51
|
Feng Y, Ye Z, Song F, He Y, Liu J. The Role of TAMs in Tumor Microenvironment and New Research Progress. Stem Cells Int 2022; 2022:5775696. [PMID: 36004381 PMCID: PMC9395242 DOI: 10.1155/2022/5775696] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are an important part of tumor microenvironment (TME) and play a key role in TME, participating in the process of tumor occurrence, growth, invasion, and metastasis. Among them, metastasis to tumor tissue is the key step of malignant development of tumor. In this paper, the latest progress in the role of TAMs in the formation of tumor microenvironment is summarized. It is particularly noteworthy that cell and animal experiments show that TAMs can provide a favorable microenvironment for the occurrence and development of tumors. At the same time, clinical pathological experiments show that the accumulation of TAMs in tumor is related to poor clinical efficacy. Finally, this paper discusses the feasibility of TAMs-targeted therapy as a new indirect cancer therapy. This paper provides a theoretical basis for finding a potentially effective macrophage-targeted tumor therapy.
Collapse
Affiliation(s)
- Yawei Feng
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhiqiang Ye
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Furong Song
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yufeng He
- Department of Intensive Care Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jun Liu
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
52
|
Pe KCS, Saetung R, Yodsurang V, Chaotham C, Suppipat K, Chanvorachote P, Tawinwung S. Triple-negative breast cancer influences a mixed M1/M2 macrophage phenotype associated with tumor aggressiveness. PLoS One 2022; 17:e0273044. [PMID: 35960749 PMCID: PMC9374254 DOI: 10.1371/journal.pone.0273044] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/02/2022] [Indexed: 12/05/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by excessive accumulation of tumor-infiltrating immune cells, including tumor-associated macrophages (TAMs). TAMs consist of a heterogeneous population with high plasticity and are associated with tumor aggressiveness and poor prognosis. Moreover, breast cancer cells can secrete factors that influence TAM polarization. Therefore, this study aimed to evaluate the crosstalk between cancer cells and macrophages in the context of TNBC. Cytokine-polarized M2 macrophage were used as control. Distinct from the classical M2 macrophage, TAMs generated from TNBC-conditioned media upregulated both M1- and M2-associated genes, and secreted both the anti-inflammatory cytokine interleukin IL-10 and the proinflammatory cytokine IL-6 and tumor necrosis factor- α. Theses TNBC-induced TAMs exert aggressive behavior of TNBC cells. Consistently, TCGA and MTABRIC analyses of human breast cancer revealed upregulation of M1- associated genes in TNBC comparing with non-TNBC. Among these M1-associated genes, CXCL10 and IL1B were revealed to be independent prognostic factors for disease progression. In conclusion, TNBC cells induce macrophage polarization with a mixture of M1 and M2 phenotypes. These cancer-induced TAMs further enhance tumor cell growth and aggressiveness.
Collapse
Affiliation(s)
- Kristine Cate S. Pe
- Faculty of Pharmaceutical Sciences, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand
| | - Rattana Saetung
- Faculty of Pharmaceutical Sciences, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand
| | - Varalee Yodsurang
- Faculty of Pharmaceutical Sciences, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand
| | - Chatchai Chaotham
- Faculty of Pharmaceutical Sciences, Department of Biochemistry and Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Koramit Suppipat
- Faculty of Medicine, Department of Research Affair, Chulalongkorn University, Bangkok, Thailand
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Faculty of Pharmaceutical Sciences, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand
| | - Supannikar Tawinwung
- Faculty of Pharmaceutical Sciences, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
53
|
Augmentation of the RNA m6A reader signature is associated with poor survival by enhancing cell proliferation and EMT across cancer types. Exp Mol Med 2022; 54:906-921. [PMID: 35794212 PMCID: PMC9355997 DOI: 10.1038/s12276-022-00795-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022] Open
Abstract
N6-Methyladenosine (m6A) RNA modification plays a critical role in the posttranscriptional regulation of gene expression. Alterations in cellular m6A levels and m6A-related genes have been reported in many cancers, but whether they play oncogenic or tumor-suppressive roles is inconsistent across cancer types. We investigated common features of alterations in m6A modification and m6A-related genes during carcinogenesis by analyzing transcriptome data of 11 solid tumors from The Cancer Genome Atlas database and our in-house gastric cancer cohort. We calculated m6A writer (W), eraser (E), and reader (R) signatures based on corresponding gene expression. Alterations in the W and E signatures varied according to the cancer type, with a strong positive correlation between the W and E signatures in all types. When the patients were divided according to m6A levels estimated by the ratio of the W and E signatures, the prognostic effect of m6A was inconsistent according to the cancer type. The R and especially the R2 signatures (based on the expression of IGF2BPs) were upregulated in all cancers. Patients with a high R2 signature exhibited poor prognosis across types, which was attributed to enrichment of cell cycle- and epithelial–mesenchymal transition-related pathways. Our study demonstrates common features of m6A alterations across cancer types and suggests that targeting m6A R proteins is a promising strategy for cancer treatment. Studying the effects of a chemical modification of messenger RNA molecules (mRNA), which carry genetic information from DNA to the cell’s protein-making machinery, reveals new insights into the role of these modifications in cancer, suggesting potential therapeutic approaches. Researchers in Seoul, South Korea, led by Joon-Yong An at Korea University and Sung-Yup Cho at Seoul National University investigated the most common modifications of mRNA involving methyl groups (CH3): addition (‘writing’), having a regulatory effect on the cell (‘reading’) or removal (‘erasing’). The molecular activities involved in reading the modifications were increased in all 11 types of cancer in cancer-sampling databases and their own patient cohort. Changes in writing and erasing of the modifications varied with cancer type. The proteins that mediate the reading responses to RNA methylation are possible targets for new anti-cancer drugs.
Collapse
|
54
|
Liao X, Wang W, Yu B, Tan S. Thrombospondin-2 acts as a bridge between tumor extracellular matrix and immune infiltration in pancreatic and stomach adenocarcinomas: an integrative pan-cancer analysis. Cancer Cell Int 2022; 22:213. [PMID: 35701829 PMCID: PMC9195477 DOI: 10.1186/s12935-022-02622-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
Background Thrombospondin-2 (THBS2) is a versatile glycoprotein that regulates numerous biological functions, including the apoptosis-proliferation balance in endothelial cells, and it has been linked to tumor angiogenesis. However, the exact role of THBS2 in human cancer remains unknown. This study aimed to determine THBS2 expression in a pan-cancer analysis and its association with pan-cancer prognosis and to further identify its possible roles in tumor immunity and the extracellular matrix (ECM). Methods Data on THBS2 expression in cancers and normal tissues were downloaded from the Genotype-Tissue Expression portal and UCSC Xena visual exploration tool and analyzed using the ONCOMINE database, Perl programming language, and Gene Expression Profiling and Interactive Analyses vision 2 webserver. In addition, survival prognosis was analyzed using the survival, survminer, limma, and forestplot packages in R v. 4.0.3.Immune and matrix components were also analyzed using R v. 4.0.3. Most importantly, we partially validated the role and mechanism of THBS2 in pancreatic and gastric cancers in vitro using PANC1 and BGC-823 cell lines. Results THBS2 was significantly overexpressed in 17 of the 33 investigated cancers and linked to a poor prognosis in pan-cancer survival analysis. High THBS2 expression was an independent unfavorable prognostic factor in kidney renal papillary cell, mesothelioma, and stomach and pancreatic adenocarcinomas. Immune infiltration and THBS2 expression were also related. THBS2 expression has been linked to immune and stromal scores and immune checkpoint markers in various cancers. The protein–protein interaction network revealed that THBS2 is associated with multiple ECM and immune proteins. THBS2 knockdown decreased the expression of CD47 and matrix metallopeptidase 2 (MMP-2) as well as the proliferation, migration, and invasion of PANC1 and BGC-823 cells in vitro. Conclusions Our findings suggested that THBS2 might promote cancer progression by remodeling the tumor microenvironment, affecting CD47-mediated signaling pathways, activating the pro-tumor functions of a disintegrin and metalloproteinase with thrombospondin motifs, and enhancing MMP-2 expression. Furthermore, it functions as a bridge between the ECM and immune infiltration in cancer and serves as a potential prognostic biomarker for several cancers, especially pancreatic and gastric adenocarcinomas. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02622-x.
Collapse
Affiliation(s)
- Xingchen Liao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Key Laboratory of Hubei Province for Digestive Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, East Hospital, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Key Laboratory of Hubei Province for Digestive Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Baoping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China. .,Key Laboratory of Hubei Province for Digestive Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Shiyun Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China. .,Key Laboratory of Hubei Province for Digestive Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
55
|
Wang H, Man Q, Huo F, Gao X, Lin H, Li S, Wang J, Su F, Cai, L, Shi Y, Liu, B, Bu L. STAT3 pathway in cancers: Past, present, and future. MedComm (Beijing) 2022; 3:e124. [PMID: 35356799 PMCID: PMC8942302 DOI: 10.1002/mco2.124] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), a member of the STAT family, discovered in the cytoplasm of almost all types of mammalian cells, plays a significant role in biological functions. The duration of STAT3 activation in normal tissues is a transient event and is strictly regulated. However, in cancer tissues, STAT3 is activated in an aberrant manner and is induced by certain cytokines. The continuous activation of STAT3 regulates the expression of downstream proteins associated with the formation, progression, and metastasis of cancers. Thus, elucidating the mechanisms of STAT3 regulation and designing inhibitors targeting the STAT3 pathway are considered promising strategies for cancer treatment. This review aims to introduce the history, research advances, and prospects concerning the STAT3 pathway in cancer. We review the mechanisms of STAT3 pathway regulation and the consequent cancer hallmarks associated with tumor biology that are induced by the STAT3 pathway. Moreover, we summarize the emerging development of inhibitors that target the STAT3 pathway and novel drug delivery systems for delivering these inhibitors. The barriers against targeting the STAT3 pathway, the focus of future research on promising targets in the STAT3 pathway, and our perspective on the overall utility of STAT3 pathway inhibitors in cancer treatment are also discussed.
