51
|
Vogt C, Lueders T, Richnow HH, Krüger M, von Bergen M, Seifert J. Stable Isotope Probing Approaches to Study Anaerobic Hydrocarbon Degradation and Degraders. J Mol Microbiol Biotechnol 2016; 26:195-210. [DOI: 10.1159/000440806] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Stable isotope probing (SIP) techniques have become state-of-the-art in microbial ecology over the last 10 years, allowing for the targeted detection and identification of organisms, metabolic pathways and elemental fluxes active in specific processes within complex microbial communities. For studying anaerobic hydrocarbon-degrading microbial communities, four stable isotope techniques have been used so far: DNA/RNA-SIP, PLFA (phospholipid-derived fatty acids)-SIP, protein-SIP, and single-cell-SIP by nanoSIMS (nanoscale secondary ion mass spectrometry) or confocal Raman microscopy. DNA/RNA-SIP techniques are most frequently applied due to their most meaningful phylogenetic resolution. Especially using <sup>13</sup>C-labeled benzene and toluene as model substrates, many new hydrocarbon degraders have been identified by SIP under various electron acceptor conditions. This has extended the current perspective of the true diversity of anaerobic hydrocarbon degraders relevant in the environment. Syntrophic hydrocarbon degradation was found to be a common mechanism for various electron acceptors. Fundamental concepts and recent advances in SIP are reflected here. A discussion is presented concerning how these techniques generate direct insights into intrinsic hydrocarbon degrader populations in environmental systems and how useful they are for more integrated approaches in the monitoring of contaminated sites and for bioremediation.
Collapse
|
52
|
Cupples AM. Contaminant-Degrading Microorganisms Identified Using Stable Isotope Probing. Chem Eng Technol 2016. [DOI: 10.1002/ceat.201500479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
53
|
Genome-Resolved Metagenomic Analysis Reveals Roles for Candidate Phyla and Other Microbial Community Members in Biogeochemical Transformations in Oil Reservoirs. mBio 2016; 7:e01669-15. [PMID: 26787827 PMCID: PMC4725000 DOI: 10.1128/mbio.01669-15] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oil reservoirs are major sites of methane production and carbon turnover, processes with significant impacts on energy resources and global biogeochemical cycles. We applied a cultivation-independent genomic approach to define microbial community membership and predict roles for specific organisms in biogeochemical transformations in Alaska North Slope oil fields. Produced water samples were collected from six locations between 1,128 m (24 to 27°C) and 2,743 m (80 to 83°C) below the surface. Microbial community complexity decreased with increasing temperature, and the potential to degrade hydrocarbon compounds was most prevalent in the lower-temperature reservoirs. Sulfate availability, rather than sulfate reduction potential, seems to be the limiting factor for sulfide production in some of the reservoirs under investigation. Most microorganisms in the intermediate- and higher-temperature samples were related to previously studied methanogenic and nonmethanogenic archaea and thermophilic bacteria, but one candidate phylum bacterium, a member of the Acetothermia (OP1), was present in Kuparuk sample K3. The greatest numbers of candidate phyla were recovered from the mesothermic reservoir samples SB1 and SB2. We reconstructed a nearly complete genome for an organism from the candidate phylum Parcubacteria (OD1) that was abundant in sample SB1. Consistent with prior findings for members of this lineage, the OD1 genome is small, and metabolic predictions support an obligately anaerobic, fermentation-based lifestyle. At moderate abundance in samples SB1 and SB2 were members of bacteria from other candidate phyla, including Microgenomates (OP11), Atribacteria (OP9), candidate phyla TA06 and WS6, and Marinimicrobia (SAR406). The results presented here elucidate potential roles of organisms in oil reservoir biological processes. The activities of microorganisms in oil reservoirs impact petroleum resource quality and the global carbon cycle. We show that bacteria belonging to candidate phyla are present in some oil reservoirs and provide the first insights into their potential roles in biogeochemical processes based on several nearly complete genomes.
