51
|
Diabetes can change the viscoelastic properties of lymphocytes. Prog Biomater 2018; 7:219-224. [PMID: 30173382 PMCID: PMC6173677 DOI: 10.1007/s40204-018-0096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022] Open
Abstract
Mechanical properties of the cells are among the most highlighted area of interests among researchers for decades. Not only many of the cells' crucial functional characteristics such as adherence to the cellular substrate, migration abilities and morphological factors are directly influenced by their mechanical properties but also changes in these traits could have importance in diagnosis and even treatments of some serious diseases. The general mechanical properties of the cells are associated with some intercellular characteristics such as arrangement and organization of the actin fibers and cytoskeleton architecture. Any changes due to pathological conditions in the molecular and cellular processes related to these elements can alter the cells' mechanical characteristics. In this paper, the viscoelastic properties of diabetic and normal lymphocytes were analyzed and compared by application of the iron nanoparticles attached to the cellular membrane and putting the cells in a magnetic field with certain frequency and intensity. Step force was applied to the normal and diabetic lymphocytes and their membrane displacement was tracked by special software and plotted with respect to time. Fitting the experimental data on theoretical formulation of standard linear viscoelastic model, it was demonstrated that diabetic lymphocytes have significantly different viscoelastic characteristics. The results of this paper can be of importance in assessments of diabetic lymphocytes' abilities to fulfill their immune surveillance tasks.
Collapse
|
52
|
Zemła J, Stachura T, Gross-Sondej I, Górka K, Okoń K, Pyka-Fościak G, Soja J, Sładek K, Lekka M. AFM-based nanomechanical characterization of bronchoscopic samples in asthma patients. J Mol Recognit 2018; 31:e2752. [PMID: 30019775 DOI: 10.1002/jmr.2752] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/16/2018] [Accepted: 06/10/2018] [Indexed: 12/11/2022]
Abstract
Asthma is not a single disease, but recently, it is considered as a syndrome characterized through various clinical presentations and different etiopathologies. Large degree of the disease heterogeneity manifests in distinct characteristics that translate into variability of properties at single cell and molecular levels. Here, we conducted measurements of mechanical properties of bronchial tissue samples collected from patients suffering from asthma. The results obtained from different applied protocols for sample preparation may indicate that deep freezing and storage in liquid nitrogen, followed by consecutive unfreezing of tissue samples, preserve tissue mechanical properties as indicated by a parameter referred here as a tissue relative stiffness index. Tissue relative stiffness index quantifies both the degree of heterogeneity and deformability of tissue samples regarding healthy one. These studies demonstrate that the freezing protocol, optimized towards asthma tissue, can facilitate atomic force microscopy use what, together with recent findings on standardization of elasticity measurements, enables the measurements of large group of samples with minimized influence of errors stemming from the applied methodology of tissue stiffness determination.
Collapse
Affiliation(s)
- Joanna Zemła
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Tomasz Stachura
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Śniadeckich 10, 31-531, Kraków, Poland
| | - Iwona Gross-Sondej
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Śniadeckich 10, 31-531, Kraków, Poland
| | - Karolina Górka
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Śniadeckich 10, 31-531, Kraków, Poland
| | - Krzysztof Okoń
- Department of Pathomorphology, Jagiellonian University Medical College, Grzegórzecka 16, 31-531, Kraków, Poland
| | - Grażyna Pyka-Fościak
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034, Kraków, Poland
| | - Jerzy Soja
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Śniadeckich 10, 31-531, Kraków, Poland
| | - Krzysztof Sładek
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Śniadeckich 10, 31-531, Kraków, Poland
| | - Małgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland
| |
Collapse
|
53
|
Nanoscale characterization of dynamic cellular viscoelasticity by atomic force microscopy with varying measurement parameters. J Mech Behav Biomed Mater 2018; 82:193-201. [DOI: 10.1016/j.jmbbm.2018.03.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/14/2018] [Accepted: 03/26/2018] [Indexed: 12/23/2022]
|
54
|
Viji Babu PK, Rianna C, Belge G, Mirastschijski U, Radmacher M. Mechanical and migratory properties of normal, scar, and Dupuytren's fibroblasts. J Mol Recognit 2018; 31:e2719. [PMID: 29701269 DOI: 10.1002/jmr.2719] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/11/2018] [Accepted: 03/14/2018] [Indexed: 11/08/2022]
Abstract