Collapse
Affiliation(s)
- Han‐Qi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Qi‐Wen Man
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Fang‐Yi Huo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Xin Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Hao Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Su‐Ran Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Jing Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Fu‐Chuan Su
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lulu Cai,
- Personalized Drug Therapy Key Laboratory of Sichuan ProvinceDepartment of PharmacySchool of MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Bing Liu,
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lin‐Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| |
Collapse
|
56
|
Alexander ET, Gilmour SK. Immunomodulatory role of thrombin in cancer progression. Mol Carcinog 2022; 61:527-536. [PMID: 35338515 DOI: 10.1002/mc.23398] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/06/2022]
Abstract
Coagulation proteases and the generation of thrombin are increased in tumors. In addition, chemotherapeutic agents commonly used to treat malignant cancers can exacerbate cancer-associated thromboses. Thrombin can modify tumor cell behavior directly through the activation of protease-activated receptors (PAR) or indirectly by generating fibrin matrices. In addition to its role in generating fibrin to promote hemostasis, thrombin acts directly on multiple effector cells of the immune system impacting both acute and chronic inflammatory processes. Thrombin-mediated release of interleukin-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1 leads to the accumulation of multiple tumor-infiltrating immunosuppressive cell populations including myeloid derived suppresser cells, M2-like macrophages, and T regulatory cells. Ablation of PAR-1 from the tumor microenvironment, but not the tumor, has been shown to dramatically reduce tumor growth and metastasis in multiple tumor models. Thrombin-activated platelets release immunosuppressive cytokines including transforming growth factor-β that can inhibit natural killer cell activity, helping tumor cells to evade host immunosurveillance. Taken together, there is strong evidence that thrombin influences cancer progression via multiple mechanisms, including the tumor immune response, with thrombin emerging as a target for novel therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Eric T Alexander
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| | - Susan K Gilmour
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| |
Collapse
|
57
|
Jin Y, Kang Y, Wang M, Wu B, Su B, Yin H, Tang Y, Li Q, Wei W, Mei Q, Hu G, Lukacs-Kornek V, Li J, Wu K, Yuan X, Wang W. Targeting polarized phenotype of microglia via IL6/JAK2/STAT3 signaling to reduce NSCLC brain metastasis. Signal Transduct Target Ther 2022; 7:52. [PMID: 35194016 PMCID: PMC8864012 DOI: 10.1038/s41392-022-00872-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/27/2022] Open
Abstract
Tumor-associated macrophages have emerged as crucial factors for metastases. Microglia are indispensable components of the brain microenvironment and play vital roles in brain metastasis (BM). However, the underlying mechanism of how activated microglia promote brain metastasis of non-small cell lung cancer (NSCLC) remains elusive. Here, we purified cell lines with brain-metastatic tropism and employed a co-culture system to reveal their communication with microglia. By single-cell RNA-sequencing and transcriptome difference analysis, we identified IL6 as the key regulator in brain-metastatic cells (A549-F3) to induce anti-inflammatory microglia via JAK2/STAT3 signaling, which in turn promoted the colonization process in metastatic A549-F3 cells. In our clinical samples, patients with higher levels of IL6 in serum showed higher propensity for brain metastasis. Additionally, the TCGA (The Cancer Genome Atlas) data revealed that NSCLC patients with a lower level of IL6 had a longer overall survival time compared to those with a higher level of IL6. Overall, our data indicate that the targeting of IL6/JAK2/STAT3 signaling in activated microglia may be a promising new approach for inhibiting brain metastasis in NSCLC patients.
Collapse
Affiliation(s)
- Yu Jin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yalin Kang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Bili Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Beibei Su
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Han Yin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yang Tang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Qianxia Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Wenjie Wei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Qi Mei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Veronika Lukacs-Kornek
- Institute of Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Jian Li
- Institute of Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Kongming Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
58
|
Early differential responses elicited by BRAF V600E in adult mouse models. Cell Death Dis 2022; 13:142. [PMID: 35145078 PMCID: PMC8831492 DOI: 10.1038/s41419-022-04597-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
The BRAF gene is frequently mutated in cancer. The most common genetic mutation is a single nucleotide transition which gives rise to a constitutively active BRAF kinase (BRAFV600E) which in turn sustains continuous cell proliferation. The study of BRAFV600E murine models has been mainly focused on the role of BRAFV600E in tumor development but little is known on the early molecular impact of BRAFV600E expression in vivo. Here, we study the immediate effects of acute ubiquitous BRAFV600E activation in vivo. We find that BRAFV600E elicits a rapid DNA damage response in the liver, spleen, lungs but not in thyroids. This DNA damage response does not occur at telomeres and is accompanied by activation of the senescence marker p21CIP1 only in lungs but not in liver or spleen. Moreover, in lungs, BRAFV600E provokes an acute inflammatory state with a tissue-specific recruitment of neutrophils in the alveolar parenchyma and macrophages in bronchi/bronchioles, as well as bronchial/bronchiolar epithelium transdifferentiation and development of adenomas. Furthermore, whereas in non-tumor alveolar type II (ATIIs) pneumocytes, acute BRAFV600E induction elicits rapid p53-independent p21CIP1 activation, adenoma ATIIs express p53 without resulting in p21CIP1 gene activation. Conversely, albeit in Club cells BRAFV600E-mediated proliferative cue is more exacerbated compared to that occurring in ATIIs, such oncogenic stimulus culminates with p21CIP1-mediated cell cycle arrest and apoptosis. Our findings indicate that acute BRAFV600E expression drives an immediate induction of DNA damage response in vivo. More importantly, it also results in rapid differential responses of cell cycle and senescence-associated proteins in lung epithelia, thus revealing the early molecular changes emerging in BRAFV600E-challenged cells during tumorigenesis in vivo.
Collapse
|
59
|
2-methylpyridine-1-ium-1-sulfonate modifies tumor-derived exosome mediated macrophage polarization: Relevance to the tumor microenvironment. Int Immunopharmacol 2022; 106:108581. [PMID: 35149296 DOI: 10.1016/j.intimp.2022.108581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 11/05/2022]
Abstract
The compound "2-methylpyridine-1-ium-1-sulfonate" (MPS) is the active constituent of Allium hirtifolium Boiss. bulbs with potent anti-angiogenic and anti-cancer activities. Tumor microenvironment (TME) plays a key role in tumor progression via tumor derived exosome (TEX) mediated polarization of M2 type tumor associated macrophages (TAMs). In this study, we explored direct and colorectal cancer (CRC) exosome-mediated impacts of MPS on macrophage polarization to find out whether MPS could modify TEX in favor of anti-tumor M1-like macrophage polarization. After MPS isolation and characterization, first its direct anti-cancer effects were evaluated on HT-29 cells. Then, TEX were isolated from untreated (C-TEX) and MPS-treated (MPS-TEX) HT-29 cells. THP-1 M0 macrophages were incubated with MPS, C-TEX and MPS-TEX. Macrophage polarization was evaluated by flow cytometry, ELISA and gene expression analysis of several M1- and M2-related markers. MPS induced apoptosis and cell cycle arrest and reduced the migration ability of HT-29 cells. C-TEX polarized M0 macrophages toward a mixed M1-/M2-like phenotype with a high predominance of M2-like cells. Macrophage treatment with MPS was associated with the induction of M1-like phenotype. Also, MPS was demonstrated to ameliorate TEX-mediated effects in favor of M1-like polarization. In conclusion, our study addresses for the first time, the potential capability of MPS in skewing macrophages toward an anti-cancer M1-like phenotype both directly and in a TEX-dependent manner. Thus, in addition to its direct anti-cancer effects, this compound could also modify TME in favor of tumor eradication via its direct and TEX-mediated effects on macrophage polarization as a novel anti-cancer mechanism.
Collapse
|
60
|
Jiang J, Mei J, Ma Y, Jiang S, Zhang J, Yi S, Feng C, Liu Y, Liu Y. Tumor hijacks macrophages and microbiota through extracellular vesicles. EXPLORATION (BEIJING, CHINA) 2022; 2:20210144. [PMID: 37324578 PMCID: PMC10190998 DOI: 10.1002/exp.20210144] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/16/2021] [Indexed: 06/17/2023]
Abstract
The tumor microenvironment (TME) is a biological system with sophisticated constituents. In addition to tumor cells, tumor-associated macrophages (TAMs) and microbiota are also dominant components. The phenotypic and functional changes of TAMs are widely considered to be related to most tumor progressions. The chronic colonization of pathogenic microbes and opportunistic pathogens accounts for the generation and development of tumors. As messengers of cell-to-cell communication, tumor-derived extracellular vesicles (TDEVs) can transfer various malignant factors, regulating physiological and pathological changes in the recipients and affecting TAMs and microbes in the TME. Despite the new insights into tumorigenesis and progress brought by the above factors, the crosstalk among tumor cells, macrophages, and microbiota remain elusive, and few studies have focused on how TDEVs act as an intermediary. We reviewed how tumor cells recruit and domesticate macrophages and microbes through extracellular vehicles and how hijacked macrophages and microbiota interact with tumor-promoting feedback, achieving a reciprocal coexistence under the TME and working together to facilitate tumor progression. It is significant to seek evidence to clarify those specific interactions and reveal therapeutic targets to curb tumor progression and improve prognosis.
Collapse
Affiliation(s)
- Jipeng Jiang
- Postgraduate School Medical School of Chinese PLA Beijing P. R. China
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Jie Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing P. R. China
- University of Chinese Academy of Science Beijing P. R. China
| | - Yongfu Ma
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Shasha Jiang
- Postgraduate School Medical School of Chinese PLA Beijing P. R. China
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Jian Zhang
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Shaoqiong Yi
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Changjiang Feng
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Yang Liu
- Postgraduate School Medical School of Chinese PLA Beijing P. R. China
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing P. R. China
- GBA National Institute for Nanotechnology Innovation Guangdong P. R. China
| |
Collapse
|
61
|
Qiao Y, Fu E. [Advances in the Study of Tumor-associated Macrophages in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:34-39. [PMID: 35078283 PMCID: PMC8796125 DOI: 10.3779/j.issn.1009-3419.2021.102.49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
肺癌是全球发病率和死亡率最高的恶性肿瘤之一。因此对于肺癌治疗手段的研究也在不断深入,目前临床上主要有全身化疗、针对驱动基因阳性的靶向治疗、免疫检查点抑制剂的应用、抗肿瘤血管生成治疗以及上述不同治疗方法的联合等,这些方案的使用明显改善了大多数肺癌患者的预后,但晚期患者预后仍然不尽如人意。近年来,与免疫相关的肿瘤微环境(tumor microenvironment, TME)的研究越来越受到重视。TME由免疫细胞、成纤维细胞、血管内皮细胞等细胞成分及相关的细胞因子等组成,是肿瘤细胞赖以生存、发展的基础。而肿瘤相关巨噬细胞(tumor-associated macrophages, TAMs)是TME重要的免疫细胞,指浸润于肿瘤组织中的巨噬细胞,可促进肿瘤细胞增殖,诱导肿瘤免疫耐受,刺激肿瘤血管生成,增加肿瘤细胞的侵袭及转移能力。因此,靶向TAMs已经成为肺癌免疫治疗的热点。本文就TAMs来源、表型及其在肺癌中的作用机制以及在未来治疗中的靶点进行综述,为肺癌最优化治疗提供参考。
Collapse
Affiliation(s)
- Yanyan Qiao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Air Force Military Medical University,
Xi'an 710038, China
| | - Enqing Fu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Air Force Military Medical University,
Xi'an 710038, China
| |
Collapse
|
62
|
Nestler T, Dalvi P, Haidl F, Wittersheim M, von Brandenstein M, Paffenholz P, Wagener-Ryczek S, Pfister D, Koitzsch U, Hellmich M, Buettner R, Odenthal M, Heidenreich A. Transcriptome analysis reveals upregulation of immune response pathways at the invasive tumour front of metastatic seminoma germ cell tumours. Br J Cancer 2022; 126:937-947. [PMID: 35022523 PMCID: PMC8927344 DOI: 10.1038/s41416-021-01621-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/17/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Background Testicular germ cell tumours (TGCTs) have a high metastasis rate. However, the mechanisms related to their invasion, progression and metastasis are unclear. Therefore, we investigated gene expression changes that might be linked to metastasis in seminomatous testicular germ cell tumour (STGCT) patients. Methods Defined areas [invasive tumour front (TF) and tumour centre (TC)] of non-metastatic (with surveillance and recurrence-free follow-up >2 years) and metastatic STGCTs were collected separately using laser capture microdissection. The expression of 760 genes related to tumour progression and metastasis was analysed using nCounter technology and validated with quantitative real-time PCR and enzyme-linked immunosorbent assay. Results Distinct gene expression patterns were observed in metastatic and non-metastatic seminomas with respect to both the TF and TC. Comprehensive pathway analysis showed enrichment of genes related to tumour functions such as inflammation, angiogenesis and metabolism at the TF compared to the TC. Remarkably, prominent inflammatory and cancer-related pathways, such as interleukin-6 (IL-6) signalling, integrin signalling and nuclear factor-κB signalling, were significantly upregulated in the TF of metastatic vs non-metastatic tumours. Conclusions IL-6 signalling was the most significantly upregulated pathway in metastatic vs non-metastatic tumours and therefore could constitute a therapeutic target for future personalised therapy. In addition, this is the first study showing intra- and inter-tumour heterogeneity in STGCT.
