoting activity of MjsvCL. The MjsvCL–calreticulin pathway facilitated virus entry likely in a cholesterol-dependent manner. This study provides insights into a mechanism by which soluble CLs capture and present virions to the cell-surface receptor to facilitate viral infection.
Collapse
Affiliation(s)
- Xian-Wei Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Yi-Hui Xu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Ji-Dong Xu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Fan Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
72
|
Nguyen AT, Pham CK, Pham HT, Pham HL, Nguyen AH, Dang LT, Huynh HA, Cutting SM, Phan TN. Bacillus subtilisspores expressing the VP28 antigen: a potential oral treatment to protectLitopenaeus vannameiagainst white spot syndrome. FEMS Microbiol Lett 2014; 358:202-8. [DOI: 10.1111/1574-6968.12546] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/17/2014] [Accepted: 07/19/2014] [Indexed: 12/29/2022] Open
Affiliation(s)
- Anh T.V. Nguyen
- Key Laboratory of Enzyme and Protein Technology; VNU University of Science; Hanoi Vietnam
| | - Cuong K. Pham
- Key Laboratory of Enzyme and Protein Technology; VNU University of Science; Hanoi Vietnam
| | - Huong T.T. Pham
- Key Laboratory of Enzyme and Protein Technology; VNU University of Science; Hanoi Vietnam
| | - Hang L. Pham
- Key Laboratory of Enzyme and Protein Technology; VNU University of Science; Hanoi Vietnam
| | | | - Lua T. Dang
- Center for Environment and Disease Monitoring in Aquaculture; Research Institute for Aquaculture No.1; Bac Ninh Vietnam
| | - Hong A. Huynh
- School of Biological Sciences; Royal Holloway University of London; Egham UK
| | - Simon M. Cutting
- School of Biological Sciences; Royal Holloway University of London; Egham UK
| | - Tuan-Nghia Phan
- Key Laboratory of Enzyme and Protein Technology; VNU University of Science; Hanoi Vietnam
| |
Collapse
|
73
|
Wang L, Sun X, Zhou Z, Zhang T, Yi Q, Liu R, Wang M, Song L. The promotion of cytoskeleton integration and redox in the haemocyte of shrimp Litopenaeus vannamei after the successive stimulation of recombinant VP28. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:123-132. [PMID: 24594136 DOI: 10.1016/j.dci.2014.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 06/03/2023]
Abstract
VP28 protein has been reported to work as a "vaccine" to protect the host from white spot syndrome, but the detailed mechanism of vaccination with VP28 protein in shrimp is still far from well understood. In the present study, whole transcriptomes of shrimp haemocytes were sequenced using the SOLiD4 platform after the successive VP28 stimulation. Eight single-end fragment libraries were constructed and sequenced in the four groups including the VP28-VP28, PBS-VP28, PBS-PBS and BLANK group, and there were 243,949,667 single-end reads with length of 50bp obtained totally, with 14,800 genes further identified. After reads mapping and transcript assembling, 1027, 1539, 1158, 1091 and 1300 genes in five differentially expressed gene lists were obtained in the comparison of VP28-VP28 versus PBS-VP28, VP28-VP28 versus PBS-PBS, VP28-VP28 versus BLANK, PBS-VP28 versus PBS-PBS and PBS-VP28 versus BLANK, respectively. There were 555 differentially expressed genes responsive to the single VP28 stimulation after grouping the PBS-VP28_BLANK and PBS-VP28_PBS-PBS gene lists, and 269 ones responsive to the successive VP28 stimulation after grouping the VP28-VP28_BLANK, VP28-VP28_PBS-PBS and VP28-VP28_PBS-VP28 gene lists. In the GO enrichment analysis of the genes responsive to the single VP28 stimulation, five immune-related GO terms were observed among 14 increased terms, which included defense response to bacterium, response to stimulus, disruption of cells of other organism, killing of cells of other organism and response to bacterium. It was worth noting that the GO terms, response to stimulus and response to stress, were the most common annotation ones which accounted 28.7% and 18.8% of the total differently expressed genes, respectively. For the genes responsive to the successive VP28 stimulation, terms including actin filament-based movement and myosin heavy chain binding were mostly enriched in the Biological Process and Molecular Function category, respectively. In the Cellular Component category, the enriched GO terms were myosin VII complex, myosin V complex, myosin VI complex and myosin II complex. Furthermore, the most abundant GO term was oxidation-reduction process, followed by single-organism transport, neurogenesis and translation for 214 genes only responsive to successive VP28 stimulation. These results collectively indicated that the successive VP28 stimulation could modulate cytoskeleton integration and redox to promote the phagocytosis activity of shrimp haemocytes, which might protect effectively for shrimp against WSSV infection.