Collapse
|
54
|
Ladino-Orjuela G, Gomes E, da Silva R, Salt C, Parsons JR. Metabolic Pathways for Degradation of Aromatic Hydrocarbons by Bacteria. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 237:105-121. [PMID: 26613990 DOI: 10.1007/978-3-319-23573-8_5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of this review was to build an updated collection of information focused on the mechanisms and elements involved in metabolic pathways of aromatic hydrocarbons by bacteria. Enzymes as an expression of the genetic load and the type of electron acceptor available, as an environmental factor, were highlighted. In general, the review showed that both aerobic routes and anaerobic routes for the degradation of aromatic hydrocarbons are divided into two pathways. The first, named the upper pathways, entails the route from the original compound to central intermediate compounds still containing the aromatic ring but with the benzene nucleus chemically destabilized. The second, named the lower pathway, begins with ring de-aromatization and subsequent cleavage, resulting in metabolites that can be used by bacteria in the production of biomass. Under anaerobic conditions the five mechanisms of activation of the benzene ring described show the diversity of chemical reactions that can take place. Obtaining carbon and energy from an aromatic hydrocarbon molecule is a process that exhibits the high complexity level of the metabolic apparatus of anaerobic microorganisms. The ability of these bacteria to express enzymes that catalyze reactions, known only in non-biological conditions, using final electron acceptors with a low redox potential, is a most interesting topic. The discovery of phylogenetic and functional characteristics of cultivable and noncultivable hydrocarbon degrading bacteria has been made possible by improvements in molecular research techniques such as SIP (stable isotope probing) tracing the incorporation of (13)C, (15)N and (18)O into nucleic acids and proteins. Since many metabolic pathways in which enzyme and metabolite participants are still unknown, much new research is required. Therefore, it will surely allow enhancing the known and future applications in practice.
Collapse
Affiliation(s)
- Guillermo Ladino-Orjuela
- Laboratory of Biochemistry and Applied Microbiology, Institute of Biosciences, Letters and Exact Sciences (IBILCE) - São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, São José do Rio Preto, São Paulo, 15013-000, Brazil.
| | - Eleni Gomes
- Laboratory of Biochemistry and Applied Microbiology, Institute of Biosciences, Letters and Exact Sciences (IBILCE) - São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, São José do Rio Preto, São Paulo, 15013-000, Brazil.
| | - Roberto da Silva
- Laboratory of Biochemistry and Applied Microbiology, Institute of Biosciences, Letters and Exact Sciences (IBILCE) - São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, São José do Rio Preto, São Paulo, 15013-000, Brazil.
| | - Christopher Salt
- Institute for Biodiversity and Ecosystem Dynamics (IBED), Universiteit Van Amsterdam, 94248, Amsterdam, 1090 GE, The Netherlands.
| | - John R Parsons
- Institute for Biodiversity and Ecosystem Dynamics (IBED), Universiteit Van Amsterdam, 94248, Amsterdam, 1090 GE, The Netherlands.
| |
Collapse
|
55
|
Comparison of bacterial and archaeal communities in depth-resolved zones in an LNAPL body. Appl Microbiol Biotechnol 2015; 100:3347-60. [PMID: 26691516 DOI: 10.1007/s00253-015-7106-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
Abstract
Advances in our understanding of the microbial ecology at sites impacted by light non-aqueous phase liquids (LNAPLs) are needed to drive development of optimized bioremediation technologies, support longevity models, and develop culture-independent molecular tools. In this study, depth-resolved characterization of geochemical parameters and microbial communities was conducted for a shallow hydrocarbon-impacted aquifer. Four distinct zones were identified based on microbial community structure and geochemical data: (i) an aerobic, low-contaminant mass zone at the top of the vadose zone; (ii) a moderate to high-contaminant mass, low-oxygen to anaerobic transition zone in the middle of the vadose zone; (iii) an anaerobic, high-contaminant mass zone spanning the bottom of the vadose zone and saturated zone; and (iv) an anaerobic, low-contaminant mass zone below the LNAPL body. Evidence suggested that hydrocarbon degradation is mediated by syntrophic fermenters and methanogens in zone III. Upward flux of methane likely contributes to promoting anaerobic conditions in zone II by limiting downward flux of oxygen as methane and oxygen fronts converge at the top of this zone. Observed sulfate gradients and microbial communities suggested that sulfate reduction and methanogenesis both contribute to hydrocarbon degradation in zone IV. Pyrosequencing revealed that Syntrophus- and Methanosaeta-related species dominate bacterial and archaeal communities, respectively, in the LNAPL body below the water table. Observed phylotypes were linked with in situ anaerobic hydrocarbon degradation in LNAPL-impacted soils.