Collapse
|
63
|
Jiang J, Mei J, Yi S, Feng C, Ma Y, Liu Y, Liu Y, Chen C. Tumor associated macrophage and microbe: The potential targets of tumor vaccine delivery. Adv Drug Deliv Rev 2022; 180:114046. [PMID: 34767863 DOI: 10.1016/j.addr.2021.114046] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023]
Abstract
The occurrence and development of tumors depend on the tumor microenvironment (TME), which is made of various immune cells, activated fibroblasts, basement membrane, capillaries, and extracellular matrix. Tumor associated macrophages (TAMs) and microbes are important components in TME. Tumor cells can recruit and educate TAMs and microbes, and the hijacked TAMs and microbes can promote the progression of tumor reciprocally. Tumor vaccine delivery remodeling TME by targeting TAM and microbes can not only enhance the specificity and immunogenicity of antigens, but also contribute to the regulation of TME. Tumor vaccine design benefits from nanotechnology which is a suitable platform for antigen and adjuvant delivery to catalyze new candidate vaccines applying to clinical therapy at unparalleled speed. In view of the characteristics and mechanisms of TME development, vaccine delivery targeting and breaking the malignant interactions among tumor cells, TAMs, and microbes may serve as a novel strategy for tumor therapy.
Collapse
|
64
|
Chen X, Dou J, Fu Z, Qiu Y, Zou L, Huang D, Tan X. Macrophage M1 polarization mediated via the IL-6/STAT3 pathway contributes to apical periodontitis induced by Porphyromonas gingivalis. J Appl Oral Sci 2022; 30:e20220316. [DOI: 10.1590/1678-7757-2022-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
|
65
|
Hourani T, Holden JA, Li W, Lenzo JC, Hadjigol S, O’Brien-Simpson NM. Tumor Associated Macrophages: Origin, Recruitment, Phenotypic Diversity, and Targeting. Front Oncol 2021; 11:788365. [PMID: 34988021 PMCID: PMC8722774 DOI: 10.3389/fonc.2021.788365] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
The tumor microenvironment (TME) is known to have a strong influence on tumorigenesis, with various components being involved in tumor suppression and tumor growth. A protumorigenic TME is characterized by an increased infiltration of tumor associated macrophages (TAMs), where their presence is strongly associated with tumor progression, therapy resistance, and poor survival rates. This association between the increased TAMs and poor therapeutic outcomes are stemming an increasing interest in investigating TAMs as a potential therapeutic target in cancer treatment. Prominent mechanisms in targeting TAMs include: blocking recruitment, stimulating repolarization, and depletion methods. For enhancing targeting specificity multiple nanomaterials are currently being explored for the precise delivery of chemotherapeutic cargo, including the conjugation with TAM-targeting peptides. In this paper, we provide a focused literature review of macrophage biology in relation to their role in tumorigenesis. First, we discuss the origin, recruitment mechanisms, and phenotypic diversity of TAMs based on recent investigations in the literature. Then the paper provides a detailed review on the current methods of targeting TAMs, including the use of nanomaterials as novel cancer therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Neil M. O’Brien-Simpson
- Antimicrobial, Cancer Therapeutics and Vaccines (ACTV) Research Group, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
66
|
Cheuk IW, Chen J, Siu M, Ho JC, Lam SS, Shin VY, Kwong A. Resveratrol enhanced chemosensitivity by reversing macrophage polarization in breast cancer. Clin Transl Oncol 2021; 24:854-863. [PMID: 34859370 DOI: 10.1007/s12094-021-02731-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Resveratrol, a naturally occurring polyphenolic compound, has been shown to inhibit cancer growth by targeting several cancer-related signalling pathways. In the tumor microenvironment (TME), tumor-associated macrophages (TAMs) are the most abundant leukocyte population that are associated with poor prognosis in over 80% of breast cancer cases. However, little is known about the effect of resveratrol in the TME. METHODS In this study, MDA-MB-231(MB231), cisplatin resistance MDA-MB-231 (cisR), and T47D were used to examine the antitumor effect of resveratrol. The effectiveness of resveratrol, together with cisplatin as breast cancer treatment was investigated in vivo. Gene expressions of M1 (iNOS and CXCL10) and M2 (ARG1, CD163 and MRC1) markers in differentiated macrophages derived from THP-1 cells were examined to investigate the effect of resveratrol on TAM polarization in breast cancer progression. RESULTS Our results demonstrated that resveratrol significantly reduced cell proliferation and enhanced chemosensitivity in breast cancer cells by inhibiting production of IL-6 and STAT3 activation. Treatment of resveratrol increased CXCL10 (M1 marker) expression. Further, resveratrol decreased IL-6 levels in LPS-treated differentiated macrophages. The use of resveratrol with cisplatin inhibited suppressed tumor growth when compared with cisplatin alone. CONCLUSION This study revealed that resveratrol inhibited breast cancer cell proliferation by promoting M1/M2 macrophage polarization ratio and suppressing IL-6/pSTAT3 pathway.
Collapse
Affiliation(s)
- I W Cheuk
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen Hospital, Hong Kong SAR, China
| | - J Chen
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen Hospital, Hong Kong SAR, China
| | - M Siu
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen Hospital, Hong Kong SAR, China
| | - J C Ho
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen Hospital, Hong Kong SAR, China
| | - S S Lam
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen Hospital, Hong Kong SAR, China
| | - V Y Shin
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen Hospital, Hong Kong SAR, China
| | - A Kwong
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen Hospital, Hong Kong SAR, China.
- Department of Surgery, The Hong Kong Sanatorium and Hospital, Hong Kong SAR, China.
- The Hong Kong Hereditary Breast Cancer Family Registry, Room K1401, Queen Mary Hospital, Pokfulam Road, Hong Kong SAR, China.
| |
Collapse
|
67
|
Takinib Inhibits Inflammation in Human Rheumatoid Arthritis Synovial Fibroblasts by Targeting the Janus Kinase-Signal Transducer and Activator of Transcription 3 (JAK/STAT3) Pathway. Int J Mol Sci 2021; 22:ijms222212580. [PMID: 34830460 PMCID: PMC8621335 DOI: 10.3390/ijms222212580] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/24/2022] Open
Abstract
TGF β-activated kinase 1 (TAK1) is an important participant in inflammatory pathogenesis for diseases such as rheumatoid arthritis (RA) and gouty arthritis. The central position it occupies between the mitogen activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) pathways makes it an attractive therapeutic target. As this field has developed in recent years, several novel inhibitors have been presented as having specific activity that reduces the TAK1 function either covalently as in the case of 5Z-7-oxozeanol (5Z7O) or reversibly (NG-25). However, the mechanism through which takinib elicits its anti-inflammatory activity remains elusive. While this inhibitor shows great promise, a thorough analysis of its inhibitor function and its potential off-target effects is necessary before addressing its clinical potential or its use in inflammatory conditions. An analysis through Western blot showed an unexpected increase in IL-1β-induced TAK1 phosphorylation—a prerequisite for and indicator of its functional potential—by takinib while simultaneously demonstrating the inhibition of the JAK/STAT pathway in human rheumatoid arthritis synovial fibroblasts (RASFs) in vitro. In THP-1 monocyte-derived macrophages, takinib again led to the lipopolysaccharide-induced phosphorylation of TAK1 without a marked inhibition of the TAK1 downstream effectors, namely, of c-Jun N-terminal kinase (JNK), phospho-c-Jun, NF-κB phospho-p65 or phospho-IκBα. Taken together, these findings indicate that takinib inhibits inflammation in these cells by targeting multiple signaling pathways, most notably the JAK/STAT pathway in human RASFs.
Collapse
|
68
|
Han L, Han Y. Network Pharmacology-Based Study on the Active Component and Mechanism of the Anti-Gastric-Cancer Effect of Herba Sarcandrae. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:3001131. [PMID: 34840695 PMCID: PMC8626172 DOI: 10.1155/2021/3001131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022]
Abstract
Background Herba Sarcandrae is used in the clinical practice of traditional Chinese medicine to deal with gastric cancer. However, there are few studies on its precise mechanism. Method In this study, a network pharmacological approach was utilized to construct a molecular/target/pathway molecular regulatory network for the anti-gastric-cancer effect of Herba Sarcandrae. The active components of Herba Sarcandrae and their potential mechanisms were explored. Chemical components of the Herba Sarcandrae were identified through a database, and they were evaluated and screened based on oral bioavailability and drug similarity. Results Genes related to gastric cancer were found in the Gene Expression Omnibus (GEO) database, and gene targets related to anti-gastric-cancer were chosen by comparison. Using annotation, visualization, and a comprehensive discovery database, the function and related pathways of target genes were analyzed and screened. Cytoscape software was utilized to construct a component/target/pathway network for the antitumor effect of Herba Sarcandrae. Finally, 6 drug ingredients and 29 target genes related to gastric cancer were detected. IL-17 signaling pathway, NF-kappa B signaling pathway, and other signaling pathways were significantly enriched. Many signaling pathways that directly act on tumors and indirect pathways inhibit the development of gastric cancer. Conclusion This study provides a scientific basis for further elucidating the mechanism of the anti-gastric-cancer effect of Herba Sarcandrae.
Collapse
Affiliation(s)
- Li Han
- The Third Hospital of Hebei Medical University, Pharmacy Department, Shijiazhuang, China
| | - Ying Han
- The Third Hospital of Hebei Medical University, Department of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
69
|
Jarlborg M, Gabay C. Systemic effects of IL-6 blockade in rheumatoid arthritis beyond the joints. Cytokine 2021; 149:155742. [PMID: 34688020 DOI: 10.1016/j.cyto.2021.155742] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/13/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022]
Abstract
Interleukin (IL)-6 is produced locally in response to an inflammatory stimulus, and is able to induce systemic manifestations at distance from the site of inflammation. Its unique signaling mechanism, including classical and trans-signaling pathways, leads to a major expansion in the number of cell types responding to IL-6. This pleiotropic cytokine is a key factor in the pathogenesis of rheumatoid arthritis (RA) and is involved in many extra-articular manifestations that accompany the disease. Thus, IL-6 blockade is associated with various biological effects beyond the joints. In this review, the systemic effects of IL-6 in RA comorbidities and the consequences of its blockade will be discussed, including anemia of chronic disease, cardiovascular risks, bone and muscle functions, and neuro-psychological manifestations.
