51
|
Lavin M, Doyle JJ, Palmer JD. EVOLUTIONARY SIGNIFICANCE OF THE LOSS OF THE CHLOROPLAST-DNA INVERTED REPEAT IN THE LEGUMINOSAE SUBFAMILY PAPILIONOIDEAE. Evolution 2017; 44:390-402. [PMID: 28564377 DOI: 10.1111/j.1558-5646.1990.tb05207.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/1989] [Accepted: 11/17/1989] [Indexed: 11/30/2022]
Abstract
The distribution of a rare chloroplast-DNA structural mutation, the loss of a large inverted repeat, has been determined for 95 species representing 77 genera and 25 of the 31 tribes in the legume subfamily Papilionoideae. This mutation, which is regarded as a derived feature of singular origin within the subfamily, marks a group comprising six temperate tribes, the Galegeae, Hedysareae, Carmichaelieae, Vicieae, Cicereae, and Trifolieae, an assemblage traditionally considered to be monophyletic. This mutation also occurs in the chloroplast genome of Wisteria, a member of the tropical tribe Millettieae whose other members so far surveyed lack the mutation. These new DNA data, together with traditional evidence, support the hypothesis that Wisteria is an unspecialized member of a lineage that gave rise to the temperate tribes marked by the chloroplast-DNA mutation; the probable paraphylesis of Millettieae is revealed. Two other tribes, Loteae and Coronilleae (traditionally regarded as a derived element of the aforesaid temperate tribes) do not possess this chloroplast-DNA structural mutation and, therefore, presumably represent a distinct temperate lineage. This hypothesis is supported by additional evidence from pollen, inflorescence, and root-nodule morphology that suggests that the Loteae and Coronilleae share a more recent ancestry with tropical tribes such as Phaseoleae and Millettieae than with other temperate tribes.
Collapse
Affiliation(s)
- Matt Lavin
- L. H. Bailey Hortorium, Cornell University, Ithaca, NY, 14853
| | - Jeff J Doyle
- L. H. Bailey Hortorium, Cornell University, Ithaca, NY, 14853
| | - Jeffrey D Palmer
- Department of Biology, University of Michigan, Ann Arbor, MI, 48109
| |
Collapse
|
52
|
Doyle JJ, Doyle JL, Brown AHD. A CHLOROPLAST‐DNA PHYLOGENY OF THE WILD PERENNIAL RELATIVES OF SOYBEAN (
GLYCINE
SUBGENUS
GLYCINE
): CONGRUENCE WITH MORPHOLOGICAL AND CROSSING GROUPS. Evolution 2017; 44:371-389. [DOI: 10.1111/j.1558-5646.1990.tb05206.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/1988] [Accepted: 08/04/1989] [Indexed: 11/28/2022]
Affiliation(s)
- Jeff J. Doyle
- L. H. Bailey Hortorium, 462 Mann Library Building, Cornell University Ithaca NY 14853
| | - Jane L. Doyle
- L. H. Bailey Hortorium, 462 Mann Library Building, Cornell University Ithaca NY 14853
| | - A. H. D. Brown
- CSIRO Division of Plant Industry Canberra, A.C.T. AUSTRALIA
| |
Collapse
|
53
|
Weeden NF, Doyle JJ, Lavin M. DISTRIBUTION AND EVOLUTION OF A GLUCOSEPHOSPHATE ISOMERASE DUPLICATION IN THE LEGUMINOSAE. Evolution 2017; 43:1637-1651. [DOI: 10.1111/j.1558-5646.1989.tb02614.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/1988] [Accepted: 09/05/1989] [Indexed: 11/28/2022]
Affiliation(s)
- Norman F. Weeden
- Department of Horticultural Sciences, New York State Agricultural Experiment Station Cornell University Geneva NY 14456
| | | | - Matt Lavin
- Bailey Hortorium Cornell University Ithaca NY 14853
| |
Collapse
|
54
|
Turmel M, Otis C, Lemieux C. Divergent copies of the large inverted repeat in the chloroplast genomes of ulvophycean green algae. Sci Rep 2017; 7:994. [PMID: 28428552 PMCID: PMC5430533 DOI: 10.1038/s41598-017-01144-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/27/2017] [Indexed: 12/16/2022] Open
Abstract
The chloroplast genomes of many algae and almost all land plants carry two identical copies of a large inverted repeat (IR) sequence that can pair for flip-flop recombination and undergo expansion/contraction. Although the IR has been lost multiple times during the evolution of the green algae, the underlying mechanisms are still largely unknown. A recent comparison of IR-lacking and IR-containing chloroplast genomes of chlorophytes from the Ulvophyceae (Ulotrichales) suggested that differential elimination of genes from the IR copies might lead to IR loss. To gain deeper insights into the evolutionary history of the chloroplast genome in the Ulvophyceae, we analyzed the genomes of Ignatius tetrasporus and Pseudocharacium americanum (Ignatiales, an order not previously sampled), Dangemannia microcystis (Oltmannsiellopsidales), Pseudoneochloris marina (Ulvales) and also Chamaetrichon capsulatum and Trichosarcina mucosa (Ulotrichales). Our comparison of these six chloroplast genomes with those previously reported for nine ulvophyceans revealed unsuspected variability. All newly examined genomes feature an IR, but remarkably, the copies of the IR present in the Ignatiales, Pseudoneochloris, and Chamaetrichon diverge in sequence, with the tRNA genes from the rRNA operon missing in one IR copy. The implications of this unprecedented finding for the mechanism of IR loss and flip-flop recombination are discussed.
Collapse
Affiliation(s)
- Monique Turmel
- Institut de Biologie Intégrative et des Systèmes, Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec (QC), Canada
| | - Christian Otis
- Institut de Biologie Intégrative et des Systèmes, Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec (QC), Canada
| | - Claude Lemieux
- Institut de Biologie Intégrative et des Systèmes, Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec (QC), Canada.
| |
Collapse
|
55
|
Plastome-Wide Nucleotide Substitution Rates Reveal Accelerated Rates in Papilionoideae and Correlations with Genome Features Across Legume Subfamilies. J Mol Evol 2017; 84:187-203. [PMID: 28397003 DOI: 10.1007/s00239-017-9792-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 04/03/2017] [Indexed: 01/08/2023]
Abstract
This study represents the most comprehensive plastome-wide comparison of nucleotide substitution rates across the three subfamilies of Fabaceae: Caesalpinioideae, Mimosoideae, and Papilionoideae. Caesalpinioid and mimosoid legumes have large, unrearranged plastomes compared with papilionoids, which exhibit varying levels of rearrangement including the loss of the inverted repeat (IR) in the IR-lacking clade (IRLC). Using 71 genes common to 39 legume taxa representing all the three subfamilies, we show that papilionoids consistently have higher nucleotide substitution rates than caesalpinioids and mimosoids, and rates in the IRLC papilionoids are generally higher than those in the IR-containing papilionoids. Unsurprisingly, this pattern was significantly correlated with growth habit as most papilionoids are herbaceous, whereas caesalpinioids and mimosoids are largely woody. Both nonsynonymous (dN) and synonymous (dS) substitution rates were also correlated with several biological features including plastome size and plastomic rearrangements such as the number of inversions and indels. In agreement with previous reports, we found that genes in the IR exhibit between three and fourfold reductions in the substitution rates relative to genes within the large single-copy or small single-copy regions. Furthermore, former IR genes in IR-lacking taxa exhibit accelerated rates compared with genes contained in the IR.
Collapse
|
56
|
Weng ML, Ruhlman TA, Jansen RK. Expansion of inverted repeat does not decrease substitution rates in Pelargonium plastid genomes. THE NEW PHYTOLOGIST 2017; 214:842-851. [PMID: 27991660 DOI: 10.1111/nph.14375] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/04/2016] [Indexed: 05/23/2023]
Abstract
For species with minor inverted repeat (IR) boundary changes in the plastid genome (plastome), nucleotide substitution rates were previously shown to be lower in the IR than the single copy regions (SC). However, the impact of large-scale IR expansion/contraction on plastid nucleotide substitution rates among closely related species remains unclear. We included plastomes from 22 Pelargonium species, including eight newly sequenced genomes, and used both pairwise and model-based comparisons to investigate the impact of the IR on sequence evolution in plastids. Ten types of plastome organization with different inversions or IR boundary changes were identified in Pelargonium. Inclusion in the IR was not sufficient to explain the variation of nucleotide substitution rates. Instead, the rate heterogeneity in Pelargonium plastomes was a mixture of locus-specific, lineage-specific and IR-dependent effects. Our study of Pelargonium plastomes that vary in IR length and gene content demonstrates that the evolutionary consequences of retaining these repeats are more complicated than previously suggested.
Collapse
Affiliation(s)
- Mao-Lun Weng
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57006, USA
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA
- Department of Biological Sciences, Biotechnology Research Group, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
57
|
Gichira AW, Li Z, Saina JK, Long Z, Hu G, Gituru RW, Wang Q, Chen J. The complete chloroplast genome sequence of an endemic monotypic genus Hagenia (Rosaceae): structural comparative analysis, gene content and microsatellite detection. PeerJ 2017; 5:e2846. [PMID: 28097059 PMCID: PMC5228516 DOI: 10.7717/peerj.2846] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/29/2016] [Indexed: 11/20/2022] Open
Abstract
Hagenia is an endangered monotypic genus endemic to the topical mountains of Africa. The only species, Hagenia abyssinica (Bruce) J.F. Gmel, is an important medicinal plant producing bioactive compounds that have been traditionally used by African communities as a remedy for gastrointestinal ailments in both humans and animals. Complete chloroplast genomes have been applied in resolving phylogenetic relationships within plant families. We employed high-throughput sequencing technologies to determine the complete chloroplast genome sequence of H. abyssinica. The genome is a circular molecule of 154,961 base pairs (bp), with a pair of Inverted Repeats (IR) 25,971 bp each, separated by two single copies; a large (LSC, 84,320 bp) and a small single copy (SSC, 18,696). H. abyssinica's chloroplast genome has a 37.1% GC content and encodes 112 unique genes, 78 of which code for proteins, 30 are tRNA genes and four are rRNA genes. A comparative analysis with twenty other species, sequenced to-date from the family Rosaceae, revealed similarities in structural organization, gene content and arrangement. The observed size differences are attributed to the contraction/expansion of the inverted repeats. The translational initiation factor gene (infA) which had been previously reported in other chloroplast genomes was conspicuously missing in H. abyssinica. A total of 172 microsatellites and 49 large repeat sequences were detected in the chloroplast genome. A Maximum Likelihood analyses of 71 protein-coding genes placed Hagenia in Rosoideae. The availability of a complete chloroplast genome, the first in the Sanguisorbeae tribe, is beneficial for further molecular studies on taxonomic and phylogenomic resolution within the Rosaceae family.