Collapse
|
56
|
Tan B, Jane Fowler S, Laban NA, Dong X, Sensen CW, Foght J, Gieg LM. Comparative analysis of metagenomes from three methanogenic hydrocarbon-degrading enrichment cultures with 41 environmental samples. THE ISME JOURNAL 2015; 9:2028-45. [PMID: 25734684 PMCID: PMC4542035 DOI: 10.1038/ismej.2015.22] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 11/09/2022]
Abstract
Methanogenic hydrocarbon metabolism is a key process in subsurface oil reservoirs and hydrocarbon-contaminated environments and thus warrants greater understanding to improve current technologies for fossil fuel extraction and bioremediation. In this study, three hydrocarbon-degrading methanogenic cultures established from two geographically distinct environments and incubated with different hydrocarbon substrates (added as single hydrocarbons or as mixtures) were subjected to metagenomic and 16S rRNA gene pyrosequencing to test whether these differences affect the genetic potential and composition of the communities. Enrichment of different putative hydrocarbon-degrading bacteria in each culture appeared to be substrate dependent, though all cultures contained both acetate- and H2-utilizing methanogens. Despite differing hydrocarbon substrates and inoculum sources, all three cultures harbored genes for hydrocarbon activation by fumarate addition (bssA, assA, nmsA) and carboxylation (abcA, ancA), along with those for associated downstream pathways (bbs, bcr, bam), though the cultures incubated with hydrocarbon mixtures contained a broader diversity of fumarate addition genes. A comparative metagenomic analysis of the three cultures showed that they were functionally redundant despite their enrichment backgrounds, sharing multiple features associated with syntrophic hydrocarbon conversion to methane. In addition, a comparative analysis of the culture metagenomes with those of 41 environmental samples (containing varying proportions of methanogens) showed that the three cultures were functionally most similar to each other but distinct from other environments, including hydrocarbon-impacted environments (for example, oil sands tailings ponds and oil-affected marine sediments). This study provides a basis for understanding key functions and environmental selection in methanogenic hydrocarbon-associated communities.
Collapse
Affiliation(s)
- Boonfei Tan
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - S Jane Fowler
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Nidal Abu Laban
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Xiaoli Dong
- Visual Genomics Centre, Faculty of Medicine, Calgary, Alberta, Canada
| | | | - Julia Foght
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Lisa M Gieg
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
57
|
Zhuang L, Tang J, Wang Y, Hu M, Zhou S. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation. JOURNAL OF HAZARDOUS MATERIALS 2015; 293:37-45. [PMID: 25827267 DOI: 10.1016/j.jhazmat.2015.03.039] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/15/2015] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
Recent studies have suggested that conductive iron oxide minerals can facilitate syntrophic metabolism of the methanogenic degradation of organic matter, such as ethanol, propionate and butyrate, in natural and engineered microbial ecosystems. This enhanced syntrophy involves direct interspecies electron transfer (DIET) powered by microorganisms exchanging metabolic electrons through electrically conductive minerals. Here, we evaluated the possibility that conductive iron oxides (hematite and magnetite) can stimulate the methanogenic degradation of benzoate, which is a common intermediate in the anaerobic metabolism of aromatic compounds. The results showed that 89-94% of the electrons released from benzoate oxidation were recovered in CH4 production, and acetate was identified as the only carbon-bearing intermediate during benzoate degradation. Compared with the iron-free controls, the rates of methanogenic benzoate degradation were enhanced by 25% and 53% in the presence of hematite and magnetite, respectively. This stimulatory effect probably resulted from DIET-mediated methanogenesis in which electrons transfer between syntrophic partners via conductive iron minerals. Phylogenetic analyses revealed that Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved in the functioning of syntrophic DIET. Considering the ubiquitous presence of iron minerals within soils and sediments, the findings of this study will increase the current understanding of the natural biological attenuation of aromatic hydrocarbons in anaerobic environments.
Collapse
Affiliation(s)
- Li Zhuang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China
| | - Jia Tang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China
| | - Yueqiang Wang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China
| | - Min Hu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China
| | - Shungui Zhou
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China.