Collapse
Affiliation(s)
- Matthias Jarlborg
- Division of Rheumatology, University Hospital of Geneva, and Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland; VIB-UGent Center for Inflammation Research and Ghent University, Ghent, Belgium
| | - Cem Gabay
- Division of Rheumatology, University Hospital of Geneva, and Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland.
| |
Collapse
|
70
|
Saranyutanon S, Acharya S, Deshmukh SK, Khan MA, Singh S, Singh AP. Nicotine causes alternative polarization of macrophages via Src-mediated STAT3 activation: Potential pathobiological implications. J Cell Physiol 2021; 237:1486-1497. [PMID: 34647621 DOI: 10.1002/jcp.30607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
Nicotine is an addictive ingredient of tobacco products and other noncigarette substitutes, including those being used for smoking cessation to relieve withdrawal symptoms. Earlier research, however, has associated nicotine with the risk and poorer outcome of several diseases, including cancer. Macrophages are an important component of the innate immune system and can have both pro-and anti-inflammatory functions depending upon their polarization state. Here, we investigated the effect of nicotine on macrophage polarization, growth, and invasion to understand its role in human physiology. We observed that nicotine induced M2 polarization of RAW264.7 and THP-1-derived macrophages in a dose-dependent manner. Cytokine profiling suggested a mixed M2a/d phenotype of nicotine-polarized macrophages associated with tissue repair and pro-angiogenic functions. Moreover, nicotine treatment also enhanced the growth, motility, and invasion of macrophages. Mechanistic studies revealed increased phosphorylation of STAT3 in nicotine-treated macrophages that was mediated through Src activation. Importantly, pretreatment of macrophages with either Src or STAT3 inhibitor abrogated nicotine-induced macrophage polarization, growth, and motility, suggesting a functional role of the Src-STAT3 signaling axis. Together, our findings reveal a novel role of nicotine in immunosuppression via causing M2 polarization of macrophages that could be implicated in the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Sirin Saranyutanon
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Srijan Acharya
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Sachin Kumar Deshmukh
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Mohammad Aslam Khan
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Ajay Pratap Singh
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
71
|
Mu G, Zhu Y, Dong Z, Shi L, Deng Y, Li H. Calmodulin 2 Facilitates Angiogenesis and Metastasis of Gastric Cancer via STAT3/HIF-1A/VEGF-A Mediated Macrophage Polarization. Front Oncol 2021; 11:727306. [PMID: 34604066 PMCID: PMC8479158 DOI: 10.3389/fonc.2021.727306] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/30/2021] [Indexed: 01/13/2023] Open
Abstract
Background Tumor-associated macrophages (TAMs) are indispensable to mediating the connections between cells in the tumor microenvironment. In this study, we intended to research the function and mechanism of Calmodulin2 (CALM2) in gastric cancer (GC)-TAM microenvironment. Materials and methods CALM2 expression in GC tissues and GC cells was determined through quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). The correlation between CALM2 level and the survival rate of GC patients was assessed. The CALM2 overexpression or knockdown model was constructed to evaluate its role in GC cell proliferation, migration, and invasion. THP1 cells or HUVECs were co-cultured with the conditioned medium of GC cells. Tubule formation experiment was done to examine the angiogenesis of endothelial cells. The proliferation, migration, and polarization of THP1 cells were measured. A xenograft model was set up in BALB/c male nude mice to study CALM2x’s effects on tumor growth and lung metastasis in vivo. Western Blot (WB) checked the profile of JAK2/STAT3/HIF-1/VEGFA in GC tissues and cells. Results In GC tissues and cell lines, CALM2 expression was elevated and positively relevant to the poor prognosis of GC patients. In in-vitro experiments, CALM2 overexpression or knockdown could facilitate or curb the proliferation, migration, invasion, and angiogenesis of HUVECs and M2 polarization of THP1 cells. In in-vivo experiments, CALM2 boosted tumor growth and lung metastasis. Mechanically, CALM2 could arouse the JAK2/STAT3/HIF-1/VEGFA signaling. It was also discovered that JAK2 and HIF-1A inhibition could attenuate the promoting effects of CALM2 on GC, HUVECs cells, and macrophages. Conclusion CALM2 modulates the JAK2/STAT3/HIF-1/VEGFA axis and bolsters macrophage polarization, thus facilitating GC metastasis and angiogenesis.
Collapse
Affiliation(s)
- Ganggang Mu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yijie Zhu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zehua Dong
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lang Shi
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunchao Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongyan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
72
|
Zhang L, Kuca K, You L, Zhao Y, Musilek K, Nepovimova E, Wu Q, Wu W, Adam V. Signal transducer and activator of transcription 3 signaling in tumor immune evasion. Pharmacol Ther 2021; 230:107969. [PMID: 34450232 DOI: 10.1016/j.pharmthera.2021.107969] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
The underlying mechanism of tumor immune evasion is a highly concerning subject for researchers. Increasing evidences reveal that the over-activated signal transducer and activator of transcription 3 (STAT3) is a crucial molecular hub in malignant tumors. STAT3 controls autophagy molecules that impair CTL-mediated tumor cell lysis, inhibiting natural killer cells and inducing apoptosis in T lymphocytes to create an immunosuppressive environment. STAT3 signaling regulates the expression of immune factors and recruits immunosuppressive cells to establish a tolerant tumor microenvironment (TME). STAT3 signaling regulates the expression of immune factors and recruits immunosuppressive cells to create an immunosuppressive environment. All this aid tumor cells in escaping from immune surveillance. In this review, we outlined the STAT3-mediated mechanisms involved in tumor immune evasion and their potential regulatory functions in the TME. We discussed the impact of STAT3 signaling on PD-L1, HIF-1α, exosome, lncRNA, and autophagy in the promotion of tumor immune evasion and highlighted the recent research on STAT3 signaling and tumor immune evasion that may assist in developing effective STAT3-targeted drugs for advancing immunotherapy.
Collapse
Affiliation(s)
- Luying Zhang
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 500 03, Czech Republic
| | - Li You
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Yingying Zhao
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 500 03, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 500 03, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 500 03, Czech Republic.
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 500 03, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 613 00, Czech Republic; Central European Institute of Technology, Brno University of Technology, Brno 602 00, Czech Republic.
| |
Collapse
|
73
|
Lu Q, Lou J, Cai R, Han W, Pan H. Emerging roles of a pivotal lncRNA SBF2-AS1 in cancers. Cancer Cell Int 2021; 21:417. [PMID: 34372871 PMCID: PMC8351094 DOI: 10.1186/s12935-021-02123-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022] Open
Abstract
Long non-coding RNAs refer to transcripts over 200 nt in length that lack the ability to encode proteins, which occupy the majority of the genome and play a crucial role in the occurrence and development of human diseases, especially cancers. SBF2-AS1, a newly identified long non-coding RNA, has been verified to be highly expressed in diversiform cancers, and is involved in processes promoting tumorigenesis, tumor progression and tumor metastasis. Moreover, upregulation of SBF2-AS1 expression was significantly related to disadvantageous clinicopathologic characteristics and indicated poor prognosis. In this review, we comprehensively summarize the up-to-date knowledge of the detailed mechanisms and underlying functions of SBF2-AS1 in diverse cancer types, highlighting the potential of SBF2-AS1 as a diagnostic and prognostic biomarker and even a therapeutic target.
Collapse
Affiliation(s)
- Qian Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Lou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ruyun Cai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
74
|
Jung J, Liao H, Coker SA, Liang H, Hancock JF, Denicourt C, Venkatachalam K. p53 mitigates the effects of oncogenic HRAS in urothelial cells via the repression of MCOLN1. iScience 2021; 24:102701. [PMID: 34222845 PMCID: PMC8243020 DOI: 10.1016/j.isci.2021.102701] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/10/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Inhibition of TRPML1, which is encoded by MCOLN1, is known to deter cell proliferation in various malignancies. Here, we report that the tumor suppressor, p53, represses MCOLN1 in the urothelium such that either the constitutive loss or ectopic knockdown of TP53-in both healthy and bladder cancer cells-increased MCOLN1 expression. Conversely, nutlin-mediated activation of p53 led to the repression of MCOLN1. Elevated MCOLN1 expression in p53-deficient cancer cells, though not sufficient for bolstering proliferation, augmented the effects of oncogenic HRAS on proliferation, cytokine production, and invasion. Our data suggest that owing to derepression of MCOLN1, urothelial cells lacking p53 are poised for tumorigenesis driven by oncogenic HRAS. Given our prior findings that HRAS mutations predict addiction to TRPML1, this study points to the utility of TRPML1 inhibitors for mitigating the growth of a subset of urothelial tumors that lack p53.
Collapse
Affiliation(s)
- Jewon Jung
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
| | - Han Liao
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
| | - Shannon A. Coker
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
| | - Hong Liang
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
| | - John F. Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Catherine Denicourt
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Graduate Program in Neuroscience, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
75
|
Debacker JM, Gondry O, Lahoutte T, Keyaerts M, Huvenne W. The Prognostic Value of CD206 in Solid Malignancies: A Systematic Review and Meta-Analysis. Cancers (Basel) 2021; 13:cancers13143422. [PMID: 34298638 PMCID: PMC8305473 DOI: 10.3390/cancers13143422] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary The role of innate immune cells in the tumor microenvironment (TME), more specifically the presence of the tumor associated macrophages (TAMs), is becoming more important in the prognosis and treatment of patients diagnosed with malignancies. The aim of this systematic review and meta-analysis was to assess the potential prognostic value of CD206-expressing TAMs, a subclass of macrophages, which were previously proposed to negatively impact the patient’s prognosis. We identified 27 manuscripts describing the role of CD206 in patient prognosis for 14 different tumor types. Despite a large heterogeneity in the results, we identified a significantly worse overall and disease-free survival for patients with increased CD206-expressing TAMs in the TME. The use of CD206-expressing TAMs could therefore be used as a prognostic marker in patients diagnosed with solid malignancies. Abstract An increased presence of CD206-expressing tumor associated macrophages in solid cancers was proposed to be associated with worse outcomes in multiple types of malignancies, but contradictory results are published. We performed a reproducible systematic review and meta-analysis to provide increased evidence to confirm or reject this hypothesis following the Preferred Reporting Items for Systematic Reviews and Meta-analyses statement. The Embase, Web of Science, and MEDLINE-databases were systematically searched for eligible manuscripts. A total of 27 papers studying the prognostic impact of CD206 in 14 different tumor types were identified. Meta-analyses showed a significant impact on the overall survival (OS) and disease-free survival (DFS). While no significant differences were revealed in progression-free survival (PFS) and disease-specific survival (DSS), a shift towards negative survival was correlated with increased CD206-expresion. As a result of the different tumor types, large heterogeneity was present between the different tumor types. Subgroup analysis of hepatocellular carcinoma and gastric cancers revealed no heterogeneity, associated with a significant negative impact on OS in both groups. The current systematic review displays the increased presence CD206-expressing macrophages as a significant negative prognostic biomarker for both OS and DFS in patients diagnosed with solid cancers. Because a heterogenous group of tumor types was included in the meta-analysis, the results cannot be generalized. These results can, however, be used to further lead follow-up research to validate the specific prognostic value of CD206 in individual tumor types and therapeutic approaches.
Collapse
Affiliation(s)
- Jens M. Debacker
- Department of Head and Skin, Ghent University, 9000 Ghent, Belgium;
- Department of Head and Neck Surgery, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Nuclear Medicine, University Hospital Brussels, 1090 Brussels, Belgium; (O.G.); (T.L.); (M.K.)
- Correspondence: ; Tel.: +32-9-332-39-90
| | - Odrade Gondry
- Department of Nuclear Medicine, University Hospital Brussels, 1090 Brussels, Belgium; (O.G.); (T.L.); (M.K.)
- In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Tony Lahoutte
- Department of Nuclear Medicine, University Hospital Brussels, 1090 Brussels, Belgium; (O.G.); (T.L.); (M.K.)
- In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Marleen Keyaerts
- Department of Nuclear Medicine, University Hospital Brussels, 1090 Brussels, Belgium; (O.G.); (T.L.); (M.K.)