Collapse
Affiliation(s)
- Andrew W Gichira
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Zhizhong Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Josphat K Saina
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Zhicheng Long
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guangwan Hu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Robert W Gituru
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Qingfeng Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Jinming Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
58
|
Lee J, Cho CH, Park SI, Choi JW, Song HS, West JA, Bhattacharya D, Yoon HS. Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants. BMC Biol 2016; 14:75. [PMID: 27589960 PMCID: PMC5010701 DOI: 10.1186/s12915-016-0299-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/17/2016] [Indexed: 11/10/2022] Open
Abstract
Background The red algae (Rhodophyta) diverged from the green algae and plants (Viridiplantae) over one billion years ago within the kingdom Archaeplastida. These photosynthetic lineages provide an ideal model to study plastid genome reduction in deep time. To this end, we assembled a large dataset of the plastid genomes that were available, including 48 from the red algae (17 complete and three partial genomes produced for this analysis) to elucidate the evolutionary history of these organelles. Results We found extreme conservation of plastid genome architecture in the major lineages of the multicellular Florideophyceae red algae. Only three minor structural types were detected in this group, which are explained by recombination events of the duplicated rDNA operons. A similar high level of structural conservation (although with different gene content) was found in seed plants. Three major plastid genome architectures were identified in representatives of 46 orders of angiosperms and three orders of gymnosperms. Conclusions Our results provide a comprehensive account of plastid gene loss and rearrangement events involving genome architecture within Archaeplastida and lead to one over-arching conclusion: from an ancestral pool of highly rearranged plastid genomes in red and green algae, the aquatic (Florideophyceae) and terrestrial (seed plants) multicellular lineages display high conservation in plastid genome architecture. This phenomenon correlates with, and could be explained by, the independent and widely divergent (separated by >400 million years) origins of complex sexual cycles and reproductive structures that led to the rapid diversification of these lineages. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0299-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seung In Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji Won Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun Suk Song
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - John A West
- School of Biosciences 2, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
59
|
Blazier JC, Jansen RK, Mower JP, Govindu M, Zhang J, Weng ML, Ruhlman TA. Variable presence of the inverted repeat and plastome stability in Erodium. ANNALS OF BOTANY 2016; 117:1209-20. [PMID: 27192713 PMCID: PMC4904181 DOI: 10.1093/aob/mcw065] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/05/2016] [Accepted: 02/22/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Several unrelated lineages such as plastids, viruses and plasmids, have converged on quadripartite genomes of similar size with large and small single copy regions and a large inverted repeat (IR). Except for Erodium (Geraniaceae), saguaro cactus and some legumes, the plastomes of all photosynthetic angiosperms display this structure. The functional significance of the IR is not understood and Erodium provides a system to examine the role of the IR in the long-term stability of these genomes. We compared the degree of genomic rearrangement in plastomes of Erodium that differ in the presence and absence of the IR. METHODS We sequenced 17 new Erodium plastomes. Using 454, Illumina, PacBio and Sanger sequences, 16 genomes were assembled and categorized along with one incomplete and two previously published Erodium plastomes. We conducted phylogenetic analyses among these species using a dataset of 19 protein-coding genes and determined if significantly higher evolutionary rates had caused the long branch seen previously in phylogenetic reconstructions within the genus. Bioinformatic comparisons were also performed to evaluate plastome evolution across the genus. KEY RESULTS Erodium plastomes fell into four types (Type 1-4) that differ in their substitution rates, short dispersed repeat content and degree of genomic rearrangement, gene and intron content and GC content. Type 4 plastomes had significantly higher rates of synonymous substitutions (dS) for all genes and for 14 of the 19 genes non-synonymous substitutions (dN) were significantly accelerated. We evaluated the evidence for a single IR loss in Erodium and in doing so discovered that Type 4 plastomes contain a novel IR. CONCLUSIONS The presence or absence of the IR does not affect plastome stability in Erodium. Rather, the overall repeat content shows a negative correlation with genome stability, a pattern in agreement with other angiosperm groups and recent findings on genome stability in bacterial endosymbionts.
Collapse
Affiliation(s)
- John C Blazier
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Madhu Govindu
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Jin Zhang
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Mao-Lun Weng
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
60
|
Zhu A, Guo W, Gupta S, Fan W, Mower JP. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. THE NEW PHYTOLOGIST 2016; 209:1747-56. [PMID: 26574731 DOI: 10.1111/nph.13743] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/01/2015] [Indexed: 05/20/2023]
Abstract
Rates of nucleotide substitution were previously shown to be several times slower in the plastid inverted repeat (IR) compared with single-copy (SC) regions, suggesting that the IR provides enhanced copy-correction activity. To examine the generality of this synonymous rate dependence on the IR, we compared plastomes from 69 pairs of closely related species representing 52 families of angiosperms, gymnosperms, and ferns. We explored the breadth of IR boundary shifts in land plants and demonstrate that synonymous substitution rates are, on average, 3.7 times slower in IR genes than in SC genes. In addition, genes moved from the SC into the IR exhibit lower synonymous rates consistent with other IR genes, while genes moved from the IR into the SC exhibit higher rates consistent with other SC genes. Surprisingly, however, several plastid genes from Pelargonium, Plantago, and Silene have highly accelerated synonymous rates despite their IR localization. Together, these results provide strong evidence that the duplicative nature of the IR reduces the substitution rate within this region. The anomalously fast-evolving genes in Pelargonium, Plantago, and Silene indicate localized hypermutation, potentially induced by a higher level of error-prone double-strand break repair in these regions, which generates substitutional rate variation.
Collapse
Affiliation(s)
- Andan Zhu
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Wenhu Guo
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA
| | - Sakshi Gupta
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
| | - Weishu Fan
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| |
Collapse
|
61
|
Barrett CF, Baker WJ, Comer JR, Conran JG, Lahmeyer SC, Leebens-Mack JH, Li J, Lim GS, Mayfield-Jones DR, Perez L, Medina J, Pires JC, Santos C, Wm Stevenson D, Zomlefer WB, Davis JI. Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots. THE NEW PHYTOLOGIST 2016; 209:855-70. [PMID: 26350789 DOI: 10.1111/nph.13617] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/23/2015] [Indexed: 05/03/2023]
Abstract
Despite progress based on multilocus, phylogenetic studies of the palms (order Arecales, family Arecaceae), uncertainty remains in resolution/support among major clades and for the placement of the palms among the commelinid monocots. Palms and related commelinids represent a classic case of substitution rate heterogeneity that has not been investigated in the genomic era. To address questions of relationships, support and rate variation among palms and commelinid relatives, 39 plastomes representing the palms and related family Dasypogonaceae were generated via genome skimming and integrated within a monocot-wide matrix for phylogenetic and molecular evolutionary analyses. Support was strong for 'deep' relationships among the commelinid orders, among the five palm subfamilies, and among tribes of the subfamily Coryphoideae. Additionally, there was extreme heterogeneity in the plastid substitution rates across the commelinid orders indicated by model based analyses, with c. 22 rate shifts, and significant departure from a global clock. To date, this study represents the most comprehensively sampled matrix of plastomes assembled for monocot angiosperms, providing genome-scale support for phylogenetic relationships of monocot angiosperms, and lays the phylogenetic groundwork for comparative analyses of the drivers and correlates of such drastic differences in substitution rates across a diverse and significant clade.