Collapse
Affiliation(s)
- Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xin Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Tao Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qilin Yi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
74
|
Valdez A, Yepiz-Plascencia G, Ricca E, Olmos J. First Litopenaeus vannamei
WSSV 100% oral vaccination protection using CotC::Vp26 fusion protein displayed on Bacillus subtilis
spores surface. J Appl Microbiol 2014; 117:347-57. [DOI: 10.1111/jam.12550] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/22/2014] [Accepted: 05/06/2014] [Indexed: 11/30/2022]
Affiliation(s)
- A. Valdez
- Molecular Microbiology Laboratory; Centro de Investigación Científica y de Educación Superior de Ensenada; Ensenada México
| | - G. Yepiz-Plascencia
- Laboratorio de Biología Molecular de Organismos Acuáticos; Centro de Investigación en Alimentación y Desarrollo; Hermosillo México
| | - E. Ricca
- Department of Structural and Functional Biology; Federico II University; Naples Italy
| | - J. Olmos
- Molecular Microbiology Laboratory; Centro de Investigación Científica y de Educación Superior de Ensenada; Ensenada México
| |
Collapse
|
75
|
Kulkarni AD, Kiron V, Rombout JHWM, Brinchmann MF, Fernandes JMO, Sudheer NS, Singh BIS. Protein profiling in the gut of Penaeus monodon gavaged with oral WSSV-vaccines and live white spot syndrome virus. Proteomics 2014; 14:1660-73. [PMID: 24782450 DOI: 10.1002/pmic.201300405] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 03/23/2014] [Accepted: 04/25/2014] [Indexed: 11/12/2022]
Abstract
White spot syndrome virus (WSSV) is a pathogen that causes considerable mortality of the farmed shrimp, Penaeus monodon. Candidate 'vaccines', WSSV envelope protein VP28 and formalin-inactivated WSSV, can provide short-lived protection against the virus. In this study, P. monodon was orally intubated with the aforementioned vaccine candidates, and protein expression in the gut of immunised shrimps was profiled. The alterations in protein profiles in shrimps infected orally with live-WSSV were also examined. Seventeen of the identified proteins in the vaccine and WSSV-intubated shrimps varied significantly compared to those in the control shrimps. These proteins, classified under exoskeletal, cytoskeletal, immune-related, intracellular organelle part, intracellular calcium-binding or energy metabolism, are thought to directly or indirectly affect shrimp's immunity. The changes in the expression levels of crustacyanin, serine proteases, myosin light chain, and ER protein 57 observed in orally vaccinated shrimp may probably be linked to immunoprotective responses. On the other hand, altered expression of proteins linked to exoskeleton, calcium regulation and energy metabolism in WSSV-intubated shrimps is likely to symbolise disturbances in calcium homeostasis and energy metabolism.
Collapse
Affiliation(s)
- Amod D Kulkarni
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| | | | | | | | | | | | | |
Collapse
|
76
|
Hijacking of host calreticulin is required for the white spot syndrome virus replication cycle. J Virol 2014; 88:8116-28. [PMID: 24807724 DOI: 10.1128/jvi.01014-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We have previously shown that multifunctional calreticulin (CRT), which resides in the endoplasmic reticulum (ER) and is involved in ER-associated protein processing, responds to infection with white spot syndrome virus (WSSV) by increasing mRNA and protein expression and by forming a complex with gC1qR and thereby delaying apoptosis. Here, we show that CRT can directly interact with WSSV structural proteins, including VP15 and VP28, during an early stage of virus infection. The binding of VP28 with CRT does not promote WSSV entry, and CRT-VP15 interaction was detected in the viral genome in virally infected host cells and thus may have an effect on WSSV replication. Moreover, CRT was detected in the viral envelope of purified WSSV virions. CRT was also found to be of high importance for proper oligomerization of the viral structural proteins VP26 and VP28, and when CRT glycosylation was blocked with tunicamycin, a significant decrease in both viral replication and assembly was detected. Together, these findings suggest that CRT confers several advantages to WSSV, from the initial steps of WSSV infection to the assembly of virions. Therefore, CRT is required as a "vital factor" and is hijacked by WSSV for its replication cycle. Importance: White spot syndrome virus (WSSV) is a double-stranded DNA virus and the cause of a serious disease in a wide range of crustaceans that often leads to high mortality rates. We have previously shown that the protein calreticulin (CRT), which resides in the endoplasmic reticulum (ER) of the cell, is important in the host response to the virus. In this report, we show that the virus uses this host protein to enter the cell and to make the host produce new viral structural proteins. Through its interaction with two viral proteins, the virus "hijacks" host calreticulin and uses it for its own needs. These findings provide new insight into the interaction between a large DNA virus and the host protein CRT and may help in understanding the viral infection process in general.
Collapse
|
77
|
|
78
|
White spot syndrome virus VP12 interacts with adenine nucleotide translocase of Litopenaeus vannamei. J Invertebr Pathol 2014; 118:28-33. [PMID: 24607653 DOI: 10.1016/j.jip.2014.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/10/2014] [Accepted: 02/15/2014] [Indexed: 11/22/2022]
Abstract
White spot syndrome virus VP12 contains cell attachment motif RGD which is considered to be critical for host cell binding. Until now, the function of this protein remains undefined. In this study, we explored the interaction of VP12 with host cells. A new shrimp protein (adenine nucleotide translocase of Litopenaeus vannamei, LvANT) is selected by far-western overlay assay. Tissue distribution of adenine nucleotide translocase mRNA showed that it was commonly spread in all the tissues detected. Cellular localization of LvANT in shrimp hemocytes showed that it was primarily located in the cytoplasm of hemocytes and colocalized with mitochondria. ELISA and far-western blot assay confirmed that VP12 interacted with LvANT. In vivo neutralization assay showed that anti-LvANT antibody can significantly reduce the mortality of shrimp challenged by WSSV at 48h post-treatment. Our results collectively showed that VP12 is involved in host cell binding via interaction with adenine nucleotide translocase.