Mechanical properties of myofibroblasts play a key role in Dupuytren's disease. Here, we used atomic force microscopy to measure the viscoelastic properties of 3 different types of human primary fibroblasts derived from a same patient: normal and scar dermal fibroblasts and palmar fascial fibroblasts from Dupuytren's nodules. Different stiffness hydrogels (soft ~1 kPa and stiff ~ 50 kPa) were used as cell culture matrix to mimic the mechanical properties of the natural tissues, and atomic force microscopy step response force curves were used to discriminate between elastic and viscous properties of cells. Since transforming growth factor-β1 (TGF-β1) is known to induce expression of α-smooth muscle actin positive stress fibers in myofibroblasts, we investigated the behavior of these fibroblasts before and after applying TGF-β1. Finally, we performed an in vitro cell motility test, the wound healing or scratch assay, to evaluate the migratory properties of these fibroblasts. We found that (1) Dupuytren's fibroblasts are stiffer than normal and scar fibroblasts, the elastic modulus E ranging from 4.4, 2.1, to 1.8 kPa, for Dupuytren's, normal and scar fibroblasts, respectively; (2) TGF-β1 enhances the level of α-smooth muscle actin expression and thus cell stiffness in Dupuytren's fibroblasts (E, ~6.2 kPa); (3) matrix stiffness influences cell mechanical properties most prominently in Dupuytren's fibroblasts; and (4) Dupuytren's fibroblasts migrate slower than the other fibroblasts by a factor of 3. Taking together, our results showed that mechanical and migratory properties of fibroblasts might help to discriminate between different pathological conditions, helping to identify and recognize specific cell phenotypes.
Collapse
Affiliation(s)
| | - Carmela Rianna
- Institute of Biophysics, University of Bremen, Bremen, Germany
| | - Gazanfer Belge
- Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Ursula Mirastschijski
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Klinikum Bremen-Mitte, and Wound Repair Unit, CBIB, University of Bremen, Bremen, Germany
| | | |
Collapse
|
55
|
Sapudom J, Pompe T. Biomimetic tumor microenvironments based on collagen matrices. Biomater Sci 2018; 6:2009-2024. [DOI: 10.1039/c8bm00303c] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review provides an overview of the current approaches to engineer defined 3D matrices for the investigation of tumor cell behaviorin vitro, with a focus on collagen-based fibrillar systems.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Biophysical Chemistry Group
- Institute of Biochemistry
- Faculty of Life Sciences
- Leipzig University
- Leipzig 04103
| | - Tilo Pompe
- Biophysical Chemistry Group
- Institute of Biochemistry
- Faculty of Life Sciences
- Leipzig University
- Leipzig 04103
| |
Collapse
|
56
|
Korayem MH, Shahali S, Rastegar Z. Experimental determination of folding factor of benign breast cancer cell (MCF10A) and its effect on contact models and 3D manipulation of biological particles. Biomech Model Mechanobiol 2017; 17:745-761. [DOI: 10.1007/s10237-017-0990-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/20/2017] [Indexed: 10/18/2022]
|
57
|
Syed S, Schober J, Blanco A, Zustiak SP. Morphological adaptations in breast cancer cells as a function of prolonged passaging on compliant substrates. PLoS One 2017; 12:e0187853. [PMID: 29136040 PMCID: PMC5685588 DOI: 10.1371/journal.pone.0187853] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/29/2017] [Indexed: 11/19/2022] Open
Abstract
Standard tissue culture practices involve propagating cells on tissue culture polystyrene (TCP) dishes, which are flat, 2-dimensional (2D) and orders of magnitude stiffer than most tissues in the body. Such simplified conditions lead to phenotypical cell changes and altered cell behaviors. Hence, much research has been focused on developing novel biomaterials and culture conditions that more closely emulate in vivo cell microenvironments. In particular, biomaterial stiffness has emerged as a key property that greatly affects cell behaviors such as adhesion, morphology, proliferation and motility among others. Here we ask whether cells that have been conditioned to TCP, would still show significant dependence on substrate stiffness if they are first pre-adapted to a more physiologically relevant environment. We used two commonly utilized breast cancer cell lines, namely MDA-MB-231 and MCF-7, and examined the effect of prolonged cell culturing on polyacrylamide substrates of varying compliance. We followed changes in cell adhesion, proliferation, shape factor, spreading area and spreading rate. After pre-adaptation, we noted diminished differences in cell behaviors when comparing between soft (1 kPa) and stiff (103 kPa) gels as well as rigid TCP control. Prolonged culturing of cells on complaint substrates further influenced responses of pre-adapted cells when transferred back to TCP. Our results have implications for the study of stiffness-dependent cell behaviors and indicate that cell pre-adaptation to the substrate needs consideration.