Collapse
Affiliation(s)
- Craig F Barrett
- Department of Biological Sciences, California State University, Los Angeles, CA, 90032, USA
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | | | - Jason R Comer
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - John G Conran
- Department of Genetics and Evolution, School of Biological Sciences, University of Adelaide, Adelaide, 5005, Australia
| | - Sean C Lahmeyer
- Herbarium, The Huntington Library, Art Collection, and Botanical Gardens, San Marino, CA, 91108, USA
| | | | - Jeff Li
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, CA, 92521, USA
| | - Gwynne S Lim
- L. H. Bailey Hortorium and Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Dustin R Mayfield-Jones
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
- Division of Biological Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Leticia Perez
- Department of Biological Sciences, California State University, Los Angeles, CA, 90032, USA
| | - Jesus Medina
- Department of Biological Sciences, California State University, Los Angeles, CA, 90032, USA
| | - J Chris Pires
- Division of Biological Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Cristian Santos
- Department of Biological Sciences, California State University, Los Angeles, CA, 90032, USA
| | - Dennis Wm Stevenson
- Pfizer Laboratory of Molecular Systematics, New York Botanical Garden, Bronx, NY, 10458, USA
| | - Wendy B Zomlefer
- Herbarium, The Huntington Library, Art Collection, and Botanical Gardens, San Marino, CA, 91108, USA
| | - Jerrold I Davis
- L. H. Bailey Hortorium and Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
62
|
Kaila T, Chaduvla PK, Saxena S, Bahadur K, Gahukar SJ, Chaudhury A, Sharma TR, Singh NK, Gaikwad K. Chloroplast Genome Sequence of Pigeonpea ( Cajanus cajan (L.) Millspaugh) and Cajanus scarabaeoides (L.) Thouars: Genome Organization and Comparison with Other Legumes. FRONTIERS IN PLANT SCIENCE 2016; 7:1847. [PMID: 28018385 PMCID: PMC5145887 DOI: 10.3389/fpls.2016.01847] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/23/2016] [Indexed: 05/09/2023]
Abstract
Pigeonpea (Cajanus cajan (L.) Millspaugh), a diploid (2n = 22) legume crop with a genome size of 852 Mbp, serves as an important source of human dietary protein especially in South East Asian and African regions. In this study, the draft chloroplast genomes of Cajanus cajan and Cajanus scarabaeoides (L.) Thouars were generated. Cajanus scarabaeoides is an important species of the Cajanus gene pool and has also been used for developing promising CMS system by different groups. A male sterile genotype harboring the C. scarabaeoides cytoplasm was used for sequencing the plastid genome. The cp genome of C. cajan is 152,242bp long, having a quadripartite structure with LSC of 83,455 bp and SSC of 17,871 bp separated by IRs of 25,398 bp. Similarly, the cp genome of C. scarabaeoides is 152,201bp long, having a quadripartite structure in which IRs of 25,402 bp length separates 83,423 bp of LSC and 17,854 bp of SSC. The pigeonpea cp genome contains 116 unique genes, including 30 tRNA, 4 rRNA, 78 predicted protein coding genes and 5 pseudogenes. A 50 kb inversion was observed in the LSC region of pigeonpea cp genome, consistent with other legumes. Comparison of cp genome with other legumes revealed the contraction of IR boundaries due to the absence of rps19 gene in the IR region. Chloroplast SSRs were mined and a total of 280 and 292 cpSSRs were identified in C. scarabaeoides and C. cajan respectively. RNA editing was observed at 37 sites in both C. scarabaeoides and C. cajan, with maximum occurrence in the ndh genes. The pigeonpea cp genome sequence would be beneficial in providing informative molecular markers which can be utilized for genetic diversity analysis and aid in understanding the plant systematics studies among major grain legumes.
Collapse
Affiliation(s)
- Tanvi Kaila
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science & TechnologyHisar, India
| | - Pavan K. Chaduvla
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Swati Saxena
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | | | - Santosh J. Gahukar
- Biotechnology Department, Biotechnology Centre, Dr. Panjabrao Deshmukh Krishi VidyapeethAkola, India
| | - Ashok Chaudhury
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science & TechnologyHisar, India
| | - T. R. Sharma
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | - N. K. Singh
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Kishor Gaikwad
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
- *Correspondence: Kishor Gaikwad
| |
Collapse
|
63
|
Dugas DV, Hernandez D, Koenen EJM, Schwarz E, Straub S, Hughes CE, Jansen RK, Nageswara-Rao M, Staats M, Trujillo JT, Hajrah NH, Alharbi NS, Al-Malki AL, Sabir JSM, Bailey CD. Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP. Sci Rep 2015; 5:16958. [PMID: 26592928 PMCID: PMC4655330 DOI: 10.1038/srep16958] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/14/2015] [Indexed: 11/29/2022] Open
Abstract
The Leguminosae has emerged as a model for studying angiosperm plastome evolution because of its striking diversity of structural rearrangements and sequence variation. However, most of what is known about legume plastomes comes from few genera representing a subset of lineages in subfamily Papilionoideae. We investigate plastome evolution in subfamily Mimosoideae based on two newly sequenced plastomes (Inga and Leucaena) and two recently published plastomes (Acacia and Prosopis), and discuss the results in the context of other legume and rosid plastid genomes. Mimosoid plastomes have a typical angiosperm gene content and general organization as well as a generally slow rate of protein coding gene evolution, but they are the largest known among legumes. The increased length results from tandem repeat expansions and an unusual 13 kb IR-SSC boundary shift in Acacia and Inga. Mimosoid plastomes harbor additional interesting features, including loss of clpP intron1 in Inga, accelerated rates of evolution in clpP for Acacia and Inga, and dN/dS ratios consistent with neutral and positive selection for several genes. These new plastomes and results provide important resources for legume comparative genomics, plant breeding, and plastid genetic engineering, while shedding further light on the complexity of plastome evolution in legumes and angiosperms.
Collapse
Affiliation(s)
- Diana V Dugas
- Department of Biology, New Mexico State University, P.O. Box 30001, MSC 3AF, Las Cruces, NM, 88003, USA
| | - David Hernandez
- Department of Biology, New Mexico State University, P.O. Box 30001, MSC 3AF, Las Cruces, NM, 88003, USA
| | - Erik J M Koenen
- Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Erika Schwarz
- Department of Integrative Biology, The University of Texas at Austin, 205 W. 24th St. Stop C0930, Austin, TX 78712, USA
| | - Shannon Straub
- Department of Biology, Hobart and William Smith Colleges, 300 Pulteney Street, Geneva, NY 14456, USA.,Oregon State University, Department Of Plant Biology, 2082 Cordley Hall, Corvallis, OR, 97331, USA
| | - Colin E Hughes
- Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Robert K Jansen
- Department of Integrative Biology, The University of Texas at Austin, 205 W. 24th St. Stop C0930, Austin, TX 78712, USA.,Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Madhugiri Nageswara-Rao
- Department of Biology, New Mexico State University, P.O. Box 30001, MSC 3AF, Las Cruces, NM, 88003, USA
| | - Martijn Staats
- Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Joshua T Trujillo
- Department of Biology, New Mexico State University, P.O. Box 30001, MSC 3AF, Las Cruces, NM, 88003, USA
| | - Nahid H Hajrah
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Njud S Alharbi
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahman L Al-Malki
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jamal S M Sabir
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - C Donovan Bailey
- Department of Biology, New Mexico State University, P.O. Box 30001, MSC 3AF, Las Cruces, NM, 88003, USA
| |
Collapse
|
64
|
Sabir J, Schwarz E, Ellison N, Zhang J, Baeshen NA, Mutwakil M, Jansen R, Ruhlman T. Evolutionary and biotechnology implications of plastid genome variation in the inverted-repeat-lacking clade of legumes. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:743-54. [PMID: 24618204 DOI: 10.1111/pbi.12179] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 05/21/2023]
Abstract
Land plant plastid genomes (plastomes) provide a tractable model for evolutionary study in that they are relatively compact and gene dense. Among the groups that display an appropriate level of variation for structural features, the inverted-repeat-lacking clade (IRLC) of papilionoid legumes presents the potential to advance general understanding of the mechanisms of genomic evolution. Here, are presented six complete plastome sequences from economically important species of the IRLC, a lineage previously represented by only five completed plastomes. A number of characters are compared across the IRLC including gene retention and divergence, synteny, repeat structure and functional gene transfer to the nucleus. The loss of clpP intron 2 was identified in one newly sequenced member of IRLC, Glycyrrhiza glabra. Using deeply sequenced nuclear transcriptomes from two species helped clarify the nature of the functional transfer of accD to the nucleus in Trifolium, which likely occurred in the lineage leading to subgenus Trifolium. Legumes are second only to cereal crops in agricultural importance based on area harvested and total production. Genetic improvement via plastid transformation of IRLC crop species is an appealing proposition. Comparative analyses of intergenic spacer regions emphasize the need for complete genome sequences for developing transformation vectors for plastid genetic engineering of legume crops.
Collapse
Affiliation(s)
- Jamal Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Civáň P, Foster PG, Embley MT, Séneca A, Cox CJ. Analyses of charophyte chloroplast genomes help characterize the ancestral chloroplast genome of land plants. Genome Biol Evol 2014; 6:897-911. [PMID: 24682153 PMCID: PMC4007539 DOI: 10.1093/gbe/evu061] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2014] [Indexed: 11/23/2022] Open
Abstract
Despite the significance of the relationships between embryophytes and their charophyte algal ancestors in deciphering the origin and evolutionary success of land plants, few chloroplast genomes of the charophyte algae have been reconstructed to date. Here, we present new data for three chloroplast genomes of the freshwater charophytes Klebsormidium flaccidum (Klebsormidiophyceae), Mesotaenium endlicherianum (Zygnematophyceae), and Roya anglica (Zygnematophyceae). The chloroplast genome of Klebsormidium has a quadripartite organization with exceptionally large inverted repeat (IR) regions and, uniquely among streptophytes, has lost the rrn5 and rrn4.5 genes from the ribosomal RNA (rRNA) gene cluster operon. The chloroplast genome of Roya differs from other zygnematophycean chloroplasts, including the newly sequenced Mesotaenium, by having a quadripartite structure that is typical of other streptophytes. On the basis of the improbability of the novel gain of IR regions, we infer that the quadripartite structure has likely been lost independently in at least three zygnematophycean lineages, although the absence of the usual rRNA operonic synteny in the IR regions of Roya may indicate their de novo origin. Significantly, all zygnematophycean chloroplast genomes have undergone substantial genomic rearrangement, which may be the result of ancient retroelement activity evidenced by the presence of integrase-like and reverse transcriptase-like elements in the Roya chloroplast genome. Our results corroborate the close phylogenetic relationship between Zygnematophyceae and land plants and identify 89 protein-coding genes and 22 introns present in the chloroplast genome at the time of the evolutionary transition of plants to land, all of which can be found in the chloroplast genomes of extant charophytes.