| |
Collapse
|
58
|
Daghio M, Tatangelo V, Franzetti A, Gandolfi I, Papacchini M, Careghini A, Sezenna E, Saponaro S, Bestetti G. Hydrocarbon degrading microbial communities in bench scale aerobic biobarriers for gasoline contaminated groundwater treatment. CHEMOSPHERE 2015; 130:34-39. [PMID: 25747304 DOI: 10.1016/j.chemosphere.2015.02.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/13/2015] [Accepted: 02/07/2015] [Indexed: 06/04/2023]
Abstract
BTEX compounds (benzene, toluene, ethylbenzene and xylenes) and methyl tert-butyl ether (MTBE) are some of the main constituents of gasoline and can be accidentally released in the environment. In this work the effect of bioaugmentation on the microbial communities in a bench scale aerobic biobarrier for gasoline contaminated water treatment was studied by 16S rRNA gene sequencing. Catabolic genes (tmoA and xylM) were quantified by qPCR, in order to estimate the biodegradation potential, and the abundance of total bacteria was estimated by the quantification of the number of copies of the 16S rRNA gene. Hydrocarbon concentration was monitored over time and no difference in the removal efficiency for the tested conditions was observed, either with or without the microbial inoculum. In the column without the inoculum the most abundant genera were Acidovorax, Bdellovibrio, Hydrogenophaga, Pseudoxanthomonas and Serpens at the beginning of the column, while at the end of the column Thauera became dominant. In the inoculated test the microbial inoculum, composed by Rhodococcus sp. CE461, Rhodococcus sp. CT451 and Methylibium petroleiphilum LMG 22953, was outcompeted. Quantitative PCR results showed an increasing in xylM copy number, indicating that hydrocarbon degrading bacteria were selected during the treatment, although only a low increase of the total biomass was observed. However, the bioaugmentation did not lead to an increase in the degradative potential of the microbial communities.
Collapse
Affiliation(s)
- Matteo Daghio
- Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Valeria Tatangelo
- Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Andrea Franzetti
- Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| | - Isabella Gandolfi
- Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | | | - Alessandro Careghini
- Politecnico di Milano, DICA Sez. Ambientale, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Elena Sezenna
- Politecnico di Milano, DICA Sez. Ambientale, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Sabrina Saponaro
- Politecnico di Milano, DICA Sez. Ambientale, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Giuseppina Bestetti
- Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| |
Collapse
|
59
|
Abu Laban N, Dao A, Semple K, Foght J. Biodegradation of C7 and C8 iso-alkanes under methanogenic conditions. Environ Microbiol 2014; 17:4898-915. [PMID: 25331365 DOI: 10.1111/1462-2920.12643] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/19/2014] [Accepted: 09/23/2014] [Indexed: 11/26/2022]
Abstract
Iso-alkanes comprise a substantial proportion of petroleum and refined products that impact the environment, but their fate is cryptic under methanogenic conditions. We investigated methanogenic biodegradation of C7 and C8 iso-alkanes found in naphtha, specifically 2-methylhexane, 3-methylhexane, 2-methylheptane, 4-methylheptane and 3-ethylhexane. These were incubated as a mixture or individually with enrichment cultures derived from oil sands tailings ponds that generate methane from naphtha components; substrate depletion and methane production were monitored for up to 663 days. 3-Methylhexane and 4-methylheptane were degraded both singly and in the mixture, whereas 2-methylhexane and 2-methylheptane resisted degradation as single substrates but were depleted in the iso-alkane mixture, suggesting co-metabolism. 3-Ethylhexane was degraded neither singly nor with co-substrates. Putative metabolites consistent with succinylated C7 and C8 were detected, suggesting activation by addition of iso-alkanes to fumarate and corresponding to detection of alkylsuccinate synthase-like genes. 454 pyrotag sequencing, cloning and terminal restriction fragment length polymorphism of 16S rRNA genes revealed predominance of a novel member of the family Peptococcaceae (order Clostridiales) and Archaea affiliated with Methanoregula and Methanosaeta. We report here isomer-specific metabolism of C7 -C8 iso-alkanes under methanogenic conditions and propose their activation by a novel Peptococcaceae via addition to fumarate.