Collapse
|
79
|
Characterization and interactome study of white spot syndrome virus envelope protein VP11. PLoS One 2014; 9:e85779. [PMID: 24465701 PMCID: PMC3897518 DOI: 10.1371/journal.pone.0085779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 12/06/2013] [Indexed: 11/27/2022] Open
Abstract
White spot syndrome virus (WSSV) is a large enveloped virus. The WSSV viral particle consists of three structural layers that surround its core DNA: an outer envelope, a tegument and a nucleocapsid. Here we characterize the WSSV structural protein VP11 (WSSV394, GenBank accession number AF440570), and use an interactome approach to analyze the possible associations between this protein and an array of other WSSV and host proteins. Temporal transcription analysis showed that vp11 is an early gene. Western blot hybridization of the intact viral particles and fractionation of the viral components, and immunoelectron microscopy showed that VP11 is an envelope protein. Membrane topology software predicted VP11 to be a type of transmembrane protein with a highly hydrophobic transmembrane domain at its N-terminal. Based on an immunofluorescence assay performed on VP11-transfected Sf9 cells and a trypsin digestion analysis of the virion, we conclude that, contrary to topology software prediction, the C-terminal of this protein is in fact inside the virion. Yeast two-hybrid screening combined with co-immunoprecipitation assays found that VP11 directly interacted with at least 12 other WSSV structural proteins as well as itself. An oligomerization assay further showed that VP11 could form dimers. VP11 is also the first reported WSSV structural protein to interact with the major nucleocapsid protein VP664.
Collapse
|
80
|
Preparation of transgenic Dunaliella salina for immunization against white spot syndrome virus in crayfish. Arch Virol 2013; 159:519-25. [DOI: 10.1007/s00705-013-1856-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/18/2013] [Indexed: 10/26/2022]
|
81
|
Prohibitin Interacts with envelope proteins of white spot syndrome virus and prevents infection in the red swamp crayfish, Procambarus clarkii. J Virol 2013; 87:12756-65. [PMID: 24049173 DOI: 10.1128/jvi.02198-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prohibitins (PHBs) are ubiquitously expressed conserved proteins in eukaryotes that are associated with apoptosis, cancer formation, aging, stress responses, cell proliferation, and immune regulation. However, the function of PHBs in crustacean immunity remains largely unknown. In the present study, we identified a PHB in Procambarus clarkii red swamp crayfish, which was designated PcPHB1. PcPHB1 was widely distributed in several tissues, and its expression was significantly upregulated by white spot syndrome virus (WSSV) challenge at the mRNA level and the protein level. These observations prompted us to investigate the role of PcPHB1 in the crayfish antiviral response. Recombinant PcPHB1 (rPcPHB1) significantly reduced the amount of WSSV in crayfish and the mortality of WSSV-infected crayfish. The quantity of WSSV in PcPHB1 knockdown crayfish was increased compared with that in the controls. The effects of RNA silencing were rescued by rPcPHB1 reinjection. We further confirmed the interaction of PcPHB1 with the WSSV envelope proteins VP28, VP26, and VP24 using pulldown and far-Western overlay assays. Finally, we observed that the colloidal gold-labeled PcPHB1 was located on the outer surface of the WSSV, which suggests that PcPHB1 specifically binds to the envelope proteins of WSSV. VP28, VP26, and VP24 are structural envelope proteins and are essential for attachment and entry into crayfish cells. Therefore, PcPHB1 exerts its anti-WSSV effect by binding to VP28, VP26, and VP24, preventing viral infection. This study is the first report on the antiviral function of PHB in the innate immune system of crustaceans.
Collapse
|
82
|
Sritunyalucksana K, Utairungsee T, Sirikharin R, Srisala J. Reprint of: Virus-binding proteins and their roles in shrimp innate immunity. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1018-1024. [PMID: 23416697 DOI: 10.1016/j.fsi.2013.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/01/2012] [Accepted: 09/10/2012] [Indexed: 06/01/2023]
Abstract
Disease outbreaks caused by viral pathogens constitute a major limitation to development of the shrimp aquaculture industry. Many research have been conducted to better understand how host shrimp respond to viral infections with the aim of using the gained knowledge to develop better strategies for disease management and control. One approach has been to study the interactions between host and viral proteins, and particularly host virus-binding proteins that might play an important role in the viral infection process. Within the past five years, increasing numbers of virus-binding proteins (VBPs) have been reported in shrimp. Characterization of these molecules has emphasized on their potential therapeutic applications by demonstrating their activities in inhibition of viral replication via in vivo neutralization assay. However, signaling to induce innate antiviral immune responses as a consequence of binding between viral proteins and VBPs remain to be fully elucidated.
Collapse
Affiliation(s)
- Kallaya Sritunyalucksana
- Shrimp-Virus Interaction Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Klong Luang, Pathumthani 12120, Thailand.
| | | | | | | |
Collapse
|
83
|
Chen DD, Meng XL, Xu JP, Yu JY, Meng MX, Wang J. PcLT, a novel C-type lectin from Procambarus clarkii, is involved in the innate defense against Vibrio alginolyticus and WSSV. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:255-264. [PMID: 23085401 DOI: 10.1016/j.dci.2012.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 06/01/2023]
Abstract
Lectins play important roles in the innate immunity. In this work, a C-type lectin, PcLT, was obtained from Procambarus clarkii which contained a carbohydrate recognition domain (CRD) with the ability to bind to Vibrio alginolyticus and white spot syndrome virus (WSSV). RT-PCR and qRT-PCR analyses demonstrated PcLT was specifically expressed in the hepatopancreas and the mRNA was markedly upregulated by V. alginolyticus and WSSV challenge, although a slight difference in timing was observed. The study also revealed upregulation of the mRNA expression and activity of immunological factors, peroxinectin, phenoloxidase, and superoxide dismutase in hemolymph in response to recombinant PcLT (rPcLT). Moreover, rPcLT also enhanced the phagocytosis, facilitated the subsequent clearance of V. alginolyticus and prolonged the survival of WSSV-infected shrimp. These results suggested that PcLT not only served as a pathogen recognition receptor (PRR), but also functioned as an immune modulator, participating in host defense against invaders.