Collapse
Affiliation(s)
- Peter Civáň
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | - Peter G. Foster
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Martin T. Embley
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Ana Séneca
- Department of Biology, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Department of Biology, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| | - Cymon J. Cox
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
66
|
Käss E, Wink M. Molecular Phylogeny of the Papilionoideae (Family Leguminosae): RbcL Gene Sequences versus Chemical Taxonomy. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1995.tb00845.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
67
|
|
68
|
Abstract
The plastid genome (plastome) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations are allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
69
|
Yang JB, Yang SX, Li HT, Yang J, Li DZ. Comparative chloroplast genomes of camellia species. PLoS One 2013; 8:e73053. [PMID: 24009730 PMCID: PMC3751842 DOI: 10.1371/journal.pone.0073053] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/16/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Camellia, comprising more than 200 species, is a valuable economic commodity due to its enormously popular commercial products: tea leaves, flowers, and high-quality edible oils. It is the largest and most important genus in the family Theaceae. However, phylogenetic resolution of the species has proven to be difficult. Consequently, the interspecies relationships of the genus Camellia are still hotly debated. Phylogenomics is an attractive avenue that can be used to reconstruct the tree of life, especially at low taxonomic levels. METHODOLOGY/PRINCIPAL FINDINGS Seven complete chloroplast (cp) genomes were sequenced from six species representing different subdivisions of the genus Camellia using Illumina sequencing technology. Four junctions between the single-copy segments and the inverted repeats were confirmed and genome assemblies were validated by PCR-based product sequencing using 123 pairs of primers covering preliminary cp genome assemblies. The length of the Camellia cp genome was found to be about 157kb, which contained 123 unique genes and 23 were duplicated in the IR regions. We determined that the complete Camellia cp genome was relatively well conserved, but contained enough genetic differences to provide useful phylogenetic information. Phylogenetic relationships were analyzed using seven complete cp genomes of six Camellia species. We also identified rapidly evolving regions of the cp genome that have the potential to be used for further species identification and phylogenetic resolution. CONCLUSIONS/SIGNIFICANCE In this study, we wanted to determine if analyzing completely sequenced cp genomes could help settle these controversies of interspecies relationships in Camellia. The results demonstrate that cp genome data are beneficial in resolving species definition because they indicate that organelle-based "barcodes", can be established for a species and then used to unmask interspecies phylogenetic relationships. It reveals that phylogenomics based on cp genomes is an effective approach for achieving phylogenetic resolution between Camellia species.
Collapse
Affiliation(s)
- Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shi-Xiong Yang
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hong-Tao Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jing Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
70
|
Boutin SR, Young ND, Olson TC, Yu ZH, Vallejos CE, Shoemaker RC. Genome conservation among three legume genera detected with DNA markers. Genome 2012; 38:928-37. [PMID: 18470218 DOI: 10.1139/g95-122] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A set of 219 DNA clones derived from mungbean (Vigna radiata), cowpea (V. unguiculata), common bean (Phaseolus vulgaris), and soybean (Glycine max) were used to generate comparative linkage maps among mungbean, common bean, and soybean. The maps allowed an assessment of linkage conservation and collinearity among the three genomes. Mungbean and common bean, both of the subtribe Phaseolinae, exhibited a high degree of linkage conservation and preservation of marker order. Most linkage groups of mungbean consisted of only one or two linkage blocks from common bean (and vice versa). The situation was significantly different with soybean, a member of the subtribe Glycininae. Mungbean and common bean linkage groups were generally mosaics of short soybean linkage blocks, each only a few centimorgans in length. These results suggest that it would be fruitful to join maps of mungbean and common bean, while knowledge of conserved genomic blocks would be useful in increasing marker density in specific genomic regions for all three genera. These comparative maps may also contribute to enhanced understanding of legume evolution.
Collapse
|
71
|
Jansen RK, Ruhlman TA. Plastid Genomes of Seed Plants. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_5] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
72
|
Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. PLANT MOLECULAR BIOLOGY 2011; 76:273-97. [PMID: 21424877 PMCID: PMC3104136 DOI: 10.1007/s11103-011-9762-4] [Citation(s) in RCA: 845] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 02/19/2011] [Indexed: 05/18/2023]
Abstract
This review bridges functional and evolutionary aspects of plastid chromosome architecture in land plants and their putative ancestors. We provide an overview on the structure and composition of the plastid genome of land plants as well as the functions of its genes in an explicit phylogenetic and evolutionary context. We will discuss the architecture of land plant plastid chromosomes, including gene content and synteny across land plants. Moreover, we will explore the functions and roles of plastid encoded genes in metabolism and their evolutionary importance regarding gene retention and conservation. We suggest that the slow mode at which the plastome typically evolves is likely to be influenced by a combination of different molecular mechanisms. These include the organization of plastid genes in operons, the usually uniparental mode of plastid inheritance, the activity of highly effective repair mechanisms as well as the rarity of plastid fusion. Nevertheless, structurally rearranged plastomes can be found in several unrelated lineages (e.g. ferns, Pinaceae, multiple angiosperm families). Rearrangements and gene losses seem to correlate with an unusual mode of plastid transmission, abundance of repeats, or a heterotrophic lifestyle (parasites or myco-heterotrophs). While only a few functional gene gains and more frequent gene losses have been inferred for land plants, the plastid Ndh complex is one example of multiple independent gene losses and will be discussed in detail. Patterns of ndh-gene loss and functional analyses indicate that these losses are usually found in plant groups with a certain degree of heterotrophy, might rendering plastid encoded Ndh1 subunits dispensable.
Collapse
Affiliation(s)
- Susann Wicke
- Department of Biogeography and Botanical Garden, University of Vienna, Rennweg 14, 1030 Vienna, Austria.
| | | | | | | | | |
Collapse
|
73
|
Tangphatsornruang S, Uthaipaisanwong P, Sangsrakru D, Chanprasert J, Yoocha T, Jomchai N, Tragoonrung S. Characterization of the complete chloroplast genome of Hevea brasiliensis reveals genome rearrangement, RNA editing sites and phylogenetic relationships. Gene 2011; 475:104-12. [PMID: 21241787 DOI: 10.1016/j.gene.2011.01.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 11/28/2022]
Abstract
Rubber tree (Hevea brasiliensis) is an economical plant and widely grown for natural rubber production. However, genomic research of rubber tree has lagged behind other species in the Euphorbiaceae family. We report the complete chloroplast genome sequence of rubber tree as being 161,191 bp in length including a pair of inverted repeats of 26,810 bp separated by a small single copy region of 18,362 bp and a large single copy region of 89,209 bp. The chloroplast genome contains 112 unique genes, 16 of which are duplicated in the inverted repeat. Of the 112 unique genes, 78 are predicted protein-coding genes, 4 are ribosomal RNA genes and 30 are tRNA genes. Relative to other plant chloroplast genomes, we observed a unique rearrangement in the rubber tree chloroplast genome: a 30-kb inversion between the trnE(UUC)-trnS(GCU) and the trnT(GGU)-trnR(UCU). A comparison between the rubber tree chloroplast genes and cDNA sequences revealed 51 RNA editing sites in which most (48 sites) were located in 26 protein coding genes and the other 3 sites were in introns. Phylogenetic analysis based on chloroplast genes demonstrated a close relationship between Hevea and Manihot in Euphorbiaceae and provided a strong support for a monophyletic group of the eurosid I.
Collapse
|
74
|
Tangphatsornruang S, Sangsrakru D, Chanprasert J, Uthaipaisanwong P, Yoocha T, Jomchai N, Tragoonrung S. The chloroplast genome sequence of mungbean (Vigna radiata) determined by high-throughput pyrosequencing: structural organization and phylogenetic relationships. DNA Res 2009; 17:11-22. [PMID: 20007682 PMCID: PMC2818187 DOI: 10.1093/dnares/dsp025] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Mungbean is an economically important crop which is grown principally for its protein-rich dry seeds. However, genomic research of mungbean has lagged behind other species in the Fabaceae family. Here, we reported the complete chloroplast (cp) genome sequence of mungbean obtained by the 454 pyrosequencing technology. The mungbean cp genome is 151 271 bp in length which includes a pair of inverted repeats (IRs) of 26 474 bp separated by a small single-copy region of 17 427 bp and a large single-copy region of 80 896 bp. The genome contains 108 unique genes and 19 of these genes are duplicated in the IR. Of these, 75 are predicted protein-coding genes, 4 ribosomal RNA genes and 29 tRNA genes. Relative to other plant cp genomes, we observed two distinct rearrangements: a 50-kb inversion between accD/rps16 and rbcL/trnK-UUU, and a 78-kb rearrangement between trnH/rpl14 and rps19/rps8. We detected sequence length polymorphism in the cp homopolymeric regions at the intra- and inter-specific levels in the Vigna species. Phylogenetic analysis demonstrated a close relationship between Vigna and Phaseolus in the phaseolinae subtribe and provided a strong support for a monophyletic group of the eurosid I.
Collapse
Affiliation(s)
- S Tangphatsornruang
- Genome Institute, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand.
| | | | | | | | | | | | | |
Collapse
|
75
|
Turmel M, Otis C, Lemieux C. The chloroplast genomes of the green algae Pedinomonas minor, Parachlorella kessleri, and Oocystis solitaria reveal a shared ancestry between the Pedinomonadales and Chlorellales. Mol Biol Evol 2009; 26:2317-31. [PMID: 19578159 DOI: 10.1093/molbev/msp138] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The green algae belonging to the Chlorophyta-the lineage sister to that comprising the land plants and their charophycean green algal relatives (Streptophyta)-have been subdivided into four classes (Prasinophyceae, Ulvophyceae, Trebouxiophyceae, and Chlorophyceae). Yet the Pedinomonadales, an assemblage consisting of tiny, naked uniflagellates with a second basal body, has no clear affiliation with these classes and the branching order of the crown chlorophytes remains unknown. To gain an insight into the phylogenetic position of the Pedinomonadales and the relationships among the recognized chlorophyte classes, we have sequenced the chloroplast genomes of Pedinomonas minor (Pedinomonadales) and of two trebouxiophyceans belonging to the Chlorellales, Parachlorella kessleri (Chlorellaceae) and Oocystis solitaria (Oocystaceae), and compared these genomes with those of previously examined streptophytes and chlorophytes, including Chlorella vulgaris (Chlorellaceae). Unlike their Chlorella homolog, the three newly investigated chloroplast DNAs (cpDNAs) carry a large rRNA-encoding inverted repeat (IR) that divides the genome into large and small single-copy regions. In contrast to the situation found for ulvophycean and chlorophycean cpDNAs, the gene contents of the IR and single-copy regions are strikingly similar to that inferred for the common ancestor of chlorophytes and streptophytes. The intronless 98,340-bp Pedinomonas genome is among the chlorophyte cpDNAs featuring the smallest size and most ancestral gene organization. All 105 conserved genes encoded by this genome are included in the gene repertoires of Oocystis (111 genes) and Chlorella (113 genes), with just trnR(ccg) missing from Parachlorella cpDNA. Trees inferred from 71 cpDNA-encoded genes/proteins of 16 chlorophytes and nine streptophytes showed that Pedinomonas is nested in the Chlorellales, a group of algae lacking flagella. This phylogenetic conclusion is independently supported by uniquely shared gene linkages. We hypothesize that chlorellalean and pedinomonadalean green algae are reduced forms of a distant biflagellate ancestor that might have also given rise to the other known trebouxiophycean lineages. Our structural cpDNA data suggest that the Chlorellales and Pedinomonadales represent a deep branch of core chlorophytes, strengthening the notion that the Trebouxiophyceae emerged before the Ulvophyceae and Chlorophyceae. Our results further emphasize the importance of secondary reduction at both the cellular and genome levels during chlorophyte evolution.