Collapse
Affiliation(s)
- Nidal Abu Laban
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - Anh Dao
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - Kathleen Semple
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - Julia Foght
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| |
Collapse
|
60
|
Piceno YM, Reid FC, Tom LM, Conrad ME, Bill M, Hubbard CG, Fouke BW, Graff CJ, Han J, Stringfellow WT, Hanlon JS, Hu P, Hazen TC, Andersen GL. Temperature and injection water source influence microbial community structure in four Alaskan North Slope hydrocarbon reservoirs. Front Microbiol 2014; 5:409. [PMID: 25147549 PMCID: PMC4124708 DOI: 10.3389/fmicb.2014.00409] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 07/18/2014] [Indexed: 11/29/2022] Open
Abstract
A fundamental knowledge of microbial community structure in petroleum reservoirs can improve predictive modeling of these environments. We used hydrocarbon profiles, stable isotopes, and high-density DNA microarray analysis to characterize microbial communities in produced water from four Alaskan North Slope hydrocarbon reservoirs. Produced fluids from Schrader Bluff (24–27°C), Kuparuk (47–70°C), Sag River (80°C), and Ivishak (80–83°C) reservoirs were collected, with paired soured/non-soured wells sampled from Kuparuk and Ivishak. Chemical and stable isotope data suggested Schrader Bluff had substantial biogenic methane, whereas methane was mostly thermogenic in deeper reservoirs. Acetoclastic methanogens (Methanosaeta) were most prominent in Schrader Bluff samples, and the combined δD and δ13C values of methane also indicated acetoclastic methanogenesis could be a primary route for biogenic methane. Conversely, hydrogenotrophic methanogens (e.g., Methanobacteriaceae) and sulfide-producing Archaeoglobus and Thermococcus were more prominent in Kuparuk samples. Sulfide-producing microbes were detected in all reservoirs, uncoupled from souring status (e.g., the non-soured Kuparuk samples had higher relative abundances of many sulfate-reducers compared to the soured sample, suggesting sulfate-reducers may be living fermentatively/syntrophically when sulfate is limited). Sulfate abundance via long-term seawater injection resulted in greater relative abundances of Desulfonauticus, Desulfomicrobium, and Desulfuromonas in the soured Ivishak well compared to the non-soured well. In the non-soured Ivishak sample, several taxa affiliated with Thermoanaerobacter and Halomonas predominated. Archaea were not detected in the deepest reservoirs. Functional group taxa differed in relative abundance among reservoirs, likely reflecting differing thermal and/or geochemical influences.
Collapse
Affiliation(s)
- Yvette M Piceno
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA
| | - Francine C Reid
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA
| | - Lauren M Tom
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA
| | - Mark E Conrad
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA
| | - Markus Bill
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA
| | - Christopher G Hubbard
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA
| | - Bruce W Fouke
- Energy Biosciences Institute Berkeley, CA, USA ; Department of Geology, University of Illinois at Urbana-Champaign, Urbana-Champaign IL, USA
| | - Craig J Graff
- Production Chemistry, BP Exploration Anchorage, AK, USA
| | - Jiabin Han
- Production Chemistry, BP Exploration Anchorage, AK, USA
| | - William T Stringfellow
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA ; Ecological Engineering Research Program, University of the Pacific Stockton, CA, USA
| | - Jeremy S Hanlon
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Ecological Engineering Research Program, University of the Pacific Stockton, CA, USA
| | - Ping Hu
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, University of Tennessee Knoxville, TN, USA
| | - Gary L Andersen
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA
| |
Collapse
|
61
|
Kuppardt A, Kleinsteuber S, Vogt C, Lüders T, Harms H, Chatzinotas A. Phylogenetic and functional diversity within toluene-degrading, sulphate-reducing consortia enriched from a contaminated aquifer. MICROBIAL ECOLOGY 2014; 68:222-234. [PMID: 24623528 DOI: 10.1007/s00248-014-0403-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 02/25/2014] [Indexed: 06/03/2023]
Abstract
Three toluene-degrading microbial consortia were enriched under sulphate-reducing conditions from different zones of a benzene, toluene, ethylbenzene and xylenes (BTEX) plume of two connected contaminated aquifers. Two cultures were obtained from a weakly contaminated zone of the lower aquifer, while one culture originated from the highly contaminated upper aquifer. We hypothesised that the different habitat characteristics are reflected by distinct degrader populations. Degradation of toluene with concomitant production of sulphide was demonstrated in laboratory microcosms and the enrichment cultures were phylogenetically characterised. The benzylsuccinate synthase alpha-subunit (bssA) marker gene, encoding the enzyme initiating anaerobic toluene degradation, was targeted to characterise the catabolic diversity within the enrichment cultures. It was shown that the hydrogeochemical parameters in the different zones of the plume determined the microbial composition of the enrichment cultures. Both enrichment cultures from the weakly contaminated zone were of a very similar composition, dominated by Deltaproteobacteria with the Desulfobulbaceae (a Desulfopila-related phylotype) as key players. Two different bssA sequence types were found, which were both affiliated to genes from sulphate-reducing Deltaproteobacteria. In contrast, the enrichment culture from the highly contaminated zone was dominated by Clostridia with a Desulfosporosinus-related phylotype as presumed key player. A distinct bssA sequence type with high similarity to other recently detected sequences from clostridial toluene degraders was dominant in this culture. This work contributes to our understanding of the niche partitioning between degrader populations in distinct compartments of BTEX-contaminated aquifers.
