51
|
Abstract
The dentine-pulp complex displays exquisite regenerative potential in response to injury. The postnatal dental pulp contains a variety of potential progenitor/stem cells, which may participate in dental regeneration. A population of multipotent mesenchymal progenitor cells known as dental pulp stem cells with high proliferative potential for self-renewal has been described and may be important to the regenerative capacity of the tissue. The nature of the progenitor/stem cell populations in the pulp is of importance in understanding their potentialities and development of isolation or recruitment strategies, and allowing exploitation of their use in regeneration and tissue engineering. Various strategies will be required to ensure not only effective isolation of these cells, but also controlled signalling of their differentiation and regulation of secretory behaviour. Characterization of these cells and determination of their potentialities in terms of specificity of regenerative response will form the foundation for development of new clinical treatment modalities, whether involving directed recruitment of the cells and seeding of stem cells at sites of injury for regeneration or use of the stem cells with appropriate scaffolds for tissue engineering solutions. Such approaches will provide an innovative and novel biologically based new generation of clinical treatments for dental disease.
Collapse
Affiliation(s)
- A J Sloan
- Oral Surgery, Medicine & Pathology, School of Dentistry, Cardiff University, Heath Park, Cardiff, UK.
| | | |
Collapse
|
52
|
Ye L, Le T, Zhu L, Butcher K, Schneider R, Li W, Den Besten P. Amelogenins in human developing and mature dental pulp. J Dent Res 2007; 85:814-8. [PMID: 16931863 PMCID: PMC2243219 DOI: 10.1177/154405910608500907] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Amelogenins are a group of heterogenous proteins first identified in developing tooth enamel and reported to be present in odontoblasts. The objective of this study was to elucidate the expression and function of amelogenins in the human dentin-pulp complex. Developing human tooth buds were immunostained for amelogenin, and mRNA was detected by in situ hybridization. The effects of recombinant amelogenins on pulp and papilla cell proliferation were measured by Brd U immunoassay, and differentiation was monitored by alkaline phosphatase expression. Amelogenin protein was found in the forming dentin matrix, and amelogenin mRNA was localized in the dentin, presumably in the odontoblast processes. Proliferation of papilla cells was enhanced by recombinant human amelogenin rH72 (LRAP+ exon 4), while pulp cells responded to both rH72 and rH58 (LRAP), with no effect by rH174. These studies suggest that odontoblasts actively synthesize and secrete amelogenin protein during human tooth development, and that low-molecular-weight amelogenins can enhance pulp cell proliferation.
Collapse
Affiliation(s)
- L. Ye
- Department of Orofacial Sciences, University of California at San Francisco, Box #0422, San Francisco, CA 94143-0422, USA
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China
| | - T.Q. Le
- Department of Orofacial Sciences, University of California at San Francisco, Box #0422, San Francisco, CA 94143-0422, USA
| | - L. Zhu
- Department of Orofacial Sciences, University of California at San Francisco, Box #0422, San Francisco, CA 94143-0422, USA
| | - K. Butcher
- Department of Orthopedic Surgery, University of California at San Francisco, Box #0422, San Francisco, CA 94143-0422, USA
| | - R.A. Schneider
- Department of Orthopedic Surgery, University of California at San Francisco, Box #0422, San Francisco, CA 94143-0422, USA
| | - W. Li
- Department of Orofacial Sciences, University of California at San Francisco, Box #0422, San Francisco, CA 94143-0422, USA
| | - P.K. Den Besten
- Department of Orofacial Sciences, University of California at San Francisco, Box #0422, San Francisco, CA 94143-0422, USA