Collapse
Affiliation(s)
- Sana Syed
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Joseph Schober
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Alexandra Blanco
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Silviya Petrova Zustiak
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, Missouri, United States of America
| |
Collapse
|
58
|
Garcia PD, Guerrero CR, Garcia R. Time-resolved nanomechanics of a single cell under the depolymerization of the cytoskeleton. NANOSCALE 2017; 9:12051-12059. [PMID: 28795733 DOI: 10.1039/c7nr03419a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Single cell stiffness measurements consider cells as passive and elastic materials which react instantaneously to an external force. This approximation is at odds with the complex structure of the cell which includes solid and liquid components. Here we develop a force microscopy method to measure the time and frequency dependencies of the elastic modulus, the viscosity coefficient, the loss modulus and the relaxation time of a single live cell. These parameters have different time and frequency dependencies. At low modulation frequencies (0.2-4 Hz), the elastic modulus remains unchanged; the loss modulus increases while the viscosity and the relaxation time decrease. We have followed the evolution of a fibroblast cell subjected to the depolymerization of its F-actin cytoskeleton. The elastic modulus, the loss modulus and the viscous coefficient decrease with the exposure time to the depolymerization drug while the relaxation time increases. The latter effect reflects that the changes in the elastic response happen at a higher rate than those affecting the viscous flow. The observed behavior is compatible with a cell mechanical response described by the poroelastic model.
Collapse
Affiliation(s)
- Pablo D Garcia
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana Ines de la Cruz 3, 28049 Madrid, Spain.
| | - Carlos R Guerrero
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana Ines de la Cruz 3, 28049 Madrid, Spain.
| | - Ricardo Garcia
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana Ines de la Cruz 3, 28049 Madrid, Spain.
| |
Collapse
|
59
|
Nematbakhsh Y, Pang KT, Lim CT. Correlating the viscoelasticity of breast cancer cells with their malignancy. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa7ffb] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
60
|
Yango A, Schäpe J, Rianna C, Doschke H, Radmacher M. Measuring the viscoelastic creep of soft samples by step response AFM. SOFT MATTER 2016; 12:8297-8306. [PMID: 27714302 DOI: 10.1039/c6sm00801a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We have measured the creep response of soft gels and cells after applying a step in loading force with atomic force microscopy (AFM). By analysing the creep response data using the standard linear solid model, we can quantify the viscous and elastic properties of these soft samples independently. Cells, in comparison with gels of similar softness, are much more viscous, as has been qualitatively observed in conventional force curve data before. Here, we quantify the spring constant and the viscous damping coefficient from the creep response data. We propose two different modes for applying a force step: (1) indirectly by increasing the sample height or (2) directly by employing magnetic cantilevers. Both lead to similar results, whereas the latter seems to be better defined since it resembles closely a constant strain mode. The former is easier to implement in most instruments, and thus may be preferable from a practical point of view. Creep analysis by step response is much more appropriate to analyse the viscoelastic response of soft samples like cells than the usually used force curve analysis.
Collapse
Affiliation(s)
- Achu Yango
- Institute of Biophysics, University of Bremen, Otto-Hahn Allee 1, 28359 Bremen, Germany.
| | - Jens Schäpe
- Institute of Biophysics, University of Bremen, Otto-Hahn Allee 1, 28359 Bremen, Germany.
| | - Carmela Rianna
- Institute of Biophysics, University of Bremen, Otto-Hahn Allee 1, 28359 Bremen, Germany.
| | - Holger Doschke
- Institute of Biophysics, University of Bremen, Otto-Hahn Allee 1, 28359 Bremen, Germany.
| | - Manfred Radmacher
- Institute of Biophysics, University of Bremen, Otto-Hahn Allee 1, 28359 Bremen, Germany.
| |
Collapse
|