Collapse
Affiliation(s)
- Monique Turmel
- Département de Biochimie et de Microbiologie, Université Laval, Québec (Québec) Canada.
| | | | | |
Collapse
|
76
|
Kim YK, Park CW, Kim KJ. Complete chloroplast DNA sequence from a Korean endemic genus, Megaleranthis saniculifolia, and its evolutionary implications. Mol Cells 2009; 27:365-81. [PMID: 19326085 DOI: 10.1007/s10059-009-0047-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 01/16/2009] [Indexed: 10/21/2022] Open
Abstract
The chloroplast DNA sequences of Megaleranthis saniculifolia, an endemic and monotypic endangered plant species, were completed in this study (GenBank FJ597983). The genome is 159,924 bp in length. It harbors a pair of IR regions consisting of 26,608 bp each. The lengths of the LSC and SSC regions are 88,326 bp and 18,382 bp, respectively. The structural organizations, gene and intron contents, gene orders, AT contents, codon usages, and transcription units of the Megaleranthis chloroplast genome are similar to those of typical land plant cp DNAs. However, the detailed features of Megaleranthis chloroplast genomes are substantially different from that of Ranunculus, which belongs to the same family, the Ranunculaceae. First, the Megaleranthis cp DNA was 4,797 bp longer than that of Ranunculus due to an expanded IR region into the SSC region and duplicated sequence elements in several spacer regions of the Megaleranthis cp genome. Second, the chloroplast genomes of Megaleranthis and Ranunculus evidence 5.6% sequence divergence in the coding regions, 8.9% sequence divergence in the intron regions, and 18.7% sequence divergence in the intergenic spacer regions, respectively. In both the coding and noncoding regions, average nucleotide substitution rates differed markedly, depending on the genome position. Our data strongly implicate the positional effects of the evolutionary modes of chloroplast genes. The genes evidencing higher levels of base substitutions also have higher incidences of indel mutations and low Ka/Ks ratios. A total of 54 simple sequence repeat loci were identified from the Megaleranthis cp genome. The existence of rich cp SSR loci in the Megaleranthis cp genome provides a rare opportunity to study the population genetic structures of this endangered species. Our phylogenetic trees based on the two independent markers, the nuclear ITS and chloroplast matK sequences, strongly support the inclusion of the Megaleranthis to the Trollius. Therefore, our molecular trees support Ohwi's original treatment of Megaleranthis saniculiforia to Trollius chosenensis Ohwi.
Collapse
Affiliation(s)
- Young-Kyu Kim
- School of Life Sciences, Korea University, Seoul 136-701, Korea
| | | | | |
Collapse
|
77
|
McCoy SR, Kuehl JV, Boore JL, Raubeson LA. The complete plastid genome sequence of Welwitschia mirabilis: an unusually compact plastome with accelerated divergence rates. BMC Evol Biol 2008; 8:130. [PMID: 18452621 PMCID: PMC2386820 DOI: 10.1186/1471-2148-8-130] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 05/01/2008] [Indexed: 11/10/2022] Open
Abstract
Background Welwitschia mirabilis is the only extant member of the family Welwitschiaceae, one of three lineages of gnetophytes, an enigmatic group of gymnosperms variously allied with flowering plants or conifers. Limited sequence data and rapid divergence rates have precluded consensus on the evolutionary placement of gnetophytes based on molecular characters. Here we report on the first complete gnetophyte chloroplast genome sequence, from Welwitschia mirabilis, as well as analyses on divergence rates of protein-coding genes, comparisons of gene content and order, and phylogenetic implications. Results The chloroplast genome of Welwitschia mirabilis [GenBank: EU342371] is comprised of 119,726 base pairs and exhibits large and small single copy regions and two copies of the large inverted repeat (IR). Only 101 unique gene species are encoded. The Welwitschia plastome is the most compact photosynthetic land plant plastome sequenced to date; 66% of the sequence codes for product. The genome also exhibits a slightly expanded IR, a minimum of 9 inversions that modify gene order, and 19 genes that are lost or present as pseudogenes. Phylogenetic analyses, including one representative of each extant seed plant lineage and based on 57 concatenated protein-coding sequences, place Welwitschia at the base of all seed plants (distance, maximum parsimony) or as the sister to Pinus (the only conifer representative) in a monophyletic gymnosperm clade (maximum likelihood, bayesian). Relative rate tests on these gene sequences show the Welwitschia sequences to be evolving at faster rates than other seed plants. For these genes individually, a comparison of average pairwise distances indicates that relative divergence in Welwitschia ranges from amounts about equal to other seed plants to amounts almost three times greater than the average for non-gnetophyte seed plants. Conclusion Although the basic organization of the Welwitschia plastome is typical, its compactness, gene content and high nucleotide divergence rates are atypical. The current lack of additional conifer plastome sequences precludes any discrimination between the gnetifer and gnepine hypotheses of seed plant relationships. However, both phylogenetic analyses and shared genome features identified here are consistent with either of the hypotheses that link gnetophytes with conifers, but are inconsistent with the anthophyte hypothesis.
Collapse
Affiliation(s)
- Skip R McCoy
- Biological Sciences, Central Washington University, Ellensburg, WA 98926-7537, USA.
| | | | | | | |
Collapse
|
78
|
Hansen DR, Dastidar SG, Cai Z, Penaflor C, Kuehl JV, Boore JL, Jansen RK. Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae). Mol Phylogenet Evol 2007; 45:547-63. [PMID: 17644003 DOI: 10.1016/j.ympev.2007.06.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 06/05/2007] [Accepted: 06/11/2007] [Indexed: 10/23/2022]
Abstract
We have determined the complete chloroplast genome sequences of four early-diverging lineages of angiosperms, Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae), to examine the organization and evolution of plastid genomes and to estimate phylogenetic relationships among angiosperms. For the most part, the organization of these plastid genomes is quite similar to the ancestral angiosperm plastid genome with a few notable exceptions. Dioscorea has lost one protein-coding gene, rps16; this gene loss has also happened independently in four other land plant lineages, liverworts, conifers, Populus, and legumes. There has also been a small expansion of the inverted repeat (IR) in Dioscorea that has duplicated trnH-GUG. This event has also occurred multiple times in angiosperms, including in monocots, and in the two basal angiosperms Nuphar and Drimys. The Illicium chloroplast genome is unusual by having a 10 kb contraction of the IR. The four taxa sequenced represent key groups in resolving phylogenetic relationships among angiosperms. Illicium is one of the basal angiosperms in the Austrobaileyales, Chloranthus (Chloranthales) remains unplaced in angiosperm classifications, and Buxus and Dioscorea are early-diverging eudicots and monocots, respectively. We have used sequences for 61 shared protein-coding genes from these four genomes and combined them with sequences from 35 other genomes to estimate phylogenetic relationships using parsimony, likelihood, and Bayesian methods. There is strong congruence among the trees generated by the three methods, and most nodes have high levels of support. The results indicate that Amborella alone is sister to the remaining angiosperms; the Nymphaeales represent the next-diverging clade followed by Illicium; Chloranthus is sister to the magnoliids and together this group is sister to a large clade that includes eudicots and monocots; and Dioscorea represents an early-diverging lineage of monocots just internal to Acorus.
Collapse
Affiliation(s)
- Debra R Hansen
- Section of Integrative Biology and Institute of Cellular and Molecular Biology, Biological Laboratories 404, University of Texas, Austin, TX 78712, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
The chloroplast genome sequence of the green alga Leptosira terrestris: multiple losses of the inverted repeat and extensive genome rearrangements within the Trebouxiophyceae. BMC Genomics 2007; 8:213. [PMID: 17610731 PMCID: PMC1931444 DOI: 10.1186/1471-2164-8-213] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 07/04/2007] [Indexed: 11/24/2022] Open
Abstract
Background In the Chlorophyta – the green algal phylum comprising the classes Prasinophyceae, Ulvophyceae, Trebouxiophyceae and Chlorophyceae – the chloroplast genome displays a highly variable architecture. While chlorophycean chloroplast DNAs (cpDNAs) deviate considerably from the ancestral pattern described for the prasinophyte Nephroselmis olivacea, the degree of remodelling sustained by the two ulvophyte cpDNAs completely sequenced to date is intermediate relative to those observed for chlorophycean and trebouxiophyte cpDNAs. Chlorella vulgaris (Chlorellales) is currently the only photosynthetic trebouxiophyte whose complete cpDNA sequence has been reported. To gain insights into the evolutionary trends of the chloroplast genome in the Trebouxiophyceae, we sequenced cpDNA from the filamentous alga Leptosira terrestris (Ctenocladales). Results The 195,081-bp Leptosira chloroplast genome resembles the 150,613-bp Chlorella genome in lacking a large inverted repeat (IR) but differs greatly in gene order. Six of the conserved genes present in Chlorella cpDNA are missing from the Leptosira gene repertoire. The 106 conserved genes, four introns and 11 free standing open reading frames (ORFs) account for 48.3% of the genome sequence. This is the lowest gene density yet observed among chlorophyte cpDNAs. Contrary to the situation in Chlorella but similar to that in the chlorophycean Scenedesmus obliquus, the gene distribution is highly biased over the two DNA strands in Leptosira. Nine genes, compared to only three in Chlorella, have significantly expanded coding regions relative to their homologues in ancestral-type green algal cpDNAs. As observed in chlorophycean genomes, the rpoB gene is fragmented into two ORFs. Short repeats account for 5.1% of the Leptosira genome sequence and are present mainly in intergenic regions. Conclusion Our results highlight the great plasticity of the chloroplast genome in the Trebouxiophyceae and indicate that the IR was lost on at least two separate occasions. The intriguing similarities of the derived features exhibited by Leptosira cpDNA and its chlorophycean counterparts suggest that the same evolutionary forces shaped the IR-lacking chloroplast genomes in these two algal lineages.