- corresponding author,
| |
Collapse
|
53
|
Mei YF, Yamaza T, Atsuta I, Danjo A, Yamashita Y, Kido MA, Goto M, Akamine A, Tanaka T. Sequential expression of endothelial nitric oxide synthase, inducible nitric oxide synthase, and nitrotyrosine in odontoblasts and pulp cells during dentin repair after tooth preparation in rat molars. Cell Tissue Res 2007; 328:117-27. [PMID: 17216200 DOI: 10.1007/s00441-005-0003-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 05/03/2005] [Indexed: 01/09/2023]
Abstract
Nitric oxide (NO) stimulates osteoblast differentiation, but whether NO contributes to odontoblast differentiation during dentin repair is unknown. By using reverse transcription/polymerase chain reaction and immunostaining, we investigated the gene expression and/or immunolocalization of endothelial NO synthase (eNOS), inducible NOS (iNOS), and nitrotyrosine (a biomarker for NO-derived peroxinitrite), and alkaline phosphatase (ALP) and osteocalcin (early and terminal differentiation markers of odontoblasts, respectively) in dental pulp tissue after rat tooth preparation. At the early stage (1-3 days) post-preparation, markedly increased expression of iNOS and nitrotyrosine was found in odontoblasts and pulp cells beneath the cavity, whereas eNOS expression was significantly decreased. ALP mRNA expression was significantly increased after 1 day but decreased after 3 days, whereas ALP activity was weak in the dentin-pulp interface under the cavity after 1 day but strong after 3 days. Osteocalcin mRNA expression was significantly increased at this stage. At 7 days post-preparation, tertiary dentin was formed under the cavity. All the molecules studied were expressed at control levels in odontoblasts/pulp cells beneath the cavity. These findings show that abundant NO is released from odontoblasts and pulp cells at an early stage after tooth preparation and indicate that, after tooth preparation, the up-regulation of iNOS and nitrotyrosine in odontoblasts is synchronized with increased cellular expression of ALP and osteocalcin. Therefore, the NO synthesized by iNOS after tooth preparation probably participates in regulating odontoblast differentiation during tertiary dentinogenesis.
Collapse
Affiliation(s)
- Yu Feng Mei
- Department of Oral Anatomy and Cell Biology, Kyushu University Graduate School of Dental Science, Fukuoka, 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Yang X, van den Dolder J, Walboomers XF, Zhang W, Bian Z, Fan M, Jansen JA. The odontogenic potential of STRO-1 sorted rat dental pulp stem cellsin vitro. J Tissue Eng Regen Med 2007; 1:66-73. [DOI: 10.1002/term.16] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
55
|
Ye L, Peng L, Tan H, Zhou X. HGF enhanced proliferation and differentiation of dental pulp cells. J Endod 2006; 32:736-41. [PMID: 16861072 DOI: 10.1016/j.joen.2006.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 01/11/2006] [Accepted: 01/14/2006] [Indexed: 12/21/2022]
Abstract
Hepatocyte growth factor (HGF) is mesenchymal-derived growth factor acting through a transmembrane tyrosine kinase receptor, c-met. HGF has multiple effects on different cells. However, its function in dentinogenesis remains unclear. In this study, the expression of HGF in human dental pulp cells (DPCs) in vitro was studied by immunostaining and RT-PCR. The effect of HGF on DPCs proliferation was determined by MTT, while its effect on cell differentiation was analyzed using ALPase activity, and further confirmed with ALP and DSPP mRNA and protein expression. Immunostaining revealed that HGF was found mainly in the cytoplasm of DPCs. RT-PCR analysis showed that both HGF and c-met were expressed from the DPCs. Exogenous addition of HGF enhanced proliferation and differentiation of DPCs by up-regulating CREB, ELK-1, and PPAR-gamma. U0126, an ERK/MAPK inhibitor, inhibited the effects of HGF on DPCs. It was concluded that HGF stimulated both proliferation and differentiation of DPCs, at least partially through the ERK/MAPK pathway.