Collapse
Affiliation(s)
- Anke Kuppardt
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany,
| | | | | | | | | | | |
Collapse
|
62
|
Gill RT, Harbottle MJ, Smith JWN, Thornton SF. Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications. CHEMOSPHERE 2014; 107:31-42. [PMID: 24875868 DOI: 10.1016/j.chemosphere.2014.03.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/18/2014] [Accepted: 03/03/2014] [Indexed: 06/03/2023]
Abstract
There is current interest in finding sustainable remediation technologies for the removal of contaminants from soil and groundwater. This review focuses on the combination of electrokinetics, the use of an electric potential to move organic and inorganic compounds, or charged particles/organisms in the subsurface independent of hydraulic conductivity; and bioremediation, the destruction of organic contaminants or attenuation of inorganic compounds by the activity of microorganisms in situ or ex situ. The objective of the review is to examine the state of knowledge on electrokinetic bioremediation and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. It discusses the mechanisms of electrokinetic bioremediation in the subsurface environment at different micro and macroscales, the influence of environmental processes on electrokinetic phenomena and the design options available for application to the field scale. The review also presents results from a modelling exercise to illustrate the effectiveness of electrokinetics on the supply electron acceptors to a plume scale scenario where these are limiting. Current research needs include analysis of electrokinetic bioremediation in more representative environmental settings, such as those in physically heterogeneous systems in order to gain a greater understanding of the controlling mechanisms on both electrokinetics and bioremediation in those scenarios.
Collapse
Affiliation(s)
- R T Gill
- Groundwater Protection and Restoration Group, University of Sheffield, Department of Civil & Structural Engineering, Kroto Research Institute, Broad Lane, Sheffield S3 7HQ, UK.
| | - M J Harbottle
- Institute of Environment and Sustainability, Cardiff University, School of Engineering, Queen's Buildings, The Parade, Cardiff CF24 3AA, UK
| | - J W N Smith
- Shell Global Solutions, Lange Kleiweg 40, 2288 GK Rijswijk, The Netherlands; Groundwater Protection and Restoration Group, University of Sheffield, Department of Civil & Structural Engineering, Kroto Research Institute, Broad Lane, Sheffield S3 7HQ, UK
| | - S F Thornton
- Groundwater Protection and Restoration Group, University of Sheffield, Department of Civil & Structural Engineering, Kroto Research Institute, Broad Lane, Sheffield S3 7HQ, UK
| |
Collapse
|
63
|
|
64
|
Gieg LM, Fowler SJ, Berdugo-Clavijo C. Syntrophic biodegradation of hydrocarbon contaminants. Curr Opin Biotechnol 2014; 27:21-9. [DOI: 10.1016/j.copbio.2013.09.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 11/30/2022]
|
65
|
Das R, Kazy SK. Microbial diversity, community composition and metabolic potential in hydrocarbon contaminated oily sludge: prospects for in situ bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:7369-89. [PMID: 24682711 DOI: 10.1007/s11356-014-2640-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/10/2014] [Indexed: 05/20/2023]
Abstract
Microbial community composition and metabolic potential have been explored in petroleum-hydrocarbon-contaminated sludge of an oil storage facility. Culture-independent clone library-based 16S rRNA gene analyses revealed that the bacterial community within the sludge was dominated by the members of β-Proteobacteria (35%), followed by Firmicutes (13%), δ-Proteobacteria (11%), Bacteroidetes (10%), Acidobacteria (6%), α-Proteobacteria (3%), Lentisphaerae (2%), Spirochaetes (2%), and unclassified bacteria (5%), whereas the archaeal community was composed of Thermoprotei (54%), Methanocellales (33%), Methanosarcinales/Methanosaeta (8%) and Methanoculleus (1%) members. Methyl coenzyme M reductase A (mcrA) gene (a functional biomarker) analyses also revealed predominance of hydrogenotrophic, methanogenic Archaea (Methanocellales, Methanobacteriales and Methanoculleus members) over acetoclastic methanogens (Methanosarcinales members). In order to explore the cultivable bacterial population, a total of 28 resident strains were identified and characterized in terms of their physiological and metabolic capabilities. Most of these could be taxonomically affiliated to the members of the genera Bacillus, Paenibacillus, Micrococcus, Brachybacterium, Aerococcus, and Zimmermannella, while two strains were identified as Pseudomonas and Pseudoxanthomonas. Metabolic profiling exhibited that majority of these isolates were capable of growing in presence of a variety of petroleum hydrocarbons as sole source of carbon, tolerating different heavy metals at higher concentrations (≥1 mM) and producing biosurfactant during growth. Many strains could grow under a wide range of pH, temperature, or salinity as well as under anaerobic conditions in the presence of different electron acceptors and donors in the growth medium. Correlation between the isolates and their metabolic properties was estimated by the unweighted pair group method with arithmetic mean (UPGMA) analysis. Overall observation indicated the presence of diverse groups of microorganisms including hydrocarbonoclastic, nitrate reducing, sulphate reducing, fermentative, syntrophic, methanogenic and methane-oxidizing bacteria and Archaea within the sludge community, which can be exploited for in situ bioremediation of the oily sludge.