Collapse
|
80
|
Bélanger AS, Brouard JS, Charlebois P, Otis C, Lemieux C, Turmel M. Distinctive architecture of the chloroplast genome in the chlorophycean green alga Stigeoclonium helveticum. Mol Genet Genomics 2006; 276:464-77. [PMID: 16944205 DOI: 10.1007/s00438-006-0156-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 07/29/2006] [Indexed: 11/26/2022]
Abstract
The chloroplast genome has experienced many architectural changes during the evolution of chlorophyte green algae, with the class Chlorophyceae displaying the lowest degree of ancestral traits. We have previously shown that the completely sequenced chloroplast DNAs (cpDNAs) of Chamydomonas reinhardtii (Chlamydomonadales) and Scenedesmus obliquus (Sphaeropleales) are highly scrambled in gene order relative to one another. Here, we report the complete cpDNA sequence of Stigeoclonium helveticum (Chaetophorales), a member of a third chlorophycean lineage. This genome, which encodes 97 genes and contains 21 introns (including four putatively trans-spliced group II introns inserted at novel sites), is remarkably rich in derived features and extremely rearranged relative to its chlorophycean counterparts. At 223,902 bp, Stigeoclonium cpDNA is the largest chloroplast genome sequenced thus far, and in contrast to those of Chlamydomonas and Scenedesmus, features no large inverted repeat. Interestingly, the pattern of gene distribution between the DNA strands and the bias in base composition along each strand suggest that the Stigeoclonium genome replicates bidirectionally from a single origin. Unlike most known trans-spliced group II introns, those of Stigeoclonium exhibit breaks in domains I and II. By placing our comparative genome analyses in a phylogenetic framework, we inferred an evolutionary scenario of the mutational events that led to changes in genome architecture in the Chlorophyceae.
Collapse
Affiliation(s)
- Anne-Sophie Bélanger
- Département de biochimie et de microbiologie, Pavillon Charles-Eugène Marchand, Université Laval, Quebec City, QC, Canada G1K 7P4
| | | | | | | | | | | |
Collapse
|
81
|
Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK. The Complete Chloroplast Genome Sequence of Pelargonium × hortorum: Organization and Evolution of the Largest and Most Highly Rearranged Chloroplast Genome of Land Plants. Mol Biol Evol 2006; 23:2175-90. [PMID: 16916942 DOI: 10.1093/molbev/msl089] [Citation(s) in RCA: 308] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The chloroplast genome of Pelargonium x hortorum has been completely sequenced. It maps as a circular molecule of 217,942 bp and is both the largest and most rearranged land plant chloroplast genome yet sequenced. It features 2 copies of a greatly expanded inverted repeat (IR) of 75,741 bp each and, consequently, diminished single-copy regions of 59,710 and 6,750 bp. Despite the increase in size and complexity of the genome, the gene content is similar to that of other angiosperms, with the exceptions of a large number of pseudogenes, the recognition of 2 open reading frames (ORF56 and ORF42) in the trnA intron with similarities to previously identified mitochondrial products (ACRS and pvs-trnA), the losses of accD and trnT-ggu and, in particular, the presence of a highly divergent set of rpoA-like ORFs rather than a single, easily recognized gene for rpoA. The 3-fold expansion of the IR (relative to most angiosperms) accounts for most of the size increase of the genome, but an additional 10% of the size increase is related to the large number of repeats found. The Pelargonium genome contains 35 times as many 31 bp or larger repeats than the unrearranged genome of Spinacia. Most of these repeats occur near the rearrangement hotspots, and 2 different associations of repeats are localized in these regions. These associations are characterized by full or partial duplications of several genes, most of which appear to be nonfunctional copies or pseudogenes. These duplications may also be linked to the disruption of at least 1 but possibly 2 or 3 operons. We propose simple models that account for the major rearrangements with a minimum of 8 IR boundary changes and 12 inversions in addition to several insertions of duplicated sequence.
Collapse
|
82
|
Turmel M, Otis C, Lemieux C. The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales. BMC Biol 2005; 3:22. [PMID: 16236178 PMCID: PMC1277820 DOI: 10.1186/1741-7007-3-22] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 10/20/2005] [Indexed: 11/29/2022] Open
Abstract
Background The Streptophyta comprise all land plants and six monophyletic groups of charophycean green algae. Phylogenetic analyses of four genes from three cellular compartments support the following branching order for these algal lineages: Mesostigmatales, Chlorokybales, Klebsormidiales, Zygnematales, Coleochaetales and Charales, with the last lineage being sister to land plants. Comparative analyses of the Mesostigma viride (Mesostigmatales) and land plant chloroplast genome sequences revealed that this genome experienced many gene losses, intron insertions and gene rearrangements during the evolution of charophyceans. On the other hand, the chloroplast genome of Chaetosphaeridium globosum (Coleochaetales) is highly similar to its land plant counterparts in terms of gene content, intron composition and gene order, indicating that most of the features characteristic of land plant chloroplast DNA (cpDNA) were acquired from charophycean green algae. To gain further insight into when the highly conservative pattern displayed by land plant cpDNAs originated in the Streptophyta, we have determined the cpDNA sequences of the distantly related zygnematalean algae Staurastrum punctulatum and Zygnema circumcarinatum. Results The 157,089 bp Staurastrum and 165,372 bp Zygnema cpDNAs encode 121 and 125 genes, respectively. Although both cpDNAs lack an rRNA-encoding inverted repeat (IR), they are substantially larger than Chaetosphaeridium and land plant cpDNAs. This increased size is explained by the expansion of intergenic spacers and introns. The Staurastrum and Zygnema genomes differ extensively from one another and from their streptophyte counterparts at the level of gene order, with the Staurastrum genome more closely resembling its land plant counterparts than does Zygnema cpDNA. Many intergenic regions in Zygnema cpDNA harbor tandem repeats. The introns in both Staurastrum (8 introns) and Zygnema (13 introns) cpDNAs represent subsets of those found in land plant cpDNAs. They represent 16 distinct insertion sites, only five of which are shared by the two zygnematalean genomes. Three of these insertions sites have not been identified in Chaetosphaeridium cpDNA. Conclusion The chloroplast genome experienced substantial changes in overall structure, gene order, and intron content during the evolution of the Zygnematales. Most of the features considered earlier as typical of land plant cpDNAs probably originated before the emergence of the Zygnematales and Coleochaetales.
Collapse
Affiliation(s)
- Monique Turmel
- Département de Biochimie et de Microbiologie, Université Laval, Québec, Québec, G1K 7P4, Canada
| | - Christian Otis
- Département de Biochimie et de Microbiologie, Université Laval, Québec, Québec, G1K 7P4, Canada
| | - Claude Lemieux
- Département de Biochimie et de Microbiologie, Université Laval, Québec, Québec, G1K 7P4, Canada
| |
Collapse
|
83
|
Saski C, Lee SB, Daniell H, Wood TC, Tomkins J, Kim HG, Jansen RK. Complete chloroplast genome sequence of Gycine max and comparative analyses with other legume genomes. PLANT MOLECULAR BIOLOGY 2005; 59:309-22. [PMID: 16247559 DOI: 10.1007/s11103-005-8882-0] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 06/16/2005] [Indexed: 05/05/2023]
Abstract
Lack of complete chloroplast genome sequences is still one of the major limitations to extending chloroplast genetic engineering technology to useful crops. Therefore, we sequenced the soybean chloroplast genome and compared it to the other completely sequenced legumes, Lotus and Medicago. The chloroplast genome of Glycine is 152,218 basepairs (bp) in length, including a pair of inverted repeats of 25,574 bp of identical sequence separated by a small single copy region of 17,895 bp and a large single copy region of 83,175 bp. The genome contains 111 unique genes, and 19 of these are duplicated in the inverted repeat (IR). Comparisons of Glycine, Lotus and Medicago confirm the organization of legume chloroplast genomes based on previous studies. Gene content of the three legumes is nearly identical. The rpl22 gene is missing from all three legumes, and Medicago is missing rps16 and one copy of the IR. Gene order in Glycine, Lotus, and Medicago differs from the usual gene order for angiosperm chloroplast genomes by the presence of a single, large inversion of 51 kilobases (kb). Detailed analyses of repeated sequences indicate that many of the Glycine repeats that are located in the intergenic spacer regions and introns occur in the same location in the other legumes and in Arabidopsis, suggesting that they may play some functional role. The presence of small repeats of psbA and rbcL in legumes that have lost one copy of the IR indicate that this loss has only occurred once during the evolutionary history of legumes.
Collapse
Affiliation(s)
- Christopher Saski
- Clemson University Genomics Institute, Clemson University, Biosystems Research Complex, 51 New Cherry Street, Clemson, SC 29634, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Much of our most basic understanding of genetics has its roots in plant genetics and crop breeding. The study of plants has led to important insights into highly conserved biological process and a wealth of knowledge about development. Agriculture is now well positioned to take its share benefit from genomics. The primary sequences of most plant genes will be determined over the next few years. Informatics and functional genomics will help identify those genes that can be best utilized to crop production and quality through genetic engineering and plant breeding. Recent developments in plant genomics are reviewed.