Collapse
Affiliation(s)
- Ling Ye
- West China School of Stomatology, Sichuan University, Sichuan, China
| | | | | | | |
Collapse
|
56
|
Iohara K, Zheng L, Ito M, Tomokiyo A, Matsushita K, Nakashima M. Side population cells isolated from porcine dental pulp tissue with self-renewal and multipotency for dentinogenesis, chondrogenesis, adipogenesis, and neurogenesis. Stem Cells 2006; 24:2493-503. [PMID: 16873765 DOI: 10.1634/stemcells.2006-0161] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dental pulp has the potential to form dentin as a regenerative response to caries. This regeneration is mediated by stem/progenitor cells. Thus, stem cell therapy might be of potential utility in induction of reparative dentin. We isolated side population (SP) cells from dental pulp based on the exclusion of the DNA binding dye Hoechst 33342 by flow cytometry and compared its self-renewal capacities and multipotency with non-SP cells and primary pulp cells. The cumulative cell number of the SP cells was greater than the non-SP cells and primary pulp cells. Bmi1 was continuously expressed in SP cells, suggesting longer proliferative lifespan and self-renewal capacity of SP cells. Next, the maintenance of the multilineage differentiation potential of pulp SP cells was investigated. Expression of type II collagen and aggrecan confirmed chondrogenic conversion (30%) of SP cells. SP cells expressed peroxisome proliferator-activated receptor gamma and adaptor protein 2, showing adipogenic conversion. Expression of mRNA and proteins of neurofilament and neuromodulin confirmed neurogenic conversion (90%). These results demonstrate that pulp SP cells maintain multilineage differentiation potential. We further examined whether bone morphogenetic protein 2 (BMP2) could induce differentiation of pulp SP cells into odontoblasts. BMP2 stimulated the expression of dentin sialophosphoprotein (Dspp) and enamelysin in three-dimensional pellet cultures. Autogenous transplantation of the Bmp2-supplemented SP cells on the amputated pulp stimulated the reparative dentin formation. Thus, adult pulp contains SP cells, which are enriched for stem cell properties and useful for cell therapy with BMP2 for dentin regeneration.
Collapse
Affiliation(s)
- Koichiro Iohara
- Laboratory of Oral Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
57
|
Fujiwara S, Kumabe S, Iwai Y. Isolated rat dental pulp cell culture and transplantation with an alginate scaffold. Okajimas Folia Anat Jpn 2006; 83:15-24. [PMID: 16862747 DOI: 10.2535/ofaj.83.15] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Many studies have been conducted on tissue stem cells in the field of regenerative medicine, and cultured dental pulp mesenchymal cells have been reported to secrete dentin matrix. In the present study we used alginate as a scaffold to transplant subcultured rat dental-pulp-derived cells subcutaneously into the back of nude mice. We found that when beta-glycerophosphate was added to the culture medium, the mRNA of the dentin sialophosphoprotein (DSPP) gene coding dentin sialoprotein (DSP) and dentin phosphoprotein (DPP) was expressed, and an increase in alkaline phosphatase, an early marker of odontoblast differentiation, was also demonstrated. Six weeks after implantation, subcutaneous formation of radiopaque calcified bodies was observed in situ. Immunohistochemical and fine structure studies identified expression of type I collagen, type III collagen, and DSP in the mineralizing transplants, and isolated odontoblast-like cells began to form dentin-like hard tissue formation. Scattered autolyzing apoptotic cells were also observed in the transplants. The study showed that subcultured rat dental-pulp-derived cells actively differentiate into odontoblast-like cells and induce calcification in an alginate scaffold.
Collapse
Affiliation(s)
- Shiro Fujiwara
- Department of Oral Anatomy, Osaka Dental University, Japan
| | | | | |
Collapse
|
58
|
Kumabe S, Nakatsuka M, Kim GS, Jue SS, Aikawa F, Shin JW, Iwai Y. Human dental pulp cell culture and cell transplantation with an alginate scaffold. Okajimas Folia Anat Jpn 2006; 82:147-55. [PMID: 16526573 DOI: 10.2535/ofaj.82.147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many studies on tissue stem cells have been conducted in the field of regenerative medicine, and some studies have indicated that cultured dental pulp mesenchymal cells secrete dentin matrix. In the present study we used alginate as a scaffold to transplant subcultured human dental pulp cells subcutaneously into the backs of nude mice. We found that when beta-glycerophosphate was added to the culture medium, dentin sialophosphoprotein mRNA coding dentin sialoprotein (DSP) was expressed. An increase in alkaline phosphatase, which is an early marker for odontoblast differentiation, was also demonstrated. At 6 weeks after implantation the subcutaneous formation of radio-opaque calcified bodies was observed in situ. Immunohistochemical and fine structure studies identified expression of type I collagen, type III collagen, and DSP in the mineralizing transplants. Isolated odontoblast-like cells initiated dentin-like hard tissue formation and scattered autolyzing apoptotic cells were also observed in the transplants. The study showed that subcultured dental pulp cells actively differentiate into odontoblast-like cells and induce calcification in an alginate scaffold.