- In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Wouter Huvenne
- Department of Head and Skin, Ghent University, 9000 Ghent, Belgium;
- Department of Head and Neck Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
76
|
Yang J, Xing Z. Ligustilide counteracts carcinogenesis and hepatocellular carcinoma cell-evoked macrophage M2 polarization by regulating yes-associated protein-mediated interleukin-6 secretion. Exp Biol Med (Maywood) 2021; 246:1928-1937. [PMID: 34053234 DOI: 10.1177/15353702211010420] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cross-communication between cancer cells and macrophages within the tumor microenvironment fulfills the critical roles in the progression of cancers, including hepatocellular carcinoma (HCC). Ligustilide exerts anti-inflammation, anti-injury, and anti-tumor pleiotropic pharmacological functions. Nevertheless, its roles in HCC cells and tumor microenvironment remain elusive. In the current study, ligustilide dramatically restrained HCC cell viability and migration but had little cytotoxicity to normal hepatocytes. Importantly, ligustilide antagonized HCC cell co-culture-induced macrophage recruitment and M2 polarization by enhancing the percentage of CD14+CD206+ cells and macrophage M2 markers (CD163, Arg1, CD206, CCL22, IL-10, and TGF-β). Mechanistically, ligustilide repressed yes-associated protein (YAP) activation by reducing nuclear translocation, protein expression, transcriptional regulatory activity of YAP, and increasing p-YAP levels. Noticeably, blocking the YAP offset the suppressive effects of ligustilide on macrophage recruitment and M2 polarization evoked by HCC cells. Moreover, the release of interleukin-6 (IL-6) was mitigated by ligustilide in a YAP-dependent manner in HCC cells, concomitant with inhibition of IL-6R/STAT3 signaling activation. Of interest, interdicting the IL-6 aggravated ligustilide-mediated suppression in HCC-induced macrophage recruitment and M2 polarization; whereas exogenous IL-6 treatment reversed the above effects. Additionally, blockage of IL-6R signaling also overturned IL-6-induced macrophage recruitment and M2 phenotype. Consequently, these findings support a notion that ligustilide not only restrains HCC cell malignancy but also antagonizes HCC cell-evoked macrophage recruitment and M2 polarization by inhibiting YAP/IL-6 release-induced activation of the IL-6 receptor/signal transducer and activator of transcription 3 (IL-6R/STAT3) signaling. Thus, ligustilide may be a promising therapeutic agent to fight HCC by regulating cancer cells and cross-talk between tumor cells and macrophages in tumor microenvironment.
Collapse
Affiliation(s)
- Jikang Yang
- Department of Gastroenterology, Jiaozuo People's Hospital, Jiaozuo 454000, China
| | - Zhiyuan Xing
- Emergency Department, Jiaozuo Hospital of Traditional Chinese Medicine, Jiaozuo 454150, China
| |
Collapse
|
77
|
Reddy SS, Agarwal H, Jaiswal A, Jagavelu K, Dikshit M, Barthwal MK. Macrophage p47 phox regulates pressure overload-induced left ventricular remodeling by modulating IL-4/STAT6/PPARγ signaling. Free Radic Biol Med 2021; 168:168-179. [PMID: 33736980 DOI: 10.1016/j.freeradbiomed.2021.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/19/2022]
Abstract
NADPH oxidase (Nox) mediates ROS production and contributes to cardiac remodeling. However, macrophage p47phox, a Nox subunit regulating cardiac remodeling, is unclear. We aimed to investigate the role of macrophage p47phox in hypertensive cardiac remodeling. Pressure-overload induced by Angiotensin II (AngII) for two weeks in young adult male p47phox deficient (KO) mice showed aggravated cardiac dysfunction and hypertrophy as indicated from echocardiographic and histological studies in comparison with wild-type littermates (WT). Additionally, LV of AngII-infused KO mice showed augmented interstitial fibrosis, collagen deposition and, myofibroblasts compared to AngII-infused WT mice. Moreover, these changes in AngII-infused KO mice correlated well with the gene analysis of hypertrophic and fibrotic markers. Similar results were also found in the transverse aortic constriction model. Further, AngII-infused KO mice showed elevated circulating immunokines and increased LV leukocytes infiltration and CD206+ macrophages compared to AngII-infused WT mice. Likewise, LV of AngII-infused KO mice showed upregulated mRNA expression of anti-inflammatory/pro-fibrotic M2 macrophage markers (Ym1, Arg-1) compared to AngII-infused WT mice. AngII and IL-4 treated bone marrow-derived macrophages (BMDMs) from KO mice showed upregulated M2 macrophage markers and STAT6 phosphorylation (Y641) compared to AngII and IL-4 treated WT BMDMs. These alterations were at least partly mediated by macrophage as bone marrow transplantation from KO mice into WT mice aggravated cardiac remodeling. Mechanistically, AngII-infused KO mice showed hyperactivated IL-4/STAT6/PPARγ signaling and downregulated SOCS3 expression compared to AngII-infused WT mice. Our studies show that macrophage p47phox limits anti-inflammatory signaling and extracellular matrix remodeling in response to pressure-overload.
Collapse
Affiliation(s)
- Sukka Santosh Reddy
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Heena Agarwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anant Jaiswal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Kumaravelu Jagavelu
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manoj Kumar Barthwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
78
|
Numajiri H, Kuzumi A, Fukasawa T, Ebata S, Yoshizaki-Ogawa A, Asano Y, Kazoe Y, Mawatari K, Kitamori T, Yoshizaki A, Sato S. B cell depletion inhibits fibrosis via suppressing pro-fibrotic macrophage differentiation in a mouse model of systemic sclerosis. Arthritis Rheumatol 2021; 73:2086-2095. [PMID: 33955200 DOI: 10.1002/art.41798] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 04/25/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE We investigated the effect of B cell depletion on fibrosis in systemic sclerosis (SSc) and its mechanism of action. METHODS Bleomycin-induced SSc (BLM-SSc) model mice were treated with anti-CD20 antibody, and skin and lung fibrosis was evaluated histopathologically. T cells and macrophages were co-cultured with B cells, and the effect of B cells on their differentiation was assessed by flow cytometry. We also co-cultured B cells and monocytes from SSc patients and analyzed the correlation between fibrosis and pro-fibrotic macrophage induction by B cells. RESULTS B cell depletion inhibited fibrosis in BLM-SSc mice. B cells from BLM-SSc mice increased pro-inflammatory cytokine producing T cells in co-culture. In BLM-SSc mice, B cell depletion before BLM treatment (pre-depletion) inhibited fibrosis more strongly than B cell depletion after BLM treatment (post-depletion). However, the frequencies of pro-inflammatory T cells were lower in the post-depletion group than in the pre-depletion group. This discrepancy suggests that the effect of B cell depletion on fibrosis cannot be explained by its effect on T cell differentiation. On the other hand, pro-fibrotic macrophages were markedly decreased in the pre-depletion group than in the post-depletion group. Furthermore, B cells from BLM-SSc mice increased pro-fibrotic macrophage differentiation in co-culture. In SSc patients, the extent of pro-fibrotic macrophage induction by B cells correlated with the severity of fibrosis. CONCLUSION These findings suggest that B cell depletion inhibits tissue fibrosis via suppressing pro-fibrotic macrophage differentiation in BLM-SSc mice, providing a new rationale for B cell depletion therapy in SSc.
Collapse
Affiliation(s)
- Hiroko Numajiri
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ai Kuzumi
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takemichi Fukasawa
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Ebata
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Asako Yoshizaki-Ogawa
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yutaka Kazoe
- Department of System Design Engineering, School of Integrated Design Engineering, Keio University, Tokyo, Japan
| | - Kazuma Mawatari
- Department of Applied Chemistry, The University of Tokyo Graduate School of Engineering, Tokyo, Japan
| | - Takehiko Kitamori
- Department of Bioengineering, The University of Tokyo Graduate School of Engineering, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
79
|
Jafarzadeh A, Nemati M, Jafarzadeh S. Contribution of STAT3 to the pathogenesis of COVID-19. Microb Pathog 2021; 154:104836. [PMID: 33691172 PMCID: PMC7937040 DOI: 10.1016/j.micpath.2021.104836] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/13/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023]
Abstract
Hyper-inflammatory responses, lymphopenia, unbalanced immune responses, cytokine storm, large viral replication and massive cell death play fundamental roles in the pathogenesis of COVID-19. Extreme production of many kinds of pro-inflammatory cytokines and chemokines occur in severe COVID-19 that called cytokine storm. Signal transducer and activator of transcription-3 (STAT-3) present in the cytoplasm in an inactive form and can be stimulated by a vast range of cytokines, chemokines and growth factors. Thus, STAT-3 can participate in the induction of inflammatory responses during coronavirus infections. STAT-3 can also suppress anti-virus interferon response and induce unbalanced anti-virus adaptive immune response, through influencing Th17-, Th1-, Treg-, and B cell-mediated functions. Furthermore, STAT-3 can contribute to the M2 macrophage polarization, lung fibrosis and thrombosis. Moreover, STAT-3 may be directly targeted by some virus-derived protein and operate as a pro-viral or anti-viral element in a virus-specific process. Here, the possible contribution of STAT-3 to the pathogenesis of COVID-19 was explained, while providing potential approaches to target this transcription factor in an attempt for COVID-19 treatment.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
80
|
Li X, Liu Y, Zheng S, Zhang T, Wu J, Sun Y, Zhang J, Liu G. Role of exosomes in the immune microenvironment of ovarian cancer. Oncol Lett 2021; 21:377. [PMID: 33777201 PMCID: PMC7988709 DOI: 10.3892/ol.2021.12638] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are excretory vesicles that can deliver a variety of bioactive cargo molecules to the extracellular environment. Accumulating evidence demonstrates exosome participation in intercellular communication, immune response, inflammatory response and they even play an essential role in affecting the tumor immune microenvironment. The role of exosomes in the immune microenvironment of ovarian cancer is mainly divided into suppression and stimulation. On one hand exosomes can stimulate the innate and adaptive immune systems by activating dendritic cells (DCs), natural killer cells and T cells, allowing these immune cells exert an antitumorigenic effect. On the other hand, ovarian cancer-derived exosomes initiate cross-talk with immunosuppressive effector cells, which subsequently cause immune evasion; one of the hallmarks of cancer. Exosomes induce the polarization of macrophages in M2 phenotype and induce apoptosis of lymphocytes and DCs. Exosomes further activate additional immunosuppressive effector cells (myeloid-derived suppressor cells and regulatory T cells) that induce fibroblasts to differentiate into cancer-associated fibroblasts. Exosomes also induce the tumorigenicity of mesenchymal stem cells to exert additional immune suppression. Furthermore, besides mediating the intercellular communication, exosomes carry microRNAs (miRNAs), proteins and lipids to the tumor microenvironment, which collectively promotes ovarian cancer cells to proliferate, invade and tumors to metastasize. Studying proteins, lipids and miRNAs carried by exosomes could potentially be used as an early diagnostic marker of ovarian cancer for designing treatment strategies.
Collapse
Affiliation(s)
- Xiao Li
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yang Liu
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shuangshuang Zheng
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Tianyu Zhang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jing Wu
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yue Sun
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jingzi Zhang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Guoyan Liu
- Department of Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
81
|
Zhang X, Zhu M, Hong Z, Chen C. Co-culturing polarized M2 Thp-1-derived macrophages enhance stemness of lung adenocarcinoma A549 cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:709. [PMID: 33987407 PMCID: PMC8106048 DOI: 10.21037/atm-21-1256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background The tumor microenvironment (TME) is highly associated with cancer stem cells, and affects tumor initiation, progression, and metastasis. This study aimed to explore the underlying molecular mechanism of induction of A549 cancer cell stemness by THP-1-derived macrophages. Method The Hedgehog inhibitor (Vismodegib), Notch inhibitor Gamma Secretase Inhibitor (GSI), and Signal Transducer and Activator of Transcription 3 (STAT3) inhibitor Cucurbitacin I (JSI-124) were added separately into the co-culture system of A549 cancer cell with THP-1-derived macrophages. Cell Counting Kit-8 (CCK-8) assay and the Cell-IQ continuous surveillance system were used to examine the cell growth and morphological changes of A549 cells. The messenger ribonucleic acid (mRNA) and protein expression levels of stem cell markers were respectively analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, and the activity of Acetaldehyde dehydrogenase (ALDH) enzyme was assessed by flow cytometry analysis. Enzyme-linked immunosorbent assay (ELISA) and qRT-PCR assays were performed to evaluate the activation and differentiation of macrophages. Results Results showed that the proliferation and stemness of A549 cells were significantly enhanced by co-culturing with THP-1-derived macrophages. The expression levels of Transforming growth factor-β (TGF-β) and Interleukin-6 (IL-6) in macrophages were notably increased after co-culturing with A549 cells. Meanwhile, co-culturing with A549 cells induced the polarization of macrophages towards the M2 phenotype. Moreover, the inhibitors could reduce the proliferation and stemness of the co-culture system, and decrease the expression of TGF-β and IL-6. Conclusions These results suggested that co-culturing A549 cells with THP-1-derived macrophages could induce the stemness of A549 cells via multiple pro-tumorigenic pathways. Thus, inhibition of the interaction between macrophages and lung cancer stem cells may be a viable target for lung cancer treatment in the future.
