51
|
Abstract
In multiple sclerosis (MS), there is a growing interest in inhibiting the pro-inflammatory effects of granulocyte-macrophage colony-stimulating factor (GM-CSF). We sought to evaluate the therapeutic potential and underlying mechanisms of GM-CSF receptor alpha (Rα) blockade in animal models of MS. We show that GM-CSF signaling inhibition at peak of chronic experimental autoimmune encephalomyelitis (EAE) results in amelioration of disease progression. Similarly, GM-CSF Rα blockade in relapsing-remitting (RR)-EAE model prevented disease relapses and inhibited T cell responses specific for both the inducing and spread myelin peptides, while reducing activation of mDCs and inflammatory monocytes. In situ immunostaining of lesions from human secondary progressive MS (SPMS), but not primary progressive MS patients shows extensive recruitment of GM-CSF Rα+ myeloid cells. Collectively, this study reveals a pivotal role of GM-CSF in disease relapses and the benefit of GM-CSF Rα blockade as a potential novel therapeutic approach for treatment of RRMS and SPMS.
Collapse
|
52
|
Involvement of interstitial cells of Cajal in bladder dysfunction in mice with experimental autoimmune encephalomyelitis. Int Urol Nephrol 2017; 49:1353-1359. [PMID: 28425078 DOI: 10.1007/s11255-017-1597-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/12/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Bladder dysfunction is an important symptom of experimental autoimmune encephalomyelitis (EAE). Our previous study showed that EAE-induced upregulation of the E-prostanoid receptor 3 (EP3) and E-prostanoid receptor 4 (EP4) in the bladder was accompanied by bladder dysfunction. Although many other studies have evaluated the lower urinary tract symptoms in multiple sclerosis, the mechanism remains unclear. OBJECTIVES To investigate the effects of interstitial cells of Cajal (ICC) on bladder dysfunction in a novel neurogenic bladder model induced by experimental autoimmune encephalomyelitis. MATERIALS AND METHODS The EAE model was induced by a previously established method, and bladder functions in mice were evaluated. Bladders were harvested for the analysis of ICCs and the genes associated with bladder mechanosensation including pannexin 1 (Panx1) and Gja1 (encoding connexin43) by immunofluorescence and western blotting. The stem cell factor cytokine (SCF) was intraperitoneally injected at the beginning of EAE onset. RESULTS EAE mice developed profound bladder dysfunction characterized by significant urine retention, increased micturition and decreased urine output per micturition. EAE induced a significant decrease in c-Kit expression and ICCs number. EAE also induced a significant increase in pannexin 1 and connexin43. SCF treatment could ameliorate all of these pathological changes. CONCLUSIONS ICCs and stem cell factor play an important role in EAE-induced bladder dysfunction, which may be used as therapeutic options in treating patients with multiple sclerosis-related bladder dysfunction.
Collapse
|
53
|
Mrdjen D, Hartmann FJ, Becher B. High Dimensional Cytometry of Central Nervous System Leukocytes During Neuroinflammation. Methods Mol Biol 2017; 1559:321-332. [DOI: 10.1007/978-1-4939-6786-5_22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
54
|
Suryawanshi A, Tadagavadi RK, Swafford D, Manicassamy S. Modulation of Inflammatory Responses by Wnt/β-Catenin Signaling in Dendritic Cells: A Novel Immunotherapy Target for Autoimmunity and Cancer. Front Immunol 2016; 7:460. [PMID: 27833613 PMCID: PMC5081350 DOI: 10.3389/fimmu.2016.00460] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/12/2016] [Indexed: 12/02/2022] Open
Abstract
The Wnt/β-catenin pathway is an evolutionarily conserved signaling pathway critical for several biological processes. An aberrant Wnt/β-catenin signaling is linked to several human diseases. Emerging studies have highlighted the regulatory role of the Wnt/β-catenin signaling pathway in normal physiological processes of parenchymal and hematopoietic cells. Recent studies have shown that the activation of Wnt/β-catenin pathway in dendritic cells (DCs) play a critical role in mucosal tolerance and suppression of chronic autoimmune pathologies. Alternatively, tumors activate Wnt/β-catenin pathway in DCs to induce immune tolerance and thereby evade antitumor immunity through suppression of effector T cell responses and promotion of regulatory T cell responses. Here, we review our work and current understanding of how Wnt/β-catenin signaling in DCs shapes the immune response in cancer and autoimmunity and discuss how Wnt/β-catenin pathway can be targeted for successful therapeutic interventions in various human diseases.