Collapse
Affiliation(s)
- Ranjit Das
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, Durgapur, 713 209, West Bengal, India
| | | |
Collapse
|
66
|
Berdugo-Clavijo C, Gieg LM. Conversion of crude oil to methane by a microbial consortium enriched from oil reservoir production waters. Front Microbiol 2014; 5:197. [PMID: 24829563 PMCID: PMC4017130 DOI: 10.3389/fmicb.2014.00197] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/14/2014] [Indexed: 11/13/2022] Open
Abstract
The methanogenic biodegradation of crude oil is an important process occurring in petroleum reservoirs and other oil-containing environments such as contaminated aquifers. In this process, syntrophic bacteria degrade hydrocarbon substrates to products such as acetate, and/or H2 and CO2 that are then used by methanogens to produce methane in a thermodynamically dependent manner. We enriched a methanogenic crude oil-degrading consortium from production waters sampled from a low temperature heavy oil reservoir. Alkylsuccinates indicative of fumarate addition to C5 and C6 n-alkanes were identified in the culture (above levels found in controls), corresponding to the detection of an alkyl succinate synthase encoding gene (assA/masA) in the culture. In addition, the enrichment culture was tested for its ability to produce methane from residual oil in a sandstone-packed column system simulating a mature field. Methane production rates of up to 5.8 μmol CH4/g of oil/day were measured in the column system. Amounts of produced methane were in relatively good agreement with hydrocarbon loss showing depletion of more than 50% of saturate and aromatic hydrocarbons. Microbial community analysis revealed that the enrichment culture was dominated by members of the genus Smithella, Methanosaeta, and Methanoculleus. However, a shift in microbial community occurred following incubation of the enrichment in the sandstone columns. Here, Methanobacterium sp. were most abundant, as were bacterial members of the genus Pseudomonas and other known biofilm forming organisms. Our findings show that microorganisms enriched from petroleum reservoir waters can bioconvert crude oil components to methane both planktonically and in sandstone-packed columns as test systems. Further, the results suggest that different organisms may contribute to oil biodegradation within different phases (e.g., planktonic vs. sessile) within a subsurface crude oil reservoir.
Collapse
Affiliation(s)
| | - Lisa M. Gieg
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of CalgaryCalgary, AB, Canada
| |
Collapse
|
67
|
Stasik S, Wendt-Potthoff K. Interaction of microbial sulphate reduction and methanogenesis in oil sands tailings ponds. CHEMOSPHERE 2014; 103:59-66. [PMID: 24325799 DOI: 10.1016/j.chemosphere.2013.11.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 10/29/2013] [Accepted: 11/08/2013] [Indexed: 06/03/2023]
Abstract
Anaerobic turnover of organic compounds in oil sands tailings ponds is accomplished by a complex microbial consortium. We examined major electron accepting processes in mature fine tailings (MFT). Beside methanogenesis and sulphate reduction, microbial iron reduction was an important process of anaerobic respiration. Microbial numbers and activity were comparable to those reported for natural lakes. To understand metabolic interactions of indigenous methanogenic and sulphate-reducing communities, we conducted a 6 month microcosm experiment with MFT supplemented with easily available carbon sources and molybdate and/or 2-bromoethane sulphonate (BES) as specific inhibitors for sulphate reduction and methanogenesis. Methanogenesis increased when microcosms were supplemented with extra carbon, but was completely inhibited by the addition of BES. Molybdate not only inhibited sulphate reduction, but also methanogenesis, indicating a positive relation between the two processes. The turnover of extra carbon sources differed between microcosms treated with molybdate and BES. Acetate and propionate were not consumed in microcosms amended with molybdate, indicating that sulphate-reducing bacteria (SRB) were responsible for their metabolisation, and that methane was rather produced by hydrogenotrophic methanogens. In microcosms without molybdate, acetate transiently accumulated, indicating the activity of both incomplete and complete oxidizing SRB. Ethanol and lactate were also consumed in the simultaneous presence of BES and molybdate, demonstrating the occurrence of other anaerobic processes. Biomass increased by the addition of extra carbon, mainly due to a relative increase in the proportion of SRB. The addition of extra carbon lowered the degradation of BTEX compounds.