Collapse
Affiliation(s)
- Xiaocheng Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mingyang Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zipu Hong
- Department of Traumatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengshui Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
82
|
Xiong J, Wang H, Wang Q. Suppressive Myeloid Cells Shape the Tumor Immune Microenvironment. Adv Biol (Weinh) 2021; 5:e1900311. [PMID: 33729699 DOI: 10.1002/adbi.201900311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/09/2021] [Indexed: 12/12/2022]
Abstract
Cancer is the outcome of the conflict between the host immune system and cancer cells. The crosstalk between immune cells and tumor cells within the tumor microenvironment (TME) influences tumor progression and metastasis. Many studies have clarified the cellular and molecular events that can induce cancer cells to escape immune surveillance, including those involving tumor-induced myeloid cell-mediated immunosuppression. Emerging evidence indicates that tumor-infiltrating myeloid cells (TIMs) accelerate tumor growth and induce angiogenesis, metastasis, and therapy resistance once converted into potent immunosuppressive cells. Here, how tumor infiltrating myeloid cells participate in tumor immune evasion and the prospects of these cells in cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Jia Xiong
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, 310058, China
| | - Hui Wang
- China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, 310058, China
| |
Collapse
|
83
|
Tan Y, Sun R, Liu L, Yang D, Xiang Q, Li L, Tang J, Qiu Z, Peng W, Wang Y, Ye L, Ren G, Xiang T. Tumor suppressor DRD2 facilitates M1 macrophages and restricts NF-κB signaling to trigger pyroptosis in breast cancer. Am J Cancer Res 2021; 11:5214-5231. [PMID: 33859743 PMCID: PMC8039962 DOI: 10.7150/thno.58322] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Rationale: Breast cancer (BrCa) is the most common cancer worldwide, and the 5-year relative survival rate has declined in patients diagnosed at stage IV. Advanced BrCa is considered as incurable, which still lack effective treatment strategies. Identifying and characterizing new tumor suppression genes is important to establish effective prognostic biomarkers or therapeutic targets for late-stage BrCa. Methods: RNA-seq was applied in BrCa tissues and normal breast tissues. Through analyzing differentially expressed genes, DRD2 was selected for further analysis. And expression and promoter methylation status of DRD2 were also determined. DRD2 functions were analyzed by various cell biology assays in vitro. Subcutaneous tumor model was used to explore DRD2 effects in vivo. A co-cultivated system was constructed to investigate interactions of DRD2 and macrophages in vitro. WB, IHC, IF, TUNEL, qRT-PCR, Co-IP, Antibody Array, and Mass Spectrum analysis were further applied to determine the detailed mechanism. Results: In BrCa, DRD2 was found to be downregulated due to promoter methylation. Higher expression of DRD2 positively correlated with longer survival times especially in HER2-positive patients. DRD2 also promoted BrCa cells sensitivity to Paclitaxel. Ectopic expression of DRD2 significantly inhibited BrCa tumorigenesis. DRD2 also induced apoptosis as well as necroptosis in vitro and in vivo. DRD2 restricted NF-κB signaling pathway activation through interacting with β-arrestin2, DDX5 and eEF1A2. Interestingly, DRD2 also regulated microenvironment as it facilitated M1 polarization of macrophages, and triggered GSDME-executed pyroptosis. Conclusion: Collectively, this study novelly manifests the role of DRD2 in suppressing BrCa tumorigenesis, predicting prognosis and treatment response. And this study further reveals the critical role of DRD2 in educating M1 macrophages, restricting NF-κB signaling pathway and triggering different processes of programmed cell death in BrCa. Taking together, those findings represent a predictive and therapeutic target for BrCa.
Collapse
|
84
|
Abstract
IL-6 is involved both in immune responses and in inflammation, hematopoiesis, bone metabolism and embryonic development. IL-6 plays roles in chronic inflammation (closely related to chronic inflammatory diseases, autoimmune diseases and cancer) and even in the cytokine storm of corona virus disease 2019 (COVID-19). Acute inflammation during the immune response and wound healing is a well-controlled response, whereas chronic inflammation and the cytokine storm are uncontrolled inflammatory responses. Non-immune and immune cells, cytokines such as IL-1β, IL-6 and tumor necrosis factor alpha (TNFα) and transcription factors nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) play central roles in inflammation. Synergistic interactions between NF-κB and STAT3 induce the hyper-activation of NF-κB followed by the production of various inflammatory cytokines. Because IL-6 is an NF-κB target, simultaneous activation of NF-κB and STAT3 in non-immune cells triggers a positive feedback loop of NF-κB activation by the IL-6-STAT3 axis. This positive feedback loop is called the IL-6 amplifier (IL-6 Amp) and is a key player in the local initiation model, which states that local initiators, such as senescence, obesity, stressors, infection, injury and smoking, trigger diseases by promoting interactions between non-immune cells and immune cells. This model counters dogma that holds that autoimmunity and oncogenesis are triggered by the breakdown of tissue-specific immune tolerance and oncogenic mutations, respectively. The IL-6 Amp is activated by a variety of local initiators, demonstrating that the IL-6-STAT3 axis is a critical target for treating diseases.
Collapse
Affiliation(s)
- Toshio Hirano
- National Institutes for Quantum and Radiological Science and Technology, Anagawa, Inage-ku, Chiba, Japan
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
85
|
Granulocyte-Macrophage Colony-Stimulating Factor-Activated Neutrophils Express B7-H4 That Correlates with Gastric Cancer Progression and Poor Patient Survival. J Immunol Res 2021; 2021:6613247. [PMID: 33763491 PMCID: PMC7962878 DOI: 10.1155/2021/6613247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/07/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
Neutrophils are prominent components of gastric cancer (GC) tumors and exhibit distinct phenotypes in GC environment. However, the phenotype, regulation, and clinical relevance of neutrophils in human GC are presently unknown. Here, immunohistochemistry, real-time PCR, and flow cytometry analyses were performed to examine levels and phenotype of neutrophils in samples from 41 patients with GC, and also isolated, stimulated, and/or cultured neutrophils for in vitro regulation assays. Finally, we performed Kaplan-Meier plots for overall survival by using the log-rank test to evaluate the clinical relevance of neutrophils and their subsets. In our study, neutrophils in tumor tissues were significantly higher than those in nontumor tissues and were positively associated with tumor progression but negatively correlated with GC patient survival. Most intratumoral neutrophils showed an activated CD54+ phenotype and expressed high-level immunosuppressive molecule B7-H4. Tumor tissue culture supernatants from GC patients induced neutrophils to express CD54 and B7-H4 in both time-dependent and dose-dependent manners. Locally enriched CD54+ neutrophils and B7-H4+ neutrophils positively correlated with increased granulocyte-macrophage colony-stimulating factor (GM-CSF) detection ex vivo, and in vitro GM-CSF induced the expression of CD54 and B7-H4 on neutrophils in a time-dependent and dose-dependent manner. Moreover, GC tumor-derived GM-CSF activated neutrophils and induced neutrophil B7-H4 expression via Janus kinase (JAK)-signal transducer and activator of transcription 3 (STAT3) signaling pathway activation. Furthermore, higher intratumoral B7-H4+ neutrophil percentage/number was found in GC patients with advanced tumor node metastasis stage and reduced overall survival following surgery. Our results illuminate a novel regulating mechanism of B7-H4 expression on tumor-activated neutrophils in GC, suggesting that functional inhibition of these novel GM-CSF-B7-H4 pathways may be a suitable therapeutic strategy to treat the immune tolerance feature of GC.
Collapse
|
86
|
Niu X, Zhu Z, Bao J. Prognostic significance of pretreatment controlling nutritional status score in urological cancers: a systematic review and meta-analysis. Cancer Cell Int 2021; 21:126. [PMID: 33608012 PMCID: PMC7893866 DOI: 10.1186/s12935-021-01813-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/06/2021] [Indexed: 02/08/2023] Open
Abstract
Background Controlling Nutritional Status (CONUT) score is a novel nutrition-based biomarker that has been reported for predicting survival in various cancers. However, the relationship between CONUT score and prognosis of urological cancers remains unclear. Hence, we performed this meta-analysis to evaluate the prognostic significance of CONUT score for patients with urological cancers. Methods PubMed, Embase, the Cochrane Library and National Knowledge Infrastructure (CNKI) were systematically searched up to October 2020. The pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated to evaluate the association of CONUT score with overall survival (OS), cancer-specific survival (CSS) and recurrence/disease/progress-free survival (RFS/DFS/PFS) in urological cancers. Results A total of 12 articles with 13 studies were included in the analysis. Pooled results indicated that increased CONUT score predicted poor OS (HR: 1.78, 95% CI 1.51–2.09, p < 0.001), CSS (HR: 2.14, 95% CI 1.55–2.97, p < 0.001) and RFS/DFS/PFS (HR: 1.57, 95% CI 1.35–1.84, p < 0.001). Subgroup analysis by cancer type revealed that high CONUT score associated with worse OS in renal cell carcinoma (RCC) and urothelial cancer (UC) (HR: 3.05, 95% CI 2.07–4.50, p < 0.001; HR: 1.58, 95% CI 1.32–1.89, p < 0.001). Similar results could be found in CSS (RCC HR: 2.67, 95% CI 1.87–3.81, p < 0.011; UC HR: 1.68, 95% CI 1.09–2.59, p = 0.011) and in RFS/DFS/PFS (RCC HR: 1.96, 95% CI 1.44–2.66, p < 0.001; UC HR: 1.42, 95% CI 1.18–1.71, p < 0.001). Conclusions These results illustrated that the high CONUT score may predict worse survival for patients suffering from urological cancers. Therefore, the CONUT score may represent an effective prognostic indicator in urological cancers.
Collapse
Affiliation(s)
- Xinhao Niu
- Department of Urinary Surgery, Shanghai Public Health Clinical Center, Fudan University, No. 2901 Caolang Road, 201508, Shanghai, China
| | - Zhe Zhu
- Department of Urinary Surgery, Shanghai Public Health Clinical Center, Fudan University, No. 2901 Caolang Road, 201508, Shanghai, China
| | - Juan Bao
- Department of Urinary Surgery, Shanghai Public Health Clinical Center, Fudan University, No. 2901 Caolang Road, 201508, Shanghai, China.
| |
Collapse
|
87
|
Fletcher P, Hamilton RF, Rhoderick JF, Pestka JJ, Holian A. Docosahexaenoic acid impacts macrophage phenotype subsets and phagolysosomal membrane permeability with particle exposure. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:152-172. [PMID: 33148135 PMCID: PMC7855733 DOI: 10.1080/15287394.2020.1842826] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inhalation of particles results in pulmonary inflammation; however, treatments are currently lacking. Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid shown to exhibit anti-inflammatory capabilities. The impact of DHA on particle-induced inflammation is unclear; therefore, the aim of this study was to examine the hypothesis that DHA downregulates macrophage inflammatory responses by altering phagolysosomal membrane permeability (LMP) and shifting macrophage phenotype. Isolated Balb/c alveolar macrophages (AM) were polarized into M1, M2a, M2b, or M2c phenotypes in vitro, treated with DHA, and exposed to a multi-walled carbon nanotube (MWNCT) or crystalline silica (SiO2). Results showed minimal cytotoxicity, robust effects for silica particle uptake, and LMP differences between phenotypes. Docosahexaenoic acid prevented these effects to the greatest extent in M2c phenotype. To determine if DHA affected inflammation similarly in vivo, Balb/c mice were placed on a control or 1% DHA diet for 3 weeks, instilled with the same particles, and assessed 24 hr following instillation. Data demonstrated that in contrast to in vitro findings, DHA increased pulmonary inflammation and LMP. These results suggest that pulmonary responses in vivo may not necessarily be predicted from single-cell responses in vitro.