Collapse
Affiliation(s)
- Amol Suryawanshi
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | | | - Daniel Swafford
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Santhakumar Manicassamy
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| |
Collapse
|
55
|
Li Y, Wang H, Zhou X, Xie X, Chen X, Jie Z, Zou Q, Hu H, Zhu L, Cheng X, Brightbill HD, Wu LC, Wang L, Sun SC. Cell intrinsic role of NF-κB-inducing kinase in regulating T cell-mediated immune and autoimmune responses. Sci Rep 2016; 6:22115. [PMID: 26912039 PMCID: PMC4766435 DOI: 10.1038/srep22115] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/02/2016] [Indexed: 02/05/2023] Open
Abstract
NF-κB inducing kinase (NIK) is a central component of the noncanonical NF-κB signaling pathway. Although NIK has been extensively studied for its function in the regulation of lymphoid organ development and B-cell maturation, the role of NIK in regulating T cell functions remains unclear and controversial. Using T cell-conditional NIK knockout mice, we here demonstrate that although NIK is dispensable for thymocyte development, it has a cell-intrinsic role in regulating the homeostasis and function of peripheral T cells. T cell-specific NIK ablation reduced the frequency of effector/memory-like T cells and impaired T cell responses to bacterial infection. The T cell-conditional NIK knockout mice were also defective in generation of inflammatory T cells and refractory to the induction of a T cell-dependent autoimmune disease, experimental autoimmune encephalomyelitis. Our data suggest a crucial role for NIK in mediating the generation of effector T cells and their recall responses to antigens. Together, these findings establish NIK as a cell-intrinsic mediator of T cell functions in both immune and autoimmune responses.
Collapse
Affiliation(s)
- Yanchuan Li
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, China
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, USA
| | - Hui Wang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, USA
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, USA
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, USA
| | - Xiang Chen
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, USA
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, USA
| | - Qiang Zou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, USA
| | - Hongbo Hu
- State Key Laboratory of Biotherapy, West China Hospital, Si-Chuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Lele Zhu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, USA
| | - Hans D Brightbill
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Lawren C. Wu
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Linfang Wang
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, China
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
56
|
Winger RC, Harp CT, Chiang MY, Sullivan DP, Watson RL, Weber EW, Podojil JR, Miller SD, Muller WA. Cutting Edge: CD99 Is a Novel Therapeutic Target for Control of T Cell-Mediated Central Nervous System Autoimmune Disease. THE JOURNAL OF IMMUNOLOGY 2016; 196:1443-8. [PMID: 26773145 DOI: 10.4049/jimmunol.1501634] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/15/2015] [Indexed: 12/25/2022]
Abstract
Leukocyte trafficking into the CNS is a prominent feature driving the immunopathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Blocking the recruitment of inflammatory leukocytes into the CNS represents an exploitable therapeutic target; however, the adhesion molecules that specifically regulate the step of leukocyte diapedesis into the CNS remain poorly understood. We report that CD99 is critical for lymphocyte transmigration without affecting adhesion in a human blood-brain barrier model. CD99 blockade in vivo ameliorated experimental autoimmune encephalomyelitis and decreased the accumulation of CNS inflammatory infiltrates, including dendritic cells, B cells, and CD4(+) and CD8(+) T cells. Anti-CD99 therapy was effective when administered after the onset of disease symptoms and blocked relapse when administered therapeutically after disease symptoms had recurred. These findings underscore an important role for CD99 in the pathogenesis of CNS autoimmunity and suggest that it may serve as a novel therapeutic target for controlling neuroinflammation.
Collapse
Affiliation(s)
- Ryan C Winger
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| | - Christopher T Harp
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Ming-Yi Chiang
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - David P Sullivan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| | - Richard L Watson
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| | - Evan W Weber
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| | - Joseph R Podojil
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - William A Muller
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| |
Collapse
|
57
|
Steelman AJ. Infection as an Environmental Trigger of Multiple Sclerosis Disease Exacerbation. Front Immunol 2015; 6:520. [PMID: 26539193 PMCID: PMC4609887 DOI: 10.3389/fimmu.2015.00520] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/24/2015] [Indexed: 01/19/2023] Open
Abstract
Over the past several decades, significant advances have been made in identifying factors that contribute to the pathogenesis of multiple sclerosis (MS) and have culminated in the approval of some effective therapeutic strategies for disease intervention. However, the mechanisms by which environmental factors, such as infection, contribute to the pathogenesis and/or symptom exacerbation remain to be fully elucidated. Relapse frequency in MS patients contributes to neurological impairment and, in the initial phases of disease, serves as a predictor of poor disease prognosis. The purpose of this review is to examine the evidence that supports a role for peripheral infection in modulating the natural history of this disease. Evidence supporting a role for infection in promoting exacerbation in animal models of MS is also reviewed. Finally, a few mechanisms by which infection may exacerbate symptoms of MS and other neurological diseases are discussed. Those who comprise the majority of MS patients acquire approximately two upper-respiratory infections per year; furthermore, this type of infection doubles the risk for MS relapse, underscoring the contribution of this relationship as being potentially important and particularly detrimental.