Collapse
Affiliation(s)
- S Aljanabi
- Biotechnology Department, Mauritius Sugar Industry Research Institute, Reduit, Mauritius
| |
Collapse
|
85
|
Tsumura Y, Suyama Y, Yoshimura K. Chloroplast DNA inversion polymorphism in populations of Abies and Tsuga. Mol Biol Evol 2000; 17:1302-12. [PMID: 10958847 DOI: 10.1093/oxfordjournals.molbev.a026414] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Polymorphism for a 42-kb chloroplast DNA inversion was detected in five species of Abies and two species of Tsuga based on a sample of 1,281 individuals and both Southern hybridization and polymerase chain reaction (PCR) analyses. Two haplotypes were observed in all populations and species. The 42-kb inversion is associated with a short inverted repeat that includes trnS, psaM, and trnG. The frequencies of the two haplotypes within species were very similar among the five species of Abies This polymorphism has been maintained within populations and species in both Abies and Tsuga, probably because the mutation rate of the inversion is high. Haplotype frequencies had no geographical tendencies for any species except Abies mariesii, in which haplotype frequencies varied clinally, possibly as a result of rapid dissemination after the most recent glacial period and random genetic drift.
Collapse
MESH Headings
- Blotting, Southern
- Chromosome Inversion
- Cycadopsida/genetics
- DNA, Chloroplast/chemistry
- DNA, Chloroplast/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Gene Frequency
- Genetic Variation
- Genetics, Population
- Haplotypes
- Japan
- Molecular Sequence Data
- Polymerase Chain Reaction
- Polymorphism, Genetic
- Polymorphism, Restriction Fragment Length
- Repetitive Sequences, Nucleic Acid
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Y Tsumura
- Genetics Section, Bio-resources Technology Division, Forestry and Forest Products Research Institute, Kukizaki, Ibaraki, Japan.
| | | | | |
Collapse
|
86
|
|
87
|
Käss E, Wink M. Phylogenetic relationships in the Papilionoideae (family Leguminosae) based on nucleotide sequences of cpDNA (rbcL) and ncDNA (ITS 1 and 2). Mol Phylogenet Evol 1997; 8:65-88. [PMID: 9242596 DOI: 10.1006/mpev.1997.0410] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sequences of cpDNA (rbcL) were determined for 94 species and of ncDNA [ITS 1 + 2 regions (internal transcribed spacer) of rDNA] for 75 species representing mainly the papilionoid tribes Sophoreae, Thermopsideae Podalyrieae, Liparieae, Crotalarieae, and Genisteae. Sequence data were used to reconstruct the underlying molecular phylogeny. Several clusters and furcations were identical in the rbcL and ITS trees of the Papilionoideae, indicating that a reticulate evolution due to past hybridization of members from different tribes and genera is unlikely: The Sophoreae (especially Styphnolobium japonicum (syn. Sophora japonica) and Sophora secundiflora) are positioned at the base of the papilionoid tree, whereas some other Sophora species (Sophora davidii, flavescens, jaubertii, microphylla) are closely related to Thermopsideae/Podalyrieae. The Thermopsideae/Podylyrieae cluster (including Liparieae) shares ancestry with the Crotalarieae and Genisteae. Argyrolobium (African taxa) and Melolobium cluster between Crotalarieae and Genisteae. In the Genisteae three clusters are apparent: the monophyletic genus Lupinus, the Cytisus-, and the Genista-group. According to this analysis, the Cytisus-complex includes Cytisus, Lembotropis, Chamaecytisus, Spartocytisus, and Calicotome. The Genista-group consists of Genista, Teline, and Chamaespartium sagittale. Other genera (e.g., Adenocarpus, Argyrocytisus, Cytisophyllum, Erinacea, Laburnum, Petteria, Retama, Spartium, and Ulex) could not be attributed unequivocally to the Cytisus or Genista complex.
Collapse
Affiliation(s)
- E Käss
- Universität Heidelberg, Institut für Pharmazeutische Biologie, Germany
| | | |
Collapse
|
88
|
Kunnimalaiyaan M, Shi F, Nielsen BL. Analysis of the tobacco chloroplast DNA replication origin (oriB) downstream of the 23 S rRNA gene. J Mol Biol 1997; 268:273-83. [PMID: 9159470 DOI: 10.1006/jmbi.1997.0972] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have mapped the origin of DNA replication (oriB) downstream of the 23 S rRNA gene in each copy of the inverted repeat (IR) of tobacco chloroplast DNA between positions 130,502 and 131,924 (IR(A)) by a combination of approaches. In vivo chloroplast DNA replication intermediates were examined by two-dimensional agarose gel electrophoresis. Extended arc patterns suggestive of replication intermediates containing extended single-stranded regions were observed with the 4.29 kb SspI fragment and an overlapping EcoRI fragment from one end of the inverted repeat, while only simple Y patterns were observed with a 3.92 kb BamHI-KpnI fragment internal to the SspI fragment. Other restriction fragments of tobacco chloroplast DNA besides those at the oriA region also generated only simple Y patterns in two-dimensional agarose gels. Several chloroplast DNA clones from this region were tested for their ability to support in vitro DNA replication using a partially purified chloroplast protein fraction. Templates with a deletion of 154 bp from the SspI to the BamHI sites near the end of the inverted repeat resulted in a considerable loss of in vitro DNA replication activity. These results support the presence of a replication origin at the end of the inverted repeat. The 5' end of nascent DNA from the replication displacement loop was identified at position 130,697 for IR(A) (111,832 for IR(B)) by primer extension. A single major product insensitive to alkali and RNase treatment was observed and mapped to the base of a stem-loop structure which contains one of two neighboring BamHI sites near the end of each inverted repeat. This provides the first precise determination of the start site of DNA synthesis from oriB. Adjacent DNA fragments containing the stem-loop structure and the 5' region exhibit sequence-specific gel mobility shift activity when incubated with the replication protein fraction, suggesting the presence of multiple binding sites.
Collapse
Affiliation(s)
- M Kunnimalaiyaan
- Department of Botany and Microbiology, Auburn University, AL 36849, USA
| | | | | |
Collapse
|
89
|
Lu Z, Kunnimalaiyaan M, Nielsen BL. Characterization of replication origins flanking the 23S rRNA gene in tobacco chloroplast DNA. PLANT MOLECULAR BIOLOGY 1996; 32:693-706. [PMID: 8980521 DOI: 10.1007/bf00020210] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Using 5' end-labeled nascent strands of tobacco chloroplast DNA (ctDNA) as a probe, replication displacement loop (D-loop) regions were identified. The strongest hybridization was observed with restriction fragments containing the rRNA genes from the inverted repeat region. Two-dimensional gel analysis of various digests of tobacco ctDNA suggested that a replication origin is located near each end of the 7.1 kb BamHI fragment containing part of the rRNA operon. Analysis of in vitro replication products indicated that templates from either of the origin regions supported replication, while the vector alone or ctDNA clones from other regions of the genome did not support in vitro replication. Sequences from both sides of the BamHI site in the rRNA spacer region were required for optimal in vitro DNA replication activity. Primer extension was used for the first time to identify the start site of DNA synthesis for the D-loop in the rRNA spacer region. The major 5' end of the D-loop was localized to the base of a stem-loop structure which contains the rRNA spacer BamHI site. Primer extension products were insensitive to both alkali and RNase treatment, suggesting that RNA primers had already been removed from the 5' end of nascent DNA. Location of an origin in the rRNA spacer region of ctDNA from tobacco, pea and Oenothera suggests that ctDNA replication origins may be conserved in higher plants.
Collapse
Affiliation(s)
- Z Lu
- Department of Botany and Microbiology Auburn University, Auburn, AL 36849, USA
| | | | | |
Collapse
|
90
|
Goulding SE, Olmstead RG, Morden CW, Wolfe KH. Ebb and flow of the chloroplast inverted repeat. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:195-206. [PMID: 8804393 DOI: 10.1007/bf02173220] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The endpoints of the large inverted repeat (IR) of chloroplast DNA in flowering plants differ by small amounts between species. To quantify the extent of this movement and define a possible mechanism for IR expansion, DNA sequences across the IR-large single-copy (IR-LSC) junctions were compared among 13 Nicotiana species and other dicots. In most Nicotiana species the IR terminates just upstream of, or somewhere within, the 5' portion of the rps19 gene. The truncated copy of this gene, rps19', varies in length even between closely related species but is of constant size within a single species. In Nicotiana, six different rps19' structures were found. A phylogenetic tree of Nicotiana species based on restriction site data shows that the IR has both expanded and contracted during the evolution of this genus. Gene conversion is proposed to account for these small and apparently random IR expansions. A large IR expansion of over 12 kb has occurred in Nicotiana acuminata. The new IR-LSC junction in this species lies within intron 1 of the clpP gene. This rearrangement occurred via a double-strand DNA break and recombination between poly (A) tracts in clpP intron 1 and upstream of rps19. Nicotiana acuminata chloroplast DNA contains a "molecular fossil' of the IR-LSC junction that existed prior to this dramatic rearrangement.
Collapse
Affiliation(s)
- S E Goulding
- Department of Genetics, University of Dublin, Trinity College, Ireland
| | | | | | | |
Collapse
|
91
|
Miyata S, Kanazawa A, Tsutsumi N, Sano Y, Hirai A. Polymorphic distribution and molecular diversification of mitochondrial plasmid-like DNAs in the genus Oryza. IDENGAKU ZASSHI 1995; 70:601-14. [PMID: 8527166 DOI: 10.1266/jjg.70.601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Four kinds of circular plasmid-like DNA, designated B1, B2, B3 and B4, have been found in the mitochondria of rice (Oryza sativa L.). We analyzed the distribution of families of plasmid-like DNAs homologous to those of O. sativa in 40 strains of the genus Oryza with AA, BB, BBCC, CC, CCDD and EE genomes. Plasmid-like DNAs were observed only strains having AA, CC and CCDD genomes. The distribution patterns of strains with AA genome were highly polymorphic. We amplified the plasmid-like DNAs from strains with the AA genome by PCR and examined restriction fragments length polymorphisms (RFLPs). RFLPs were detected among families of plasmid-like DNA amplified from different strains. This result indicated that some mutations, such as base substitutions and the insertion or deletion of a small fragment of DNA, had occurred and had accumulated during the differentiation of strains with an AA genome.