Collapse
Affiliation(s)
- Shunji Kumabe
- Department of Oral Anatomy, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata-shi, Osaka 573-1121, Japan.
| | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
Postnatal stem cells have been isolated from a variety of tissues. These stem cells are thought to possess great therapeutic potential for repairing damaged and/or defective tissues. Clinically, hematopoietic stem cells have been successfully used for decades in the treatment of various diseases and disorders. However, the therapeutic potential of other postnatal stem cell populations has yet to be realized, because of the lack of detailed understanding of their stem cell characteristics at the cellular and molecular levels. Furthermore, there is limited knowledge of their therapeutic value at the preclinical level. Therefore, it is necessary to develop optimal strategies and approaches to overcome the substantial challenges currently faced by researchers examining the clinical efficacy of different postnatal stem cell populations. In this review, we introduce methodologies for isolating postnatal stem cells from human dental pulp and discuss their potential role in tissue regeneration.
Collapse
Affiliation(s)
- He Liu
- Peking University School of Stomatology, Beijing, China
| | | | | |
Collapse
|
60
|
Liu H, Li W, Shi S, Habelitz S, Gao C, Denbesten P. MEPE is downregulated as dental pulp stem cells differentiate. Arch Oral Biol 2005; 50:923-8. [PMID: 16183369 DOI: 10.1016/j.archoralbio.2005.03.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 03/01/2005] [Indexed: 01/09/2023]
Abstract
UNLABELLED Previous studies on dental pulp cell culture have described heterogenous mixtures of cells that differentiate into odontoblasts and form mineralized dentin. OBJECTIVE The aim of this study was to characterize the matrix extracellular phosphoglycoprotein (MEPE) expression by dental pulp stem cells (DPSC), related to cell differentiation. DESIGN DPSC differentiation to form mineralized nodules was characterized by Alizarin red staining and micro-Raman spectroscopy. Osteogenesis SuperArray analysis was used to broadly screen for osteogenesis-related genes altered by DPSC differentiation. Relative levels of expression of MEPE and DSP were determined by semiquantitative RT-PCR and Western blot. RESULTS Mineral analysis showed that as DPSC differentiated, they formed a carbonated hydroxyapatite mineral. Differentiation was initially marked by upregulation by Runx2, TGFbeta-related genes, EGFR and genes involved in collagen metabolism. ALP activity first increased, as DPSCs reached confluence but later decreased when cells further differentiated three weeks after confluence. MEPE was the only marker that was downregulated as DPSCs differentiated. CONCLUSION DPSC differentiation can be characterized by downregulation of MEPE as other markers of DPSC differentiation, such as DSP, are upregulated. Expression of MEPE related to DSP and can be used to monitor DPSC as they are used for studies of odontoblast differentiation, tissue engineering or vital pulp therapy. The downregulation of MEPE as DPSC differentiate, suggests that MEPE is an inhibitor of mineralization.