Collapse
Affiliation(s)
- Andrew J Steelman
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois Urbana-Champaign , Urbana, IL , USA ; Neuroscience Program, University of Illinois Urbana-Champaign , Urbana, IL , USA ; Division of Nutritional Sciences, University of Illinois Urbana-Champaign , Urbana, IL , USA
| |
Collapse
|
58
|
Prager B, Spampinato SF, Ransohoff RM. Sphingosine 1-phosphate signaling at the blood–brain barrier. Trends Mol Med 2015; 21:354-63. [DOI: 10.1016/j.molmed.2015.03.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 12/20/2022]
|
59
|
Swafford D, Manicassamy S. Wnt signaling in dendritic cells: its role in regulation of immunity and tolerance. DISCOVERY MEDICINE 2015; 19:303-310. [PMID: 25977193 PMCID: PMC4513356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A fundamental puzzle in immunology is how the immune system launches robust immunity against pathogens while maintaining a state of tolerance to the body's own tissues and the trillions of commensal microorganisms and food antigens that confront them every day. Innate immune cells, such as dendritic cells (DCs) and macrophages, play a fundamental role in this process. Emerging studies have highlighted that the Wnt signaling pathway, particularly in DCs, plays a major role in regulating tolerance versus immunity. Here, we review our current understanding of how Wnt-signaling shapes the immune response and, in addition, highlight unanswered questions, the solution of which will be imperative in the rational exploitation of this pathway in vaccine design and immune therapy.
Collapse
Affiliation(s)
- Daniel Swafford
- Cancer Immunology, Inflammation, and Tolerance Program, GRU Cancer Center, Georgia Regents University, Augusta, Georgia, USA
| | - Santhakumar Manicassamy
- Cancer Immunology, Inflammation, and Tolerance Program, GRU Cancer Center, Georgia Regents University, Augusta, Georgia, USA
- Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, USA
| |
Collapse
|
60
|
Suryawanshi A, Manoharan I, Hong Y, Swafford D, Majumdar T, Taketo MM, Manicassamy B, Koni PA, Thangaraju M, Sun Z, Mellor AL, Munn DH, Manicassamy S. Canonical wnt signaling in dendritic cells regulates Th1/Th17 responses and suppresses autoimmune neuroinflammation. THE JOURNAL OF IMMUNOLOGY 2015; 194:3295-304. [PMID: 25710911 DOI: 10.4049/jimmunol.1402691] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Breakdown in immunological tolerance to self-Ags or uncontrolled inflammation results in autoimmune disorders. Dendritic cells (DCs) play an important role in regulating the balance between inflammatory and regulatory responses in the periphery. However, factors in the tissue microenvironment and the signaling networks critical for programming DCs to control chronic inflammation and promote tolerance are unknown. In this study, we show that wnt ligand-mediated activation of β-catenin signaling in DCs is critical for promoting tolerance and limiting neuroinflammation. DC-specific deletion of key upstream (lipoprotein receptor-related protein [LRP]5/6) or downstream (β-catenin) mediators of canonical wnt signaling in mice exacerbated experimental autoimmune encephalomyelitis pathology. Mechanistically, loss of LRP5/6-β-catenin-mediated signaling in DCs led to an increased Th1/Th17 cell differentiation but reduced regulatory T cell response. This was due to increased production of proinflammatory cytokines and decreased production of anti-inflammatory cytokines such as IL-10 and IL-27 by DCs lacking LRP5/6-β-catenin signaling. Consistent with these findings, pharmacological activation of canonical wnt/β-catenin signaling delayed experimental autoimmune encephalomyelitis onset and diminished CNS pathology. Thus, the activation of canonical wnt signaling in DCs limits effector T cell responses and represents a potential therapeutic approach to control autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Amol Suryawanshi
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Georgia Regents University, Augusta, GA 30912
| | - Indumathi Manoharan
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Georgia Regents University, Augusta, GA 30912
| | - Yuan Hong
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Georgia Regents University, Augusta, GA 30912
| | - Daniel Swafford
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Georgia Regents University, Augusta, GA 30912
| | - Tanmay Majumdar
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Georgia Regents University, Augusta, GA 30912
| | - M Mark Taketo
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | - Pandelakis A Koni
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Georgia Regents University, Augusta, GA 30912; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Zuoming Sun
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010; and
| | - Andrew L Mellor
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Georgia Regents University, Augusta, GA 30912; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - David H Munn
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Georgia Regents University, Augusta, GA 30912; Department of Pediatrics, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Santhakumar Manicassamy
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Georgia Regents University, Augusta, GA 30912; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912;
| |
Collapse
|