Collapse
Affiliation(s)
- Dan-Dan Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China
| | | | | | | | | | | |
Collapse
|
84
|
Wang XW, Wang JX. Diversity and multiple functions of lectins in shrimp immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:27-38. [PMID: 22561073 DOI: 10.1016/j.dci.2012.04.009] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/22/2012] [Accepted: 04/21/2012] [Indexed: 05/19/2023]
Abstract
Lectins play important roles in many biological processes, including protein trafficking, cell signaling, pathogen recognition, as effector molecules, and so on, because of their capacity to bind carbohydrates. Presently, seven groups of lectins have been identified in shrimp: C-type, L-type, P-type, M-type, fibrinogen-like domain lectins, galectins, and calnexin/calreticulin. These lectins have different structures, diverse expression patterns, and multiple functions in the shrimp immune response. This review summarizes the research progress and analyzes the diversity of shrimp lectins, focusing mainly on the C-type lectin family. Shrimp C-type lectins show considerable diversity in their domain architectures, sugar substrates, tissue distributions, expression patterns responding to pathogen challenge and functions in shrimp immunity.
Collapse
Affiliation(s)
- Xian-Wei Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | | |
Collapse
|
85
|
Kulkarni A, Rombout JHWM, Singh ISB, Sudheer NS, Vlak JM, Caipang CMA, Brinchmann MF, Kiron V. Truncated VP28 as oral vaccine candidate against WSSV infection in shrimp: an uptake and processing study in the midgut of Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2013; 34:159-166. [PMID: 23108255 DOI: 10.1016/j.fsi.2012.10.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/19/2012] [Accepted: 10/14/2012] [Indexed: 06/01/2023]
Abstract
Several oral vaccination studies have been undertaken to evoke a better protection against white spot syndrome virus (WSSV), a major shrimp pathogen. Formalin-inactivated virus and WSSV envelope protein VP28 were suggested as candidate vaccine components, but their uptake mechanism upon oral delivery was not elucidated. In this study the fate of these components and of live WSSV, orally intubated to black tiger shrimp (Penaeus monodon) was investigated by immunohistochemistry, employing antibodies specific for VP28 and haemocytes. The midgut has been identified as the most prominent site of WSSV uptake and processing. The truncated recombinant VP28 (rec-VP28), formalin-inactivated virus (IVP) and live WSSV follow an identical uptake route suggested as receptor-mediated endocytosis that starts with adherence of luminal antigens at the apical layers of gut epithelium. Processing of internalized antigens is performed in endo-lysosomal compartments leading to formation of supra-nuclear vacuoles. However, the majority of WSSV-antigens escape these compartments and are transported to the inter-cellular space via transcytosis. Accumulation of the transcytosed antigens in the connective tissue initiates aggregation and degranulation of haemocytes. Finally the antigens exiting the midgut seem to reach the haemolymph. The nearly identical uptake pattern of the different WSSV-antigens suggests that receptors on the apical membrane of shrimp enterocytes recognize rec-VP28 efficiently. Hence the truncated VP28 can be considered suitable for oral vaccination, when the digestion in the foregut can be bypassed.
Collapse
Affiliation(s)
- A Kulkarni
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Li F, Xiang J. Recent advances in researches on the innate immunity of shrimp in China. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:11-26. [PMID: 22484214 DOI: 10.1016/j.dci.2012.03.016] [Citation(s) in RCA: 282] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/23/2012] [Accepted: 03/29/2012] [Indexed: 05/26/2023]
Abstract
The annual production of shrimp culture in mainland of China has been over one million tons for several years. The major cultivated penaeidae species are Litopenaeus vannamei, Fenneropenaeus chinensis, Penaeus monodon and Marsupenaeus japonicus. Due to the importance of shrimp aquaculture in China, researchers have paid more attention to the molecular mechanism of shrimp disease occurrence and tried to develop an efficient control strategy for disease. This paper summarizes the research progress related to innate immunity of penaeid shrimp made in the last decade in Mainland China. Several pattern recognition receptors, such as lectin, toll, lipopolysaccharide and β-1,3-glucan binding protein (LGBP) and tetraspanin were identified. The major signal transduction pathways, including Toll pathway, IMD pathway, which might be involved in the immune response of shrimp, were focused on and most of the components in Toll pathway were identified. Also, cellular immune responses such as phagocytosis and apoptosis were regarded playing very important roles in anti-WSSV infection to shrimp. The molecules involved in the maintenance of the immune homeostasis of shrimp and the progress on molecular structure and pathogenic mechanism of WSSV were summarized. Therefore, the brief outline about the immune system of shrimp is drawn based on the recent data which will help us to understand the immune responses of shrimp to different pathogens.