Collapse
Affiliation(s)
- He Liu
- University of California, San Francisco, Growth and Development, 521 Parnassus Avenue, Rm C734, Box 0640, San Francisco, CA 94143-0640, USA
| | | | | | | | | | | |
Collapse
|
61
|
Alliot-Licht B, Bluteau G, Magne D, Lopez-Cazaux S, Lieubeau B, Daculsi G, Guicheux J. Dexamethasone stimulates differentiation of odontoblast-like cells in human dental pulp cultures. Cell Tissue Res 2005; 321:391-400. [PMID: 15988617 DOI: 10.1007/s00441-005-1115-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 03/08/2005] [Indexed: 01/09/2023]
Abstract
Regenerative dental pulp strategies require the identification of precursors able to differentiate into odontoblast-like cells that secrete reparative dentin after injury. Pericytes have the ability to give rise to osteoblasts, chondrocytes, and adipocytes, a feature that has led to the suggestion that odontoblast-like cells could derive from these perivascular cells. In order to gain new insights into this hypothesis, we investigated the effects of dexamethasone (Dex), a synthetic glucocorticoid employed to induce osteogenic differentiation in vitro, in a previously reported model of human dental pulp cultures containing pericytes as identified by their expression of smooth muscle actin (SMA) and their specific ultrastructural morphology. Our data indicated that Dex (10(-8) M) significantly inhibited cell proliferation and markedly reduced the proportion of SMA-positive cells. Conversely, Dex strongly stimulated alkaline phosphatase (ALP) activity and induced the expression of the transcript encoding the major odontoblastic marker, dentin sialophosphoprotein. Nevertheless, parathyroid hormone/parathyroid hormone-related peptide receptor, core-binding factor a1/osf 2, osteonectin, and lipoprotein lipase mRNA levels were not modified by Dex treatment. Dex also increased the proportion of cells expressing STRO-1, a marker of multipotential mesenchymal progenitor cells. These observations indicate that glucocorticoids regulate the commitment of progenitors derived from dental pulp cells to form odontoblast-like cells, while reducing the proportion of SMA-positive cells. These results provide new perspectives in deciphering the cellular and molecular mechanisms leading to reparative dentinogenesis.
Collapse
Affiliation(s)
- Brigitte Alliot-Licht
- INSERM EM9903, School of Dental Surgery, 1 Place Alexis Ricordeau, 44042, Cedex 1 Nantes, France
| | | | | | | | | | | | | |
Collapse
|
62
|
Nakashima M. Bone morphogenetic proteins in dentin regeneration for potential use in endodontic therapy. Cytokine Growth Factor Rev 2005; 16:369-76. [PMID: 15878301 DOI: 10.1016/j.cytogfr.2005.02.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2004] [Accepted: 02/19/2005] [Indexed: 01/09/2023]
Abstract
The human dentition is indispensable for nutrition and physiology. The teeth have evolved for mastication of food. Caries is a common dental problem in which the dentin matrix is damaged. When the caries is deep and the dental pulp is exposed, the pulp has to be removed in many cases, resulting ultimately in loss of the tooth. Therefore, the regeneration of dentin-pulp complex is the long-term goal of operative dentistry and endodontics. The key elements of dentin regeneration are stem cells, morphogens such as bone morphogenetic proteins (BMPs) and a scaffold of extracellular matrix. The dental pulp has stem/progenitor cells that have the potential to differentiate into dentin-forming odontoblasts in response to BMPs. Pulpal wound healing consists of stem/progenitor cells release from dental pulp niche after noxious stimuli such as caries, migration to the injured site, proliferation and differentiation into odontoblasts. There are two main strategies for pulp therapy to regenerate dentin: (1) in vivo method of enhancing the natural healing potential of pulp tissue by application of BMP proteins or BMP genes, (2) ex vivo method of isolation of stem/progenitor cells, differentiation with BMP proteins or BMP genes and transplantation to the tooth. This review summarizes recent advances in application of BMPs for dentin regeneration and possible use in endodotic therapy.