Collapse
Affiliation(s)
- Sebastian Stasik
- UFZ Helmholtz Centre for Environmental Research, Department Lake Research, Brückstraße 3a, 39114 Magdeburg, Germany.
| | - Katrin Wendt-Potthoff
- UFZ Helmholtz Centre for Environmental Research, Department Lake Research, Brückstraße 3a, 39114 Magdeburg, Germany
| |
Collapse
|
68
|
Kim SJ, Park SJ, Cha IT, Min D, Kim JS, Chung WH, Chae JC, Jeon CO, Rhee SK. Metabolic versatility of toluene-degrading, iron-reducing bacteria in tidal flat sediment, characterized by stable isotope probing-based metagenomic analysis. Environ Microbiol 2013; 16:189-204. [DOI: 10.1111/1462-2920.12277] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 11/28/2022]
Affiliation(s)
- So-Jeong Kim
- Department of Microbiology; Chungbuk National University; Cheongju 361-763 Korea
| | - Soo-Je Park
- Department of Biology; Jeju National University; Jeju 690-756 Korea
| | - In-Tae Cha
- Department of Microbiology; Chungbuk National University; Cheongju 361-763 Korea
| | - Deullae Min
- Center for Gas Analysis; Korea Research Institute of Standards and Science; 267 Gajeong-ro, Yuseong-gu Daejeon 305-340 Korea
| | - Jin-Seog Kim
- Center for Gas Analysis; Korea Research Institute of Standards and Science; 267 Gajeong-ro, Yuseong-gu Daejeon 305-340 Korea
| | - Won-Hyung Chung
- Korean Bioinformation Center; Korean Research Institute of Bioscience and Bioengineering; Daejeon 305-806 Korea
| | - Jong-Chan Chae
- Division of Biotechnology; Chonbuk National University; Iksan 570-752 Korea
| | - Che Ok Jeon
- School of Biological Sciences; Chung-Ang University; Seoul 156-756 Korea
| | - Sung-Keun Rhee
- Department of Microbiology; Chungbuk National University; Cheongju 361-763 Korea
| |
Collapse
|
69
|
Hasegawa R, Toyama K, Miyanaga K, Tanji Y. Identification of crude-oil components and microorganisms that cause souring under anaerobic conditions. Appl Microbiol Biotechnol 2013; 98:1853-61. [DOI: 10.1007/s00253-013-5107-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/07/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
|
70
|
Vogt C, Richnow HH. Bioremediation via in situ microbial degradation of organic pollutants. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 142:123-46. [PMID: 24337042 DOI: 10.1007/10_2013_266] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Contamination of soil and natural waters by organic pollutants is a global problem. The major organic pollutants of point sources are mineral oil, fuel components, and chlorinated hydrocarbons. Research from the last two decades discovered that most of these compounds are biodegradable under anoxic conditions. This has led to the rise of bioremediation strategies based on the in situ biodegradation of pollutants. Monitored natural attenuation is a concept by which a contaminated site is remediated by natural biodegradation; to evaluate such processes, a combination of chemical and microbiological methods are usually used. Compound specific stable isotope analysis emerged as a key method for detecting and quantifying in situ biodegradation. Natural attenuation processes can be initiated or accelerated by manipulating the environmental conditions to become favorable for indigenous pollutant degrading microbial communities or by adding externally breeded specific pollutant degrading microorganisms; these techniques are referred to as enhanced natural attenuation. Xenobiotic micropollutants, such as pesticides or pharmaceuticals, contaminate diffusively large areas in low concentrations; the biodegradation pattern of such contaminations are not yet understood.
Collapse
Affiliation(s)
- Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany,
| | | |
Collapse
|