Collapse
Affiliation(s)
- Fuhua Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | |
Collapse
|
87
|
Sritunyalucksana K, Utairungsee T, Sirikharin R, Srisala J. Virus-binding proteins and their roles in shrimp innate immunity. FISH & SHELLFISH IMMUNOLOGY 2012; 33:1269-1275. [PMID: 23023111 DOI: 10.1016/j.fsi.2012.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/01/2012] [Accepted: 09/10/2012] [Indexed: 06/01/2023]
Abstract
Disease outbreaks caused by viral pathogens constitute a major limitation to development of the shrimp aquaculture industry. Many research have been conducted to better understand how host shrimp respond to viral infections with the aim of using the gained knowledge to develop better strategies for disease management and control. One approach has been to study the interactions between host and viral proteins, and particularly host virus-binding proteins that might play an important role in the viral infection process. Within the past five years, increasing numbers of virus-binding proteins (VBPs) have been reported in shrimp. Characterization of these molecules has emphasized on their potential therapeutic applications by demonstrating their activities in inhibition of viral replication via in vivo neutralization assay. However, signaling to induce innate antiviral immune responses as a consequence of binding between viral proteins and VBPs remain to be fully elucidated.
Collapse
Affiliation(s)
- Kallaya Sritunyalucksana
- Shrimp-Virus Interaction Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Klong Luang, Pathumthani 12120, Thailand.
| | | | | | | |
Collapse
|
88
|
Interaction between shrimp and white spot syndrome virus through PmRab7-VP28 complex: an insight using simulation and docking studies. J Mol Model 2012. [DOI: 10.1007/s00894-012-1672-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
89
|
Yang JY, Chang CI, Liu KF, Hseu JR, Chen LH, Tsai JM. Viral resistance and immune responses of the shrimp Litopenaeus vannamei vaccinated by two WSSV structural proteins. Immunol Lett 2012; 148:41-8. [DOI: 10.1016/j.imlet.2012.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 07/07/2012] [Accepted: 08/05/2012] [Indexed: 01/06/2023]
|
90
|
Sahu SK, Kathiresan K, Singh R, Senthilraja P. Molecular docking analyses of Avicennia marinaderived phytochemicals against white spot syndrome virus (WSSV) envelope protein-VP28. Bioinformation 2012; 8:897-900. [PMID: 23144547 PMCID: PMC3489096 DOI: 10.6026/97320630008897] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 05/27/2012] [Indexed: 12/03/2022] Open
Abstract
White spot syndrome (WSS) is one of the most common and most disastrous diseases of shrimp worldwide. It causes up to 100% mortality within 3 to 4 days in commercial shrimp farms, resulting in large economic losses to the shrimp farming industry. VP28 envelope protein of WSSV is reported to play a key role in the systemic infection in shrimps. Considering the most sombre issue of viral disease in cultivated shrimp, the present study was undertaken to substantiate the inhibition potential of Avicennia marinaderived phytochemicals against the WSSV envelope protein VP28. Seven A. marina-derived phytochemicals namely stigmasterol, triterpenoid, betulin, lupeol, avicenol-A, betulinic acid and quercetin were docked against the WSSV protein VP28 by using Argus lab molecular docking software. The chemical structures of the phytochemicals were retrieved from Pubchem database and generated from SMILES notation. Similarly the protein structure of the envelope protein was obtained from protein data bank (PDB-ID: 2ED6). Binding sites were predicted by using ligand explorer software. Among the phytochemicals screened, stigmasterol, lupeol and betulin showed the best binding exhibiting the potential to block VP28 envelope protein of WSSV, which could possibly inhibit the attachment of WSSV to the host species. Further experimental studies will provide a clear understanding on the mode of action of these phytochemicals individually or synergistically against WSSV envelope protein and can be used as an inhibitory drug to reduce white spot related severe complications in crustaceans.
Collapse
Affiliation(s)
- Sunil Kumar Sahu
- Centre of Advanced study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai - 608 502, Tamil Nadu, India
| | - Kandasamy Kathiresan
- Centre of Advanced study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai - 608 502, Tamil Nadu, India
| | - Reena Singh
- Centre of Advanced study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai - 608 502, Tamil Nadu, India
| | - Poomalai Senthilraja
- Department of Zoology, Annamalai University, Annamalai Nagar, Chidambaram - 608 002, Tamil Nadu, India
| |
Collapse
|
91
|
Pradeep B, Rai P, Mohan SA, Shekhar MS, Karunasagar I. Biology, Host Range, Pathogenesis and Diagnosis of White spot syndrome virus. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2012; 23:161-74. [PMID: 23997440 PMCID: PMC3550756 DOI: 10.1007/s13337-012-0079-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 06/26/2012] [Indexed: 01/31/2023]
Abstract
White spot syndrome virus (WSSV) is the most serious viral pathogen of cultured shrimp. It is a highly virulent virus that can spread quickly and can cause up to 100 % mortality in 3-10 days. WSSV is a large enveloped double stranded DNA virus belonging to genus Whispovirus of the virus family Nimaviridae. It has a wide host range among crustaceans and mainly affects commercially cultivated marine shrimp species. The virus infects all age groups causing large scale mortalities and the foci of infection are tissues of ectodermal and mesodermal origin, such as gills, lymphoid organ and cuticular epithelium. The whole genome sequencing of WSSV from China, Thailand and Taiwan have revealed minor genetic differences among different strains. There are varying reports regarding the factors responsible for WSSV virulence which include the differences in variable number of tandem repeats, the genome size and presence or absence of different proteins. Aim of this review is to give current information on the status, host range, pathogenesis and diagnosis of WSSV infection.