Collapse
Affiliation(s)
- Misako Nakashima
- Laboratory of Oral Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Aichi 474-8522, Japan
| |
Collapse
|
63
|
Nakao K, Itoh M, Tomita Y, Tomooka Y, Tsuji T. FGF-2 potently induces both proliferation and DSP expression in collagen type I gel cultures of adult incisor immature pulp cells. Biochem Biophys Res Commun 2004; 325:1052-9. [PMID: 15541395 DOI: 10.1016/j.bbrc.2004.10.136] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Indexed: 01/09/2023]
Abstract
We investigated the effects of both cytokines and extracellular matrices on the proliferation and differentiation of immature adult rat incisor dental pulp cells. These immature cells, which have a high-proliferative potency in vitro and do not express mRNAs for dentin non-collagenous proteins such as dentin sialoprotein (DSP), bone sialoprotein (BSP), and osteocalcin, exist in the root regions of adult rat incisors. Fibroblast growth factor-2 (FGF-2) stimulated the proliferation of these immature cells and the subsequent production of mineralized calcium was induced by beta-glycerophosphate treatment. Additionally, FGF-2 dramatically induced the expression of DSP and BSP mRNAs, but only in collagen type I gel cultures, whereas neither plate-coated collagen type I nor fibronectin, laminin or collagen type IV cultures could produce this effect and generate sufficient physiological levels of these transcripts. Although bone morphogenetic protein-4 could not induce the proliferation of immature dental pulp cells nor upregulate DSP mRNA expression, it had a synergistic effect upon DSP transcript levels in conjunction with FGF-2. These results suggest that both the presence of FGF-2 and the three-dimensional formation of immature dental pulp cells in collagen type I gel cultures are essential for both DSP expression and odontoblast differentiation. These observations provide valuable information concerning the study of the commitment and differentiation of odontoblast lineages, and also provide a basis for the rational design of cytokine and extracellular matrix based compounds for regenerative therapies in new dental treatments.
Collapse
Affiliation(s)
- Kazuhisa Nakao
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
| | | | | | | | | |
Collapse
|
64
|
Magne D, Bluteau G, Lopez-Cazaux S, Weiss P, Pilet P, Ritchie HH, Daculsi G, Guicheux J. Development of an odontoblast in vitro model to study dentin mineralization. Connect Tissue Res 2004; 45:101-8. [PMID: 15763925 PMCID: PMC2020511 DOI: 10.1080/03008200490464839] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The aim of the present work was to characterize the odontoblastic proliferation, differentiation, and matrix mineralization in culture of the recently established M2H4 rat cell line. Proliferation was assessed by cell counts, differentiation by RT-PCR analysis, and mineralization by alizarin red staining, atomic absorption spectrometry, and FTIR microspectroscopy. The results showed that M2H4 cell behavior closely mimics in vivo odontoblast differentiation, with, in particular, temporally regulated expression of DMP-1 and DSPP. Moreover, the mineral phase formed by M2H4 cells was similar to that in dentin from rat incisors. Finally, because in mice, transforming growth factor (TGF)-beta1 over-expression in vivo leads to an hypomineralization similar to that observed in dentinogenesis imperfecta type II, effects of TGF-beta1 on mineralization in M2H4 cell culture were studied. Treatment with TGF-beta1 dramatically reduced mineralization, whereas positive control treatment with bone morphogenetic protein-4 enhanced it, suggesting that M2H4 cell line is a promising tool to explore the mineralization mechanisms in physiopathologic conditions.