Collapse
Affiliation(s)
- S Miyata
- Laboratory of Radiation Genetics, Faculty of Agriculture, University of Tokyo
| | | | | | | | | |
Collapse
|
92
|
MiYATA SI, KANAZAWA A, TSUTSUMI N, SANO Y, HIRAI A. Polymorphic distribution and molecular diversification of mitochondrial plasmid-like DNAs in the genus Oryza. Genes Genet Syst 1995. [DOI: 10.1266/ggs.70.601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
93
|
Tsumura Y, Suyama Y, Taguchi H, Ohba K. Geographical cline of chloroplast DNA variation in Abies mariesii. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1994; 89:922-926. [PMID: 24178104 DOI: 10.1007/bf00224518] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/1993] [Accepted: 05/17/1994] [Indexed: 06/02/2023]
Abstract
Where its populations are isolated in higher mountain regions, Abies mariesii is one of the more important conifers of Japan's alpine forest zone. In this study we tried to clarify the genetic variation of chloroplast DNA (cpDNA) in A. mariesii. Cones and fresh needles were collected from seven mountain regions. Total DNAs were extracted from individual seedlings, and these were digested by 15 restriction endonucleases. Southern hybridization was then done using cpDNA clones of Cryptomeria japonica and tobacco as probes. CpDNA variation was detected with enzyme-probe combinations: HindIII+pCS10 probe, HindIII+pCS7, and BglII+pCS7 in preliminary screening. These variations were considered to be caused by the same insertion, deletion or inversion. All populations surveyed for the combination HindIII+pCS10 resulted in only two frequency variations in each population. This indicates a gradual cline along latitude and longitude.
Collapse
Affiliation(s)
- Y Tsumura
- Bio-resources Technology Division, Forestry and Forest Products Research Institute, Kukizaki, 305, Ibaraki, Japan
| | | | | | | |
Collapse
|
94
|
Mayer MS, Soltis PS. Chloroplast DNA phylogeny of Lens (Leguminosae): origin and diversity of the cultivated lentil. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1994; 87:773-781. [PMID: 24190462 DOI: 10.1007/bf00221128] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/1992] [Accepted: 06/28/1993] [Indexed: 06/02/2023]
Abstract
A restriction-site analysis of chloroplast DNA (cpDNA) variation in Lens was conducted to: (1) assess the levels of variation in Lens culinaris ssp. culinaris (the domesticated lentil), (2) identify the wild progenitor of the domesticated lentil, and (3) construct a cpDNA phylogeny of the genus. We analyzed 399 restriction sites in 114 cultivated accessions and 11 wild accessions. All but three accessions of the cultivar had identical cpDNAs. Two accessions exhibited a single shared restriction-site loss, and a small insertion was observed in the cpDNA of a third accession. We detected 19 restriction-site mutations and two length mutations among accessions of the wild taxa. Three of the four accessions of L. culinaris ssp. orientalis were identical to the cultivars at every restriction site, clearly identifying ssp. orientalis as the progenitor of the cultivated lentil. Because of its limited cpDNA diversity, we conclude that either the cultivated lentil has passed through a genetic bottleneck during domestication and lost most of its cytoplasmic variability or else was domesticated from an ancestor that was naturally depauperate in cpDNA restriction-site variation. However, because we had access to only a small number of populations of the wild taxa, the levels of variation present in ssp. orientalis can only be estimated, and the extent of such a domestication bottleneck, if applicable, cannot be evaluated. The cpDNA-based phylogeny portrays Lens as quite distinct from its putative closest relative, Vicia montbretii. L. culinaris ssp. odemensis is the sister of L. nigricans; L. culinaris is therefore paraphyletic given the current taxonomic placement of ssp. odemensis. Lens nigricans ssp. nigricans is by far the most divergent taxon of the genus, exhibiting ten autapomorphic restriction-site mutations.
Collapse
Affiliation(s)
- M S Mayer
- Department of Botany, Washington State University, 99164-4238, Pullman, WA, USA
| | | |
Collapse
|
95
|
Tsumura Y, Ogihara Y, Sasakuma T, Ohba K. Physical map of chloroplast DNA in sugi, Cryptomeria japonica. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1993; 86:166-172. [PMID: 24193456 DOI: 10.1007/bf00222075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/1992] [Accepted: 09/19/1992] [Indexed: 06/02/2023]
Abstract
To investigate the evolution of conifer species, we constructed a physical map of the chloroplast DNA of sugi, Cryptomeria japonica, with four restriction endonucleases, PstI, SalI, SacI and XhoI. The chloroplast genome of C. japonica was found to be a circular molecule with a total size of approximately 133 kb. This molecule lacked an inverted repeat. Twenty genes were localized on the physical map of C. japonica cpDNA by Southern hybridization. The chloroplast genome structure of C. japonica showed considerable rearrangements of the standard genome type found in vascular plants and differed markedly from that of tobacco. The difference was explicable by one deletion and five inversions. The chloroplast genome of C. japonica differed too from that of the genus Pinus which also lacks one of the inverted repeats. The results indicate that the conifer group originated monophyletically from an ancient lineage, and diverged independently after loss of an inverted repeat structure.
Collapse
Affiliation(s)
- Y Tsumura
- Bio-resource Technology Division, Forestry and Forest Products Research Institute, Kukizaki, 305, Ibaraki, Japan
| | | | | | | |
Collapse
|
96
|
Fitter JT, Rose RJ. Investigation of chloroplast DNA heteroplasmy in Medicago sativa L. using cultured tissue. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1993; 86:65-70. [PMID: 24193384 DOI: 10.1007/bf00223809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/1992] [Accepted: 09/03/1992] [Indexed: 06/02/2023]
Abstract
Medicago sativa L. cv Regen S is heteroplasmic for chloroplast DNA (cpDNA). Previous analyses of regenerated plants have shown a predominance of one of the cpDNAs which we have designated type A (the other we have designated type B). Studies of the replication of the two cpDNAs in tissue culture were carried out using leaflet expiants with defined cpDNA types and a distinguishing probe. The explants obtained showed a bias toward type A cpDNA during tissue culture. The data suggest that chloroplasts with different DNAs in a common nuclear background can multiply at different rates.
Collapse
Affiliation(s)
- J T Fitter
- Department of Biological Sciences, University of Newcastle, 2308, NSW, Australia
| | | |
Collapse
|
97
|
Tsudzuki J, Nakashima K, Tsudzuki T, Hiratsuka J, Shibata M, Wakasugi T, Sugiura M. Chloroplast DNA of black pine retains a residual inverted repeat lacking rRNA genes: nucleotide sequences of trnQ, trnK, psbA, trnI and trnH and the absence of rps16. MOLECULAR & GENERAL GENETICS : MGG 1992; 232:206-14. [PMID: 1557027 DOI: 10.1007/bf00279998] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A physical map of black pine (Pinus thunbergii) chloroplast DNA (120 kb) was constructed and two separate portions of its nucleotide sequence were determined. One portion contains trnQ-UUG, ORF510, ORF83, trnK-UUU (ORF515 in the trnK intron), ORF22, psbA, trnI-CAU (on the opposing strand) and trnH-GUG, in that order. Sequence analysis of another portion revealed the presence of a 495 bp inverted repeat containing trnI-CAU and the 3' end of psbA but lacking rRNA genes. The position of trnI-CAU is unique because most chloroplast DNAs have no gene between psbA and trnH (trnI-CAU is usually located further downstream). Black pine chloroplast DNA lacks rps16, which has been found between trnQ and trnK in angiosperm chloroplast DNAs, but possesses ORF510 instead. This ORF is highly homologous to ORF513 found in the corresponding region of liverwort chloroplast DNA and ORF563 located downstream from trnT in Chlamydomonas moewusii chloroplast DNA. A possible pathway for the evolution of black pine chloroplast DNA is discussed.
Collapse
Affiliation(s)
- J Tsudzuki
- Sugiyama Jogakuen University, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
98
|
Comparison of Chloroplast and Mitochondrial Genome Evolution in Plants. PLANT GENE RESEARCH 1992. [DOI: 10.1007/978-3-7091-9138-5_3] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
99
|
|
100
|
Ali IF, Neale DB, Marshall KA. Chloroplast DNA restriction fragment length polymorphism in Sequoia sempervirens D. Don Endl., Pseudotsuga menziesii (Mirb.) Franco, Calocedrus decurrens (Torr.), and Pinus taeda L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1991; 81:83-89. [PMID: 24221163 DOI: 10.1007/bf00226116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/1990] [Accepted: 07/13/1990] [Indexed: 06/02/2023]
Abstract
The extent and type of chloroplast DNA restriction fragment length polymorphism was determined among individual tree samples of coast redwood, Douglas fir, incense-cedar, and loblolly pine. A total of 107 trees was surveyed for three restriction enzymes (BamHI, EcoRI, HindIII) and six chloroplast DNA probes from petunia (P3, P4, P6, P8, P10, S8). The probes comprise 64% of the petunia chloroplast genome. Polymorphisms were detected in all species but loblolly pine. Coast redwood and incense-cedar had a small number of rare variants, whereas Douglas fir had one highly polymorphic region of insertions/deletions in sequences revealed by the P6 probe from petunia. The mutation hotspot is currently being studied by DNA sequence analysis.
Collapse
Affiliation(s)
- I F Ali
- U.S. Department of Agriculture, Institute of Forest Genetics, Pacific Southwest Forest and Range Experiment Station, Forest Service, Box 245, 94701, Berkeley, CA, USA
| | | | | |
Collapse
|