Collapse
Affiliation(s)
- Balakrishnan Pradeep
- />Krishi Vigyan Kendra, Indian Institute of Spices Research, Peruvannamuzhi, Kozhikode, 673528 Kerala India
| | - Praveen Rai
- />Department of Fishery Microbiology, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575 002 India
| | - Seethappa A. Mohan
- />Department of Fishery Microbiology, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575 002 India
| | - Mudagandur S. Shekhar
- />Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, Chennai, India
| | - Indrani Karunasagar
- />Department of Fishery Microbiology, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575 002 India
| |
Collapse
|
92
|
Sanjuktha M, Stalin Raj V, Aravindan K, Alavandi SV, Poornima M, Santiago TC. Comparative efficacy of double-stranded RNAs targeting WSSV structural and nonstructural genes in controlling viral multiplication in Penaeus monodon. Arch Virol 2012; 157:993-8. [PMID: 22350694 DOI: 10.1007/s00705-012-1258-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 01/17/2012] [Indexed: 10/28/2022]
Abstract
RNA interference (RNAi) is a potential strategy to control shrimp viral diseases, including the white spot disease caused by White Spot Syndrome Virus (WSSV). Selection of genes for targeting is an important criterion. We have compared the efficacy of dsRNAs targeting structural (vp28 and vp281) and nonstructural genes (rr1 and dnapol) of WSSV in controlling viral multiplication in Penaeus monodon. Targeting the rr1 and vp28 genes provided better protection (93.3% and 90% survival respectively) compared to vp281 and dnapol in experimentally infected shrimp. Temporal transcriptional analysis of the corresponding genes and PCR-based diagnosis of WSSV in samples collected at different time points in the experiment supported this observation, thereby indicating that targeting a combination of rr1 and vp28 would be effective in limiting WSSV multiplication.
Collapse
Affiliation(s)
- M Sanjuktha
- Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, Chennai 600 028, India
| | | | | | | | | | | |
Collapse
|
93
|
Zhang Y, Ning JF, Qu XQ, Meng XL, Xu JP. TAT-mediated oral subunit vaccine against white spot syndrome virus in crayfish. J Virol Methods 2012; 181:59-67. [PMID: 22306106 DOI: 10.1016/j.jviromet.2012.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 11/25/2022]
Abstract
White spot syndrome virus is a highly pathogenic virus that infects crayfish and other crustaceans. VP28 is one of its major envelope proteins, and plays a crucial role in viral infection. Cell-penetrating peptides are short peptides that facilitate cellular uptake of various molecular cargoes, and one well known example is TAT peptide from HIV-1 TAT protein. In this study, recombinant plasmids were constructed and transformed into Escherichia coli strain BL21 (DE3) to express TAT-VP28, VP28, TAT-VP28-EGFP and VP28-EGFP fusion proteins. Enzyme-linked immunosorbent assay (ELISA) and flow cytometry methods were used to confirm that TAT fusion proteins can translocate from the intestine to the hemolymph of the crayfish Cambarus clarkii. After immunization, activities of phenoloxidase and superoxide dismutase were analyzed, and it was found that rTAT-VP28 produced the most pronounced increase in both C. clarkii were vaccinated by oral administration of rTAT-VP28 and rVP28 for 7 and 14 days, and rTAT-VP28 resulted in the highest relative percent survival (RPS) (63.3% at 7 days, and 67.8% at 14 days), compared with rVP28 (44.4% at 7 days, and 53.6% at 14 days) following challenge with WSSV after the last day of feeding. This study reports the use of TAT-derived peptide as an oral delivery method of a subunit vaccine against WSSV in C. clarkii.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, China.
| | | | | | | | | |
Collapse
|
94
|
Lin YC, Yeh ST, Li CC, Chen LL, Cheng AC, Chen JC. An immersion of Gracilaria tenuistipitata extract improves the immunity and survival of white shrimp Litopenaeus vannamei challenged with white spot syndrome virus. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1239-1246. [PMID: 21802517 DOI: 10.1016/j.fsi.2011.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 07/15/2011] [Accepted: 07/16/2011] [Indexed: 05/31/2023]
Abstract
The innate immunity and resistance against white spot syndrome virus (WSSV) in white shrimp Litopenaeus vannamei which received the Gracilaria tenuistipitata extract were examined. Shrimp immersed in seawater containing the extract at 0 (control), 400 and 600 mg L(-1) for 3 h were challenged with WSSV at 2 × 10(4) copies shrimp(-1). Shrimp not exposed to the extract and not received WSSV challenge served as unchallenged control. The survival rate of shrimp immersed in 400 mg L(-1) or 600 mg L(-1) extract was significantly higher than that of challenged control shrimp over 24-120 h. The haemocyte count, phenoloxidase activity, respiratory burst, superoxide dismutase activity, and lysozyme activity of shrimp immersed in 600 mg L(-1) extract were significantly higher than those of unchallenged control shrimp at 6, 6, 6, 6, and 6-24 h post-challenge. In another experiment, shrimp which had received 3 h immersion of 0, 400, 600 mg L(-1) extract were challenged with WSSV. The shrimp were then received a booster (3 h immersion in the same dose of the extract), and the immune parameters were examined at 12-120 h post-challenge. The immune parameters of shrimp immersed in 600 mg L(-1) extract, and then received a booster at 9, 21, and 45 h were significantly higher than those of unchallenged control shrimp at 12-48 h post-challenge. In conclusion, shrimp which had received the extract exhibited protection against WSSV as evidenced by the higher survival rate and higher values of immune parameters. Shrimp which had received the extract and infected by WSSV showed improved immunity when they received a booster at 9, 21, and 45 h post-WSSV challenge. The extract treatment caused less decrease in PO activity, and showed better performance of lysozyme activity and antioxidant response in WSSV-infected shrimp.