Collapse
Affiliation(s)
- David Magne
- Matériaux d'intérêt biologique
INSERM : EPI9903Université de NantesFaculté de chirurgie dentaire
1 place Alexis Ricordeau BP84215
44042 Nantes,FR
| | - Gilles Bluteau
- Matériaux d'intérêt biologique
INSERM : EPI9903Université de NantesFaculté de chirurgie dentaire
1 place Alexis Ricordeau BP84215
44042 Nantes,FR
| | - Serena Lopez-Cazaux
- Matériaux d'intérêt biologique
INSERM : EPI9903Université de NantesFaculté de chirurgie dentaire
1 place Alexis Ricordeau BP84215
44042 Nantes,FR
| | - Pierre Weiss
- Matériaux d'intérêt biologique
INSERM : EPI9903Université de NantesFaculté de chirurgie dentaire
1 place Alexis Ricordeau BP84215
44042 Nantes,FR
| | - Paul Pilet
- Centre de microscopie électronique
CHU NantesUniversité de Nantes1 place Alexis Ricordeau
44042 Nantes,FR
| | - Helena H. Ritchie
- Department of Cariology, Restorative Sciences & Endodontics
University of MichiganSchool of Dentistry,US
| | - Guy Daculsi
- Matériaux d'intérêt biologique
INSERM : EPI9903Université de NantesFaculté de chirurgie dentaire
1 place Alexis Ricordeau BP84215
44042 Nantes,FR
| | - Jérôme Guicheux
- Matériaux d'intérêt biologique
INSERM : EPI9903Université de NantesFaculté de chirurgie dentaire
1 place Alexis Ricordeau BP84215
44042 Nantes,FR
- * Correspondence should be adressed to: Jérôme Guicheux
| |
Collapse
|
65
|
Nakashima M, Reddi AH. The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol 2003; 21:1025-32. [PMID: 12949568 DOI: 10.1038/nbt864] [Citation(s) in RCA: 282] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Progress in understanding the role of bone morphogenetic proteins (BMPs) in craniofacial and tooth development, the demonstration of stem cells in dental pulp and accumulating knowledge on biomaterial scaffolds have set the stage for tissue engineering and regenerative therapy of the craniofacial complex. Furthermore, the recent approval by the US Food and Drug Administration (FDA; Rockville, MD, USA) of recombinant human BMPs for accelerating bone fusion in slow-healing fractures indicates that this protein family may prove useful in designing regenerative treatments in dental applications. In the near term, these advances are likely to be applied to endodontics and periodontal surgery; ultimately, they may facilitate approaches to regenerating whole teeth for use in tooth replacement.
Collapse
Affiliation(s)
- Misako Nakashima
- Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | | |
Collapse
|
66
|
Mizuno M, Miyamoto T, Wada K, Watatani S, Zhang GX. Type I collagen regulated dentin matrix protein-1 (Dmp-1) and osteocalcin (OCN) gene expression of rat dental pulp cells. J Cell Biochem 2003; 88:1112-9. [PMID: 12647294 DOI: 10.1002/jcb.10466] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, we investigated the effect of type I collagen on dentin matrix protein-1 (Dmp-1) and osteocalcin (OCN) gene expression of dental pulp cells. The mRNA level of Dmp-1 gene was down-regulated; however, OCN gene expression was up-regulated by the culture of dental pulp cells with type I collagen. These findings imply that type I collagen regulates mRNA level of Dmp-1 and OCN gene that are predominantly expressed in active odontoblasts. The change of gene expression by type I collagen was suppressed by the blocking of collagen-integrin interaction. We could conclude that the effect of type I collagen was mediated via binding of collagen to integrin receptors.
Collapse
Affiliation(s)
- Morimichi Mizuno
- Department of Oral Health Science, School of Dentistry, Hokkaido University, Sapporo, Japan 060.
| | | | | | | | | |
Collapse
|
67
|
Nakashima M, Mizunuma K, Murakami T, Akamine A. Induction of dental pulp stem cell differentiation into odontoblasts by electroporation-mediated gene delivery of growth/differentiation factor 11 (Gdf11). Gene Ther 2002; 9:814-8. [PMID: 12040463 DOI: 10.1038/sj.gt.3301692] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2001] [Accepted: 02/05/2002] [Indexed: 12/13/2022]
Abstract
The long-term goal of dental treatment is to preserve teeth and prolong their function. In dental caries an efficient method is to cap the exposed dental pulp and conserve the pulp tissue with reparative dentin. We examined whether growth/differentiation factor 11 (GDF11), a morphogen could enhance the healing potential of pulp tissue to induce differentiation of pulp stem cells into odontoblasts by electroporation-mediated gene delivery. Recombinant human GDF11 induced the expression of dentin sialoprotein (Dsp), a differentiation marker for odontoblasts, in mouse dental papilla mesenchyme in organ culture. The Gdf11 cDNA plasmid which was transferred into mesenchymal cells derived from mouse dental papilla by electroporation, induced the expression of Dsp. The in vivo transfer of Gdf11 by electroporation stimulated the reparative dentin formation during pulpal wound healing in canine teeth. These results provide the scientific basis and rationale for gene therapy for endodontic treatments in oral medicine and dentistry.