Collapse
Affiliation(s)
- Paige Fletcher
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States
| | - Raymond F. Hamilton
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States
| | - Joseph F. Rhoderick
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States
| | - James J. Pestka
- Department of Food Science and Human Nutrition, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States
| |
Collapse
|
88
|
Yang N, Xiong Y, Wang Y, Yi Y, Zhu J, Ma F, Li J, Liu H. ADAP Y571 Phosphorylation Is Required to Prime STAT3 for Activation in TLR4-Stimulated Macrophages. THE JOURNAL OF IMMUNOLOGY 2021; 206:814-826. [PMID: 33431658 DOI: 10.4049/jimmunol.2000569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022]
Abstract
Adhesion and degranulation-promoting adapter protein (ADAP), originally identified as an essential adaptor molecule in TCR signaling and T cell adhesion, has emerged as a critical regulator in innate immune cells such as macrophages; however, its role in macrophage polarization and inflammatory responses remains unknown. In this study, we show that ADAP plays an essential role in TLR4-mediated mouse macrophage polarization via modulation of STAT3 activity. Macrophages from ADAP-deficient mice exhibit enhanced M1 polarization, expression of proinflammatory cytokines and capacity in inducing Th1 responses, but decreased levels of anti-inflammatory cytokines in response to TLR4 activation by LPS. Furthermore, overexpression of ADAP enhances, whereas loss of ADAP reduces, the LPS-mediated phosphorylation and activity of STAT3, suggesting ADAP acts as a coactivator of STAT3 activity and function. Furthermore, the coactivator function of ADAP mostly depends on the tyrosine phosphorylation at Y571 in the motif YDSL induced by LPS. Mutation of Y571 to F severely impairs the stimulating effect of ADAP on STAT3 activity and the ability of ADAP to inhibit M1-like polarization in TLR4-activated mouse macrophages. Moreover, ADAP interacts with STAT3, and loss of ADAP renders mouse macrophages less sensitive to IL-6 stimulation for STAT3 phosphorylation. Collectively, our findings revealed an additional layer of regulation of TLR4-mediated mouse macrophage plasticity whereby ADAP phosphorylation on Y571 is required to prime STAT3 for activation in TLR4-stimulated mouse macrophages.
Collapse
Affiliation(s)
- Naiqi Yang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu Province, China
| | - Yiwei Xiong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Yan Wang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu Province, China
| | - Yulan Yi
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu Province, China
| | - Jingfei Zhu
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; and.,Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Feng Ma
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; and.,Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Jing Li
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu Province, China
| | - Hebin Liu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China; .,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu Province, China
| |
Collapse
|
89
|
Ito A, Kagawa S, Sakamoto S, Kuwada K, Kajioka H, Yoshimoto M, Kikuchi S, Kuroda S, Yoshida R, Tazawa H, Fujiwara T. Extracellular vesicles shed from gastric cancer mediate protumor macrophage differentiation. BMC Cancer 2021; 21:102. [PMID: 33509150 PMCID: PMC7845052 DOI: 10.1186/s12885-021-07816-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
Background Peritoneal dissemination often develops in gastric cancer. Tumor-associated macrophages (TAMs) are present in the peritoneal cavity of gastric cancer patients with peritoneal dissemination, facilitating tumor progression. However, the mechanism by which macrophages differentiate into tumor-associated macrophages in the peritoneal cavity is not well understood. In this study, the interplay between gastric cancer-derived extracellular vesicles (EVs) and macrophages was investigated. Methods The association between macrophages and EVs in peritoneal ascitic fluid of gastric cancer patients, or from gastric cancer cell lines was examined, and their roles in differentiation of macrophages and potentiation of the malignancy of gastric cancer were further explored. Results Immunofluorescent assays of the ascitic fluid showed that M2 macrophages were predominant along with the cancer cells in the peritoneal cavity. EVs purified from gastric cancer cells, as well as malignant ascitic fluid, differentiated peripheral blood mononuclear cell-derived macrophages into the M2-like phenotype, which was demonstrated by their morphology and expression of CD163/206. The macrophages differentiated by gastric cancer-derived EVs promoted the migration ability of gastric cancer cells, and the EVs carried STAT3 protein. Conclusion EVs derived from gastric cancer play a role by affecting macrophage phenotypes, suggesting that this may be a part of the underlying mechanism that forms the intraperitoneal cancer microenvironment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07816-6.
Collapse
Affiliation(s)
- Atene Ito
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan. .,Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan.
| | - Shuichi Sakamoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazuya Kuwada
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroki Kajioka
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masashi Yoshimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.,Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Ryuichi Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
90
|
Adamo A, Frusteri C, Pallotta MT, Pirali T, Sartoris S, Ugel S. Moonlighting Proteins Are Important Players in Cancer Immunology. Front Immunol 2021; 11:613069. [PMID: 33584695 PMCID: PMC7873856 DOI: 10.3389/fimmu.2020.613069] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Plasticity and adaptation to environmental stress are the main features that tumor and immune system share. Except for intrinsic and high-defined properties, cancer and immune cells need to overcome the opponent's defenses by activating more effective signaling networks, based on common elements such as transcriptional factors, protein-based complexes and receptors. Interestingly, growing evidence point to an increasing number of proteins capable of performing diverse and unpredictable functions. These multifunctional proteins are defined as moonlighting proteins. During cancer progression, several moonlighting proteins are involved in promoting an immunosuppressive microenvironment by reprogramming immune cells to support tumor growth and metastatic spread. Conversely, other moonlighting proteins support tumor antigen presentation and lymphocytes activation, leading to several anti-cancer immunological responses. In this light, moonlighting proteins could be used as promising new potential targets for improving current cancer therapies. In this review, we describe in details 12 unprecedented moonlighting proteins that during cancer progression play a decisive role in guiding cancer-associated immunomodulation by shaping innate or adaptive immune response.
Collapse
Affiliation(s)
- Annalisa Adamo
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Frusteri
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | | | - Tracey Pirali
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Silvia Sartoris
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Stefano Ugel
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
91
|
Wang Z, Kun Y, Lei Z, Dawei W, Lin P, Jibo W. LncRNA MIAT downregulates IL-1β, TNF-ɑ to suppress macrophage inflammation but is suppressed by ATP-induced NLRP3 inflammasome activation. Cell Cycle 2021; 20:194-203. [PMID: 33459112 DOI: 10.1080/15384101.2020.1867788] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cardiovascular disease (CVD) has been identified as the leading cause of premature deaths in rheumatoid arthritis (RA), accounting for about 40 to 50% of all deaths. Macrophage inflammation is regarded as a key point to link to the two diseases. Recently, long non-coding RNAs (lncRNAs) have acknowledged as a regulator of inflammation significantly. Here, we firstly found that lncRNA myocardial infarction associated transcript (lncRNA MIAT), a crucial lncRNA to regulate CVD, expressed increasingly in synovium and myocardial tissues of collagen-induced arthritis (CIA) mice. Besides, we also verified that the increased infiltration of macrophage occurred in those tissues of the CIA. In vitro, we found that macrophage inflammation induced by LPS could up-regulate lncRNA MIAT expression. LncRNA MIAT seemed to inhibit the expression of IL-1β, TNF-ɑ and be suppressed by ATP-induced NLRP3 inflammasome activation pathway. Therefore, these data indicated an anti-inflammatory effect of lncRNA MIAT in macrophage and an original research direction for high cardiovascular risk in RA.
Collapse
Affiliation(s)
- Ziye Wang
- Department of Rheumatology & Clinical Immunology, Affiliated Hospital of Qingdao University , Qingdao,China
| | - Yang Kun
- Medical Research Center, Affiliated Hospital of Qingdao University , China
| | - Zhao Lei
- Department of Rheumatology & Clinical Immunology, Affiliated Hospital of Qingdao University , Qingdao,China
| | - Wen Dawei
- Department of Rheumatology & Clinical Immunology, Affiliated Hospital of Qingdao University , Qingdao,China
| | - Pan Lin
- Department of Rheumatology & Clinical Immunology, Affiliated Hospital of Qingdao University , Qingdao,China
| | | |
Collapse
|
92
|
Plasminogen activator inhibitor-1 reduces cardiac fibrosis and promotes M2 macrophage polarization in inflammatory cardiomyopathy. Basic Res Cardiol 2021; 116:1. [PMID: 33432417 PMCID: PMC7801308 DOI: 10.1007/s00395-020-00840-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/15/2020] [Indexed: 11/01/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) has a cardioprotective function in mice by repressing cardiac fibrosis through TGF-β and plasminogen-mediated pathways. In addition it is known to be involved in the recruitment and polarization of monocytes/macrophages towards a M2 phenotype in cancer. Here, we investigated the expression of PAI-1 in human dilated cardiomyopathy (DCM) and inflammatory dilated cardiomyopathy (DCMi) and its effect on cardiac fibrosis and macrophage polarization. We retrospectively analyzed endomyocardial biopsies (EMBs) of patients with DCM or DCMi for PAI-1 expression by immunohistochemistry. Furthermore, EMBs were evaluated for the content of fibrotic tissue, number of activated myofibroblasts, TGF-β expression, as well as for M1 and M2 macrophages. Patients with high-grade DCMi (DCMi-high, CD3+ lymphocytes > 30 cells/mm2) had significantly increased PAI-1 levels compared to DCM and low-grade DCMi patients (DCMi-low, CD3+ lymphocytes = 14-30 cells/mm2) (15.5 ± 0.4% vs. 1.0 ± 0.1% and 4.0 ± 0.1%, p ≤ 0.001). Elevated PAI-1 expression in DCMi-high subjects was associated with a diminished degree of cardiac fibrosis, decreased levels of TGF-β and reduced number of myofibroblasts. In addition, DCMi-high patients revealed an increased proportion of non-classical M2 macrophages towards classical M1 macrophages, indicating M2 macrophage-favoring properties of PAI-1 in inflammatory cardiomyopathies. Our findings give evidence that elevated expression of cardiac PAI-1 in subjects with high-grade DCMi suppresses fibrosis by inhibiting TGF-β and myofibroblast activation. Moreover, our data indicate that PAI-1 is involved in the polarization of M2 macrophages in the heart. Thus, PAI-1 could serve as a potential prognostic biomarker and as a possible therapeutic target in inflammatory cardiomyopathies.
Collapse
|
93
|
Yang S, Liu Q, Liao Q. Tumor-Associated Macrophages in Pancreatic Ductal Adenocarcinoma: Origin, Polarization, Function, and Reprogramming. Front Cell Dev Biol 2021; 8:607209. [PMID: 33505964 PMCID: PMC7829544 DOI: 10.3389/fcell.2020.607209] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy. PDAC is only cured by surgical resection in its early stage, but there remains a relatively high possibility of recurrence. The development of PDAC is closely associated with the tumor microenvironment. Tumor-associated macrophages (TAMs) are one of the most abundant immune cell populations in the pancreatic tumor stroma. TAMs are inclined to M2 deviation in the tumor microenvironment, which promotes and supports tumor behaviors, including tumorigenesis, immune escape, metastasis, and chemotherapeutic resistance. Herein, we comprehensively reviewed the latest researches on the origin, polarization, functions, and reprogramming of TAMs in PDAC.