Collapse
Affiliation(s)
- Yong-Chin Lin
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
95
|
Ponprateep S, Tassanakajon A, Rimphanitchayakit V. A Kazal type serine proteinase SPIPm2 from the black tiger shrimp Penaeus monodon is capable of neutralization and protection of hemocytes from the white spot syndrome virus. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1179-1185. [PMID: 22032902 DOI: 10.1016/j.fsi.2011.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/06/2011] [Accepted: 10/07/2011] [Indexed: 05/31/2023]
Abstract
A Kazal type serine proteinase SPIPm2 is abundantly expressed in the hemocytes and shown to be involved in innate immune response against white spot syndrome virus (WSSV) in Penaeus monodon. The SPIPm2 is expressed and stored in the granules in the cytoplasm of semigranular and granular but not the hyaline hemocytes. Upon WSSV challenge and progression of infection, the SPIPm2 was secreted readily from the semigranular and granular hemocytes. The more they secreted the SPIPm2, the less they were distinguishable from the hyaline cells. The WSSV-infected cells were either semigranular or granular hemocytes or both and depleted of SPIPm2. The rSPIPm2 was able to temporarily and dose-dependently neutralize the WSSV and protect the hemocytes from viral infection judging from the substantially less expression of WSSV late gene VP28. The antiviral activity was very likely due to the binding of SPIPm2 to the components of viral particle and hemocyte cell membrane.
Collapse
Affiliation(s)
- Sirikwan Ponprateep
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | |
Collapse
|
96
|
Qiao J, Du Z, Zhang Y, Du H, Guo L, Zhong M, Cao J, Wang X. Proteomic identification of the related immune-enhancing proteins in shrimp Litopenaeus vannamei stimulated with vitamin C and Chinese herbs. FISH & SHELLFISH IMMUNOLOGY 2011; 31:736-745. [PMID: 21767650 DOI: 10.1016/j.fsi.2011.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/22/2011] [Accepted: 07/01/2011] [Indexed: 05/31/2023]
Abstract
Recently, strong interest has been focused on immunostimulants to reducing the diseases in shrimp aquaculture. However, information regarding to the related immune-enhancing proteins in shrimps is not available yet. In this study, vitamin C (Vc), Chinese herbs (CH), and the mixture of vitamin C and Chinese herbs (Mix) were tested for their enhancement on shrimp's immune activity. Compared with those in the control group, values of phenoloxidase (PO), superoxide dismutase (SOD) and antibacterial (Ua) activity in the Mix-treated group were improved significantly 12 or 24 days after the treatment. The cumulative mortality was also lower in the Mix-treated group after infection with Vibrio parahemolyticus. Furthermore, comparative proteomic approach was used to assess the protein expression profile in shrimps. Approximately 220-290 and 300-400 protein spots were observed in the 2-DE gels. Among them, 29 and 28 altered proteins from hemocytes and hepatopancreas, respectively, were subjected to matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/MS) analysis. The results revealed that the main altered proteins showed high homologies with Litopenaeus vannamei hemocyanin, hemolymph clottable protein, hemoglobin beta, cytosolic MnSOD, trypsin, cathepsin I(L) and zinc proteinase Mpc1. Together, these studies found Vc and CH were suitable immunostimulants to shrimp L. vannamei, and 7 altered proteins could be involved in the enhanced immune activities.
Collapse
Affiliation(s)
- Jie Qiao
- Department of Biology and Guangdong Provincial Key laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, China
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Wei KQ, Yang JX. Histological alterations and immune response in the crayfish Procambarus clarkii given rVP28-incorporated diets. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1122-1128. [PMID: 22008287 DOI: 10.1016/j.fsi.2011.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 09/26/2011] [Accepted: 10/03/2011] [Indexed: 05/31/2023]
Abstract
There is growing evidence that recombinant VP28 protein (rVP28) can significantly enhance immune response and disease resistance against white spot syndrome virus (WSSV) in shrimp, although the underlying mechanisms have not been entirely clarified yet. The aim of this study was to determine the effect of rVP28 on histological alterations and WSSV-induced apoptosis in crayfish Procambarus clarkii. Crayfish were fed commercial diets supplemented with different doses of HyNPV-VP28 infected pupae (rVP28-hp) for 4 weeks. Results showed that rVP28-hp may be used as a safe and effective source of medicinal proteins in aquaculture when supplemented in diet at low dose (10 g kg(-1) and 50 g kg(-1)), which could obviously reduce the percentage of apoptotic cells in stomach, gut and hepatopancreas tissues induced by the WSSV challenge and showed the relative percent survival (RPS) of 82.2% and 94.4%, respectively. But rVP28-hp would be detrimental to crayfish survival and decrease resistance to WSSV infection at the high dose (100 g kg(-1) and 200 g kg(-1)), with the cumulative mortality of up to 48.2% and 56.6% after WSSV challenge, respectively. During a 28-d feeding period, the survival rate of crayfish was only 54.5%-75.6%, and histopathological observation showed that one of the principal lesions was serious cell swelling, vacuolar degeneration and necrosis in hepatopancreatic epithelia and myocardial cells. These results suggested that rVP28-hp can influence the immune functions of crayfish in a dose-dependent manner, and the rVP28-hp at the dose of 50 g kg(-1) was recommended to prevent WSSV in crayfish culture.