Collapse
Affiliation(s)
- M Nakashima
- Department of Clinical Oral Molecular Biology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
68
|
Domart-Coulon IJ, Elbert DC, Scully EP, Calimlim PS, Ostrander GK. Aragonite crystallization in primary cell cultures of multicellular isolates from a hard coral, Pocillopora damicornis. Proc Natl Acad Sci U S A 2001; 98:11885-90. [PMID: 11593000 PMCID: PMC59737 DOI: 10.1073/pnas.211439698] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The foundation of marine coral reef ecosystems is calcium carbonate accumulated primarily by the action of hard corals (Coelenterata: Anthozoa: Scleractinia). Colonial hard coral polyps cover the surface of the reef and deposit calcium carbonate as the aragonite polymorph, stabilized into a continuous calcareous skeleton. Scleractinian coral skeleton composition and architecture are well documented; however, the cellular mechanisms of calcification are poorly understood. There is little information on the nature of the coral cell types involved or their cooperation in biocalcification. We report aragonite crystallization in primary cell cultures of a hard coral, Pocillopora damicornis. Cells of apical coral colony fragments were isolated by spontaneous in vitro dissociation. Single dissociated cell types were separated by density in a discontinuous Percoll gradient. Primary cell cultures displayed a transient increase in alkaline phosphatase (ALP) activity, to the level observed in intact corals. In adherent multicellular isolate cultures, enzyme activation was followed by precipitation of aragonite. Modification of the ionic formulation of the medium prolonged maintenance of isolates, delayed ALP activation, and delayed aragonite precipitation. These results demonstrate that in vitro crystallization of aragonite in coral cell cultures is possible, and provides an innovative approach to investigate reef-building coral calcification at the cellular level.
Collapse
Affiliation(s)
- I J Domart-Coulon
- Department of Biology and Division of Comparative Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
69
|
Ueno A, Kitase Y, Moriyama K, Inoue H. MC3T3-E1-conditioned medium-induced mineralization by clonal rat dental pulp cells. Matrix Biol 2001; 20:347-55. [PMID: 11566269 DOI: 10.1016/s0945-053x(01)00141-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dental pulp is thought to participate in supplementary mineralization, such as reparative dentin and pulp stones, but no direct proof of this has been reported. To study this process at a molecular level, we investigated the matrix mineralization of dental pulp using a clonal cell line (RPC-C2A) derived from rat incisor dental pulp. Mineralized nodules in extracellular matrix were formed by RPC-C2A cells cultured in the presence of conditioned medium (CM) from confluent osteoblastic MC3T3-E1 cells. These nodules were stained by the von Kossa method and with alizarin red S and quantified by the measurement of acid-soluble calcium deposition. This CM was most effective when collected 3-6 days after confluency and added at 50% to the culture medium. The CM-treated RPC-C2A cells showed high alkaline phosphatase activity, a high mRNA level of osteocalcin and decreases in the mRNA levels of osteopontin and osteonectin, but undetectable levels of mRNA of dentin sialophosphoprotein by Northern blot analyses. A pan-specific anti-transforming growth factor (TGF)-beta antibody and a soluble form of receptor for bone morphogenetic protein (BMP)-2/-4 did not neutralize the CM-induced mineralization. These results suggest that some soluble factor(s) other than TGF-beta or BMP-2/-4 in the CM from MC3T3-E1 cells cause differentiation of RPC-C2A cells to osteoblast-like cells.
Collapse
Affiliation(s)
- A Ueno
- Department of Biochemistry, School of Dentistry, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan.
| | | | | | | |
Collapse
|