Collapse
Affiliation(s)
- Sen Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiaofei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
94
|
Alves A, Diel L, Ramos G, Pinto A, Bernardi L, Yates J, Lamers M. Tumor microenvironment and Oral Squamous Cell Carcinoma: A crosstalk between the inflammatory state and tumor cell migration. Oral Oncol 2020; 112:105038. [PMID: 33129055 DOI: 10.1016/j.oraloncology.2020.105038] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/18/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To analyze the inflammatory millieu in oral squamous cell carcinoma (OSCC) tumors and the influence of macrophages related-cytokines on the tumor cell migration. MATERIALS AND METHODS Inflammatory protein profile and macrophage population (M2/M1 ratio) of human OSCC fragments were analyzed by proteomic analysis and flow cytometry assay respectively. To evaluate the effects of inflammation on OSCC behavior, we analyzed the role of polarized macrophages and cytokines (IL-6, IL-1β and TNF-α) on OSCC cell lines (SCC25 and Cal27) responsiveness by western blotting (cell signaling) and time-lapse (cell migration). Also, it was addressed the crosstalk of IL-6-STAT3 axis with cell migration signaling using a STAT3 inhibitor (Stattic®) and a pull down assay for the RhoGTPase Rac1 activity. RESULTS It was observed a ~2 fold predominance of M2 over M1 macrophages and a pro-inflammatory state in OSCC fragments. The M2 conditioned media increased migration speed and directionality of highly invasive OSCC cells (SCC25). OSCC cell lines were responsive to cytokine stimuli (IL6, IL-1β and TNF-α), but only IL-6 increased migration properties of OSCC cells. This effect was dependent on STAT3-phosphorylation levels, which interfered with Rac1 activation levels. CONCLUSION Our results suggest that the inflammatory milieu might favor invasion and metastasis of OSCC by the direct effect of macrophage-related cytokines on tumor migration.
Collapse
Affiliation(s)
- Alessandro Alves
- School of Dentistry, University Center Univates, Lajeado, RS, Brazil
| | - Leonardo Diel
- School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Grasieli Ramos
- School of Dentistry, University of Oeste de Santa Catarina, Joaçaba, SC, Brazil
| | - Antônio Pinto
- Clayton Foundation Peptide Biology Lab, Salk Institute for Biological Studies, United States
| | - Lisiane Bernardi
- Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - John Yates
- Department of Molecular Medicine, The Scripps Research Institute, United States.
| | - Marcelo Lamers
- Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
95
|
Xue VW, Chung JYF, Córdoba CAG, Cheung AHK, Kang W, Lam EWF, Leung KT, To KF, Lan HY, Tang PMK. Transforming Growth Factor-β: A Multifunctional Regulator of Cancer Immunity. Cancers (Basel) 2020. [PMID: 33114183 DOI: 10.3390/cancers12113099.pmid:33114183;pmcid:pmc7690808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Transforming growth factor-β (TGF-β) was originally identified as an anti-tumour cytokine. However, there is increasing evidence that it has important roles in the tumour microenvironment (TME) in facilitating cancer progression. TGF-β actively shapes the TME via modulating the host immunity. These actions are highly cell-type specific and complicated, involving both canonical and non-canonical pathways. In this review, we systemically update how TGF-β signalling acts as a checkpoint regulator for cancer immunomodulation. A better appreciation of the underlying pathogenic mechanisms at the molecular level can lead to the discovery of novel and more effective therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Vivian Weiwen Xue
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jeff Yat-Fai Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Cristina Alexandra García Córdoba
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Alvin Ho-Kwan Cheung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
96
|
Transforming Growth Factor-β: A Multifunctional Regulator of Cancer Immunity. Cancers (Basel) 2020; 12:cancers12113099. [PMID: 33114183 PMCID: PMC7690808 DOI: 10.3390/cancers12113099] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Transforming growth factor beta (TGF-β) is a multifunctional cytokine that can restrict cancer onset but also promote cancer progression at late stages of cancer. The ability of TGF-β in producing diverse and sometimes opposing effects relies on its potential to control different cellular signalling and gene expression in distinct cell types, and environmental settings. The tumour promoting role of TGF-β is primarily mediated through its effects on the local tumour microenvironment (TME) of the cancer cells. In this review, we discuss the most recent research on the role and regulation of TGF-β, with a specific focus on its functions on promoting cancer progression through targeting different immune cells in the TME as well as its therapeutic perspectives. Abstract Transforming growth factor-β (TGF-β) was originally identified as an anti-tumour cytokine. However, there is increasing evidence that it has important roles in the tumour microenvironment (TME) in facilitating cancer progression. TGF-β actively shapes the TME via modulating the host immunity. These actions are highly cell-type specific and complicated, involving both canonical and non-canonical pathways. In this review, we systemically update how TGF-β signalling acts as a checkpoint regulator for cancer immunomodulation. A better appreciation of the underlying pathogenic mechanisms at the molecular level can lead to the discovery of novel and more effective therapeutic strategies for cancer.
Collapse
|
97
|
Qin S, Jiang J, Lu Y, Nice EC, Huang C, Zhang J, He W. Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduct Target Ther 2020; 5:228. [PMID: 33028808 PMCID: PMC7541492 DOI: 10.1038/s41392-020-00313-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023] Open
Abstract
Resistance to cancer therapy is a major barrier to cancer management. Conventional views have proposed that acquisition of resistance may result from genetic mutations. However, accumulating evidence implicates a key role of non-mutational resistance mechanisms underlying drug tolerance, the latter of which is the focus that will be discussed here. Such non-mutational processes are largely driven by tumor cell plasticity, which renders tumor cells insusceptible to the drug-targeted pathway, thereby facilitating the tumor cell survival and growth. The concept of tumor cell plasticity highlights the significance of re-activation of developmental programs that are closely correlated with epithelial-mesenchymal transition, acquisition properties of cancer stem cells, and trans-differentiation potential during drug exposure. From observations in various cancers, this concept provides an opportunity for investigating the nature of anticancer drug resistance. Over the years, our understanding of the emerging role of phenotype switching in modifying therapeutic response has considerably increased. This expanded knowledge of tumor cell plasticity contributes to developing novel therapeutic strategies or combination therapy regimens using available anticancer drugs, which are likely to improve patient outcomes in clinical practice.
Collapse
Affiliation(s)
- Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, People's Republic of China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, People's Republic of China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology Shenzhen, Shenzhen, Guangdong, 518055, People's Republic of China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, People's Republic of China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Road, 611137, Chengdu, People's Republic of China.
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology Shenzhen, Shenzhen, Guangdong, 518055, People's Republic of China.
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong, People's Republic of China.
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, People's Republic of China.
| |
Collapse
|
98
|
Mi X, Xu R, Hong S, Xu T, Zhang W, Liu M. M2 Macrophage-Derived Exosomal lncRNA AFAP1-AS1 and MicroRNA-26a Affect Cell Migration and Metastasis in Esophageal Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:779-790. [PMID: 33230475 PMCID: PMC7595846 DOI: 10.1016/j.omtn.2020.09.035] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022]
Abstract
Exosomes from cancer cells or immune cells, carrying bio-macromolecules or long non-coding RNAs (lncRNAs), participate in tumor pathogenesis and progression by modulating the microenvironment. This study aims to explore the function of M2 macrophage-derived exosomes on the invasion and metastasis of esophageal cancer (EC) with the involvement of the lncRNA AFAP1-AS1/microRNA-26a (miR-26a)/activating transcription factor 2 (ATF2) axis. We found that lncRNA AFAP1-AS1 could specifically bind to miR-26a, thus affecting the expression of miR-26a, and ATF2 was the direct target of miR-26a. Compared with M1 macrophage-derived exosomes, M2 macrophage-derived exosomes exhibited higher AFAP1-AS1 and ATF2 expression and lower miR-26a expression. Moreover, extracellular AFAP1-AS1 could be moved to KYSE410 cells via being incorporated into M2 macrophage-derived exosomes. M2 macrophage-derived exosomes could downregulate miR-26a and promote the expression of ATF2 through high expression of AFAP1-AS1, thus promoting the migration, invasion, and lung metastasis of EC cells; M2-exosomes upregulating AFAP1-AS1 or downregulating miR-26a ameliorated this effect. In summary, M2 macrophage-derived exosomes transferred lncRNA AFAP1-AS1 to downregulate miR-26a and upregulate ATF2, thus promoting the invasion and metastasis of EC. Targeting M2 macrophages and the lncRNA AFAP1-AS1/miR-26a/ATF2 signaling axis represents a potential therapeutic strategy for EC.
Collapse
Affiliation(s)
- Xifeng Mi
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000 Fujian, China
| | - Rongyu Xu
- Department of Oncology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000 Fujian, China
| | - Shunzhong Hong
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000 Fujian, China
| | - Tingting Xu
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000 Fujian, China
| | - Wanfei Zhang
- Department of Oncology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000 Fujian, China
| | - Ming Liu
- Digestive Endoscopy Center of the First Affiliated Hospital of Xiamen University, Xiamen, 361000 Fujian, China
| |
Collapse
|
99
|
Xu F, Wei Y, Tang Z, Liu B, Dong J. Tumor‑associated macrophages in lung cancer: Friend or foe? (Review). Mol Med Rep 2020; 22:4107-4115. [PMID: 33000214 PMCID: PMC7533506 DOI: 10.3892/mmr.2020.11518] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Typically, tumor-associated macrophages (TAMs), an abundant population of leukocytes in lung cancer, are affected by tumor microenvironment (TME) and shift towards either a pro-tumor (M2-like) or an anti-tumor phenotype (M1-like). M2-polarized macrophages, are one of the primary tumor-infiltrating immune cells and were reported to be associated with the promotion of cancer cell growth, invasion, metastasis, and angiogenesis. TAMs are considered a potential target for adjuvant anticancer therapies, and recent therapeutic approaches targeting the M2 polarization of TAMs have shown encouraging results. The present review discusses recent developments in the role of TAMs in cancer, in particular TAMs functions, clinical implication and prospective therapeutic strategies in lung cancer.
Collapse
Affiliation(s)
- Fei Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Zhao Tang
- Department of Integrative Medicine, Huashan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Baojun Liu
- Department of Integrative Medicine, Huashan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital of Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
100
|
Yang K, Bao L, He X, Zhao W, Fei D, Li B, Xue Y, Dong Z. Giant cell tumor stromal cells: osteoblast lineage-derived cells secrete IL-6 and IL-10 for M2 macrophages polarization. PeerJ 2020; 8:e9748. [PMID: 32904108 PMCID: PMC7450992 DOI: 10.7717/peerj.9748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022] Open
Abstract
Background The giant cell tumor (GCT) is a benign tumor which consists of three types cells: mononuclear histiocytic cells (MNHCs), multinuclear giant cells (MNGCs), and GCT stromal cells (GCTSCs). Numerous studies claim that GCTSCs have mesenchymal stem cells (MSCs) characters and play an important role in osteoclastogenesis; however, there are no research studies concerning macrophage polarization among GCT, which can be regarded as an ingredient for tumor aggression. Method We tested the effect of GCTSCs from three GCT samples which were collected from patients on proliferation, apoptosis and polarization of macrophage. Result In this article, we verified that GCTSCs expressed MSCs markers and had higher proliferation and relative lower differentiation abilities compared with BMMSCs. What's more, we found a higher proportion of M2 macrophages among neoplasm. Co-culturing GCTSCs with macrophages resulted in prominent macrophage M2 polarization and increased the release of IL-6 (Interleukin-6) and IL-10 (Interleukin-10)from GCTSCs. In conclusion, GCTSCs, as originating from MSCs, can secret IL-6 and IL-10, which may play a significant role in macrophage M2 polarization.
Collapse
Affiliation(s)
- Kuan Yang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lihui Bao
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| | - Xiaoning He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wanmin Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dongdong Fei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| | - Yang Xue
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhiwei Dong
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|