Collapse
Affiliation(s)
- Ke-Qiang Wei
- School of Life Sciences, Shanxi University, Wucheng Road 92, Taiyuan 030006, PR China.
| | | |
Collapse
|
98
|
S SM, Kwang J. Oral vaccination of baculovirus-expressed VP28 displays enhanced protection against White Spot Syndrome Virus in Penaeus monodon. PLoS One 2011; 6:e26428. [PMID: 22069450 PMCID: PMC3206036 DOI: 10.1371/journal.pone.0026428] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/26/2011] [Indexed: 12/19/2022] Open
Abstract
White Spot Syndrome Virus (WSSV) is an infectious pathogen of shrimp and other crustaceans, and neither effective vaccines nor adequate treatments are currently available. WSSV is an enveloped dsDNA virus, and one of its major envelope proteins, VP28, plays a pivotal role in WSSV infection. In an attempt to develop a vaccine against WSSV, we inserted the VP28 gene into a baculovirus vector tailored to express VP28 on the baculovirus surface under the WSSV ie1 promoter (Bac-VP28). The Bac-VP28 incorporated abundant quantity (65.3 µg/ml) of VP28. Shrimp were treated by oral and immersion vaccination with either Bac-VP28 or wild-type baculovirus (Bac-wt). The treatment was followed by challenge with WSSV after 3 and 15 days. Bac-VP28 vaccinated shrimp showed significantly higher survival rates (oral: 81.7% and 76.7%; immersion: 75% and 68.4%) than Bac-wt or non-treated shrimp (100% mortality). To verify the protective effects of Bac-VP28, we examined in vivo expression of VP28 by immunohistochemistry and quantified the WSSV copy number by qPCR. In addition to that, we quantified the expression levels shrimp genes LGBP and STAT by real-time RT-PCR from the samples obtained from Bac-VP28 vaccinated shrimp at different duration of vaccine regime. Our findings indicate that oral vaccination of shrimp with Bac-VP28 is an attractive preventative measure against WSSV infection that can be used in the field.
Collapse
Affiliation(s)
- Syed Musthaq S
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Jimmy Kwang
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Microbiology, Faculty of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
99
|
Ning D, Leng X, Li Q, Xu W. Surface-displayed VP28 on Bacillus subtilis spores induce protection against white spot syndrome virus in crayfish by oral administration. J Appl Microbiol 2011; 111:1327-36. [PMID: 21933311 DOI: 10.1111/j.1365-2672.2011.05156.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIM Surface-displayed heterologous antigens on Bacillus subtilis spores can induce the vertebrate animals tested to generate local and systematic immune response through oral immunization. Here, the protection potential of the recombinant spores displaying the VP28 protein of white spot syndrome virus (WSSV) was investigated in the invertebrate crayfish (Cambarus clarkii). METHODS AND RESULTS The VP28 protein was successfully displayed on the surfaces of B. subtilis spores using CotB or CotC as a fusion partner. Crayfish were administrated orally by feeding the feed pellets coated with B. subtilis spores for 7 days and immediately followed by WSSV challenge. Oral administration of either spores expressing CotB-VP28 or CotC-VP28 resulted in significantly higher relative survival rates of 37.9 and 44.8% compared with the crayfish orally administrated with the spores nonexpressing VP28 (10.3% relative survival rate). When challenges were separately conducted at 7 and 21 days after oral administration, the relative survival rates increased to 46.4 and 50% at 7 days post-oral administration, but decreased to 30 and 33.3% at 21 days after oral administration. CONCLUSION These evidences indicate that the surface-displayed VP28 on B. subtilis spore could induce protection of crayfish against WSSV via oral administration. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report to use the spore surface display system to deliver orally a heterologous antigen in an aquatic invertebrate animal, crayfish. The results presented here suggest that the spore-displayed VP28 might be suitable for an oral booster vaccine on prevention of WSSV infection in shrimp farming.
Collapse
Affiliation(s)
- D Ning
- School of Environment, Jiangsu University, Zhenjiang, China.
| | | | | | | |
Collapse
|
100
|
Flegel TW, Sritunyalucksana K. Shrimp molecular responses to viral pathogens. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:587-607. [PMID: 20393775 DOI: 10.1007/s10126-010-9287-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 03/10/2010] [Indexed: 05/29/2023]
Abstract
From almost negligible amounts in 1970, the quantity of cultivated shrimp (~3 million metric tons in 2007) has risen to approach that of the capture fishery and it constitutes a vital source of export income for many countries. Despite this success, viral diseases along the way have caused billions of dollars of losses for shrimp farmers. Desire to reduce the losses to white spot syndrome virus in particular, has stimulated much research since 2000 on the shrimp response to viral pathogens at the molecular level. The objective of the work is to develop novel, practical methods for improved disease control. This review covers the background and limitations of the current work, baseline studies and studies on humoral responses, on binding between shrimp and viral structural proteins and on intracellular responses. It also includes discussion of several important phenomena (i.e., the quasi immune response, viral co-infections, viral sequences in the shrimp genome and persistent viral infections) for which little or no molecular information is currently available, but is much needed.
Collapse
Affiliation(s)
- T W Flegel
- National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumthani 12120, Thailand.
| | | |
Collapse
|